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Fig. 1. Given an initial scene, our Haisor agent takes advantage of the scene graph representation, Dueling Double DQN, Monte Carlo Tree Search, and

Motion Planning techniques and outputs a sequence of actions. Following these, the scene is optimized towards the goal of high rationality and human

affordance. For rationality, we expect that the overall layout of the furniture is realistic, and no collisions between furniture exist. For human affordance,

we expect the free space for human activity to be as large as possible, and people can manipulate movable parts of furniture without being blocked.

3D scene synthesis facilitates and benefits many real-world applications.

Most scene generators focus on making indoor scenes plausible via learn-

ing from training data and leveraging extra constraints such as adjacency

and symmetry. Although the generated 3D scenes are mostly plausible with

visually realistic layouts, they can be functionally unsuitable for human
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users to navigate and interact with furniture. Our key observation is that

human activity plays a critical role and sufficient free space is essential

for human-scene interactions. This is exactly where many existing synthe-

sized scenes fail—the seemingly correct layouts are often not fit for living.

To tackle this, we present a human-aware optimization framework Haisor

for 3D indoor scene arrangement via reinforcement learning, which aims

to find an action sequence to optimize the indoor scene layout automati-

cally. Based on the hierarchical scene graph representation, an optimal ac-

tion sequence is predicted and performed via Deep Q-Learning with Monte

Carlo Tree Search (MCTS), where MCTS is our key feature to search for the

optimal solution in long-term sequences and large action space. Multiple

human-aware rewards are designed as our core criteria of human-scene in-

teraction, aiming to identify the next smart action by leveraging powerful

reinforcement learning. Our framework is optimized end-to-end by giving

the indoor scenes with part-level furniture layout including part mobility

information. Furthermore, our methodology is extensible and allows utiliz-

ing different reward designs to achieve personalized indoor scene synthesis.

Extensive experiments demonstrate that our approach optimizes the layout

of 3D indoor scenes in a human-aware manner, which is more realistic and

plausible than original state-of-the-art generator results, and our approach

produces superior smart actions, outperforming alternative baselines.

CCS Concepts: • Computing methodologies → Computer graphics;

Scene understanding; Hierarchical representations; Shape modeling;

Additional Key Words and Phrases: Scene optimization, scene synthesis,

human aware, reinforcement learning, Monte Carlo search, robot simula-

tion, imitation learning
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1 INTRODUCTION

In the past few years, plenty of research has emerged to demon-

strate the power of automated modeling of indoor scenes. How-

ever, the automatic generation of realistic and plausible indoor

scenes has not met the needs of creators. Deep generative mod-

els have received much attention in vision and graphics due to

the growing popularity of applications such as VR designs, ro-

botics, and simulation, where, traditionally, content creation in-

volves cumbersome and tedious manual modeling pipelines. How-

ever, the generated 3D models [Paschalidou et al. 2021; Ritchie et al.

2019; Wang et al. 2019, 2018] tend to focus on visual similarity to

training examples, ignoring the functionality and human-aware

interaction [Blinn et al. 2021]. This significantly limits the realism

and practicality of the generated models, which is crucial for 3D

indoor scene synthesis.

Existing indoor scene synthesis work commonly focuses on lay-

out generation/optimization, aiming to generate plausible layout

designs. They tend to adjust the furniture locations by learning

the layout patterns existing in the dataset. However, a good indoor

scene layout should allow furniture to be easily interacted with,

without collision and with human comfort, e.g., the door/drawer

of a cabinet should be easily openable. A reasonable layout of fur-

niture facilitates easier interaction and free movement of users. To

assist in the creation of such indoor 3D scenes, furniture layouts

should be designed in a way that pays attention to how people in-

teract with the scene and access the functionality of the furniture.

Generative models of 3D indoor scene layouts have made great

success in automatic creation. Such models can produce geometry-

aware and visually plausible 3D indoor scenes learned from exist-

ing data, e.g., GRAINS [Li et al. 2019], ATISS [Paschalidou et al.

2021], SceneFormer [Wang et al. 2021b], Deep Priors [Wang et al.

2018], PlanIT [Wang et al. 2019], and so on. Learning-based meth-

ods fail to be functionally useful or take human interaction into

consideration, since the furniture is retrieved from the database as

a whole according to the bounding box, ignoring part mobility. Yu

et al. [2011] first introduce automatic synthesis of furniture lay-

out by considering in a comprehensive manner human factors via

simulated annealing, but it only focuses on the accessibility of fur-

niture in a supervised manner, instead of the interaction between

humans and the functionality of furniture. Such optimization is

a non-trivial task.If we regard this task as a step-by-step adjust-

ment process, then it will be a long-term trial-and-error decision-

making process and must consider the variety of relationships in

each step, e.g., furniture-furniture, human-furniture. As an exam-

ple, for the accessibility and functionality (openable) of a cabinet

door, the front of the cabinet must be emptied for making the door

openable, and the positions of the cabinet and the objects surround-

ing it also need to be optimized so people can access it comfortably,

without sacrificing the realism and rationality of indoor scenes.

The difficulty of making decision sequences arises from complex

and diverse scene layouts, movable parts of furniture, and accessi-

bility to human habitats. It leads to a large search space that it is

very hard to find optimal moving sequences. Naturally, a heuristic

method can be designed to achieve the target under some defined

rules. However, A finite set of rules cannot cover all situations, es-

pecially in a multi-modal complex case such as indoor scenes.

To tackle the problem of scene layout optimization, our goal

is to optimize the furniture arrangements for indoor scenes auto-

matically, which accommodates human interaction and habitats.

Hence, we introduce a novel human-aware optimization frame-

work, Haisor, for 3D indoor scene arrangement via reinforcement

learning, which seeks to find a sequence of actions to satisfy our

criteria automatically. Figure 1 shows the overview of all the com-

ponents of HAISOR. To address the complexity of indoor scenes,

various optimization criteria, and potential long action sequences,

our method is based on a trained Deep Q-Network along with

Monte Carlo Tree Search (MCTS) [Chaslot et al. 2008]. The

scenes are represented by a two-layer graph, which decomposes

the indoor scene furniture with part mobility, including the rela-

tionships between nodes at the same level. The learned Q-Network

is capable of predicting the desired smart action that accommo-

dates the accessibility and interaction with humans. Namely, it can

decide an action that earns the largest reward from the simula-

tion environment. The human-aware reward is our core criterion

for human-scene interaction during reinforcement learning. It en-

courages (1) free manipulation of movable parts of furniture and

(2) enough space for a human to walk around. For efficient training

and fast convergence, we adopt imitation learning method [Shalev-

Shwartz and Ben-David 2014], using a simple heuristics agent to

guide the initial learning process, and MCTS further boosts the

action search for the best solution in long-term sequence pre-

diction. Leveraging the power of reinforcement learning, our ap-

proach learns how to optimize the arrangement of scene layout in

a human-aware and end-to-end fashion by giving the 3D indoor

scene with part-mobility-level furniture.

Furthermore, our method can be extended by designing differ-

ent actions and rewards, facilitating the creation of 3D scenes and

other applications such as personalized scene customization. In ad-

dition, our method can inspire other sequential decision-making

problems such as functional furniture design [Blinn et al. 2021].

In summary, our major contributions include:

— A novel optimization procedure (Haisor) via reinforcement

learning for scene layout arrangement that focuses on the op-

timal action sequence search automatically for realism and ac-

cessibility. Additionally, the procedure can be easily extended

to enable more optimization goals.

— A learnable policy network that embeds human-aware reward

via Graph Convolutional Network achieves smart action pre-

diction that accommodates the accessibility and interaction

with humans, based on the scene graph representation.

— Extensive experiments and validations show that our ap-

proach outperforms alternative baselines, capable of produc-

ing realistic and plausible results via learned smart actions in

a human-aware manner.

2 RELATED WORK

This research work is primarily related to Human-aware 3D in-

door scene synthesis/optimization, which considers both furniture
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layout and relations between objects. It is also related to deep

generative models on 3D indoor scenes that learn the distribu-

tions for novel synthesis. This section briefly reviews the recent

advances in 3D indoor scene synthesis, reinforcement learning on

sequential decision problems, and rearrangement planning.

2.1 3D Indoor Scene Synthesis

3D indoor scene synthesis has been investigated thoroughly, in-

cluding floorplan generation [Liu et al. 2021b; Ritchie et al. 2019;

Wang et al. 2019, 2018] and furniture layout arrangement [Hu et al.

2020; Nauata et al. 2020, 2021]. For comprehensive discussions on

scene synthesis, please refer to survey papers Pintore et al. [2020]

and Zhang et al. [2019].

Understanding the furniture arrangements such as their rela-

tions is a central topic in scene synthesis. Existing research has

made considerable effort to explore approaches that can generate

geometrically realistic and reasonable indoor scenes by predict-

ing furniture placement from a semantic perspective and retriev-

ing existing furniture for producing realistic scenes. Various solu-

tions have been proposed by considering different settings, such

as example-driven methods [Fisher et al. 2012], language-driven

synthesis [Ma et al. 2018], learning-based methods [Kermani et al.

2016; Merrell et al. 2011; Zhang et al. 2022], and optimization-

based methods [Henderson and Ferrari 2017; Xu et al. 2015; Yeh

et al. 2012]. Recently, deep neural networks have been successfully

leveraged to learn the potential distribution from large amounts

of data. These works [Ritchie et al. 2019; Wang et al. 2019, 2018]

introduce image-based deep generative models to model the place-

ments and relations with the graph of furniture from an enormous

amount of top-down view images of scenes. GRAINS [Li et al. 2019]

is a pioneering work for scene structure modeling, leveraging hier-

archical graphs to represent scenes and producing realistic furni-

ture layouts within a square domain with border walls by Recur-

sive Neural Networks (RvNNs). Moreover, Zhang et al. [2020]

presents a hybrid representation to train a scene layout gener-

ator through a combination of 2D images and 3D object place-

ments. SceneFormer [Wang et al. 2021b] and ATISS [Paschalidou

et al. 2021] predict furniture placement sequentially based on the

transformer [Vaswani et al. 2017], which achieve state-of-the-

art (SoTA) 3D scene conditional generation. Recently, LayoutEn-

hancer [Leimer et al. 2022] aims to generate the enhanced scene

layout by combining both expert knowledge and a distribution

learned from data. Besides that, SceneGraphNet [Zhou et al. 2019]

models the short/long-range relations between objects based on a

novel neural message-passing network, which can perform object

suggestions considering the surrounding objects in a scene.

In contrast to the above scene synthesis frameworks that only

consider the realism of synthesized scenes in geometry and lay-

outs, researchers have been exploring other factors of human inter-

action to ensure the functional plausibility and accessibility of 3D

synthesized scenes, e.g., accessibility of objects [Yu et al. 2011], hu-

man trajectory [Qi et al. 2018], and human activity [Fu et al. 2017;

Liu et al. 2021a; Ma et al. 2016]. Yu et al. [2011] only regard objects

as a whole to model the accessibility. Qi et al. [2018] optimize the

scene layout according to the learned affordance maps with a sto-

chastic grammar model, without considering the accessibility of

furniture (especially for part mobility). Similarly, Ye et al. [2022]

synthesize the indoor scene by considering the human motion. Fu

et al. [2017] and Ma et al. [2016] optimize the object placement in

a scene with pre-defined actions or activity-associated object rela-

tion graphs.

Instead, Haisor allows optimizing the furniture arrangements

to achieve realism automatically and further enables personalizing

3D scene layout, which accommodates human manipulation with

objects and their moving parts to ensure functionality and human

affordance for comfortable accessibility.

2.2 Rearrangement Planning

Rearrangement Planning has been investigated in the robotic field.

There is a trend to study how to rearrange objects for the goal

configuration using a robot. It is NP-hard [Wilfong 1991] and an

interesting challenge area for robotics research. Yuan et al. [2019,

2018] learn a non-prehensile plan for robots’ arms to place the ob-

jects in the right location under some criteria. For multi-object

rearrangement planning, a substantial body of works [Haustein

et al. 2015; King et al. 2016, 2017; Koval et al. 2015; Song et al.

2020] has explored this problem in two stages (local path planning

and global strategy searching). Bai et al. [2021] proposed a hier-

archical policy to solve the non-prehensile multi-object rearrange-

ment with deep reinforcement learning and MCTS. For complex

and realistic indoor scenes, SceneMover [Wang et al. 2020] and

PEARL [Wang et al. 2021a] solve the scene rearrangement plan-

ning problem via selecting pre-defined paths for movement and

exploring non-prehensile action space (grasp & pick), respectively.

The non-prehensile actions make the solution more tractable.

Prior works in robotics perform algorithms on a robot, which

only use some simplified proxies to represent the scene, and it is dif-

ficult to describe the full complexity of the scene, e.g., detailed ge-

ometry, part mobility, and orientation. Although SceneMover and

PEARL conduct the rearrangement planning in realistic scenes, the

target is known or learned from the data distribution. In contrast,

our method Haisor aims to optimize the furniture placement in re-

alistic scenes with complex part geometry and mobility and further

integrates the human-aware factors (affordance and manipulation

with objects) for 3D scene layout customization.

2.3 Deep Reinforcement Learning

The goal of reinforcement learning (RL) [Sutton and Barto

2018] is to help the agent learn good policies for sequential

decision problems under dynamic environments by optimizing

a cumulative future reward signal in an unsupervised manner.

It seeks the gradient directions from countless attempts/trials

through facing different incentives from the environment, which

is a process of accumulating experience. When the environment

is known, it is named model-based RL, which can be solved us-

ing dynamic programming. However, most of the real-world prob-

lems are environment-unknown, namely, model-free RL, which

can be divided into value-based RL and policy-based RL. Policy-

based methods are usually combined with a policy gradient algo-

rithm [Achiam et al. 2017; Agarwal et al. 2020; Chen et al. 2022;

Vuong et al. 2019]. For value-based methods, Q-Learning is one of

the most popular reinforcement learning algorithms. However, it

has been observed that it occasionally learns unreasonably high
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action values, since it includes a maximization process over the

estimated action values, which may bias towards overestimation.

With the success of deep neural networks (DNN) in the field

of 2D image processing [Krizhevsky et al. 2012], reinforcement

learning has seen considerable efforts that use DNNs to fit

policy networks, namely, deep reinforcement learning, including

DQN [Mnih et al. 2013], Ddouble-DQN [van Hasselt et al. 2016]

and Dueling-DQN [Wang et al. 2016]. The deep reinforcement

learning algorithms have been investigated and demonstrated

their superior performance across many challenging tasks. For

example, AlphaZero [Silver et al. 2017] in the games of chess and

Go without human knowledge, OpenAI Five [Berner et al. 2019]

in the MOBA games for multi-agents cooperation, and learning

to self-navigate in complex environments [Mirowski et al. 2017].

Different from the above agents, our agent is performed in

the real-world scene layout reconfiguration task. The action

space and rewards are designed to optimize the scene layout in a

human-aware fashion. Researchers have been exploring numerous

approaches to make learning more efficient [Andrychowicz et al.

2016], stable [Mnih et al. 2015], and benefit from experience

replay [O’Donoghue et al. 2017]. Levine et al. [2018] learn a policy

to control the robots for grasping from the raw inputs of a camera.

Scene Mover [Wang et al. 2020] is the most relevant work to

ours, which designs a novel algorithm for scene arrangement

by automatically generating a move plan. Instead, ours aims to

reconfigure the furniture arrangements to realism automatically

and further implicitly personalize the 3D scene layout via different

reward designs.

3 OVERVIEW

Haisor seeks to find a sequence of actions that can reorganize

the original scene to another one that satisfies a set of criteria. To

tackle this problem, we use Deep Q-Learning with Monte Carlo

Tree Search (MCTS) on a two-layer scene graph representation.

The learned Q-Network is capable of predicting the action that

earns the most rewards for the current state of the scene. Due to

the highly freed action space and diverse furniture arrangement,

the action sequence that leads to the optimal solution may be too

long for simple searching algorithms, Hence, we proposed to uti-

lize MCTS to boost our converge process in the long term, which

plays a critical role in our framework. The rewards of the simula-

tion environment are designed according to the criteria of human-

scene interaction, which encourages the optimized furniture lay-

out to accommodate the manipulation of object functionality and

accessibility of human affordance.

3D Scene Representation. 3D indoor scenes can be decomposed

into room structures (e.g., walls, doors, and windows) and arrange-

ment of furniture, and the furniture can be further disassembled

into local parts. In every step of optimization, the whole furniture

is moved, but the human-scene interaction is at the part level. For

example, when a person opens the door, he or she is actually grasp-

ing the handle. Based on the observation above, we construct two

graphs (V ,E) and (Vp ,Ep ) to represent the scene. The nodes V of

a scene graph are furniture objects, and the nodes Vp are parts of

furniture objects. Because an object consists of multiple parts, ev-

ery node in Vp has a parent node in V . The edges of the graph are

designed to hold information about the proximity of the nodes. We

draw an edge between two nodes of the graph only if they are suffi-

ciently close in space. The scene graph representation is discussed

in Section 4.

Human-scene Interaction. Our method focuses on generating

a human-friendly indoor 3D scene, taking into account human-

scene interaction. We mainly consider two types of interactions:

(a) Humans can freely manipulate movable parts of the furniture

in the scene.

(b) The space for humans to walk around in the scene needs to

be as large as possible.

In the rest of the article, we combine these two criteria and call

them Human Affordance. For the first type of interaction, we

use a humanoid robot to imitate a human, and a motion planning

module is invoked to get the possible movement for the robot to

manipulate the movable parts. If no such movement exists, then we

conclude that the current layout of the scene is not “comfortable.”

For the second type of interaction, we consider all the possible po-

sitions that a person can stand in the room. The goal is to maximize

the number of these positions. We will discuss this in Section 5.

Deep Q-Network. The task of the Q-Network is to predict the Q

valueQ (s,a) in the Bellman equation for an arbitrary scene state s
and action a. In the MCTS [Chaslot et al. 2008] search process, the

predicted Q values are used in the selection, expansion, and simu-

lation steps. An accurate Q value can accelerate the search speed.

The backbone of our Q-Network is a Graph Convolution Net-

work (GCN) [Defferrard et al. 2016; Kipf and Welling 2017]. We

perform graph convolution twice: first is on the part-level scene

graph (Vp ,Ep ), then the features of the part-level nodes are aggre-

gated and fed into the convolution layer of object-level scene graph

(V ,E). For the output layer of the network, we adopt the dueling

DQN [Wang et al. 2016] structure. The detailed network compo-

sition is described in Section 6.1. To efficiently train this network,

multiple training methods such as prioritized replay buffer and im-

itation learning are used. These training methods are explained in

Section 6.2.

Monte Carlo Tree Search. The policy provided by the learned Q-

network may not be accurate all the time. MCTS is an effective

method for combining the guidance of a Q-Network and a search

algorithm. MCTS constructs a tree that stores the states of the

scene and their Q-values. During the search process, the tree is

expanded iteratively. Among all candidate nodes, the one that has

the highest estimated Q-value is selected and expanded. From the

state of the expanded node, a simulation is performed to provide a

“real” human affordance reward. This acquired reward is then used

to update all the ancestor nodes of the expanded node. Because

a simulation is performed in each round, the updated Q-value is

more accurate than the one predicted by the Q-network. However,

with the guidance of the Q-network, the search converges more

quickly. The search algorithm is described in Section 6.3.

4 SCENE REPRESENTATION

We construct two undirected scene graphs (V ,E) and (Vp ,Ep ) to

represent the scene. Below, we discuss the construction of our

scene graph representation.
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4.1 Scene Graph Composition

Bounding Box vs. Detailed Geometry. In real-world 3D indoor

scenes, objects are associated with their detailed geometry. How-

ever, the existing scene synthesis methods such as GRAINS [Li et al.

2019] or Deep Priors [Wang et al. 2018] only consider the layout

of the scene, using a bounding box to represent the whole furni-

ture. In our setting, object parts are important, because (1) actual

human-furniture interaction happens on object parts, and (2) some

object placement patterns, e.g., chairs inserted under the table, can-

not be modeled using object bounding boxes. Considering the fact

that adding detailed geometry of object parts into our framework

is too heavy, we choose to use a bounding box to represent each ob-

ject part. This “hybrid” method is lightweight, and it preserves the

object parts’ structure, enabling the two features described above.

Nodes. In our scene graph, every part-level node is associated

with an 11-dimensional data of the oriented bounding box of the

corresponding part or object, denoted by [p, e, o, f]. p and e are 3D

vectors storing the position and the extent of the bounding box. o

is a 4D quaternion storing the orientation of the bounding box. f

is a binary flag, indicating whether the part is movable. In object-

level scene graph (V ,E), the node data is represented as [p, e, o, l].

l is a one-hot vector encoding the category of the object, and its

length C equals the number of object categories. Thus, the node

data of scene graph is a |V | × 11 matrix for part-level graph and a

|V | × (10 + C) matrix for object-level graph.

Edges. The edges of the graph are designed to hold information

of the proximity of nodes. We connect an edge between nodes v1

and v2 if the following condition is satisfied:

‖p1 − p2‖2 ≤
(‖e1‖2 + ‖e2‖2)

2
, (1)

where the ‖ · ‖2 means the 𝓁2 norm. Note that in the part-level

graph, an edge between a pair of nodes is connected only if the

parents of the two nodes are connected by an edge in the object-

level graph. In our scene graph, every edge (v1,v2) is associated

with a 3D vector p1 − p2. Thus, the edge data of a scene graph is

an |E | × 3 matrix.

2-layer Scene Graphs. We need to consider both the relationships

between object parts and the relationships between objects. As a

solution, the scene graph is extended to a 2-layer one. Two graphs

(V ,E) and (Vp ,Ep ) are constructed individually on the object level

and part level and associated with the ownership of parts by ob-

jects. The ownership is defined as an integer ai :

Vai owns Vp,i

i = 1, 2, . . . , |Vp |,ai ∈ {1, 2, . . . , |V |}. (2)

4.2 Movable Parts

Movable parts are essential elements when considering human-

scene interaction, while it is more complicated to model them. The

two most encountered types (Figure 2) of movable parts are con-

sidered in this approach:

(1) Hinges. This type of object can rotate around an axis. The di-

rection of the axis is denoted by unit vector rd , and the origin

Fig. 2. Types of movable parts. We define two types of movable parts:

Hinge and slider. The movable hinge parts are defined using four param-

eters rp, rd , ru, rb , and the movable slider parts are defined using three

parameters rd , ru, rb . These parameters are combined with bounding box

parameters to form the data of the part-level scene graph.

Fig. 3. Wall-object Distance Extraction. To calculate the distance between

an object and the wall of the room, we adopt the ray-casting method. The

calculation is based on the axis-aligned bounding box (AABB) of the ob-

ject. We sample 10 points equidistantly on each face of the AABB as the

origin of the ray, and the direction of the ray is perpendicular to the face

and pointing at the outside of the AABB. We take the minimum of the ray

intersection length as the calculated distance. In the figure, two intersec-

tion distance values s1 and s2 are returned by the ray intersection process,

and s1 is the true value of wall-object distance.

of the axis is a position rp . The rotation angle has an upper

limit ru and a lower limit rb .

(2) Sliders. This type of object can move along a direction denoted

by unit vector sd . The distance of movement has an upper

limit su and a lower limit sb .

Directly feeding the movement data described above into the net-

work is an option, but it is hard for the network to learn the rela-

tionship between the data and the actual movement. Instead, we

decide to sample three states of the movable parts: the lower limit

of movement, the upper limit of movement, and the middle of them.

These three bounding boxes are added to the part-level scene graph

and treated like other parts. Note that for most movable parts in

our data, the lower and upper limit states are either the original

state itself, or symmetric to the original state. So, we do not need

to include the original bounding boxes.

4.3 Walls

Walls act as “hard constraints” in our decision sequence. Any part

of the furniture must not collide with the walls. Since we do not

ACM Transactions on Graphics, Vol. 43, No. 2, Article 15. Publication date: January 2024.
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Fig. 4. Human-object Interaction. We use a motion planning pipeline to simulate human manipulating a certain movable part of the furniture. The process

is divided into three steps: We estimate the initial standing point of the human using the size of furniture and human and attempt to place the human

model at the initial point. If the placement succeeds, then we attempt to move the end-effector of the human to a grasping point of the movable part. If the

movement succeeds, then we attempt to move the end-effector along the Cartesian path of the movable part (an arc for hinges, a line segment for sliders).

consider the ceiling and the floor, we can assume the wall is infin-

itely extended in the up and down directions.

There are many possible representations for walls. We can sim-

ply use 3D models or describe the inner boundary of the wall with a

2D ring. However, like in the case of movable parts, directly feed-

ing any type of wall data into the network is not beneficial for

learning the relationship between objects and walls. We observe

that we need to take into account the object-wall distance to avoid

collision. So, we extract the minimum distance between objects

and the wall in each direction. Since we do not consider the up

and down directions, for each object, we have 4-dimensional data.

All the data forms a |V | × 4 matrix.

Wall-object Distance Extraction. To extract the minimum wall-

object distance, we adopt the ray-casting method; the brief dia-

gram is shown in Figure 3. Due to the complicated representations

of walls in the 3D-FRONT dataset [Fu et al. 2021] (e.g., walls repre-

sented by separate meshes with numerous vertices, instead of reg-

ular shapes), it is hard to calculate the distance between the wall

and the bounding box of objects, and the simple 2D closed-form

method is not available. Given an object bounding box and a direc-

tion, we first decide on the corresponding face. For example, if the

direction is +x , then we select the front face of the bounding box.

We then sample 10 points equidistantly along the other axis (in the

example y-axis), with the center of the selected face in the middle.

Then, for each point, we construct a ray. The origins of the rays

are the sampled points, and the directions are the input direction.

We test the interaction of these rays and the wall. The minimum

distance among these intersections is our final result.

5 REINFORCEMENT LEARNING AND SIMULATION
ENVIRONMENT

Our reinforcement learning agent learns the optimization policy

through trial and error in a simulation environment that accu-

rately represents indoor scenes. When the agent takes different ac-

tions, the environment returns rewards based on the actions taken.

These rewards are calculated based on the human-scene interac-

tion criteria described in Section 3. In this section, we will first in-

troduce the implementation of our human-scene interaction model

and then describe the reinforcement learning settings, including

the detailed reward scheme.

5.1 Human-scene Interaction

Human-object interaction. We use motion planning on a hu-

manoid robot to imitate the interaction between human and mov-

able parts of objects. We simulate the interaction in three steps:

(a) Move to the initial point. We assume the root of the humanoid

robot is in the front direction of the movable object, and the

distance between them is 0.5 m. Then, we plan the path of the

end effector of the robot. For now, we set the right hand as

the end effector and attempt to generate a plan to move it to

the grasping point (“handle”) of the movable part. For hinge

parts, we assume the handle lies on the opposite side of the

rotation axis, and for slider parts, we assume the handle is in

the middle of its front face.

(b) Attach object. If step (a) is completed, then the movable part is

attached to the hand of the robot via a new joint. We observe

that when grasping the handle, the palm can rotate around

the main axis of the handle, which is parallel to the rotation

axis in hinge objects and perpendicular to the slider axis in

slider objects. The axis of this new joint is set according to

the observation above.

(c) Move along a Cartesian path. When moving, the paths of

hinge objects’ handles are arcs, and the paths of slider objects’

handles are line segments. We plan a Cartesian path for each

handle, i.e., the end effector connected with it) and get the suc-

cessfully planned portion of the path. Note that, in most cases,

the path may not be fully planned. This is caused by various

factors, including the limit of human joints, the collision be-

tween furniture, and the lack of space for the human to move.

We illustrate our procedure to produce human-object interaction

information in Figure 4. Additionally, more sophisticated reward

settings based on motion planning results can be added. With these

extended settings, joint values of motion planning can be consid-

ered to determine the quality of human-object interaction. Please

refer to the supplementary material for details.

Free space of human activity. We assume that a human occu-

pies a volume of the shape of an elliptic cylinder (1,800mm ×
750mm × 550mm) according to the dimensions of a typical human

body [Panero and Zelnik 1999]. By testing all the possible posi-

tions that a person can stand, we extract the amount of free space
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Fig. 5. Free Space for Human Activity. We use uniform grid sampling to compute the free space for human. First, we divide the 2-D bounding box of the

floor into 900 grids and compute the grid inside and outside of the floor. For each grid, we attempt to place a human mesh onto its center. If the placement

is free of collision, then the grid is labeled as valid. Finally, we compute the maximum connected component of the valid grids and use its size to compute

the free space of human activity.

for human activity. We compute the amount of free space in two

steps:

(a) Collision test. We divide the area of the bounding box of the

floor into 30× 30 = 900 grids and randomly sample a point in

each grid. For each sampled point, we first determine whether

the point lies inside the floor. If the point lies inside the floor,

then we place the “human space” cylinder so the center of the

cylinder coincides with the point. Then, we test whether the

cylinder collides with the furniture. If the collision exists, then

we rotate the cylinder along with y (up) axis by π/2 radians

and test again to allow the possibility for a human to walk

sideways through the space. If both tests yield collision, then

the grid is not considered as free space.

(b) Extract the maximal connected component. After the colli-

sion test, multiple regions of free space can exist, but the re-

gions are blocked from each other by furniture. In a real-world

scene, only one of the regions is accessible via the door of

the room. Since we do not consider doors, the region with

the maximal area is considered the accessible one. To extract

the maximal connected component, we use a breadth-first

search (BFS) algorithm, which returns the area of the maxi-

mal connected component.

We illustrate our procedure to produce free-space information in

Figure 5.

5.2 Settings of Reinforcement Learning

To train the Q-Network described in Section 3, we employ re-

inforcement learning techniques. For each scene in the training

dataset, we create a virtual environment. The agent explores the

environment using the ϵ-greedy policy, and each action taken by

the agent results in an immediate reward. Once the agent stops op-

timizing, it is given a final reward that indicates the overall “qual-

ity” of the optimized scene. The states and rewards are stored in

a replay buffer, from which actual training data is sampled. We

provide details of the settings in this section.

Action Space. The action taken by the agent can be written as a

pair (v,d ), where v is a node in the object-level graph (V ,E), and

d is a move action type (or direction).

There are four types of actions t+x , t−x , t+z , t−z . Every action

refers to moving the object towards a direction denoted by its sub-

script for 0.1 m, and they can be indexed by 0, 1, 2, 3. We encode

all actions in a scene into a number a ∈ N. If the action is to move

object i towards direction d , then we have

a = i × 4 + d . (3)

Rewards. When the agent decides to take a specific action,

the state of the simulation environment is changed according to

the action, and an immediate reward is given to the agent when

every step of action is taken. Additionally, a final reward is given

when the agent decides to stop the optimization. An immediate

reward is a form of reward shaping, since the final reward is too

sparse for the agent to learn. The components of the reward are

described below.

(1) Collision. To obtain the collision number between two objects,

we compute IoU (Intersection over Union) for every ob-

ject part and compute the average of these IoU scores and

multiply the score by −80. When an action is performed, the

“discounted” difference between the collision score before the

action and the collision score after the action is given as an im-

mediate reward. The collision score at the final state is given

as the final reward.

(2) Motion planning. For every movable part, we first determine

whether the robot can move to the initial point. If it fails,

then a reward of −5 is given. If it succeeds, then a reward

of p × 5 − 5 is given, where p represents the length of the

successfully planned robot path length divided by the length

of the desired path fed into the motion planning module

(the length of the actually planned path is always less than

the desired path) of the movable object. This reward is only

given as the final reward.

(3) Free space. This reward is defined as

Rf s = 15
Af r ee

Af loor −
∑
Ai
. (4)

Af r ee denotes the free space computed by the BFS algorithm.

Af loor denotes the area of the floor, and Ai denotes the

area of the 2D bounding box of furniture i . The “discounted”

ACM Transactions on Graphics, Vol. 43, No. 2, Article 15. Publication date: January 2024.



15:8 • J.-M. Sun et al.

difference between the free space reward before and after an

action is given as an immediate reward, and the free space

reward at the final state is given as the final reward.

(4) First-time collision elimination. A reward of 20 is given

immediately when the number of collisions changes from

positive to zero for the first time.

(5) Rationality. A collision-free and high human affordance

scene may be irrational. For example, when two nightstands

are placed in the corners of a room instead of placed adja-

cent to the bed, the collision and human affordance metric

may be high, but the scene is not rational in the sense of

indoor scene layout. We thus train a regressor based on the

ResNet18 [He et al. 2016] network backbone on the data

of 3D-FRONT [Fu et al. 2021]. The training data format

is a 22-dimension top-down image. The positive examples

are original 3D-FRONT scenes, the negative examples are

randomly perturbed 3D-FRONT scenes. The details of this

network are described in Section 7.3. The network outputs

the possibility of the scene being rational, and we give the

rationality reward when the optimizing process concludes:

Rr a = 100 × pr eal , (5)

where pr eal is the possibility output by the network. This

reward is only given as the final reward.

Stopping. Unlike the episodic task in Wang et al. [2020], our re-

inforcement learning task is a continuous task without a goal or

stopping state. The only “episodic” task in our settings is to elim-

inate all collisions between furniture, thus, we give the first-time

collision elimination reward to encourage the reduction of colli-

sions. To tackle the stopping problem, we feed the average feature

of all the nodes into an MLP and output a single Q-value indicat-

ing the reward obtained by immediately stopping the optimization.

To fit the stopping action into our action-simulation pipeline, we

add a “virtual object” after the actual objects, extending our action

space dimension from 4× |V | to 4× ( |V |+1). The Q-value of all the

four actions of the virtual object equals to the predicted Q-value.

Once the virtual object is selected by the agent, we stop the simu-

lation, concluding the optimization process.

6 THE ARCHITECTURE OF HAISOR AGENT

Our Haisor agent consists of two parts: Q-Network and Monte

Carlo Tree Search. We show an overview of our method in Figure 6.

6.1 Q-network

The goal of the Q-network is to predict the Q-valueQ (s,a) for state

s and action a. For any state s , the optimal action predicted by the

network is maxa′ Q (s,a′).

Network Structure. The Q-network is a Dueling Double Deep

Q-Network based on a Graph Convolution Network (GCN).

The input of the network is a scene graph representation

{(V ,E), (Vp ,Ep )}, and the output of the network is the estimated

Q-value Q̂ (s,a) for every possible action a.

The first building block of our network is GCN. For an arbitrary

input graph (V ,E), the GCN performs multiple message-passing

passes on the graph, and every message-passing pass can be de-

scribed as

V
(k+1)

i =
1

Ni

∑
(i, j )∈E

f (k ) ([V
(k )

i ;V
(k )
j ;Ei j ]), (6)

whereV
(k )

i is the feature of the ith node after k rounds of message

passing, Ni is the number of neighbors of the ith node, Ei j is the

feature attached to the edge (i, j ), and f (k ) is a learnable encoder.

We first perform several rounds of message passing on the

part-level scene graph (Vp ,Ep ) and obtain a matrix of data V
(k )

p

of shape |Vp | × Lf eatur e , where Lf eatur e is the length of feature

vector output.

The second step is to aggregate the features of part-level nodes

that are owned by the same object. This can be denoted by

Vi =
1∑

j δ (aj , i )

∑
j

δ (aj , i )Vp, j , (7)

where δ (i, j ) is 1 when i = j, and 0 otherwise.

After the aggregation of part-level node features, we then con-

catenate object-level feature Vi and the distance of object i to the

walls in all four directions to the corresponding row of the feature

matrix, changing shape of the feature matrix to |V | × (Lf eatur e +

11 + 4). Then, we perform another round of message passing on

this feature matrix and edges of object-level graph E. The obtained

data V (k ) is fed into two networks

Qs = fstate
��
�

1

|V |
∑

j

V
(k )
j

��
�
, (8)

Q ′i = faction

(
V

(k )
i

)
, (9)

where fstate and faction are Multi-Layer Perceptrons (MLPs).

We use this two-branch network structure after Dueling Q-

Network [Wang et al. 2016].Qs is a scalar representing the Q-value

of the state, and Q ′i is a 4-dimensional vector representing the Q-

value of every action performed on object i .
The following equation is used to produce the final estimated

Q-value Q̂ (s,a):

Q̂ (s,a) = Qs +
��
�
Q ′

i (a)[d (a)] − 1

4 × |V |
∑

j

3∑
k=0

Q ′j [k]
��
�
, (10)

where i (a) = �(a ÷ 4)�,d (a) = a mod 4, x[n] is to obtain the data

of vector x on index n.

Double Q-network. According to DQN [van Hasselt et al. 2016],

using a single Q-network in both action selection and action evalu-

ation may cause the overestimation of Q-values. To solve this prob-

lem, we use two networks of the same structure Q1 (s,a),Q2 (s,a).
When training, the target Q-value is computed using

y = r +Q1 (s,max
a′

(Q2 (s,a′))), (11)

where y is the target Q-value, and r is the immediate reward given

by taking the action.

Wall Constraints. Walls act as hard constraints, but our Q-

network is not capable of handling the constraints directly, so we

set the Q-value of the invalid actions that will produce new colli-

sions between objects and walls to −∞ in the output layer of our

Q-network.
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Fig. 6. Overview of Haisor Agent. We use a two-layer scene graph as our representation. The Q-network is based on a message-passing graph network

(GCN) on the two-layer graph. In the network, the part-level node feature is fed into a GCN on the part-level graph, aggregated in the object-level graph,

and concatenated with the object-level feature. This block of feature is fed into a GCN on the object-level graph and produces the final per-object feature.

This feature is the input of two branches of the MLP (Multi-Layer Perceptron) network, following the structure of Dueling Q-network [Wang et al. 2016].

The Q-value is finally used in the searching process in Monte Carlo Tree Search and outputs the final action.

6.2 Training Methodology

To optimize the training of our network, we adopt the prioritized

replay buffer and imitation learning techniques and further extend

the imitation learning to a version that can be bootstrapped by

learning the policies of a simple heuristics agent at the beginning

of training.

Prioritized Replay Buffer. In the training process of a deep Q-

network, a set of data (st ,a, st+1, rt ) is needed, where st , st+1 de-

notes the states in time t and t + 1, a is the action taken, and

rt is the immediate reward. During exploration, every step pro-

duces a set of data, and the data is stored in a buffer called Re-

play Buffer. Since our rationality and human affordance reward

is sparse, only a small amount of data in the buffer is needed to

correctly learn the Q-value. Thus, we associate every set of data

with a priority p = |y −Q (st ,a) |. This priority makes the data that

the current Q-network predicts incorrectly to be sampled more fre-

quently [Schaul et al. 2016]. The sampling algorithm is further con-

trolled by parameters α and β .

Imitation Learning. The main problem for our network training

lies in the slow speed of the initial exploration of the ϵ-greedy

agent. Overall, our environment has sparse rewards, which means

positive rewards can only be obtained in a few states. If we use the

ϵ-greedy strategy, then the agent will spend a lot of time search-

ing for positive rewards. Thus, we consider generating a sequence

of actions known as demonstration data, which can achieve a sub-

set of our goals, e.g., collision elimination. Since the demonstra-

tion data is only used in the early stage of training, it can be sub-

optimal. This training strategy is called imitation training [Hester

et al. 2018]. The demonstration data is considered in the training

by adding a loss term

Ld = max
a′

(Q (s,a′) + l (a′,ad )) −Q (s,ad ) (12)

l (a,ad ) =

{
0,a = ad

c,a � ad
,

where ad is the action in demonstration data, and c is a positive

constant. This loss term forces the Q-value of ad to be higher than

other actions by c .

The demonstration data can be obtained by multiple methods.

The most straightforward method is human annotation. However,

we can produce the demonstration data by a simple heuristic

method consisting of several rules:

(1) Rule 1 (Object Collision Elimination). If a collision between

two objects exists, then select one of them randomly, and

move the selected object away from the other. The movement

direction is the axis of the maximum component of the vector

that points from the other object to the moving object.

(2) Rule 2 (Wall Collision Elimination). If a collision between an

object and the wall exists, then move the object toward the

center of the scene. The movement direction is determined

using the same method as in Rule 1.

(3) Rule 3 (Movable Part space). An object with movable parts has

an extra space in front of it, with a length of 0.3 m, and the

same width and height as the object. This is to roughly simu-

late the space needed for the movable part to be manipulated.

6.3 Monte Carlo Tree Search Algorithm

Monte Carlo Tree Search is a heuristic algorithm widely used in AI

agents of board games. In our setting, the algorithm constructs a

tree, the nodes of which are states of the environment. Each node

is associated with a value, representing the expectation of the re-

ward gained by selecting the best actions starting from this state.

To decide an action for a certain state of the environment, the algo-

rithm performs multiple iterations. Every iteration is divided into

four steps:

(1) Selection. Starting from the root node (current state), the

agent selects the child node with the largest value of

UCT (Upper Confidence bounds applied to Trees) for-

mula [Kocsis and Szepesvári 2006]:

R +C ×
√

lnN

n
, (13)

where R is the associated reward of the node, N and n denote

the count of visits of the parent node and the child node. C is

a constant. The UCT formula aims to incorporate exploration

and exploitation of the agent.
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The selection process is repeated until it reaches a leaf node,

and the leaf node is then selected.

(2) Expansion. The agent expands the selected leaf node by tak-

ing the action with the highest reward predicted by the Q-

Network. Taking the action yields a new leaf node that is the

child of the selected node.

(3) Simulation. The agent copies the state of the expanded leaf

node to the simulation environment. Then the agent starts

simulating S steps. The decision of each step is based only on

the Q-network. S is a constant. The final reward after S steps

is denoted by Rf .

(4) Back-propagation. The agent uses Rf to update the associated

reward of the nodes in the “chain of parent elements” of the

expanded leaf node.

7 EXPERIMENTS AND APPLICATIONS

In this section, we perform extensive evaluations on our Haisor

for scene optimization and the extension of Haisor. Further, we

compare it with the random agent, heuristics agent (see the rules

in Section 6.2) and Sync2Gen-Opt agent [Yang et al. 2021] as three

baselines in terms of visualization, quantitative metrics, and a per-

ceptual study, illustrating our excellent performance. Some key de-

signs are further validated via an ablation study.

7.1 Dataset Preparation

Training Data. To our knowledge, 3D indoor scene datasets with

movable parts are unavailable. The 3D-FRONT [Fu et al. 2021]

is a currently available 3D indoor scene dataset that is created

by professional designers. We take the scenes generated by the

underlying generators (see the next section) and replace the 3D-

FUTURE [Fu et al. 2021] meshes with PartNet [Mo et al. 2019] and

PartNet-mobility [Xiang et al. 2020] meshes. For each 3D-FUTURE

mesh, we retrieve top-10 meshes with the smallest Chamfer Dis-

tance [Barrow et al. 1977] from PartNet. The 3D-FUTURE mesh in

the scene is randomly replaced with top-10 retrieved meshes.

Note that this simple mesh-replacement approach may produce

a large number of scenes that contain objects with inappropriate

movable parts. For example, nearly half of the scenes have cabinet

doors that cannot be opened. Since most indoor scene generation

pipelines choose furniture using the scales of the bounding box of

furniture, our replaced furniture can simulate the generated scenes

by such methods.

7.2 Baselines

Scene Generators. To test our optimization framework, we uti-

lize two SoTA scene generators: Sync2Gen [Yang et al. 2021] and

ATISS [Paschalidou et al. 2021]. They are both trained on the 3D-

FRONT dataset and generate layouts with the 3D box representa-

tion. Following these two works, we then retrieve meshes based

on the sizes of generated boxes from the PartNet dataset. The gen-

erated scenes are then fed into different scene optimization algo-

rithms to be evaluated. Considering the scale of the scenes to be

optimized, the maximum optimization step count of the random,

heuristic, and Haisor agents in the following experiments are lim-

ited to 80 steps.

In our experiments, we perform the comparison with three

agents, including the random agent, heuristics agent, and

Sync2Gen-Opt agent:

(1) Random Agent: The agent randomly selects an action to per-

form from the action space.

(2) Heuristic agent: Our goal is to optimize the scene to make

it satisfy multiple criteria (e.g., no collision, more free space)

simultaneously. Instead of our Haisor agent, we can use an

agent driven by some simple heuristics that are identical to

the rules described in Section 6.2.

(3) Sync2Gen-Opt agent [2021]: The scene generation framework

consists of two steps: It first generates an initial prediction

of scene layout by a Variational Autoencoder and then op-

timizes the prediction by L-BFGS [Liu and Nocedal 1989],

a Quasi-Newton method. The target function is defined by

Bayesian theory, and it optimizes the translation and the ex-

istence of the furniture objects. The “generate-optimize” pro-

cess of Sync2Gen is similar to our setting. To better compare

with theirs, we only use the VAE part of Sync2Gen (denoted

Sync2Gen-VAE) to generate an initial scene layout. However,

we modify the prior of their Bayesian target function to take

human-free space of activity and collision between objects

into account and delete the part of object existence (i.e., pro-

hibit the agent from adding or removing objects); the modified

version of the agent is denoted as Sync2Gen-Opt.

(4) Simulated Annealing Agent. Qi et al.’s pipeline [Qi et al. 2018]

also leverages the layout optimization problem using a set of

criteria, but the optimization algorithm is simulated anneal-

ing. We do not fully reproduce their method, because they

optimize the scene from a totally random initial state. Instead,

we use the criteria of our setting (trained regressor, human

affordance, etc.) and substitute the RL+MCTS agent with sim-

ulated annealing.

Besides, to demonstrate the changes relative to the originally gen-

erated scenes, the metrics measured on the originally generated

scenes are also reported.

7.3 Metrics

To evaluate the performance quantitatively, we adopt three kinds

of metrics: accuracy, collision, and human affordance [Qi et al.

2018].

Accuracy. To measure the overall realism of the optimized

scenes, a ResNet18 [He et al. 2016] is trained to regress the score for

each top-down rendered image of the generated scene. The train-

ing data of the network consists of top-down renderings of ran-

domly perturbed 3D-FRONT scenes and scores between 0 and 1.

The scores are assigned as follows: First, we define a constant dis-

tance dmax for every type of room, which indicates the maximum

distance of furniture from its original position. The distance is 0.35

m for bedrooms and 1.00 m for living rooms. Second, we pick a ran-

dom value between 0 and 1, denoted dr and . Third, we move every

furniture in a random direction along the ground for a distance of

dr and · dmax . The score of the scene is then assigned as 1−dr and .

The rendered images have 2+C channels of three types: (a) Floor

channel: takes the value of 255 when inside the floor; (b) Layout
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channel: takes the value of 255 when inside any furniture object;

(c) Category channels: a channel for each object type and takes the

value of 255 when inside any furniture object of that category. Any

other pixel is assigned the value of 0.

Note that both the reward given by the simulation environment

and the “accuracy” reported by experiments below make use of

this network, but we use different sets of 3D-FRONT scene data to

train two versions of the network in practice. We randomly split

the 3D-FRONT scenes into two datasets with equal sizes and train

the two networks of the same architecture separately.

Collision. The collision metric measures the collisions between

different objects and between objects and the wall. It is calculated

as Ncoll = 3 × Nwall + Nobj , where Nwall is the number of col-

lisions between objects and the wall, and Nobj is the number of

collisions between different objects. Note that Nwall and Nobj are

both collision numbers, which means any small collision between

objects will count as 1 collision.

Human Affordance. According to the discussion of human-scene

interaction in Section 3, we evaluate two metrics associated with

human affordance: (1) Movable Manipulation, defined as the per-

centage p described in Section 5.1, and (2) Free Space, defined as

the free space of human activity divided by available space, which

is exactly Rf s ÷ 15 in Section 5.1. For the detailed calculation of

the two metrics, please refer to Section 5.1. The overall metric of

human affordance can be regarded as the average of these two in-

dividual metrics.

7.4 Evaluations & Comparisons

The comparison of scene optimization. We perform optimiza-

tion on the generated scenes by every baseline, namely,

Sync2Gen [Yang et al. 2021] and ATISS [Paschalidou et al. 2021].

In Table 1, we show the numerical results of different baselines on

scene optimization of generated scenes. According to the gener-

ated scene, we can see that both ATISS and Sync2Gen-VAE com-

monly perform worse in the living rooms than in bedrooms, which

indicates the generation in living room is more challenging than

in bedrooms. After the optimization, our method performs the best

on all three metrics, indicating that Haisor is able to reconfigure

the furniture placement to satisfy the designed criteria. In Figure 7,

some optimized visual results are presented for different baselines.

For the generated results of living rooms, more collisions between

furniture still exist and more movable parts cannot be manipulated.

We observe that our method captures the “functional region” of a

set of furniture better, and our method can achieve multiple goals

(e.g., solving collisions, extending free space, and finding space for

movable parts) simultaneously, while the heuristic agent is only ca-

pable of solving collisions, Sync2Gen-Opt agent struggles to strike

a balance between multiple goals, and the simulated annealing

agent tends to overly separate the objects apart and fails to com-

bine furniture into meaningful regions.

Furthermore, in our optimization results, we observed some

smart strategies. One of the examples is shown in Figure 8. In this

example, the initial scene is a living room, in which six chairs are

placed together, causing a lot of collisions. The agent first moves

two chairs of the same size to the center of the room, forming a re-

gion of “chairs surrounding a table” and subsequently moves four

other chairs, forming the second region of “chairs surrounding a ta-

ble.” Finally, the agent makes some additional moves that increase

the human affordance of the scene. We observe that our agent can

learn the key feature for a scene to be realistic (in this case, the

“chair-table” region) and derive the corresponding actions. Exam-

ples of more strategies learned to improve rationality and human

affordance can be found in the supplementary material. Addition-

ally, we include another example in Figure 9. The initial scene is

overall rational, with the chair-table region and the table-sofa re-

gion placed together correctly. However, there are three objects

with movable parts: two hinges of cabinets and one slider of a ta-

ble. There is not enough space for humans to manipulate them

comfortably. The results in Figure 9 demonstrate that our pipeline

is able to optimize the scene to get more space for movable parts

while preserving the rationality of the scene.

Perceptual Study. In addition to quantitative and qualitative re-

sults, we conduct a perceptual study to further evaluate how real-

istic and viable the optimized results of our method and two base-

line methods (Sync2Gen-Opt and Heuristics agent) are. To fairly

compare the results, we randomly select 50 living rooms and 50

bedrooms generated by Sync2Gen-VAE and ATISS to be optimized.

We render the scenes in a top-down view and ask each participant

to rank each algorithm according to two criteria (Rationality and

Human Affordance): (a) the overall performance of the optimized

rooms; (b) whether the participants will enjoy themselves when

living in the scene. In every round of the survey, the participants

are presented with two scenes for each method, including the input

scene before optimization (without informing participants which

is which) and rank the five results according to the above crite-

ria. All the participants were local volunteers known to be reliable.

The results of this perceptual study are reported in Table 2, and

our method is the most preferred among the five results (the input

scene and three optimized results). Further, we can see that the in-

put scene gets a high score due to users’ preference for the overall

rationality of the scene, and Sync2Gen-Opt and heuristic agents

may move furniture for long distances and make the scene look

messy, although they may have higher metrics of the collision or

human affordance.

Ablation Study. The performance of our method relies heavily

on various components of rewards used in the simulation environ-

ment, the training methodology (i.e., imitation learning), and the

Monte Carlo Tree Search. We perform ablation studies to demon-

strate the key designs of our method.

We compare our full method with eight ablated versions of

our method, where we remove a certain design of our method for

each ablated version and train the network on the same settings

as our full method. Note that we have included the w/o GCN

ablated version, which replaces the GCN in the Q-network with a

plain MLP. The MLP is simply fed with the concatenated feature

as input, and the dimension of the output is 4 × Vmax , where

Vmax is the maximum number of furniture in a room. But, the

first 4 × |V | elements of the output are used as the predicted

Q-value, where |V | is the real number of furniture of a certain

scene. The rest elements are simply discarded in our experiments.

We have also included a “Pure MCTS” ablated version of the agent,
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Table 1. Comparisons with Other Optimization Methods

Generators Baselines
Metrics (Bedroom) Metrics (Living Room)

Accuracy(%, ↑) Collision(↓) Free Space(↑) Movable Manipulation(↑) Accuracy(%,↑) Collision(↓) Free Space(↑) Movable Manipulation(↑)

Sync2Gen-VAE

[2021]

Original (Input) 94.80 5.20 0.40 0.19 70.30 1.08 0.64 0.25

Random 54.17 5.26 0.29 0.13 52.44 1.09 0.44 0.23

Heuristic 59.49 5.08 0.32 0.16 69.13 0.53 0.61 0.31

Sync2Gen-Opt

[2021]
64.27 4.30 0.52 0.18 72.57 0.20 0.73 0.19

Simulated Annealing

[2021]
44.61 3.77 0.45 0.11 67.36 0.39 0.61 0.21

Ours 95.16 4.12 0.60 0.25 81.65 0.29 0.73 0.45

ATISS

[2021]

Original (Input) 70.20 1.40 0.31 0.14 69.94 2.38 0.49 0.29

Random 44.86 1.66 0.23 0.14 45.19 1.99 0.35 0.30

Heuristic 62.19 0.49 0.28 0.21 70.78 1.19 0.41 0.24

Sync2Gen-Opt

[2021]
68.10 0.79 0.41 0.18 68.32 0.81 0.64 0.34

Simulated Annealing

[2021]
64.27 1.14 0.39 0.28 57.17 0.40 0.38 0.19

Ours 78.44 0.59 0.50 0.36 84.69 0.37 0.72 0.42

We show the accuracy, collision, and human affordance metrics of the original scenes generated by two different pipelines, and the optimization results of a random agent,
heuristic agent, Sync2Gen-Opt agent, and our Haisor agent. In the table, ↑means higher is better, and ↓means lower is better. We can see from the table that our method
performs the best.

Table 2. Perceptual Study Results on 3D Indoor Scene Optimization

Gen. Metrics
Bedroom Living Room

R.(↑) H.A.(↑) R.(↑) H.A.(↑)

S

[2021]

Input 1.77 2.03 1.54 1.75

Heuristic 1.43 1.67 2.60 2.49

Sync2Gen-Opt [2021] 2.37 2.37 1.60 1.55

Simulated Anneal [2021] 1.30 1.13 1.60 1.49

Ours 3.13 2.80 2.64 2.72

A

[2021]

Input 1.91 2.29 1.96 1.93

Heuristic 1.88 1.79 2.25 1.60

Sync2Gen-Opt [2021] 2.38 2.05 1.71 1.96

Simulated Anneal [2021] 0.97 0.94 1.11 1.67

Ours 2.85 2.91 2.96 2.82

We show the average ranking scores (from 3 (the best) to 0 (the worst)) on the
rationality and Human Affordance of the scenes. The results are calculated based
on 250 trials. We see that our method achieves the best on all metrics. The
Generator “S” stands for Sync2Gen-VAE [Yang et al. 2021], “A” stands for
ATISS [Paschalidou et al. 2021]. “R.” stands for Rationality, and “H.A.” stands for
Human Affordance.

which makes decisions solely based on the search results of MCTS

without the Q-Network prior.

The quantitative metrics are reported in Table 3. Statistics from

the table clearly indicate that our full model outperforms all the

ablated versions overall. The ablated methods achieve similar per-

formance to our full method on some metrics (e.g., collision or hu-

man affordance), but our method is capable of considering all the

aspects simultaneously. The qualitative results of all ablated ver-

sions and ours are presented in Figure 10. It is very clear that the

results without imitation learning are totally worse than our full

model under the same coverage steps. The agent without MCTS

fails to move the chair under the table. When the free space and hu-

man affordance components are removed from our model, the fur-

niture is moved to be highly scattered, which results in not enough

space for humans to manipulate the cabinet beside the dining table

and chairs. Without the collision reward, there are still some unre-

solved slight collisions, since they have almost no effect on ratio-

nality and human affordance. Without the rationality reward, the

agent behaves similarly to the heuristics agent, which only tends

to resolve collision. If the network is replaced by a plain MLP, then

the agent is only capable of capturing part of the relationships be-

tween objects but fails to perform as well as the agent with GCN.

7.5 Extension of Haisor to Scene Personalization

In addition to the rearrangement of the scene layout, our method

can be extended for scene customization by adding more compo-

nents to the reward settings. The motivation of our extension is to

solve some common issues of general generative models. There are

two key observations: (1) some of the generative models still pre-

dict the unreasonable orientation of objects. For example, it is un-

realistic that a chair faces the wall. (2) Some objects are duplicated

and lie in the same location, such as two dining chairs surrounding

the dining table are predicted at similar locations.

Based on the observation above, we perform two types of

extensions: orientation adjustment and object removal. In general,

we extend the action space for each object by adding an extra

action below:

(1) Orientation Adjustment: When the agent performs this ac-

tion, the rotation angle θ along y-axis of the selected object

is added by π/2, and if θ > 2π , θ is subtracted by 2π . Addi-

tionally, a reward of −10 is given to avoid this action to be

performed repeatedly.
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Fig. 7. Comparison of Scene Optimization. We show the comparison of optimization results of our method, random agent, heuristic agent, and Sync2gen-

Opt [Yang et al. 2021]. From the results, we can see that our method better considers the rationality of the room, the collision between furniture, and human

affordance of the room simultaneously. For each scene, the first row: the zoom-in view of two particular regions, the corresponding area is labeled by a

colored rectangle in the figures of the second row; the second row: top-down view of the whole scene. For each row, left to right: Input scene, results of

random optimization, results of heuristics optimization, results of Sync2Gen-Opt optimization, and results of our method.

(2) Object Removal: When the agent performs this action, the se-

lected object will be removed from the scene. Additionally, a

reward of −25×S is given to avoid emptying all objects in the

scene. S represents the summation of dimensions along three

axes of the axis-aligned bounding box of the selected object.

Figures 11 and 12 show two examples of the extensions of our

method. In Figure 11, one dining chair around the dining table does

not face the table, while three other chairs do. This is frequently

seen in the generation results of the SoTA scene generative models.

The predicted orientation is often aligned with the x or z axes, so
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Fig. 8. An Example of Learned Smart Strategy on More Complex Scenes. (a) The initial scene with multiple collisions. (b) The agent moves the coffee table

towards the left direction and moves two stools around the coffee table, forming the first region of table-chairs. (c) The agent moves four chairs toward

the dining table forming the second region. (d) The agent moves cabinets towards the wall and moves the stand towards the sofa to increase the human

affordance scores.

Fig. 9. An Example of Optimizing Human Affordance while Preserving Scene Rationality.The layout of the initial scene is generally rational, but two objects

with movable parts: a drawer and a hinge cannot be properly manipulated by humans. Here, we show our agent is capable of optimizing this type of scene

without losing the original layout of the scene.

Table 3. Ablation Study

Generators Baselines
Metrics (Bedroom) Metrics (Living Room)

Accuracy(%,↑) Collision(↓) Free Space(↑) Movable Manipulation(↑) Accuracy(%,↑) Collision(↓) Free Space(↑) Movable Manipulation(↑)

Sync2Gen-VAE

[2021]

Original (Input) 94.80 5.20 0.40 0.19 70.30 1.08 0.64 0.25

w/o Imitation Learning 75.38 4.50 0.42 0.22 68.07 0.70 0.55 0.28

w/o MCTS 70.62 5.10 0.25 0.20 66.45 0.97 0.60 0.35

Pure MCTS 62.01 4.30 0.37 0.23 60.52 1.00 0.71 0.38

w/o free space 82.13 3.78 0.41 0.19 62.38 0.60 0.54 0.44

w/o manipulation 88.92 3.90 0.45 0.18 74.31 0.55 0.66 0.28

w/o GCN 73.01 4.22 0.49 0.23 71.83 0.50 0.59 0.33

w/o collision 91.18 4.34 0.53 0.20 58.11 0.91 0.63 0.21

w/o rationality 75.31 3.99 0.51 0.17 48.00 0.31 0.69 0.27

Ours 95.16 4.12 0.60 0.25 81.65 0.29 0.73 0.47

We show the accuracy, collision, and human affordance metrics of the original scenes and the optimization results of our full Haisor agent and the ablated versions, each of
which is trained without a certain element. We can see from the table that our full method performs the best.

we only need to adjust the orientation by π/2,π , 3π/2 radians or

rotate the object by π/2 for 1,2,3 times. In Figure 12, two dining

tables are predicted in exactly the same position. This is very com-

mon in the current generative models based on sequential genera-

tion, such as some frameworks based on transformers. To optimize

this scene, we only need to remove one of the two tables to make

the indoor scene more realistic.

The two examples above are extensions of our optimization

method. Since our method is based on a simulation environment,

Reinforcement Learning, and MCTS, Haisor is able to achieve var-

ious optimization actions and goals. By simply adding some per-

sonalized actions or rewards, our method can optimize the indoor

scene to the different targets that satisfy individual needs.

8 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this article, we have proposed a Reinforcement Learning-based

method for solving the 3D indoor scene optimization problem. By

iteratively predicting actions to move furniture in the scene, the

Haisor agent is capable of reconfiguring the layout of a 3D indoor

scene, resolving collisions between objects, and making enough

space for human-scene interaction. The agent consists of two parts:

a Q-Network-based Reinforcement Learning agent and a Monto
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Fig. 10. Ablation Study on Some Components of Our Agent. We perform ablation studies that, respectively, remove various components of our method. In (b),

the version without imitation learning, the agent fails to optimize. In (c), the version without MCTS, the agent fails to move the chair and table together. In

(d), the version without rationality, the agent behaves like a heuristics agent, which mainly moves the object away from each other. In (e), the version without

GCN, the agent can briefly capture some relationships between objects but performs worse than the version with GCN. In (f), the version without Human

Affordance rewards (both free space and movable manipulation), there is no space between the cabinet and the dining chairs and table. And in (g), the version

without collision, the last bit of collision between the armchair and sofa is not solved. In contrast, our full method does not have any of these problems.

Fig. 11. Extending Our Method: Adding Orientation Adjustment. Figure

(a) shows the initial scene, in which one of the chairs is not facing towards

the dining table. To optimize this, we adjust both the position and orienta-

tion of the chairs. Figure (b) shows the optimization result of the extended

method. The orientation of the chair is now correct.

Carlo Tree Search agent, where the Q-value generated by the RL

agent aids the searching process of the MCTS agent. Experiments

on bedrooms and living rooms in 3D-FRONT demonstrate that

the Haisor agent can achieve superior performance on scene re-

arrangement and generate reasonable action sequences that effi-

ciently optimize scenes towards the goal of rationality and human

affordance in a human-aware manner.

Limitations & Future Works. There are some limitations of our

Haisor: (a) Our method is difficult to train on mixed-type datasets.

Since there is a different distribution (e.g., table-chair regions for

living rooms, bed-nightstand pairs for bedrooms) of furniture lay-

outs in the different types of rooms, our network is very hard to

capture all furniture distribution using only a network. For each

type of dataset, we trained our Haisor on the different types of

rooms separately. (b) Our Haisor agent can not work perfectly

on the large-scale optimization, i.e., the diverse and various fur-

niture layouts in the large scenes, the large action space. Due to

the discrete actions in our network, the object only is moved by

a small step (0.1 m) at each iteration. If the initial scene has nu-

merous objects to be optimized, then it is not tolerable that the

agent takes more time to search for the optimal action sequence.

(c) Trapped in local minima. Since the action history is not con-

sidered in our framework, our agent may hesitate when moving a

certain object. For example, one table may be moved back and forth

multiple times in a few cases. (d) Missing the other structure within

the indoor scene, e.g., doors and windows, which usually play an

Fig. 12. Extending Our Method: Object Removal. Figure (a) shows the ini-

tial scene, in which three objects are overlapped with another object that

is of identical function and size: (1) two chairs overlap with each other,

(2) two cabinets overlap with each other, (3) two dining tables overlap

with each other. To optimize this, we remove the smaller overlapped ob-

jects (due to our reward setting, removing the smaller objects gains more

reward). Figure (b) shows the optimization result of the extended method.

The collisions caused by overlapping are now resolved. Figure (c) shows

another scene with overlapped objects. Removing one overlapped chair is

not optimal, since it makes the “table-chair” structure lack one chair. It

is not reasonable in the realistic scene. Figure (d) shows the optimization

result of our agent. The chair is correctly moved to the suitable position,

instead of being removed.

important role in the rationality and functionality of the 3D indoor

scene. In Figure 13, some failure cases of our Haisor are presented.

Figures (a) and (b) show the results of trying to apply the Haisor

agent trained on bedrooms to living rooms, and the optimization

fails because the agent can not capture the features of object layout

in living rooms. Figures (c) and (d) show the results of trying to
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Fig. 13. Failure Cases. Figure (a) shows a typical living room to be opti-

mized, and figure (b) shows the result that uses the Q-network trained on

bedrooms. The agent fails to capture the relationship between the sofa,

table, and chairand finishes the optimization prematurely, causing unre-

solved collisions. Figure (c) shows a large and “messy” living room, with

objects outside the wall and multiple objects colliding with each other.

Figure (d) shows the optimization result. The agent uses 80 steps, which

is the maximum step count we have set and optimized for some of the

objects such as chairs and tables, but more objects are not optimized. We

observe that our agent has limited performance when asked to optimize

this kind of scene.

optimize a large and complex scene with Haisor agent. The opti-

mization fails because the agent reaches a maximum of 80 steps.

In this work, we mainly focus on optimizing the arrangement

of one relatively small 3D indoor scene by moving objects. Our

work can be improved by following future directions: (1) To

address the optimization problem in a large and complex indoor

scene with other personalized goals, a continuous action space is a

suitable choice to strengthen the power of reinforcement learning

rather than discrete DQN. (2) Our work could be extended to the

whole house with multiple rooms and take more relations into

our network instead of a single room for some future interesting

applications. (3) More factors (e.g., furniture styles, room doors,

and windows) are not involved in our work; more labeling in the

public dataset is required to allow our approach to create more

realistic rooms. (4) We can extend the optimization target to a

single 3D geometric object for modeling and design, or the macro

placement in chip design, like the task in Mirhoseini et al. [2021].

(5) We currently rely on a user study to provide holistic views

of the results, and it is worth developing new objective holistic

metrics to facilitate evaluation.
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