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Abstract
In this paper we study the computational feasibility of an algorithm to prove orb-
ifold equivalence between potentials describing Landau–Ginzburg models. Through a
comparison with state-of-the-art results of Gröbner basis computations in cryptology,
we infer that the algorithm produces systems of equations that are beyond the limits
of current technical capabilities. As such the algorithm needs to be augmented by
‘inspired guesswork’, and we provide examples of applying this approach.

Mathematics Subject Classification 81-08 · 14B05 · 13C14

1 Introduction

Initially a model to describe superconductivity, Landau–Ginzburg models were
promoted in the late ’80 s to 2-dimensional (2, 2)-supersymmetric sigmamodels com-
pletely characterized by a polynomial f called potential (Vafa and Warner 1989).
Landau–Ginzburg models gained importance in string theory and algebraic geometry
as they form a family of quantum field theories which are related under homological
mirror symmetry (Fan et al. 2013; Witten 1993). Furthermore, they are connected
to cohomological field theories via (Polishchuk and Vaintrob 2016). This makes it
natural to ask whether we can define some notion of “equivalence” between different
potentials. The notion of orbifold equivalence was inspired by the study of (defects
in) topological quantum field theories (see Carqueville and Runkel 2016; Davydov
et al. 2011; Fröhlich et al. 2010) and it was first defined in the context of the study
of equivariant and orbifold completions of the bicategory of Landau–Ginzburg mod-
els. Several examples have been explored in detail in the recent years (Carqueville
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et al. 2016; Newton and Ros Camacho 2016; Recknagel and Weinreb 2018), and its
connection to other topics like the McKay correspondence (Ionov 2023).

A further reason to study orbifold equivalences is that they may be used to gen-
erate examples of the so-called Landau–Ginzburg/conformal field theory (LG/CFT)
correspondence (see e.g. Ros Camacho (2020) for a review). This physics result states
that the infrared fixed point of a Landau–Ginzburg model with potential f is a 2-
dimensional rational conformal field theory (CFT) with central charge c f . At the
defects level, this predicts some relation between two seemingly different mathe-
matical entities: matrix factorizations (which describe defects for Landau–Ginzburg
models, Brunner and Roggenkamp 2007) and representations of the vertex operator
algebra of the CFT (describing defects for the rational CFT). We lack a precise math-
ematical statement for this result, yet there are several promising examples available
of this correspondence. In the particular case of simple singularities, it was proven in
Carqueville et al. (2016) that via orbifold equivalence one finds exactly the predicted
equivalences for the N = 2 supersymmetric minimal models. Furthermore, there are
physics results suggesting that this might not be the only case, involving Landau–
Ginzburg models with potentials describing singularities of modality greater than 0
(Cecotti and Del Zotto 2011; Martinec 1989). Hence, finding further orbifold equiva-
lences is potentially a source of further examples of equivalences within the LG/CFT
correspondence. This would strongly enhance our mathematical understanding of this
intriguing physics result.

The present paper is concerned with finding orbifold equivalences using computer
search. The current state of the art is the algorithm presented in Recknagel and Wein-
reb (2018). As recorded in Proposition 3.2, this algorithm terminates if and only if
two potentials are orbifold equivalent. In pertinent examples, we quantify the size of
these computations, and compare these sizes to current bests in solving these systems:
the Fukuoka MQ challenge (Yasuda et al. 2015). As such, we show that experimental
infeasability was not an accident that can be solved by choosing a different implemen-
tation (as was speculated in Recknagel andWeinreb 2018) but that these computations
lie well beyond what current technology enables.

2 Orbifold equivalence

In this section we introduce the necessary background for defining orbifold equiva-
lence. For the reader more familiar with higher categories, we refer to Appendix 1
for a complete description of orbifold equivalence in the context of the bicategory of
Landau–Ginzburg models.

Potentials

Definition 2.1 Let k be an algebraically closed field of characteristic zero. We will
consider the category R of polynomial rings in a finite number of variables over k,
each variable endowed with a fixed grading in Q>0.
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Given R ∈ R, we write

R =
⊕

q∈Q≥0

Rq

for the equal-grading direct summands of R, and we call their elements quasi-
homogeneous. Note that R0 = k.

Definition 2.2 For R = k[x1, . . . , xn] ∈ R and f ∈ R, the Jacobian ideal I f of f is
the ideal generated by the partial derivatives of f :

I f = (∂x1 f , · · · , ∂xn f )

The Jacobian of f is Jac f = R/I f . We call (R, f ) a potential if f is quasi-
homogeneous and if Jac f is a non-zero finite-dimensional k-vector space. We often
write f to represent the pair (R, f ), and we may similarly write ‘let f ∈ R be a
potential’. We write Pk for the set of potentials.

Remark 2.3 The polynomial f is quasi-homogeneous of degree d ∈ Q>0 if and only
if it satisfies:

|x1|
d

x1∂x1 f + · · · + |xn|
d

xn∂xn f = f

where |xi | denotes the degree associated to the variable xi . In particular, this implies
that f ∈ I f . We have an interesting converse in the case of power series (Saito
1971): there is a coordinate transformation making f quasi-homogeneous if and only
if f ∈ I f .

For future use, we record the following result.

Lemma 2.4 If f is a potential, then there exists an N ∈ N such that (x1, . . . , xq)N ⊆
I f .

Proof This only uses the facts that I f is quasi-homogeneous (i.e. for every g ∈ I f
with quasi-homogeneous decomposition g = ∑

�

g�, we have g� ∈ I f for all �) and

that R/I f is finite dimensional over k.

Pick a variable xi . We will first prove that xMi
i ∈ I f for some Mi . For this, pick a

lexicographical monomial order such that xi is smaller than all other variables. Under
this order, xMi (M ≥ 1) can only be a leading monomial of a polynomial g if g is a
function of only xi and no other variables. Let G be a Gröbner basis of I f with respect
to this monomial order. Because I f is quasi-homogeneous, we may choose G such
that every g ∈ G is quasi-homogeneous as well.

Because R/I f is finite-dimensional, for large M , xMi must be reducible by G. That
means G contains a divisor of xMi as a leading monomial, and we write Mi so that

xMi
i is a leading monomial of some g ∈ G. But with the chosen monomial order g
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is a function of only xi , and with g being quasi-homogeneous, we find g = cxMi
i for

some c ∈ k×. Then xMi
i ∈ I f .

To see that (x1, . . . , xq)N ⊆ I f , we need to show that monomials of total degree
N are in I f for large enough N . But for

N > q
∑

i

Mi

at least one variable xi has, in such a monomial, an exponent greater than Mi , and so
the monomial is a multiple of xMi

i ∈ I f . It is therefore an element of I f . ��

Gradedmodules

Convention 2.5 While R has a grading with values in Q≥0, graded R-modules have
a Q-grading.

Definition 2.6 For n ∈ Q we define the graded R-module R(n) as follows. As a
non-graded R-module, it is isomorphic to R, and its grading is given by

R(n)m =
{
Rn+m if n + m ≥ 0

{0} if n + m < 0.

A choice of grading on two R-modules induces a unique grading on the space of
maps between such modules. Let us make this explicit for maps from R(n) to R(m).
As non-graded modules we have

HomR(R(n), R(m)) ∼= HomR(R, R) ∼= R.

Comparing the quasi-homogeneous components of the left hand side and the right
hand side, one readily obtains the following explicit form:

HomR(R(n), R(m))� ∼= Rm−n+�.

Convention 2.7 We use the term quasi-homogeneous map for maps of any degree,
whereas morphism is reserved for quasi-homogeneous maps of degree zero.

In particular, this convention implies that even though there is an invertible quasi-
homogeneous map between R(n) and R(m) for any n,m, they are isomorphic if and
only if n = m.

Definition 2.8 A finitely generated, free, graded R-module X is a graded R-module
X that has a decomposition

X ∼= R(n1) ⊕ · · · ⊕ R(n�)

for some n1 ≥ · · · ≥ n� ∈ Q.
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The choice of such a decomposition is equivalent to the choice of an R-basis
consisting of quasi-homogeneous elements.

Multi-variate residues

Wewillmake use of themulti-variate residue symbol as described byLipman (1987). It
is completely characterized by three simple facts that we describe in this section. With
a view towards our computational objective, we will prove that this characterization
is effective, i.e. it gives an algorithm for computing it.

These three facts are as follows:

(F1)

res

(
gdx1 ∧ · · · ∧ dxq

f1, · · · , fq

)
= 0 if g ∈ ( f1, . . . , fq)

(F2)

res

(
gdx1 ∧ · · · ∧ dxq

xd11 , · · · , x
dq
q

)
=

(
the xd1−1

1 · · · xdq−1
q -coefficient of g

)

for all d1, . . . , dq ∈ N.
(F3) The transformation rule:

res

(
g det(M)dx1 ∧ · · · ∧ dxq

M( f1, · · · , fq)

)
= res

(
gdx1 ∧ · · · ∧ dxq

f1, · · · , fq

)

for any R-linear transformation M : Rq → Rq .

Remark 2.9 Note that (F3) preserves the applicability of (F1): if g ∈ ( f1, . . . , fq),
then also g det(M) ∈ (M f1, . . . , M fq). Namely, write f = ( f1, . . . , fq) and suppose
g = β f for some R-linear β : Rq → R. Writing M† for the adjoint of M , we have
M†M = det(M) Id, and so we can write g det(M) = (βM†)(M f ), which expresses
g det(M) in the generators of M f = (M f1, . . . , M fq).

These facts suffice to compute any residue symbol:

Lemma 2.10 Let R ∈ R and let f1, . . . , fq ∈ I be generators for an ideal I ⊆ R
such that (x1, . . . , xn)N ⊆ I for some N ∈ N. Then there exists a q×q matrix M with
coefficients in R such that for every i ,

∑
j Mi j f j = xdii for some di ∈ N. Moreover,

this matrix can be computed explicitly.

Proof The assumption guarantees that for every i , some power xdii is an element of
I , and this power di can be found algorithmically by a Gröbner basis computation as
outlined in the proof of Lemma 2.4. This computation yields the coefficients Mi j for
all j . Repeating the computation for all i yields the matrix M . ��
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Proposition 2.11 For given g ∈ R and I = ( f1, . . . , fq) such that R/I is finite-
dimensional, the residue symbol

res

(
gdx1 ∧ · · · ∧ dxq

f1, · · · , fq

)

can be computed algorithmically.

Proof Write I = ( f1, . . . , fq). We first compute a Gröbner basis G of I . Then, we
check whether g ∈ I . If it is, the residue is 0 and we have finished the computation.

If g /∈ I , then we compute the matrix M such that M · ( f1, . . . , fq) consists of a
vector of monomials (Lemma 2.10). We can then use (F3) to replace g by g det(M),
and (F2) to compute the residue as the appropriate coefficient of g det(M). ��

Matrix factorizations

Definition 2.12 A finitely generated, free, graded R-module X is supergraded if it has
a decomposition

X = X+ ⊕ X−

into an even and odd part, respectively, both of which are f.g., free, graded R-modules
themselves.

Convention 2.13 There is some risk of confusion from using two gradings: the Q-
grading on R-modules and maps between them is not to be confused with the
supergrading on X+ ⊕ X−. These are our conventions:

◦ We use ‘grade’, ‘grading’, and ‘quasi-homogeneous’ exclusively to refer to the
Q-grading. We use ‘even’ and ‘odd’ exclusively to refer to the supergrading. We
use ‘even/odd’ for super-homogeneity.

◦ Just like in the case of the Q-grading (see Convention 2.7), maps may be even or
odd, but morphisms are assumed even.

◦ We use the Koszul sign rule for tensor products of supergraded modules. In order
to highlight its effect on the trace operator, we write str or supertrace to emphasize
this. Explicitly, it is given by

str ei ⊗ e j = (−1)sign(ei ) sign(e
j )δ

j
i

for a basis {ei }i with dual basis {ei }i .
Definition 2.14 Let f ∈ R be a potential. A matrix factorization of f is a finitely
generated, graded, supergraded R-module X together with an odd, homogeneous map
dX such that d2X = f · IdX .
Notation 2.15 We will write X to represent the pair (X , dX ) from this definition.
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Orbifold equivalence

Definition 2.16 Let two potentials f ∈ R and g ∈ S be given. Write T = R ⊗k S.
Then amatrix factorization of f −g is a matrix factorization Q over T of the potential

f ⊗ 1 − 1 ⊗ g ∈ T

Note that the existence of Q implies that f and g have the same grading, since
dQ and therefore d2Q are quasi-homogeneous maps by assumption, and therefore so is
( f − g) · IdQ .
Definition 2.17 Let f ∈ k[x1, . . . , xm], g ∈ k[y1, . . . , yn], and Q a matrix factoriza-
tion of f − g. Its quantum dimension with respect to f is

qdim f Q = res

(
str ∂x1Q · · · ∂xm Q∂y1Q · · · ∂yn Qdx1 ∧ · · · ∧ dxm

∂x1 f , · · · , ∂xm f

)

The left and right quantum dimensions are, respectively, the quantum dimensions w.r.t.
f and w.r.t. g.

Remark 2.18 Since at present we are only interested in the (non)zero-ness of quantum
dimensions, we omit the signs (Carqueville andMurfet 2016; Carqueville et al. 2016).

Definition 2.19 The potentials f and g are orbifold equivalent if there is a matrix
factorization of f − g with nonzero left and right quantum dimensions.

It is not quite trivial to see that this is an equivalence relation; in fact, even reflexivity
already requires a rather complicated matrix factorization Q. Similarly, transitivity is
‘almost’ easy to obtain, namely through a suitably defined tensor product of bimodules,
but this results in a module that is not finitely generated. The hard part is obtaining
the desired finitely generated one from this starting point.

Here, we will content ourselves with citing the result, contained at Sect. 2.1 of
Carqueville et al. (2016):

Theorem 2.20 Orbifold equivalence is an equivalence relation on the set of potentials
Pk. ��

3 Search algorithm

Our task is as follows: given potentials f ∈ R and g ∈ S, find out whether they are
orbifold equivalent. We will present an algorithm that finishes in finite time if they
are. It is not a decision procedure, however: the algorithm does not terminate if they
are not. This section offers an exposition of parts of Recknagel and Weinreb (2018),
tailored towards our use in Sect. 4.

Let’s first describe an easy instance of the algorithm.
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Example 3.1 Assume the following potentials to be quasi-homogeneous of degree 2.
Out of reflexivity of equivalence relations, it is clear that x3 is orbifold equivalent
to y3, but let us analyze this case as an illustration. One way of finding an orbifold
equivalence is splitting the total grading 2 into 4

3 + 2
3 and then writing the most general

rank 2 odd matrix with entries of those gradings respectively:

dQ =
(

0 c1x + c2y
c3x2 + c4xy + c5y2 0

)

with indeterminates c1, . . . , c5 ∈ k. Then the equation

d2Q = (x3 − y3) · IdQ

is equivalent to a set of equations in the variables c1, . . . , c5. In detail, we find 4 distinct
quadratic equations—one for each degree-3 monomial—in 5 variables.

We add to these equations the requirement that the quantum dimensions do not
vanish. Thanks to Proposition 2.11, we can compute e.g. the left quantum dimension.
It is a polynomial q� in c1, . . . , c5, namely

q� = −2

3
c2c3 + 1

3
c1c4

Following (Recknagel and Weinreb 2018), we encode the non-vanishing by adding a
helper variable c� and adding

c�q� − 1 = 0

to our equations. This has at least one solution for c�, c1, . . . , c5 if and only if the
original system has at least one solution for which ql does not vanish.

Adding two such equations, for left and right quantum dimension respectively, we
find 6 equations in 7 variables, and if they admit a solution in k7, we found a matrix
factorization proving orbifold equivalence of x3 and y3.

The existence of such a solution can be established or refuted, thanks to the weak
Nullstellensatz, by checking whether the ideal generated by these equations is not
equal to the trivial ideal (1). Algorithmically, this can be decided by computing a
Gröbner basis.

It is straightforward to generalize this example to a search procedure. For this, we
note the following:

◦ There are only countably many ranks 2m ∈ 2N for Q;
◦ For every m, we can enumerate the possible gradings (n1, . . . , n2m) of the free
summands in

Q = R(n1) ⊕ · · · ⊕ R(n2m)
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Through a standard diagonal procedure, we can enumerate the union of all modules
appearing in this way. The gradings n1, . . . , n2m fix the grading of the entries in dQ
through |(dQ)i j | = n j − ni + |dQ |. Then a ‘most general’ version of (dQ)i j for these
gradings is given by a polynomial with

dimk Tn j−ni+|dQ |

free variables at the (i, j) entry—one free variable for every quasi-homogeneous
monomial of grading n j − ni + |dQ | in T .

Having found this most general form, we compute the coefficient equations from
the matrix equation

d2Q = ( f − g) · IdQ
Suppose they are given by

{si (c1, . . . , cN ) = 0}i∈S
for some finite index set S. We augment this set with the two equations

c�q�(c1, . . . , cN ) − 1 = 0

crqr (c1, . . . , cN ) − 1 = 0

Just like in the example, the weak Nullstellensatz implies that determining whether
these allow a simultaneous solution in kN+2 is a finite computation.

We can summarize the discussion above in the following result:

Proposition 3.2 There is an algorithm that, given two potentials f ∈ k[x1, . . . , xq ]
and g ∈ k[y1, . . . , yn], terminates if and only if f and g are orbifold equivalent. ��

4 Computational feasibility

The algorithm described above consists of a discrete part and a continuous part: The
discrete part is concerned with enumerating possible ranks and gradings, and the
continuous part is concerned with solving geometric equations.

Compared to the way it is described above, it is possible to significantly optimize
the enumeration of possible gradings by taking into account the possible factorizations
of the monomials appearing in f and g. In fact, it is necessary to do so to avoid a
combinatorial explosion. Details for such a significant optimization are provided in
Recknagel and Weinreb (2018).

In this section we look at the feasibility of the continuous part. It is well known that
Gröbner basis computations have a tendency to blow up; in fact, doubly-exponential
runtime has been proved for pathological cases (Mayr and Meyer 1982). For this
reason, algebraic problems such as the present one have attracted the interest of the
cryptology community as a potentially quantum-computer resistant replacement for
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digital signatures now commonly implemented through a discrete logarithm problem
(Shor 1999; Makarim et al. 2017).

To quantify computational difficulty and feasibility, this community maintains lists
of open problems for the public at large to submit solutions. One of these challenges is
the Fukuoka MQ Challenge (Yasuda et al. 2015). One of their published lists consists
of 2N quadratic equations in N variables—much like the ones we encountered in the
previous section—for ever increasing N .

In the remainder of this section, we will compare the difficulty of the Gröbner basis
computation corresponding to known matrix factorizations to the top contenders in
the MQ Challenge as of July 2023. This should give an indication of the workability
of this algorithm in practice.

Remark 4.1 In contrast to our present work, cryptology focuses on finite fields and
the MQ Challenge is no exception. We believe that a comparison for feasibility still
makes sense, as finite fields often have very efficient computer implementations. If
anything, a problem stated over a field of characteristic zero will be less feasible. If
this belief holds true, the MQ Challenge offers a lower bound for the difficulty of the
problem we are trying to tackle.

Another difference is that the MQ Challenge concerns itself with dense polyno-
mials; i.e. with polynomials where almost all monomials of degree at most two have
a nonzero coefficient. The polynomials that appear for us are less dense than that.
In particular, no linear terms appear. We still believe that denseness is a reasonable
comparison.

To explain Table 1, let us go over one of its entries in detail. The three-variable
potentials describing the singularities Q10 and E14 are known to be orbifold equivalent
(Newton and Ros Camacho 2016). Explicitly, they are given by fE14 = x4 + y3 + xz2

and fQ10 = u4w + v3 + w2 respectively.
The matrix factorization testifying that is given by

Q = T ⊕ T (
1

4
) ⊕ T (

1

3
) ⊕ T (

7

12
)

⊕T ⊕ T (
1

4
) ⊕ T (

1

3
) ⊕ T (

7

12
)

as a Q-graded module over T = k[x, y, z, u, v, w]. That implies that dQ’s entries
have gradings given by the following matrix:

1

12

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12 15 16 19
9 12 13 16
8 11 12 15
5 8 9 12

12 15 16 19
9 12 13 16
8 11 12 15
5 8 9 12

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Table 1 Gröbner basis challenge
size for several known orbifold
equivalences

Equivalence Indeterminates Equations

fQ10 ∼ fE14 108 237

fQ18 ∼ fE30 140 341

fQ12 ∼ fE18 116 263

Following the procedure from the last section, this results in the variables c1, . . . , c106
to describe the most general version of dQ with these gradings.

When taken coefficient-by-coefficient (both of the matrix and of the polynomial
entries), the equation

d2Q = ( fE14 − fQ10) · IdQ
gives 470 equations in c1, . . . , c106. Adding the quantum dimension helper variables
and constraints, we are faced with a system of 472 equations in 108 variables.

A significant optimization can be made. Since dQ is odd, it is of the form

dQ =
(

0 d�
Q

d�
Q 0

)

and d2Q = ( f − g) IdQ reduces to the two equations

d�
Qd

�
Q = ( fE14 − fQ10) · IdQ+

d�
Qd

�
Q = ( fE14 − fQ10) · IdQ−

However, these two equations are equivalent to one another.Wemay therefore consider
only the constraints arising from either one of them, and this cuts the number of
independent constraints on c1, . . . , c106 roughly in half. In the specific case above, we
are left with 237 equations in 108 variables.

For comparison, the current top contender in the MQ Challenge solved a system of
160 equations in 80 variables over the field of 2 elements. This strongly suggests that
the described algorithm would not have been able to find this orbifold equivalence
within reasonable time.

Table 1 lists similar outcomes for different equivalences. One is the example treated
in the next Section fQ18 ∼ fE30 , while the second involves an equivalence already
known from existing ones, fQ12 ∼ fE18 .

5 ‘Inspired guessing’

Given this rather sobering view on computer explorations, it is useful to combine
them with some ‘inspired guessing’: this can reduce the number of equations and
indeterminates and in this way make the computer approach feasible.
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A way to detect natural candidates for orbifold equivalence is via the following
result:

Lemma 5.1 Let f ∈ k [x1, . . . , xn] be a potential with a Q-grading assigned to each
variable which we will denote as |xi |. Define the central charge associated to f to be:

c f =
n∑

i=1

(1 − |xi |) .

If two potentials f , g are orbifold equivalent potentials, then they have the same
central charge.1

For a proof see (Carqueville and Runkel 2016, Proposition 6.4). This is a necessary
yet not sufficient condition, but it is still a useful source of potential candidates for
orbifold equivalences. Herewe focus on some instance related to the so-called bimodal
singularities (see e.g. Ebeling and Ploog (2013)), not necessarily new per se (since
it can be derived from already known equivalences2) but not previously contained
anywhere in the literature: fQ18 ∼ fE30 .

In the following we will describe in detail the procedure for this case, described by
the potentials

fQ18 = x8 + y3 + xz2

fE30 = u8w + v3 + w2

(both with central charge cQ18 = 17
15 = cE30 ).

◦ First we split the total grading 2 into 3 different pairs of two adequate summands
(consistent with the degree assigned to each of the variables). Note that in this
case, we have:

|x | = 1

4
,

|y| = 2

3
,

|z| = 7

8
,

|u| = 1

8

|v| = 2

3
|w| = 1

Inspired by the charge of the entries at Kajiura et al. (2009) for Q12, we choose to
split 2 in the following way: 2 = 1 + 1 = 4

3 + 2
3 = 9

8 + 7
8 .

1 One can relate this to the so-called strange duality of singularities as described byArnol’d (1975); Arnol’d
et al. (1985) (see e.g. Newton and Ros Camacho 2016 for a detailed discussion in the case of unimodal
singularities).
2 Indeed, under a suitable change of variables fQ18 can be decomposed as a sum of fD9 and f A2 , and
fE30 as the sum of f A15 and f A2 . The equivalence between fD9 and f A15 was proven in Carqueville et al.
(2016).
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◦ Then we distribute these entries in a 23 = 8 odd matrix (again inspired by the V0
indecomposable for fQ12 of Kajiura et al. (2009)) as in:

1

24

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

21 32 24 29
16 27 19 24
24 35 27 32
13 24 16 21

27 32 24 35
16 21 13 24
24 29 21 32
19 24 16 27

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

◦ Here, notice that:

− The most general polynomial we can generate of charge 2
3 is c1u + c2v, and

of charge 4
3 is c1u2 + c2uv + c3v2 (ci ∈ C).

− With this grading, we cannot generate monomials of degree 13
24 and 29

24 , and
these entries will be straightforward zero. For the entries with degree 19

24 and
35
24 , we set them by hand to be zero as part of the ‘inspired guess’.

− Monomials potentially generating x8, w2 and xz2 could be x4 and w (both of
charge 1) and z and xz (each of charge 7

8 and 9
7 ) respectively.− Let us specify the non-zero blocks of the twisted differential as in Eq.1. We

insert these entries in the matrix and adjust ±1 coefficients so the determinant
of the d�

Q is v3 + w2 − x8 − y3 − xz2(= fE30 − fQ18 − u8w) squared:

d1Q =

⎛

⎜⎜⎝

z v2 + yv + y2 x4 + w 0
y − v −xz 0 x4 + w

x4 − w 0 −xz −(v2 + yv + y2)
0 x4 − w v − y z

⎞

⎟⎟⎠

(again with d0Q =
√
Det[d1Q](d1Q)−1).

◦ At this point, we write for each entry in the matrix all possible remaining mono-
mials making them the most general instance of a polynomial of each charge we
can have. We get 84 variables.

◦ Then we impose d2Q = (
fE30 − fQ18

) ·IdQ , and we reduce the amount of variables
and equations to be satisfied solving by hand as many linear equations as possible
(77 in total). We are then left with a system of 5 equations in 7 variables.

◦ And last we compute its left and right quantum dimensions. Imposing them to be
non-zero we obtain two more inequalities to be satisfied.

Remark 5.2 The reader may notice that this method of reducing the amount of equa-
tions and variables in steps is similar to what was called “progressive perturbation” in
Newton and Ros Camacho (2016), where the shape of our starting ansatz is again sug-
gested by the indecomposables of the triangulated categories of matrix factorizations
in Kajiura et al. (2009).
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In this way we construct a matrix factorization with non-zero quantum dimensions.
As described in Sect. 3, a Gröbner basis computation now determines whether this
system admits a solution. The size of the system is now sufficiently small to complete
this in reasonable time, so we have proven that these two potentials are orbifold
equivalent.

Remark 5.3 Observe that the potentials involved in this equivalence have the following

nice property. Let us write fQ18 as fQ18 = ∑3
i=1

∏3
j=1 x

Ai j
j with Ai j =

⎛

⎝
8 0 0
0 3 0
1 0 2

⎞

⎠

the matrix of coefficients. It turns out that fE30 = ∑3
i=1

∏3
j=1 x

A ji
j . This is what

is called the ‘Berglund-Hübsch transposed potential’, a well-known way to generate
mirror symmetric Landau–Ginzburg potentials andwe refer to the literature for further
details on this (Berglund and Hübsch 1993; Krawitz 2010; Ebeling 2016).
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A. Categorical origins of orbifold equivalence

The concept of orbifold equivalence was first introduced in the context of the study
of bicategories, and in particular that of Landau–Ginzburg models. Here, we aim to
review the categorical origins of the definition of orbifold equivalence (Carqueville
and Runkel 2016).

First, consider the following categories of matrix factorizations:

mf (S, f ): given a potential f ∈ S, objects are matrix factorizations of f as in
Definition 2.14, and given two objects (X , dX ), (Y , dY ) morphisms are
S-linear maps ϕ : X → Y . This category is differential supergraded,
and for such a ϕ there is a differential in the morphism space given by:
δϕ = dY ◦ ϕ − (−1)|ϕ| ϕ ◦ dX , where |ϕ| is the degree of ϕ.

We say that twomorphisms ϕ,ψ : M → N are homotopy equivalent if there exist a
morphism θ of degree one such that ϕ −ψ = dN ◦θ +θ ◦dM . Homotopy equivalence
is an equivalence relation.
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hmf (S, f ): objects are those of mf (S, f ), and morphisms are those of mf (S, f )
that are even and compatible with the twisted differential (i.e. satisfying
that dY ◦ ϕ = ϕ ◦ dX ) modulo homotopy.

hmf (S, f )ω: idempotent completion of the category hmf (S, f ). Thatmeans, we take
objects isomorphic to direct summands of objects of hmf (S, f ).

Next, let us define a tensor product of matrix factorizations. Let f1 ∈ S1, f2 ∈ S2,
f3 ∈ S3 be three potentials, X be a matrix factorization of f1 − f2 and Y be a matrix
factorization of f2 − f3. The tensor product matrix factorization X ⊗S2 Y is the matrix
factorization of f1 − f3 with base module over S1 ⊗k S3 and twisted differential
dX⊗Y = dX ⊗ IdY + IdX ⊗dY .

Remark A.1 Notice here that for S2 = k, X ⊗S2 Y is of infinite rank over S1⊗k S3. Yet
the resultingmatrix factorization is actually isomorphic to one of finite rank (Khovanov
and Rozansky 2008).

For the case S1 = S2 = S, note that under this tensor product,

Proposition A.2 (Carqueville and Murfet (2016); Carqueville and Runkel (2010))
hmf

(
S⊗2, f ⊗ 1 − 1 ⊗ f

)ω
is a tensor category.

In fact one can prove more general cases than just this one (Carqueville and Murfet
2016) and even compute dual matrix factorizations as well (Carqueville and Murfet
2016; Carqueville and Runkel 2012), for which we refer to the literature. Hence a
legitimate question is if this category is in addition pivotal. For future convenience,
in order to answer this question let us go one step higher and define the following
bicategory that we will denote as LGk:

◦ Objects are potentials as in Definition 2.2,
◦ For any two objects (S1, f1), (S2, f2), the morphism category is
hmf (S1 ⊗k S2, f1 − f2)ω.

This is indeed a bicategory (Carqueville and Runkel 2010). Furthermore,

Theorem A.3 LGk is a graded pivotal bicategory.

Graded pivotality means that the bicategory is pivotal up to shifts, and one needs a
detailed discussion of how these and adjunction maps are compatible. For details we
refer to the original source (Carqueville and Murfet 2016). But, notice here that:

Remark A.4 The subbicategoryLG′
kwhose objects are potentialswith an evennumber

of variables is pivotal.

Moreover, we have explicit formulas for the adjunctions and more precisely of the
evaluation and coevaluation maps. These were constructed in the one-variable case
in Carqueville and Runkel (2012) and then for more general cases in Carqueville and
Murfet (2016). One may combine these for example to get the explicit expressions of
the so-called left and right quantum dimensions as stated in Definition 2.17.

Using the theory of equivariant and orbifold completion of bicategories (Carqueville
and Runkel 2010), one finds the following result for LG′

k:
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Theorem A.5 Let f1 = f1 (x1, . . . , xm), f2 = f2 (y1, . . . , yn) be two potentials and
(M, dM ) ∈ hmf ( f2 − f1) with invertible quantum dimension. Then

(M, dM ) :
(
(S1, f1) , M† ⊗ M

)
�

(
(S2, f2) , I f2⊗1−1⊗ f2

) : (M, dM )†

(where
(
M, dM

)†
is the right adjoint of

(
M, dM

)
) is an adjoint equivalence

in LG′
k, and M† ⊗ M is a symmetric separable Frobenius algebra object in

hmf (S1 ⊗k S1, f1 ⊗ 1 − 1 ⊗ f1)ω.

Let’s reformulate this theorem as an equivalence relation:

Definition A.6 Let f1 = f1 (x1, . . . , xm), f2 = f2 (y1, . . . , yn) be two potentials and(
M, dM

) ∈ Ob (hmf ( f2 − f1))ω. Assign to (M, dM ) two elements in k, the left and
right quantum dimensions qdiml (M) qdimr (M) as in Definition 2.17. If there exists
such an (M, dM ), then we say that f1 and f2 are orbifold equivalent.

Remark A.7 Notice that this definition is equivalent to Definition 2.19.

Proposition A.8 (Carqueville et al. (2016)) Denote as Pk the set of potentials with
any number of variables with coefficients in the field k. Orbifold equivalence is an
equivalence relation in Pk.

Notice here that:

– Following the notation in Definition A.6, if f1 and f2 are orbifold equivalent then
clearly m = n mod 2.

– We are considering implicitly a Q-graded setting, and so the quantum dimen-
sions take values in k. This can be seen from counting degrees in the formulas of
Definition 2.18.

– Quantum dimensions are independent of the Q-grading of a matrix factorization.

Given two potentials f1, f2 and a matrix factorization X of f1 − f2 proving that
f1 and f2 are orbifold quivalent, one finds as a corollary of Theorem A.5 that the
following equivalence of categories holds:

Proposition A.9

hmf (S, f2)
ω � mod

(
X† ⊗ X

)

In the Introduction it was mentioned that orbifold equivalence could be used as a
source of equivalences of categories in the context of the Landau–Ginzburg/conformal
field theory correspondence, andPropositionA.9 is the key to do it. In the case of simple
singularities (Carqueville et al. 2016), we found equivalences of categories of matrix
factorizations of these potentials and the expected from CFT categories of modules
over separable symmetric Frobenius algebra objects (Ostrik 2003). For more details
we refer to Davydov et al. (2018); Ros Camacho (2020). For the remaining existing
orbifold equivalences we hope to find similar equivalences and their respective CFT
counterpart (hopefully not so distant) in the future (Ros Camacho 2023).
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