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Abstract  
 
Precision medicine has the ambition to improve treatment response and clinical outcomes through 
patient stratification, and holds great potential in mental disorders. However, several important factors 
are needed to transform current practice into a “precision psychiatry” framework. Most important are (1) 
the generation of accessible large real-world training and test data including genomic data integrated 
from multiple sources, (2) the development and validation of advanced analytical tools for stratification 
and prediction, and (3) the development of clinically useful management platforms for patient monitoring 
that can be integrated into healthcare systems in real-life settings. This narrative review summarizes 
strategies for obtaining the key elements – well-powered samples from large biobanks, integrated with 
electronic health records and health registry data using novel artificial intelligence algorithms – to predict 
outcomes in severe mental disorders and translate these models into clinical management and treatment 
approaches. Key elements are massive mental health data and novel artificial intelligence algorithms. For 
the clinical translation of these strategies, we discuss a precision medicine platform for improved 
management of mental disorders. We include use cases to illustrate how precision medicine interventions 
could be brought into psychiatry to improve the clinical outcomes of mental disorders. 
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Background  
Mental disorders are among the leading causes of chronic illness, disability, morbidity(1) and mortality(2), 
representing a major public health concern worldwide(1, 2). People living with severe and enduring 
mental illness, with onset usually during childhood or adolescence, are reported to have a life expectancy 
that is reduced by 10-20 years compared to the general population(2, 3). The main cause for the increased 
mortality rate is comorbidities including additional psychiatric diagnoses(4) and somatic diseases such as 
type 2 diabetes, hypertension, cardiovascular and respiratory diseases(5-7), but also substance use and 
suicide(8, 9). 
 
A fundamental challenge in psychiatry is treatment of psychotic and affective symptoms, which are core 
characteristics of the severe mental disorders schizophrenia (SCZ)(10), bipolar disorder (BIP)(11) and 
major depressive disorder (MDD)(12). While current medications for psychotic symptoms (antipsychotics) 
and mood alterations (antidepressants and mood stabilizers) are effective for the majority of patients(13), 
there is a large variation in efficacy and adverse effects(14). Non-response to these medications is a 
significant clinical problem, with failure rates around 30% in SCZ(15), and similar rates in BIP(16) and 
MDD(12). Individuals with symptoms that do not meaningfully improve after ≥2 trials of psychotropic 
medications (assuming adequate dose and duration) are commonly defined as being treatment 
resistant(14). However, a significant challenge in the identification of factors related to 
psychopharmacological treatment response is the high clinical and biological heterogeneity that 
characterizes psychiatric disorders(17). In addition, adverse effects such as cardiometabolic alterations 
are common and often cause non-adherence(18, 19). Additional complexity is added by the extensive 
polypharmacy in psychiatry, increasing the risk for drug-drug interactions and adverse effects(20, 21). 
Psychopharmacological treatment often involves a trial-and-error approach, balancing between 
treatment effects and adverse effects(22).  
 
Precision medicine, an approach for treatment and prevention(23, 24), aims to develop and validate 
clinical prediction models for therapeutic stratification(23-26). For psychopharmacology, the goal of 
precision medicine is to guide psychopharmacological treatments by considering individual variability in 
genes, environment, and lifestyle(23). Progress in both psychiatric genetics(27) and 
pharmacogenomics(28) will create great opportunities for improving treatment outcomes by optimizing 
the use of existing medications based on the patient’s genetic profile(29, 30). While the application of 
genomics is crucial for future precision psychiatry, it is anticipated that genomic factors contribute to 
disease outcomes in concert with environmental factors such as socioeconomic status, education, 
nutrition, and adverse life events(26, 31). Therefore, there is a need to include environmental exposures 
as well as non-genetic biomarkers and standard clinical data into prediction models to improve the 
predictive value of genomic information(31). However, the relevant datasets necessary to develop and 
validate precision treatment have only recently become available(23). Real-world data (RWD) is defined 
by the European Medicines Agency (EMA) as any type of data not collected in a randomized clinical trial 
(RCT)(32). The US Food and Drug Administration (FDA) defines RWD as “the data relating to patient health 
status and/or the delivery of health care routinely collected from a variety of sources”(33). RWD provide 
a unique opportunity to obtain large datasets with sufficient statistical power to leverage novel analytical 
methods. This will enable the development of prediction and stratification tools with the precision 
required for translation into clinically useful decision support tools for precision treatment in psychiatry.  
 
The aim of this narrative review was to summarize important factors needed to bring precision medicine 
interventions to psychiatry. The cornerstone of these is the use of RWD collected from routine clinical 
assessments, a yet underexplored source of information that provides a unique opportunity to obtain 
massive datasets that can power both basic and applied research initiatives(23). As illustrated in Figure 1, 
the generation of large training and test data by integrating RWD from health care systems and biobanks, 
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the development of advanced artificial intelligence (AI) tools for stratification and prediction, and finally 
the development of a management platform for clinical monitoring of patients are required to translate 
precision psychiatry interventions from basic science to clinical practice. 
 
Methods 
This is a narrative review focusing on the use of RWD, genetic information, and prediction tools for 
precision psychiatry. PubMed gathered articles (up to 1st of August 2023) on “precision psychiatry”, 
“genetics AND precision psychiatry”, “real-world data AND precision psychiatry”, “prediction models AND 
precision psychiatry”, “electronic health records AND precision psychiatry”, and “treatment stratification 
AND psychiatry” were collated. We screeded the literature to qualitatively evaluate their relevance for 
the current objective and selected papers based on expertise in the writing team. 
 
Real-world data sources  
Deep phenotyping data of clinical information, including comorbidities and psychopharmacological 
treatment outcome data, are essential for stratification and prediction of clinical outcomes in mental 
disorders, but such data are difficult to obtain at a large, homogenous scale. Structured and curated RWD 
from health registries and hospital records/electronic health records (eHR) linked with genotype data 
from biobanks, as well as large-scale therapeutic drug monitoring databases or other large clinical samples 
of individuals with severe mental illness, can provide such data and the sample sizes needed to reach 
adequate power for discovering genetic factors associated with treatment outcomes in mental disorders. 
Nationwide prescription records provide insight into individual treatment outcomes that can be deduced 
from e.g., the duration and changes in type and dosage of medication(34). These proxy phenotypes can 
be used to estimate treatment response. The Nordic region, i.e., Denmark, Estonia, Finland, Iceland, 
Norway, and Sweden, offers large population-based genotyped cohorts with longitudinal data valuable 
for precision medicine(35). Examples of such cohorts include the Danish Neonatal Screening Biobank used 
by the iPSYCH project (http://www.ipsych.au.dk/), the Estonian Biobank (http://www.biobank.ee/), the 
FinnGen project (https://www.finngen.fi/), deCODE genetics (http://www.decode.com), and the 
Norwegian Mother and Child Cohort Study (MoBa) (http://www.fhi.no/MoBa), which all have been linked 
to drug prescription data and/or self-reported drug use and related treatment response as well as registry 
data relevant for precision psychiatry.  
  
Combining existing genomics data from biobanks with these collections of RWD overcomes the limitations 
of data from randomized clinical trials (RCTs), from which patients with multimorbid conditions are 
excluded because they often require multiple drugs (polypharmacy) and are thus at greater risk of 
developing adverse effects. Furthermore, treatment adherence is better in RCTs than in the real 
world(36). Several studies have shown that RWD such as data from eHR can be utilized to identify 
individuals at risk for treatment resistance in MDD(37, 38) or SCZ(39). Proxies of treatment response or 
resistance have been defined from prescription registries(37, 38), and natural language processing has 
been used to refine eHR-derived treatment response definitions(40). In a meta-analysis on antipsychotic 
treatment discontinuation, it has been demonstrated that results from real-world studies and RCT have 
good congruency(41). A recent study has shown that treatment-resistant depression can be reliably 
defined using primary care eHR, and utilized to assess genetic, clinical and demographic characteristics of 
treatment-resistant depression(37). However, although eHR may facilitate stratification of risk for 
treatment resistance(38, 42), data from eHR are subject to high variability and confounders, requiring 
careful curation and validation(42). To combine information from RWD from multiple sources for 
integrated analysis, the RWD need to fulfil the necessary quality of the measures related to treatment 
efficacy and adverse effects. Further quality control is required for data harmonization of different types 
of RWD, collected from registries and biobanks, medical health records, large clinical research data on 
mental disorder cohorts, and interviews or questionnaires. To apply RWD to precision psychiatry, data 
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quality has to be evaluated and the models have to be further improved using additional measures and 
external validation to evaluate their performance in real-world clinical settings(38, 42).  
 
Genomic discovery of treatment outcomes 
Severe mental disorders are complex chronic conditions with high heritability (40-80%) estimated based 
on twin studies(43). Recent advances in genotyping technologies have led to the discovery of hundreds 
of regions in the human genome harbouring risk variants for psychiatric traits, identified from genome-
wide association studies (GWAS)(44). Both mental disorders(45-47) and their comorbidities(48-50) are 
highly polygenic, meaning that they are influenced by many genes with each genetic variant contributing 
a small effect towards the disorder. In aggregate, however, they explain a substantial portion of the 
variability of the phenotype(29). Polygenic risk scores (PRS) can be used to study the cumulative effect of 
disorder-associated SNPs, and may be useful in assessing disease risk. However, the predictive ability of 
psychiatric PRS is still insufficient for clinical utility(51, 52). With larger GWAS, improved phenotyping, and 
technological refinement, the predictive performance of PRS is likely to improve in the coming years(51-
53), and PRS may become part of clinical psychiatry in the future(51, 54).  
 
Emerging evidence suggests that treatment response to psychotropic medications may also have a genetic 
component(55, 56). Pharmacogenomic studies investigate how genetic variation affects drug metabolism 
(pharmacokinetics), or the molecular, biochemical, and physiologic effects of drugs (pharmacodynamics) 
and related adverse effects, with the aim of guiding drug prescription to improve treatment response and 
reduce side effects(57). Several studies have shown that pharmacogenomic testing before starting drug 
treatment can lead to improved patient outcomes for specific drug-gene combinations(58-61). However, 
pharmacogenomic information is not widely used in clinical psychiatry(28, 62), primarily due to lack of 
evidence on therapeutic utility in mental health conditions(63). In addition, most genetic markers 
identified and validated in psychopharmacogenetic studies are related to variability in pharmacokinetics, 
in particular drug metabolism mediated by CYP2D6 and CYP2C19(28, 62, 63), while knowledge on how 
genetic variation affects the pharmacodynamics of psychotropic medications is still weak(63). To provide 
a pharmacogenetic basis for precision treatment of psychotropic drugs, large-scale studies are therefore 
needed to discover genetic variants that significantly affect the pharmacotherapeutic outcomes in mental 
disorders(28, 62). 
 
Knowledge of common and rare variants associated with treatment efficacy and adverse effects may be 
highly useful for treatment stratification, but the genetics of drug treatment outcomes are poorly 
understood, making prediction of drug response difficult. In addition, the degree of polygenicity of a 
phenotype affects the power of the GWAS(64); given that psychotropic drug treatment outcomes are 
polygenic(55, 56), gene discovery requires large samples. Large RWD samples with both genotypes and 
longitudinal treatment outcome data could allow for identification of genetic factors associated with 
response and adverse effects from psychotropic medication. The robust identification of genetic 
associations in current psychopharmacogenetic studies is limited by insufficient sample sizes as well as 
variability in defining treatment-related phenotypes(28). For antidepressant response, no robustly 
replicated associations have been detected to date(65-69). The largest GWAS on antidepressant response 
(N=5,151), measured using depression symptom scores, did not identify any genome-wide significant loci, 
likely due to its limited sample size(56). In a GWAS of treatment-resistant SCZ including the world´s largest 
sample of antipsychotic non-responders (NTRS=10,501 and Nnon-TRS=20,325), no genome-wide significant 
loci were identified(55). The largest GWAS on lithium response (N=2,563), performed by the International 
Consortium on Lithium Genetics (ConLiGen), identified one replicable locus(70). While the ConLiGen 
sample size is even smaller when compared to the GWAS of treatment-resistant SCZ(55) and 
antidepressant response(56), response to a specific drug, i.e., lithium, can probably be more robustly 
assessed than other treatment phenotypes.  
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While current GWAS on psychotropic drug treatment outcomes have not yielded genomic predictors that 
can be integrated into stratification and prediction of treatment outcomes, data from clozapine clinics in 
the UK and Norway have been used to conduct analyses linking genomic liability to SCZ with antipsychotic 
dosing, suggesting that individuals at high genomic risk for SCZ are less likely to respond to clozapine 
treatment at standard doses(71). A Swedish study demonstrated that lithium dose prediction was 
improved by using clinical and genomic data(72). Moreover, PRS for SCZ and MDD have been used to 
predict lithium response(73), with improved prediction when PRS were combined with clinical data using 
a cross-validated machine-learning regression approach(74). These insights support the strategy of 
studies that combine genomic information with clinical data to optimize treatment outcome prediction in 
psychiatry. 
 
Big Data tools development 
To transform psychiatric treatment into precision medicine, a main challenge is making multiple data 
sources and modalities accessible for training of new prediction algorithms.  
 
Identifying and harmonizing phenotypic data is a key initial step towards precision medicine. A solution 
for distributed data analysis has been developed in the Nordic countries by the Tryggve infrastructure 
(www.neic.no/tryggve), building on harmonized databases and container solutions(75) for secure and 
efficient cross-national health research utilizing large sensitive data collections. Container technologies 
provide platforms to store, share and analyze genomic data in compliance with the General Data 
Protection Regulation (GDPR), which can be used by users from different countries and across projects to conduct 

genomic data analyses(75). Big Data analysis tools, such as natural language processing(76) using AI 
algorithms for extraction of data from eHR, as well as sequence analysis(77) for capturing phenotypic 
trajectories, can be extended to include nationwide prescription records. Sequence analysis(77) has been 
used to systematically explore life-course disease trajectories(78).  
 
After harmonized phenotypes and genotypes are linked, the data can be used to identify common and 
rare risk factors for treatment response, adverse effects, and comorbidities. Differences in phenotype 
polygenicity and cross-trait genetic overlap motivate the development of tools such as MiXeR(79) that 
can improve our understanding of the genetic architecture of traits of interest and how they overlap with 
others. Although standard GWAS approaches can be used to investigate treatment-related phenotypes, 
the available sample sizes for these traits are often smaller than what is seen for disease phenotypes(27), 
highlighting a need for more advanced biostatistical tools, such as the following examples. MOSTest(80) 
exploits multivariate data to improve common variant discovery and replication rates(81-83). The 
conditional and conjunctional false discovery rate (FDR) approach(84, 85) can be utilized for the 
identification of polygenic risk factors shared between severe mental disorders and treatment response 
or comorbid diseases/factors(82, 86), thereby improving prediction and stratification. Applying the 
conditional FDR approach(85) to boost discovery of genetic variants associated with treatment-resistant 
SCZ after conditioning on body mass index (BMI), a largely comorbid trait, two novel loci for treatment-
resistant SCZ were identified (none were found in the original GWAS of treatment-resistant SCZ)(87). 
Multi-trait analyses, e.g., using genomic structural equation modelling(88) and multi-trait analysis of 
GWAS (MTAG)(89), can also be applied for improved discovery of common variants associated with 
treatment outcomes, by leveraging genetic overlap between related traits. 
 
The majority of existing GWAS approaches assess imputed rather than directly sequenced 
polymorphisms. For discovery of rare variants that confer risk for development of non-response or 
adverse effects in mental disorders, the long-range phasing method(90, 91) can be applied. This method 
imputes variants from sequenced data to large population samples, thereby greatly improving the 
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discovery of rare variants(90, 91). However, discoveries from GWAS may be difficult to interpret. 
Therefore, various fine-mapping methods aim to identify causal SNPs among the identified variants from 
GWAS(92). A recently developed variational Bayesian approach for fine mapping of genomic data, 
Finemap-MiXeR(93), has been shown to outperform most other methods in estimating the genotype-
phenotype relationship, because its fine-mapping algorithm detects more causal variants in real 
applications. Finemap-MiXeR enables the identification of a small number of genetic variants per locus, 
which are informative for predicting the phenotype in independent samples(93). Gene-set analysis (GSA) 
has become important to identify biological pathways and relevant tissue- and cell type-specific insights 
related to GWAS findings(45, 47, 94). GSA methods such as MAGMA(95), Fisher’s exact (hypergeometric) 
test(96), and stratified linkage disequilibrium (LD) score regression (sLDSC)(97), have become important 
for understanding the biological implications of GWAS findings(98). A novel GSA tool, GSA-MiXeR(99), 
estimates fold enrichment and identifies gene-sets with greater biological specificity compared to 
standard GSA approaches, providing new insights into the pathobiology of complex polygenic disorders, 
which may help to advance the classification, diagnosis, and treatment of mental disorders(99).  
 
Finally, phenotypic and genetic information obtained using the tools and methods described above can 
be integrated to improve prediction of treatment outcomes and comorbidities(100, 101). The Polygenic 
Hazard Score (PHS)(102), a tool for prediction of age of disease onset initially applied to Alzheimer’s 
disease(102), can be employed for prediction of drug response and adverse effects. PHS(102) applies the 
Cox proportional hazard model to GWAS data of the disease and information on its age of onset to 
estimate instantaneous risk of disease development. Thus, PHS provides a fruitful framework to move 
polygenic information towards clinical utility.  
 
Taken together, to reach the vision of precision treatment, gene discoveries must be leveraged by novel 
analytical algorithms to enable translation into clinical use. By combining genetic information with clinical 
and lifestyle data in prediction of treatment outcomes, prediction accuracy can be improved. Novel AI 
statistical approaches and improved prediction and stratification algorithms both for pharmacological 
treatment outcomes and multimorbid disease trajectories will open new avenues of treatment of mental 
disorders and their accompanying comorbidities, to identify an optimal treatment regimen and improve 
patients’ quality of life.  
 
Validation before clinical use  
To test the validity of the genotype-phenotype associations for genetic variants associated with treatment 
outcomes, replication in independent real-world samples is required. In a recent study(103), an 
interaction between a previously identified variant in the NFIB gene(104) and CYP1A genes on clozapine 
serum concentrations in smokers and non-smokers has been identified. Specifically, patients who smoke 
and carry the studied CYP1A and NFIB variants may need threefold higher doses of clozapine(103). 
Moreover, the previously mentioned study showing that clozapine dosage is positively correlated with 
polygenic risk for SCZ, found this association in three independent samples of treatment-resistant SCZ, 
supporting the clinical impact of pharmacogenetics for precision dosing of clozapine(71). However, large 
real-world replication cohorts are needed to validate genetic discoveries from GWAS of psychotropic drug 
treatment outcomes. 
 
RWD offers also opportunities for validation and refining of the prediction models(105), i.e., to determine 
treatment outcomes in patients for whom accurate prediction is not possible, and to identify additional 
data to improve the prediction capabilities for other clinical decisions. The ascertainment of individuals 
with specific genomic variants and subsequent evaluation in recall studies of real-world patients, known 
as reverse-phenotyping(106), enables validation of a given prediction profile to ensure that the 
established genetic prediction models are valid. For genotype-phenotype associations of treatment 
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outcomes, reverse-phenotyping of patients who have started psychotropic drug treatment can be done. 
By splitting those cases into groups of patients with a high predicted likelihood of a positive treatment 
outcome, patients with a high predicted likelihood of a negative treatment outcome, and those for which 
the model could not accurately predict outcome status, the developed algorithms can be validated. 
Likewise, the prediction models can be refined through the collection of additional clinical and outcome 
information on individuals for which accurate prediction was not possible. Thereby, the outcome of 
interest can be determined, and additional data can be identified to improve the prediction capabilities 
of the model in these individuals. This will help to estimate the accuracy of methods and facilitate the 
collection of additional relevant data, potentially allowing for the development of more accurate 
prediction and stratification algorithms with clinical utility.  
 
Clinical implementation and utility 
Using and combining multi-disciplinary RWD from biobanks, hospitals, registries, self-reports, and medical 
records, as well as data from clinical research will contribute to advance the knowledge, clinical 
management, and pharmacological treatment of mental disorders. To implement precision medicine in 
clinical practice, especially crossing country borders, natural language processing tools(76) can be used 
for data extraction and harmonization across data sources and countries, and container technologies can 
be used as a platform for cross-border analysis with tools available for standardizing various data in a 
unified manner across countries(75). Once large, deep-phenotyped RWD become available for clinical use, 
the prediction models can be trained and validated for different clinical and ethnic subgroups as well as 
stratified by age and sex to improve outcome prediction(107, 108). By developing and validating advanced 
stratification and prediction tools based on measurable biomarkers, namely genotypes in combination 
with drug treatment outcomes as well as other response predictors (symptoms, disease history, 
cardiometabolic blood markers, BMI etc.), patients who do not respond to available pharmacological 
treatments can be identified. Identifying non-responsive patients will enable economic savings while 
avoiding adverse effects derived from the administration of ineffective and unnecessary treatments. This 
will enable health and regulatory authorities to improve the standards of care in terms of safety, quality, 
and effectiveness of medication therapies.   
 
Currently, there are no tools for prediction of treatment outcomes in psychiatry that are used clinically. A 
clinical decision support tool building on prediction and stratification algorithms integrated with digital 
tools could potentially improve disease outcomes. Such a clinical management platform should be 
designed as an integrated software solution that incorporates the baseline information about risk factors 
and outcome predictors (clinical information, socio-demographics, genetics) with the prediction and 
stratification algorithms. These algorithms could be integrated with a software system for inclusion of 
follow-up and outcome data such as specific adverse effects (e.g., obesity, motor disturbance), self-
reports (e.g., somnolence, sexual dysfunction), biomarkers (e.g., glucose levels, lipids), and socioeconomic 
factors collected from registries (e.g., socioeconomic status, education). To make the platform a clinically 
relevant tool, the monitoring system should build on the integrative clinical decision support analytics, 
and include specific recommendations for interventions at critical time points during disease progress, 
such as change of medication type and dose, physical activity, healthier diet, and referral to specialists in 
other disciplines (cardiology, endocrinology) when needed. The monitoring system should have a user-
friendly dashboard, where clinicians can quickly, easily, and securely access their patients’ analytics and 
reports to inform clinical decision-making for optimal monitoring. Such a platform could contain 
information that helps clinicians to answer practical, ethical, and user-related questions that must be 
addressed to implement precision psychiatry. Combining multi-source data and algorithms with new data 
retrieved from clinical practice while using the platform, the prediction models will be further improved. 
Through improved prediction, the development of a clinical management platform might ultimately 
enable earlier diagnosis, including co-morbidities, facilitate planning of individual treatment, and improve 
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clinical strategies to reduce adverse effects as well as preventing complications related to polypharmacy. 
In sum, a clinical management platform for monitoring of psychiatric patients, integrating prediction tools 
with clinical information, could have a strong impact on the quality of life of individuals with mental 
disorders. However, the platform should be used in accordance with the wishes of the patients, ensuring 
that data can be deleted when a patient revokes consent for data processing.  
 
Ethical considerations  
The use of RWD and prediction models for precision psychiatry carries ethical challenges(23, 109), in 
particular privacy protection for individuals contributing to RWD. Ethical concerns have particularly raised 
about using genomic information, including informed consent, sample collection, storage, identifiability 
of the samples, re-identification, sharing samples throughout the world, and privacy and 
confidentiality(110, 111). Informed consent for genetic material should contain information about sample 
storage, anonymity, and an option for withdrawing the samples(112, 113). Data protection issues must 
be addressed by data protection legislation(114) and the implementation of secure data systems to 
ensure that the RWD are impossible to identify and the data are securely handled. In Europe, secure data 
handling environments must align with requirements from the GDPR and upcoming European Health Data 
Space (EHDS), especially when databases are cross-linked. Software container technologies with tools for 
data capture, harmonization and standard analysis can fulfil these requirements and be used across 
borders to conduct large-scale genomic and phenotypic data analyses(75).  
 
For the clinical use of prediction and stratification tools, the requirements of regulations such as the EU 
Medical Device Regulations must be fulfilled. In addition, the safety, performance, and benefit-risk ratios 
of the software tools need to be established prior to their clinical use. By applying secure cloud-based 
solutions in accordance with GDPR and clinical security systems, it is possible to build a versatile 
infrastructure that can support management platforms across health care systems.  
 
Conclusions  
To bring precision medicine interventions to psychiatry, RWD from health care systems combined with 
biobanks and research data can solve the need for large-scale data necessary for training and testing of 
prediction models related to treatment outcomes in mental disorders. The implementation of a RWD 
infrastructure, novel tools to exploit these large datasets, and a clinical management platform with 
prediction algorithms for medication response and adverse effects offers large opportunities for precision 
psychiatry to improve treatment outcomes and quality of life of individuals with mental disorders. 
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Figure legends 
 
Figure 1: The integration of multiple big real-world data sources and prediction algorithms into a clinical 
management platform for precision treatment and improved outcomes in psychiatry.  
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