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Abstract

Mammary organoids are three-dimensional structures that are derived from
mammary gland cells and can recapitulate the complex architecture and
functionality of the mammary gland in vitro. Mammary organoids hold great
promise for advancing our understanding of mammary gland biology, breast
cancer, and precision medicine. However, phenotypic and genetic instabilities
observed in long-term expansion limit their applications to prolonged experiments
and large-scale production.

A proposed factor driving this organoid-wise heterogeneity is plasticity
within mammary epithelial cells, the phenotypic switching of cells. Therefore,
we examine the dynamics of key intracellular pathways that govern cell-fate
commitment in mammary organoids. Specifically, we explore the influence of
local tissue geometry and polarity in cell-cell signalling in stabilising cell-fate
determinants using a combination of analytic and numerical multiscale modelling
approaches.

We introduce interconnected dynamical systems, graph-coupled dynamical
systems with input-output representations to describe intercellular signal flow
between cells. Exploiting structural properties of the bilayer graphs describing
mammary tissue architecture, we derive low-dimensional forms of these models
enabling the analytic examination of the interplay of structure and polarity on
cell-fate patterning, extending existing methods to include pathway crosstalk and
providing rigorous links between low-dimensional and their associated large-scale
representations.

Supporting the analytic investigations of static spatial domains with cell-
based modelling, we provide evidence that sufficiently strong cell-cell signal
polarity has the capacity to generate and sustain bilayer laminar patterns of
Notchl, a critical cell-fate determinant and inducer of plasticity in mammary
epithelial cells. Furthermore, we demonstrate how local tissue curvature can
relax the constraints of polarity supporting healthy tissue growth and supporting
branching morphologies. Fundamentally, this study highlights the significance of
cell signalling polarity as a control mechanism of cell-fate commitment. Thus,
the establishment and maintenance of epithelial polarity should be considered in

long-term mammary organoid expansion protocol development.
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Chapter 1

Introduction

This thesis explores the interplay of tissue geometry and cell signalling polarity
in the patterning of cell-fate determinants in developing mammary organoids.
Before stating the explicit motives driving the aims and objectives of this work,
we first introduce the relevant biological background. Thereafter, we briefly
review a range of mathematical approaches taken to study similar phenomena at
different characteristic spatial scales in developmental biology. Lastly, we present

an outline of the structure and results of the thesis.

1.1 A brief introduction to mammary organoids

The mammary gland is an organ found in female mammals, which is highly
specialised for the primary function of milk production and secretion, as a
nutrient source for their offspring. This glandular tissue is located in the breasts
and undergoes substantial remodelling after birth, specifically during puberty
and pregnancy [1]. The sensitivity of mammary glands to their environment
which promotes these developmental changes indicates the presence of complex
autoregulatory mechanisms present to sustain healthy organ growth [2].
Nevertheless, high environmental sensitivity yields increased susceptibility
to disease initiation and progression. Critically, dysregulation of hormone-
dependent homeostatic mechanisms is a fundamental characteristic of breast
cancer progression [3]. Breast cancer is currently the most common form of
cancer diagnosed among women in the UK, with over 55,000 diagnoses a year
and leading to approximately one in four fatal cases [4]. Though research in
healthy and disease mammary biology is a growing and highly active field, the
fundamental processes governing mammary gland development are still unknown

due to the spatial and biochemical complexity of this highly adaptive organ [5, 6].



1.1.1 The structure and function of the mammary gland

During the embryonic stages of mammalian development, ductal structures
composed of epithelial cells grow outward from the nipple generating tree-
like branched structures (figures 1.1a and 1.1b) within the breast tissue [1].
These branching structures establish a core architecture of the organ for later
development during puberty and pregnancy, namely, ductal extension for the
production and transport of milk at lactation in response to hormonal cues.

The ductal sections of the organ consist of a distinct bilayer structure of
epithelial cells that is typical in glandular tissue. In the mammary gland, these
ducts are comprised of an outer layer of basal cells and an inner layer of luminal
cells which surround a hollow region known as a lumen, as shown in Figure
1.1a. These contrasting layers of cells present both functional and morphological
differences. Luminal cells occupy the largest volume of the duct, presenting
cuboidal cellular shapes with the function of milk synthesis and release into the
lumen [1]. The majority of the basal cell population consists of myoepithelial
cells which are elongated along the outer surface of the duct. The myoepithelial
cells are responsible for physically promoting milk secretion using contractive
mechanisms in response to hormone stimulation [7]. It is reported that the
mammary stem cell population are located within the basal layer [8], facilitating
the renewal and regeneration of the duct.

These distinct cell populations are typically identified using their differential
expression of Keratin subtypes, a protein found on the membrane of epithelial
cells [1]. Luminal cells express the Keratin 8, 11 and 18 subtypes (K8, K11 and
K18) whereas basal cells are identified by the 5 and 14 subtypes (K5 and K14). In
addition, basal cells can be phenotypically isolated by their expression of smooth-
muscle actin (SMA). Figure 1.1c shows the differential expression of the Keratin
subtypes within a mammary duct, highlighting the bilayer epithelial architecture.

The mammary ducts are embedded within fatty tissue in the breast. Namely,
surrounding the ducts is the stroma, which is composed of various connective
tissue cells, including fibroblasts, adipocytes, and immune cells, as well as
extracellular matrix proteins. The stroma supports the healthy development of
the mammary gland by providing a structural framework for glandular growth as
well as epithelial mediation by the secretion of growth factors [11].

Between the stroma and basal population lies the basement membrane. The
basement membrane is a sheet-like network of protein fibres that regulates the
interactions between the stroma and the basal cells and is also responsible for

orientating the mammary epithelia for functional ductal growth [12].
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(a) Representative mammary duct epithelial structure.

(b) Branching tree-like structure of the mammary gland.

(c) Bilayer epithelial ductual structure.

Figure 1.1: The epithelial and tissue structure of the mammary gland. (a) A
schematic of the bilayer epithelial structure within mammary ducts and their
identification using immunofluorescence microscopy. (b) Adult mouse mammary
ducts show the branching architecture of the mammary gland. The epithelial cells
are tagged with membrane reporters to highlight global tissue structure. Insets
show local mammary gland branches. Images provided by Dr Bethan Lloyd-
Lewis.
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Figure 1.1: (Continued.) (c) Differential Keratin expression in mammary ducts.
Mammary epithelial cells within ducts are stained using immunofluorescence
Keratin targets and imaged using confocal microscopy. The left-most image is
additionally stained with DAPI, a nucleic identifier, scale bar 20pum. The right-
most images highlight the simultaneous Keratin activation of K14 and K5 in the
basal population, scale bar 10um. Images reprinted from [9] and [10], respectively.

1.1.2 Mammary organoids

In wvitro culture systems refer to those performed outside a living organism,
whereas in vivo relates to processes performed within a living organism. In
addition, culture systems that use cells directly isolated from the source animal in
a laboratory environment are called ex vivo [13]. In vitro and biological models
of organs are important tools for the control, scalability and simplification in
experimental design and allow researchers to isolate key mechanisms relating,
but not limited to, tissue growth, self-organisation and disease control [14].
Subsequently, generating culture systems that most accurately represent in vivo
biological conditions is fundamentally important to the study of healthy and
disease developmental biology. Over the past decade, significant advances in
culture technologies have focused on the development of 3D suspension techniques
to avoid physical contact with the plastic well or dish, which would otherwise
induce artificial cellular behaviour [15].

Organoids are tissues grown in vitro that closely recapture both the structure
and functions of an organ in vivo, and therefore are also referred to as ‘mini-
organs’ [15]. Specifically, an organoid is a collection of cells derived from a specific
tissue and grown in a 3D culture system that is designed to recapitulate the
natural tissue as simply as possible. Organoid cultures differ from existing 3D
culture systems due to their regenerative capacity following a sustained stem cell
population, which is supported by continuous growth media supplementation [16].
Critically, these organoid cultures containing stem cells demonstrate a complete
set of differentiated cell types found in the original tissue, which are arranged
in an architecture specific to the organ and communicate through physiologically
relevant signalling mechanisms. Moreover, these culture systems enable long-term
cultures which can be expanded to generate more organoids, facilitating high-
throughput analysis from a small amount of starting material. Furthermore,
using these organoid technologies in ex vivo contexts generates highly relevant
physiological behaviours derived from the source organ which is both reproducible
and experimentally controllable, a more accurate and reliable description of of the
biology underpinning the organ compared to in vitro cultures [17]. However, the

resources required to isolate primary cells and sustain ex vivo organoid cultures



are significantly greater than in vivo systems [18]. The benefits of organoid culture
systems have led to their applications in drug screening, as well as personalised
and regenerative medicine [14].

Mammary organoids are organoids generated from stem-cell rich mammary
epithelial fragments and have the capacity to form the bilayer epithelial ductal
structures that are observed in mammary glands from simple spherical clusters
(Figure 1.2). Building upon culture protocols developed for intestinal organoids
[19], the Dale lab developed the long-term culture protocols for mammary
organoids [16, 20], specifically focusing on hormone supplementation for stem
cell conservation. Since the establishment of sustainable mammary organoids,
extensions to these protocols have been designed to investigate specific features
of mammary biology, accelerating our understanding of the epithelial processes
driving cell-fate decisions [21], branching morphogenesis [22], lactation [23], and
cancer initiation and progression [24].

In contrast to the in vivo mammary gland, mammary organoids present as an
unconstrained in vitro model of mammary biology driven purely by the mammary
epithelial cells (MECs) and their interaction with an extracellular matrix (ECM)
termed matrigel. The ECM may recapitulate features of the previously described
basement membrane. However, the active role of fibroblasts is removed from
organoid cultures. This feature of mammary organoids allows the investigation of
epithelial-driven collective MEC behaviour at high-resolution, particularly during
the early stages of glandular development and breast cancer [25]. For example,
mammary organoid technology was used to decipher suitable microenvironmental
conditions generated by local MECs for the existence of spatial clusters for
mammary stem cell (MaSC) renewal, known as a stem cell niche [16].

However, the dissociation of fibroblasts and MECs generates atypical
environmental conditions for mammary organoid growth with the loss of physical
and biochemical cues provided to the MECs [26]. Consequently, organoid
culture is difficult and expensive to maintain for high-throughput experimental
studies due to the existence of genetic instabilities and phenotypic defects [20].
Therefore, this thesis aims to understand the processes involved in sustaining
healthy mammary organoid development, specifically through the lens of cell-cell
communication and cell-type commitment. Thereby providing novel insights for

high-throughput mammary organoid culture development.



Figure 1.2: Mammary organoids from simple spheroids to branching structures.
Timelapse brightfield images of a mammary organoid from the initial day of
epithelial fragment seeding depicting branching morphogenesis under FGF2
supplementation. Scale bar 100pum. Images reprinted from [23].

1.2 Cellular communication in mammary epithelial

cells

To facilitate the self-organisation of MECs to form functional glands, precise
and coordinated exchange of signals between cells are employed to allow each
cell to communicate and respond to changes in their environment, a process
called cell signalling. Cell signalling involves a variety of mechanisms, including
the release of chemical messengers called signalling molecules, the activation of
receptor proteins on the surface of cells, and the transmission of signals through
intracellular signalling pathways, as illustrated in Figure 1.3. These processes
enable cells to interpret and respond to a wide range of environmental cues,
such as changes in the concentration of nutrients, growth factors, and hormones.
In particular, cell-cell signalling coordinates local cell-type determination and

proliferation in developing tissues [27].

1.2.1 Mechanisms of cell signalling in mammary epithelia

Local cell-cell signalling mechanisms in epithelial cells can be categorised into
three distinct processes; paracrine, autocrine, and juxtacrine signalling [27].
Paracrine signalling is a long-range signalling process, where signal molecules
are secreted by a cell which then binds to specific signal receptors on the surface
of near cells, typically transported by extracellular diffusion. However, paracrine
signalling has been observed to exhibit additional mechanisms of long range signal
molecule transport such as planar transcytosis and cytonemes [28]. Namely, in
planar transcytosis the signal molecule binds to a receptor on a cell and then is
transported through the cell to be expressed at a different location on the surface
where this process is repeated in an adjacent cell [29]. Subsequently, paracrine

signalling has the largest scale length of those discussed in this section, with the



capacity to secrete signals up to a distance of 100pum (approximately 5 MEC
diameters) of the signal sending cell [30].

Autocrine signalling is the mechanism where signalling molecules secreted
from a cell bind to receptors on the surface of the same cell. The autocrine
mechanism serves as a self-regulatory process, initiating a feedback loop that can
activate an intracellular cascade, thereby controlling the behaviour of the cell.
For example, autrocrine signalling of the growth factors epidermal growth factor
(EGF) and transforming growth factor-beta (TGF-/3) is essential for proliferation
and branching morphogenesis in the mammary gland [16, 31].

Juxtacrine signalling is a contact-dependent signalling mechanism whereby
membrane-bound signal activators on the surface of signal sending cells bind
to membrane-bound receptors on adjacent cells, initiating the activation of
downstream pathways. This signalling process accounts for the most local
intercellular communication and is commonly observed in cell-type coordination
in developing tissues [27]. Critically, this method of cell-cell communication is not
only dependent on the concentration of available activators and receptors on the
surface of the cell, but also the geometry of cell for surface contact regions [32].
That is, cellular behaviours influenced by juxtacrine-dependent signalling factors
are highly susceptible to local and global tissue morphological deformations which
are common during organ development.

A summary of the epithelial signalling mechanisms is given in Figure 1.3.
MECs simultaneously employ each of the signalling mechanisms during mammary
organoid growth, coordinating proliferation, apoptosis, motility and cell-type
changes. Before discussing specific pathways that employ these mechanisms
regulating the development of mammary organoid, we first introduce one of the

main themes of this thesis, polarity in cell signalling.

1.2.2 Polarity in cell signalling

In a broad sense, cell polarity is the asymmetry of the shape and/or molecular
distribution in a cell. Cell polarity is a crucial mechanism for epithelial cell
function specialisation and self-organisation during tissue growth, for example,
the localisation of adhesion molecules for lateral tissue strength in epithelial
sheets [33]. The two most common types of polarity observed in epithelial cells
are apical-basal polarity (ABP) and planar cell polarity (PCP) [34], representing
local and global contributions of cellular directionality, respectively. ABP refers
to the asymmetric distribution of cellular components along the apical-basal axis
of a cell. PCP refers to the coordinated alignment of cells within an epithelial
tissue and is typically directed orthogonal to the apical-basal axis. Both polarity

mechanisms are controlled by a host of intercellular signalling pathways and
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Figure 1.3: A summary of the signalling mechanisms employed by MECs for cell-
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Figure 1.4: Schematic of cell signalling polarity in a bilayer tissue using a
juxtacrine signalling mechanism. Signal activators and receptors are represented
using purple and green rectangles.

cues from the cellular environment, common examples include the Par and Wnt
pathways for ABP and PCP, respectively [35].

Critically, both ABP and PCP can induce asymmetries in cell signalling
proteins, causing anisotropic communication flow between cells and specifying
a niche of adjacent interacting cells. This process is defined as cell signalling
polarity [36]. Figure 1.4 highlights this property with ABP. Polarity in cell
signalling can amplify signals within cells, leading to more efficient and precise
signalling for robust cell-cell coordination during morphogenesis, specifically
regulating cell migration, cell division and differentiation [33].

MECs are highly polarised cells, adapted and specialised for milk production
and secretion into the lumen. In particular, luminal cells exhibit apical-basal
polarity through localised expression of cell-cell adhesion mediator E-cadherin

near the apical surface (facing the lumen), binding luminal cells together for



lumen formation and preservation [37]. In addition, lumen-supporting tight
junctions form at the apical surface of luminal cells, driven by zonal occludens-
1 (ZO1) which generate a membrane surface barrier of intercellular proteins
[38], allowing only small solutes to permeate through to the basal domain from
the lumen. Furthermore, it has been demonstrated that myoepithelial cells are
coordinators of polarity in luminal cells through their expression of laminin-1 [39)].

Cellular polarity is a dynamic feature of cells and is altered during substantial
physiological changes to tissues, such as injury [40] and pregnancy [41]. The
reactive nature of polarity in cells is responsible for the restoration and
maintenance of tissue integrity through processes of cell migration, apoptosis,
formation of tight junctions, differentiation and dedifferentiation [42]. In addition
to these homeostatic properties, in the mammary gland, ABP is also regarded as
a gatekeeper against breast tumour development and metastasis [43], namely, the
aberrant reaction of such cellular processes following mutation or cues from the
local environment. Specifically, the mechanisms stablising ABP inhibit epithelial-
mesenchymal transition (EMT) programs in mammary organoids. EMT is
the process where epithelial cells increase mobility through the loss of cell-
cell adhesion and remodelling of the cytoskeleton, a common characteristic of
aggressive cancer spread [44]. Moreover, loss of polarity in mammary tissue can
also initiate breast cancer. Deletion of the ABP regulator Scribble in MECs
inhibits apoptosis in damaged cells, disrupting ductal morphogenesis through
dysplasia, resulting in the loss of lumen [45].

Critically, polarity is a core control mechanism employed by MECs for healthy
tissue development, specifically in mediating the phenotypic traits of MECs. The
ability of cells to alter phenotype without genetic mutation is known as plasticity.
Though plasticity is required for homeostasis in the presence of substantial
and abrupt changes to the tissue, plasticity is also a common driver of breast
cancer progression and mammary organoid growth instability following abnormal
activity of these polarity-guided cell-fate alterations [20]. Therefore, we explore
polarity on establishing and sustaining functional MEC cell-types in mammary
organoids, specifically with the perspective of improving culture conditions. In
the following section, we review the structure and regulators of the mammary

lineage hierarchy and evidence of plasticity therein.

1.3 Cell-fate determination in MECs

To form specialised tissues, cells differentiate to form phenotypically different
cells such as myoepithelial and luminal cells in the mammary gland. During the

initial stages of morphogenesis, cells can start at an undifferentiated state with



a generic shape and function, and then must decide their future type through
a process known as cell-fate determination. In the mammary gland, epithelial
fates are tightly regulated by the microenvironment and cell-cell signalling for

the autonomous coordination of bilayer tissue architectures [2].

1.3.1 Mammary cell lineage and plasticity

The hierarchy of mammary cell lineage is composed of two branches, see Figure
1.ba. At the head of the tree are the bipotent MaSCs, representing the
undifferentiated cell population that undergoes renewal for tissue growth and
regeneration [46]. Given the appropriate cues from the microenvironment, MaSCs
differentiate into an intermediate lineage-restricted stem-like state known as a
progenitor for each of the luminal or basal branches. The primary function
of progenitor cells is to proliferate, therefore repopulating and sustaining the
downstream lineage. Upon further differentation, cells transform into their highly
specialised states, i.e., the myoepithelial and luminal cells. Luminal cells can be
further classified by their responsiveness to estrogen (ER), that is, ER positive
(ER+) and ER negative (ER-), where luminal ER- cells are associated with milk
production in the mammary gland [47]. Furthermore, luminal ER- cells can later
differentiate into ER+ state following ductal migration [20]. A summary of the
MECs lineage structure is given in Figure 1.5a.

Due to the intense mechanical and biochemical stress imposed on MECs
during organoid expansion, frequent plasticity events have been observed in
mammary organoids, disrupting the canonical model of the MEC lineage
hierarchy [20]. In particular, organoids seeded with epithelial fragments of
purely luminal populations (ER- and ER+) under high R-spondinl/Wnt media
conditions were able to reconstitute both lineage branches with typical bilayer
tissue structure, evidencing luminal to MaSC plasticity. In support, elevated
and sustained Notchl conditions, a determinant of luminal fate, have been
demonstrated to induce basal progenitor (K54 cells) to luminal plasticity events
in mammary organoids [21], and will be discussed in further detail in the following
section.

Taken together, the hierarchical models of MEC lineage in mammary
organoids cannot be viewed as unidirectional, as shown in Figure 1.5b. The
sensitivity of the MEC phenotypes observed in mammary organoid models reflects
the control underlying mechanisms governing robust morphologies of the highly
dynamic organ. However, the details of such mechanisms at the intracellular
resolution are widely unknown [20].

The reduced lineage restriction observed in mammary organoids may indicate

the realisation of the functional plasticity that likely underlie epithelial responses
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Figure 1.5: Cellular differentiation hierarchy of the mammary gland. (a) A
hierarchical model of cell differentiation derived from in vivo and in vitro lineage
tracing experiments within the mammary gland. An initial bipotent MaSC
population forms either luminal (Lum) or basally restricted stem cells known as
progenitors which each serve to repopulate their respective differentiated lineages.
Image adapted from [20]. (b) A simplified model of the MEC hierarchy with red
arrows signifying the presence of plasticity during the initial stages of mammary
organoid development as experimentally observed in [20], and induced by aberrant
Notchl activity [21].
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in vivo that have not yet been studied (e.g. wound repair, infection, cellular
stress etc.). In other words, the lineages presented in Figure 1.5a may represent
the most frequent developmental trajectories that occur during normal mammary
morphogenesis. By contrast, the simplified organoid environment may allow for a
wider range of developmental responses to generate niche signals as a consequence

of the reduced environmental constraints.

1.3.2 Pathways for cell-fate determination and function in
MECs

To explore how the distinct bilayer tissue geometries and MEC polarity controls
cell-fate determination, we review some key intracellular pathways that are well-
established biomarkers for cell state predictions. Specifically, this thesis focuses
on Notch pathway dynamics during mammary organoid development as it is
strongly evidenced as a critical cell-fate determinant in MECs [48, 49], is highly
susceptible to local tissue geometry [50, 51], is known to be influenced by polarity
[52], and is an inducer of plasticity in MECs [21, 49]. However, the processes that
govern the precise cell-fate coordination are complex such that these pathways
do not act in isolation. Therefore, we also briefly discuss other notable pathways

that should be considered when investigating MEC fate decisions and plasticity.

1.3.2.1 The canonical Notch pathway

The canonical Notch pathway is a highly-conserved juxtacrine signalling
mechanism that plays an essential role in cell fate determination and
morphological bifurcations in developmental systems [21, 53-55]. The Notch
pathway describes a lateral-inhibition mechanism between neighbouring cells.
The activation of the Notch receptor via membrane-anchored Delta ligands on
adjacent cells leads to the accumulation of Notch-intracellular-domain (NICD)
within the cytosol. The build-up of NICD leads to the transcription of members
of the Hair-Enhancer of Split (HES) superfamily, which acts as an inhibitor
of the target genes that promote the downstream production of Delta ligands
and lineage-specific gene repressor [48]. That is, the activation of Notch leads
to the inactivation of Delta within the same cell as illustrated in Figure 1.6.
Mammals exhibit four paralogues of the Notch receptor, Notchl to Notch4, each
with associated Delta-like ligands (DII) that each observes the autoregulation
mechanism outlined by the canonical pathway [48]. Further details on the
canonical Notch pathway be found in [56].

Notchl signalling is a critical determinant of luminal cell differentiation in
MaSCs [48, 49]. Critically, the intracellular depletion of the Notchl promotor
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Figure 1.6: A simple diagram of the canonical Notch-Delta kinetics. Membrane-
bound Delta ligands (purple rectangles) on a signal-sending cell bind to
membrane-bound Notch receptors (green rectangles) on a receiving cell. The
activation of Notch receptors initiates the cleavage of Notch into the cytosol of
the receiving cell known as NICD. The NICD then translocates to the nucleus
where it promotes the transcription of HES, an inhibitor of Delta ligand targets.

Cbf-1 generated MaSC-enriched populations highlighting that Notchl facilitates
differentiation in MECs. Furthermore, cells expressing the Notchl gene are
primarily located within the luminal population. In contrast, the basal population
exhibits reduced Notch1 expression and increased Deltal expression (Figure 1.7a),
providing strong evidence that the canonical Notch kinetics govern MEC fate
decisions. In addition, sustained activation of Notchl is required for luminal
progenitor renewal [49], and that Notchl-driven fate choices are made during
embryonic development [21], before the establishment of differentiated MECs and
functional tissue architecture. Critically, as a result of the differential expression
of Notchl in the basal and luminal populations, layer-wise laminar patterns of
Notchl are observed both in mammary organoids and their in vivo counterparts
(Figure 1.7b).

Critical to both organoid development and tumour progression, Notchl has
the ability to reprogram lineage committed MECs [21, 58]. Namely, artificial
sustained Notchl activation in lineage-committed pubertal MECs for over 72
hours, triggers the loss of basal identity in myoepithelial progenitors, expressing
MaSC signatures before transferring down the luminal committed lineage.
Similarly, the same lineage switching dynamics have also been observed using
the Notchl antagonistic ANp63, where luminally committed cells switched to
basal phenotypes [59], providing further support for the core role of Notchl in
cell fate stability.

Owing to the highly conserved nature of this pathway, evidence of Notch
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(a) Differential Notch-Delta expression in MECs.
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Figure 1.7: Notch-Delta activity and MECs structure. (a) In wvivo Notchl and
Deltal gene expression in mammary epithelial cells of an adult virgin mouse.
Figure reprinted from [49]. (b) Spatial distribution of Notchl activity is shown
in vitro (left) and in wvivo using transgenic Notchl-mTmG reporters. (left)
Mammary organoid derived from an adult mouse mammary gland and imaged
at day 7 after initial seeding. Image provided by Dr Bethan Lloyd-Lewis, scale
bar 50um. (right) Mouse mammary ducts fixed and imaged six-weeks after birth.
Image reprinted from [21], scale bar 20pum (inset 10um). (¢) Immunofluorescence
staining of mouse mammary organoid displaying an irregular epithelial bilayer
after 10 days in culture. Image reprinted from [57].
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driven plasticity events have also been observed in the brain, lung and lymphoid
tissue [60-62]. Fundamentally, these results suggest that MEC phenotypes are
dynamic and that dysregulation of Notchl in mammary organoids can induce
substantial structural defects, as is observed during prolonged mammary organoid
expansion (Figure 1.7c).

As previously discussed, Notch kinetics are sensitive to both polarity and
tissue geometry as a consequence of contact-based intercellular communication
[51, 52]. Critically, both the bilayer geometries and highly polarised epithelial
cells are key features of glandular organs, yet their influence on Notch-dependent

phenotypic stability remains unexplored.

1.3.2.2 Other notable pathways for MEC lineage commitment

The Wnt pathway plays a critical role in various biological processes, including
cell growth and differentiation, embryonic development, tissue homeostasis, and
regeneration. The pathway is named after a family of secreted proteins called
Wnts that bind to cell surface receptors and activate downstream signaling events.
When a Wnt ligand binds to its receptor, it activates a cascade of intracellular
signaling events that ultimately lead to the stabilization and nuclear translocation
of B-catenin, a transcriptional co-activator that regulates the expression of Wnt
target genes [63].

In the mammary gland, the Wnt pathway is essential for the maintenance
of mammary stem cells and their progeny. Activation of this pathway promotes
the proliferation and self-renewal of these cells, which are responsible for the
development and maintenance of the mammary gland during puberty and
pregnancy. Targeting this pathway for organoid culture optimisation has
been studied in [16, 20|, demonstrating the ‘just right’ conditions sufficient
for MaSC renewal for long-term culture. Moreover, evidence of antagonistic
crosstalk between the Notch and Wnt pathways through [S-catenin and Hesl
coupling components has been suggested to support the dichotomous cell lineage
commitment in the mammary gland [64].

During mammary gland development, Fibroblast Growth Factor (FGF)
signaling is involved in the regulation of cell proliferation and differentiation,
as well as branching morphogenesis [65]. FGF signaling is activated by paracrine
or autocrine secretion of FGF ligands from surrounding stromal cells or other
epithelial cells. The binding of FGFs to FGF receptors on mammary epithelial
cells leads to the activation of downstream signaling pathways, including the
MAPK/ERK and PI3K/Akt pathways. Activation of these pathways can
stimulate the expression of transcription factors and other molecules involved

in mammary epithelial cell differentiation, such as E-cadherin and S-casein [66].
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1.3.3 Motivating biological problem summary

There is increasing evidence across various biological systems, indicating that
polarity not only serves as a spatial coordinator for cell-fate specification but
also facilitates physical feedback loops to maintain local cell types crucial for
the proper functioning of healthy tissues [36]. While existing literature suggests
the existence of polarised Notch interactions supports tissue homeostasis [67-69],
direct evidence of this in MECs is yet to be observed. In addition, it is well-
established that tissue geometries affect mammary ductal growth [31], however,
the qualitative understanding of geometric influences on cell-fate dynamics in
MECs have yet to be studied both theoretically and experimentally.
Mathematical modelling of cellular processes is a powerful tool for elucidation
and prediction of underlying mechanisms within the complexity of the biological
system, aiding and accelerating experimental design [70]. Subsequently, we
seek to understand the viability of a polarity-guided cell-fate determination and
commitment mechanism in mammary organoids using mathematical models of
intracellular dynamics in collective tissues. Using spatiotemporal models of
mammary cell fate dynamics, we combine aim to combine two characteristic
features of the mammary gland, epithelial polarity and bilayer epithelial
geometries, neither of which have been previously considered in mathematical
models of MEC dynamics, as reviewed in the following section. Critically, these
models enable the exploration of the interplay of polarity and tissue geometry and
their influence on cell-fate dynamics in developing mammary organoids from the
perspective of plasticity control. Fundamentally, this study aims to isolate the
role of polarity as a homeostatic plasticity control mechanism within mammary
organoids for consideration in future culture innovation for improved stability in

organoid maintenance.

1.4 Approaches to modelling cell-fate dynamics
in developing systems

Cell-fate modelling is a well-established and highly active area of mathematical
biology [71], presenting as a powerful tool for understanding and predicting
the complex processes that govern cell-fate decisions, and as an important
complement to experimental design. In the 1940s, Waddington’s descriptions
of the cell-fate choice as an epigenetic landscape of hills and branching valleys
representing stable and unstable cell states, respectively [72], acted as a catalyst
for mathematical descriptions of the phenomena. Modelling approaches are

still evolving today as novel sources and forms of experimental data arise.
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In this section, we briefly review common approaches taken when modelling
cell-fate decisions at different spatial resolutions, and their applicability to
mammary organoid development, as summarised in Figure 1.8. Further details
on modelling MEC cell-fate determinants are provided during the introductions

of the proceeding chapters in this thesis.

1.4.1 Investigations of intracellular behaviour

As indicated in Section 1.3.2, the internal processes involved in cell-fate
determination are complex. Comprehensively describing the regulatory
interactions of cell-fate often involves hundreds of molecules, proteins and
complexes coupled in temporal cascades [73]. Therefore, to isolate key motifs of
cellular behavior from these regulatory networks, simplified modelling formalisms
are often employed, as reviewed in [74].

A highly constructive approach to modelling intracellular pathway dynamics
is the conversion of chemical reaction networks describing protein interactions
into systems of differential equations [70]. A chemical reaction network is a set
of transformations involving one, or more, chemical species, where reactants are
transformed into products at a specified kinetic rate. The Law of Mass Action
can then be used to construct a system of ordinary differential equations (ODEs)
for each chemical species [70]. Using known or proposed pathway interactions, a
time-dependent ODE model be used to both quantitatively and/or qualitatively
analyse intracellular behaviour to predict response to external stimuli. In
particular, the dynamics of cell-fate determinants within the pathway. For
example, the construction of a Notch-Wnt pathway crosstalk ODE system using
mass action approaches was used to predict the existence of a MaSC niche
and local cell control of MaSC fate decisions following the linear stability and
bifurcation analysis [75], specifically highlighting the dominant role of Delta
(Notch receptor activator) in MaSC differentiation.

However, the introduction of detailed pathway interactions increases both
the number of species and parameters in the ODE models. Large dynamical
systems are often inaccessible to explore using analytic methods, instead
relying on numerical methods which can inhibit our understanding of the core
components and features of the model that determine the observed behaviour
[74]. Furthermore, quantitative analysis of ODE models of intracellular dynamics
requires subcellular temporal protein dynamics data for model calibration, which
is often unavailable or contains substantial amounts of noise [76, 77|. Parameter
estimation can be employed through a variety of methods, such as Approximate

Bayesian Computation [78], although large numbers of unknown parameters may
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induce high parameter uncertainty, resulting in the loss of the predictive power
of the ODE model [79, 80].

In addition to protein dynamics, intracellular pathways may involve the
activation of genes, which are both discrete and inherently stochastic [81]. Derived
from Molecule Collision Theory, the introduction of stochastic and discrete
events into ODE descriptions of intracellular pathways is often performed using
a Gillespie-type algorithm [82]. Though stochastic simulations provide a more
accurate representation of the underlying biology, parameterisation and large
system analysis still limit applications, specifically in the scalability of stochastic
simulations [74].

A commonly used alternative approach to modelling intracellular behaviour
with a large number of species is describing protein interactions through Boolean
networks. The system is modelled as a network of nodes or components, where
each node represents a pathway component and each edge represents positive
(activation) or negative (inhibition) interactions between nodes. In a Boolean
network, the activation or inactivation of a pathway component is described by
a binary variable that is either on or off. Boolean networks present as one of the
most qualitative frameworks for modelling intracellular dynamics as they only
require information on component interaction structure for their analysis, yet can
still describe phenomena such as oscillations, multi-stationary events, long-range
correlations, switch-like behaviour stability and hysteresis as in their continuous
counterparts [83]. For example, the effects of genetic mutations during EMT
were analysed using a Boolean network in MECs, isolating that the activity of
the genes Zeb and Snail as significant promoters of EMT during breast cancer
metastasis [84].

Standard Boolean approaches neglect temporal discrepancies in interactions
and the precise protein dynamics, such as degradation rates and synthesis
delays, limiting physiologically relevant predictions. Subsequently, this modelling
approach generates fewer parameters requiring calibration from experimental
data when compared to the ODE methods. Therefore Boolean networks are
often employed and analysed to supplement more detailed modelling approaches
by first locating core pathway components [85], or extending through hybrid

continuous-discrete methods [86].

1.4.2 Cell-fate dynamics in coupled cell systems

Though comprehensive descriptions of intracellular dynamics are useful to
elucidate key pathway motifs in cell-fate decisions and plasticity, neglecting the
dynamics of the local microenvironment limits applications in developmental

biology where cellular communication is critical for functional coordination. The
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introduction of spatial components to models of signalling pathways often comes
with the loss of the complexity within the intracellular dynamics when conducting
analytic investigations, producing simpler descriptions repeated in a collection of
coupled cells [70].

When expanding intracellular pathway ordinary differential equation (ODE)
models to encompass small cellular systems consisting of two or three cells, it is
common to employ the strategy of redescribing complex systems biology models
using simpler kinetics. Namely, coupling intracellular ODEs of cells that are
communicating to produce a larger global system of ODEs to be analysed as a first
approach to incorporating spatial dynamics within the model. These spatially
reduced ODE models are particularly useful when investigating the influence of
spatial connectivity on the emergence of dynamics symmetry breaking required
for patterning, as analytic approaches for exploring intercellular behaviour are
still viable in low-dimensional systems.

In 1996, Collier and co-authors employed and examined this spatially reduced
method of intercellular dynamics to investigate Notch-Delta dynamics for cell
differentiation [87]. This was the first general ODE system representing
intercellular lateral-inhibition feedback and was used to highlight the divergent
cell state amplification effect of lateral-inhibition. Using a two-cell coupled
system of cells, the authors predicted the emergence of fine-grained patterns of
Notch activation under sufficiently strong feedback, demonstrating the spatial
implications of a purely temporal model using standard techniques in linear
stability analysis. The predicted fine-grained patterns of Notch activation were
later confirmed through numerical simulations, evidencing their robustness to
boundary conditions. The simplicity and experimental agreement of this model
has led to it forming the foundation of many studies examining contact-dependent
lateral-inhibition dynamics (as reviewed in [88]), including this thesis, and
subsequently is discussed in further detail in Chapter 2.

More recently, the pseudo-spatial methods of coupling two-cell intracellular
ODE systems have been used to demonstrate the role of Hesl as a Wnt-Notch
coupling point in stem cell-fate decisions [89]. The authors demonstrate the
oscillatory dynamics of Hes1, which is an indicator of stemness, are only transient
in the presence of extrinsic noise. This indicates the emergence of diverging cell
states in developing tissue and that the lateral-inhibition kinetics dominate local
cell-fate decisions. Moreover, the activation of the Wnt pathway, namely, the
accumulation of f-catenin was highlighted to prolong oscillatory periods before
coupled cell divergence [89], further evidencing the leading role of Notch signalling

in cell-type specification using simple coupled cell models.

19



A significant limitation of the coupled cell ODE representations of intracellular
determinants of cell-fate is the absence of space, i.e., cell positions and geometry,
which are essential factors in contact-based signalling. To fully explore the
effect of spatial features in coupled cell systems and symmetry breaking, phase-
field models can be used to simultaneously describe physical properties and
intracellular protein distributions.

Phase-field models are commonly used to represent dynamic interfaces (cell
membranes) within domains and are modelled using a continuous scalar field
function which determines the phase (inside or outside the cell) at any given
location in the domain, providing a smooth transition between phases [90].
The transition between phases represents the cell membranes which can be
dynamically modified using partial differential equations (PDEs). The PDEs
cause the phase-field to evolve over time, replacing standard fixed boundary
conditions in cytosolic dynamics. Moreover, the geometries of multiple cells can
be simultaneously modelled using multi-phase-field functions, enabling spatially
heterogenous intercellular signalling [50].

When combining phase-fields for heterogeneous and dynamic membrane
geometries with spatiotemporal Notch-Delta kinetics extended from [87], Lee
demonstrated that the size of the cell plays a significant role in cell-fate
decisions [50]. In particular, the variations in the contact surface area of two
coupled cells induced by differences in cell volume and circularity is sufficient
to promote asymmetries in cell-fate determinant, Notch, under the canonical
lateral-inhibition kinetics. Critically, these results support that the geometry
asymmetries which are typically a consequence of asymmetric stem cell division,
promote diverging cells types. Namely, initial cell-fate decisions can be instigated
at the initial stages of development. Critically, these size-dependent cell-fate
decision predicted in [50] were further examined in [91], where the authors
confirm the existence of size-dependent (contact area) Notch-Delta dynamics
using an independent model and experimental data. However, as these phase-
field descriptions of cellular geometries and intercellular signalling rely on solving
systems of nested PDEs, the computational cost of these models is high when

compared to the pseudo-space type ODE coupled models [92].

1.4.3 Tissue-scale cell-fate patterning

At the tissue scale, one of the most common frameworks to model autonomous
patterning of cell-fate determinants involving paracrine-type signalling is
reaction-diffusion (RD) equations. Introduced by Turing in 1952 in the context
of pattern formation in developmental biology, the RD equations are a system

of parabolic PDEs that describe the interaction and diffusion of chemicals (or
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morphogens or cell-fate determinants) over a region in the tissue [93]. RD
equations can be used to explore diffusion-driven bifurcations that generate
spatial heterogeneity under the assumption of stable reaction kinetics. Such
dynamics provide a theoretical basis for the molecular pre-patterning required in
morphogenesis, for example in hair follicle formation [94], embryonic limb growth
[95], and animal coat patterns [96], each driven by cell-fate choices. The theory of
diffusion-driven patterning is diverse and actively growing as novel applications,
computational methods and analytic approaches arise, as reviewed in [97].

As conceptualised by Wolpert in the 1960s, thresholding cell-fate determinant
gradients produced by RD systems can be used to describe divergent cell-types
within a tissue [95]. This is commonly referred to as the French flag model
for cell type differentiation. For example, a RD system describing antagonistic
protein interactions in human pluripotent stem cell colonies were used to predict
differentiation from the spatial location [98]. Namely, increasing the fixed values
of the Dirichlet boundaries and colony size facilitated the emergence of spotted
regions of differentiated cell clusters, in agreement with the observed experimental
data. These results suggest that cell-fate determination during gastrulation may
be governed by intrinsic RD dynamics.

However, the diffusive formulation of RD systems is not consistent with
the discrete nature of juxtacrine signalling such that there exists no direct
spatial continuum extension to the lateral-inhibition kinetics for fine-grained
patterning. O’Dea and King have produced approximate continuum presentations
of the discrete spatial operator in lateral-inhibition feedback models for grid
and hexagonal cellular domains by employing methods of multiple scales and
sufficient coordinate transformations [99, 100]. Thereby facilitating the use of
classical Turing analysis within discrete structures for isolating pattern modes and
feedback-strength-induced heterogeneity. However, this approximate continuum
formulation does not generalise to irregular cellular domains.

More recently, representing juxtacrine signal feedback through local
convolutions within a continuous spatial domain has been used formalise the
lateral-inhibition fine-grain patterning in the context of preserving cellular
structure within the tissue, demonstrating an equivalence between discrete and
continuous domains [101]. Similar to the phase-field models of cellular geometries,
kernals defining cellular shapes are introduced into lateral-inhibition kinetics
via convolution shift operators, extending their ODE descriptions to PDEs. In
doing so, the equivalence between discrete non-uniform lattice cellular geometries
and continuous domains extends the work of O’Dea and King, again facilitating
classical approaches to pattern analysis such as Fourier series expansion in linear

stability analysis.
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1.4.4 Multiscale methods for cell-fate patterning

Multiscale modelling is used to examine the complex processes involved in
the development of organisms at different levels of organisation. It integrates
information from various scales, ranging from molecular and cellular interactions
to tissue-level dynamics. Combining these different resolutions of interactions
within a singular model is a powerful tool for investigating how microscale
processes have a collective macroscale effect.

Cell-based models computationally simulate autonomous individual cells that
interact within a larger tissue, each with internal processes that determine
cellular behaviours such as motility, division, death, and adhesion, which can
be influenced by local and global cues [102]. Cell-based modelling provides
an alternative to the homogenisation approach of continuum models, allowing
for cell-to-cell heterogeneity within the population and seamless coupling of
physical and biochemical properties of cells. Subsequently, cell-based models
have been used to investigate the subcellular processes and local intercellular
interactions in a wide variety of phenomena in developmental biology [103], and in
particular, breast cancer metastasis [104], lumen formation [105], and branching
morphogenesis [106].

Collective cell-fate patterning during morphogenesis has also been studied
using cell-based models. That is, spatially dynamic cellular properties such
as proliferation, death and migration are typically excluded from tissue-scale
cell-fate patterning studies of lateral-inhibition kinetics, however, neighbourhood
remodelling plays a significant role in contact-dependent dynamics [102]. For
example, a cell-based model with cell-fate dynamics governed by stochastic
lateral-inhibition kinetics in inner mass cells showed that cell-type clusters
can form from the asymmetric division of cells [107], a critical feature in
the initial stages of embryogenesis. Furthermore, Thalhiem and co-authors
demonstrate that coupling Wnt-Notch crosstalk kinetics with local tissue
geometry, proliferation, and differentiation, initiates and sustains a stem cell niche
within crypts of intestinal organoids [108]. Both demonstrate the critical role of
auxiliary developmental processes in cell-fate patterning.

Cell-based modelling facilitates the study of complex emergent tissue scale
behaviour from a range of physiologically relevant cellular processes at different
spatial resolutions. However, these models require parameter values for cell
behaviors, interactions, and environmental factors. Obtaining accurate parameter
values from experimental data can be challenging, and the choice of parameters
can significantly impact outcomes [102]. Additionally, parameter values obtained

from one experimental system may not be directly applicable to another,
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leading to uncertainties in model predictions. In addition, simulating large cell
populations is computationally demanding. Though there have been recent efforts
to reduce computational cost through parallelisation [109, 110], the inherently
coupled intercellular interactions prevent total parallelisation, which may render
methods of multi-parameter estimation impractical.

Similar to the coupled cell systems, graph-coupled dynamical systems provide
an alternative approach for multiscale cell-fate modelling with large populations
whilst preserving cellular identity [111]. A graph is a collection of vertices that
are connected by edges, such that a cell can be represented as a vertex and if
two cells are signalling to each other, an edge is drawn between them. A large-
scale dynamical system can then be constructed by coupling the intracellular
ODEs of cell-fate determinants using the graph edges. These systems present
as a discretised PDE description of space and have been used in applications of
mathematical biology for over 50 years to understand how local interactions have
global effects [111].

A significant advantage of graph-coupled dynamical systems is the topological
representation of space, and therefore are independent of spatial dimension
allowing for immediate transitions and comparison between 2D and 3D tissue
geometries that would otherwise be cumbersome using PDE descriptions.
Subsequently, the edge structure of the spatial graphs plays a substantial role in
manipulating intracellular dynamics. In the early in 2000s, Steward, Golubitsky
and co-authors highlighted this feature by exploiting symmetries structures
within graphs to isolate core dynamical motifs from nonlinear kinetics [112-114].
Critically, they showed how graph structure alone can induce chaotic, periodic
and convergent non-periodic global dynamics from identical kinetics.

At a similar time, Angeli and Sontag presented how recasting intracellular
kinetics as input-output (IO) systems can reduce the dimension of the dynamical
systems and enable control theoretic approaches for analysing convergent cell-
wise behaviour [115, 116]. We will introduce input-output systems in Chapter 2,
but briefly, viewing cells within a tissue as transformers within an electric circuit,
intercellular signalling is presented as information flow over the system which
can be summarised using transfer functions. A system of coupled IO models is
denoted as an interconnected IO system within the fields of control and electrical
engineering. The authors highlight properties of the transfer functions, such as
monotonicity, can be exploited to yield analytically accessible cell state stability
criteria in systems with a large number of cells.

A decade later, Arcak demonstrated that intercellular lateral-inhibiton
kinetics are indeed a monotone interconnected dynamical system [117]. Thereby

generalising previous lattice-constrained analysis to derive dichotomous pattern
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existence and stability criteria by isolating spatial and intracelullar kinetics,
independent of physical geometry and number of cells within the tissue.
These results were later extended to isolate specific patterns within the graph
structures by deriving patterning templating methods using existing symmetry
methods [118]. Critically, these interconnected representations of the cell-fate
kinetics allow for the direct analytic study of spatial structure on a specific
patterning observed within developing tissue due to these dimension-reducing
transformations. In addition, by only requiring characteristic information for
intracellular dynamics using transfer function, qualitative analysis is accessible
with minimal subcellular spatiotemporal experimental data. We review these
methods in detail in Chapter 2.

1.4.5 A summary of modelling approaches to cell-fate
dynamics over different spatial scales

The methods of modelling individual and collective cellular behaviour discussed in
this section are by no means exhaustive. However, we highlight that appreciating
the spatial scale and access to appropriate data on the motivating biological
process should fundamentally guide the modelling approach. Consequently, we
seek to understand how tissue structure, local cell interactions, and subcellular
kinetics, influence cell-fate commitment, a multiscale problem. Yet, mammary
organoids are a relatively new biological system and therefore high-resolution
spatiotemporal data on epithelial structure and cell-fate determinants is limited.
Adopting the topological I0 model formalism to study polarity-driven cell-
fate patterning and stability provides spatial flexibility, which is necessary for
developing tissues and enables general analytic investigations on the impact
of tissue deformations on intracellular dynamics. However, current spatial
representations using graphs in interconnected 10 systems are static. Therefore,
we supplement our analysis of polarity-guided cell-fate patterning using cell-based
modelling, using the Chaste library [119] for model development. A summary of

the modelling approaches discussed in this section is provided in Figure 1.8.

1.5 Thesis aims and outline

This thesis aims to qualitatively analyse the interplay of tissue architecture and
cell signalling polarity in robust control of stratified cell-fate determinants in
mammary organoids. We specifically aim to construct a general framework
for analysing fine-grain pattern formation using low-dimensional representations
of the kinetics that govern cell-fate commitment in mammary epithelial cells,

independent of physical dimension, the precise intracellular kinetics and their
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Figure 1.8: A summary of potential approaches to modelling cell-fate dynamics
at different spatial scales in developmental biology.

parameterisation therein. The flexibility of the topological representation of
space used in this study allows for the direct interrogation of tissue structure
and signal anisotropy on intracellular dynamics which are particularly applicable
to biological systems with limited access to primary data at multiple resolutions.
Each chapter in this thesis builds upon the complexity of the spatial structures
analysed, starting with symmetric graphs, then semi-symmetric graphs and finally
multilayer semi-symmetric graphs. Though we present our results in generality,
each spatial iteration sheds new light on the viability of polarity-driven cell-fate
control within mammary organoids.

In Chapter 2, we introduce the fine-grain pattern templating methods as
derived in [118] that generate low-dimensional representative dynamical systems
by using symmetries within the spatial structure of the tissue. We extend
these methods to include signal polarity by employing edge-weighted graphs to
represent anisotropic cell-cell signalling in simple bilayer tissues akin to those

found in mammary organoids. Using these low-dimension representations of
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the intercellular dynamics, we derive necessary and sufficient conditions on the
tissue structure and signalling polarity to generate laminar patterns using general
lateral-inhibition kinetics. We demonstrate how to recast classical juxtacrine
dynamical system models into interconnected input-output systems using the
Notch-Delta lateral-inhibition model formulated in [87], thereby applying our
analytic conditions to highlight the pattern generating potential of polarity in
mammary bilayers for cell-fate commitment. Extending our analysis to growing
bilayer domains using agent-based modelling, we highlight that our analytic
bounds on the sufficient polarity required for laminar pattern stability are also
sufficient to stabilise cell-fate determinants in dynamic domains.

In Chapter 3, we explore how the local geometry of the tissue affects
the intracellular dynamics in mammary organoids. That is, we design and
employ a curvature-connectivity image analysis pipeline to extract local cell-
type dependent edge-weighted signalling graphs from confocal multiplex images
of mammary organoids. Using a combination of primary and synthetic curvature
and connectivity data, we generate characteristic edge topology regimes within
various morphological regions of mammary organoids. To analyse the polarity-
driven laminar pattern formation of cell-fate determinants in these local regions,
we extend our weighted pattern templating methods to include layer-wise semi-
regular bilayer graphs. We then explore the links between cross-layer connectivity
asymmetries and laminar pattern stability, independent of the precise lateral-
inhibition kinetics. Revisiting the Notch-Delta model from Chapter 2, we
demonstrate that polarity-assisted plasticity events are more likely in highly
convex regions of mammary organoids, in agreement with the underlying
processes driving branching morphogenesis.

In Chapter 4, we focus on extending the polarity-driven laminar pattern
analysis framework detailed in chapters 2 and 3 to include multiple spatially
dependent intracellular components, broadening the scope of our methods to
include pathway crosstalk and multiple signalling mechanisms. We introduce the
multilayer graphical representation of polarised cell signalling for interconnected
IO systems in bilayer geometries. We then provide accessible conditions for
the polarity-driven cell-fate symmetry breaking with the large-scale systems.
Moreover, we extend the pattern templating methods to multiple-input-multiple-
output interconnected systems. Thereby, providing explicit polarity conditions
for the convergence of laminar patterns in the multilayer quotient representative
graphs for general induction, inhibition and mixed intracellular kinetics. We
explore the links between quotient and large-scale IO system dynamics, proving
the convergence of laminar patterns in the associated large-scale IO systems under

sufficient polarity-connectivity conditions in generality. Finally, we extend the

26



control theoretic methods used to assess pattern stability in Chapter 2 to include
multiple signalling mechanisms, highlighting that the effect of each signalling
graph on laminar pattern stability can be assessed independently, generating
no additional computational complexity when compared to single-input-single-
output systems. An example of a juxtacrine and paracrine signal crosstalk system
is provided throughout the chapter.

Chapter 5 includes our general conclusions, biological interpretations, and
immediate and long-term directions for future research. Namely, we discuss how
this study provides additional support for the core role of epithelial polarity
in mammary organoid homeostasis and subsequent polarity-mediated culture

innovations for stable organoid expansion.
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Chapter 2

Graphical approaches to cell-fate
determination by
lateral-inhibition in mammary
bilayers

Lateral-inhibition is considered to be a fundamental driving process for the
emergence of fine-grained patterns in developing tissues [27]. At the cellular
resolution, lateral-inhibition is the mechanism in which the signalling of a cell is
inhibited by the increased activity in neighbouring cells. This interaction prevents
the neighbouring cells from converging to the same activity state [27], producing
fine-grained patterns at the tissue scale (Figure 2.1). These fine-grained patterns
are critical in the development of many multicellular biological systems such as
Drosophila eye formation [120], murine hair organisation in auditory epithelial
cells [121], establishing blood vessels during human embryogenesis [122], and
critically, tubulogenesis in mammary glands [48], as discussed in Section 1.1.1.

Lateral-inhibition is mediated by juxtacrine signalling, a signalling mechanism
which relies on membrane-bound signal proteins on a sender cell binding to surface
anchored receptors on a receiving cell, imposing a contact-dependence for cell-
cell communication [27]. Critically, cells can only use juxtacrine signalling to
communicate with their direct neighbours in the absence of activator/receptor
extensions [123], as highlighted in Figure 2.1.

Juxtacrine signalling-dependent pattern formation has been extensively
studied over the last two decades [123-127], commonly focusing on lateral-
inhibition mechanisms. An overarching conclusion from the family of studies
focused on juxtacrine pattern analysis of lateral-inhibition models is that linear
analysis techniques in isolation are insufficient to determine precise conditions for
patterning, and are only able to predict the existence of patterning [124]. In light

of this, there has been a reliance on numerical simulations to elucidate parameter
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patterns such that the local neighbourhood of any cell is composed of an opposing
biochemical state.

regimes in which patterns occur.

Intracellular kinetics are not the only factor influencing the emergence of
patterns. The geometry of the cellular domain on which the juxtacrine model
is being applied has a large impact on the obtainable patterning due to the
cellular contact dependence of juxtacrine signalling. This was highlighted in
[126] where hexagonal and four-point grid 2D domains were compared, showing
considerable differences in parameter regimes required to achieve similar patterns
in different domain types. Extending the numerical analysis to include irregular
cellular domains, heterogeneous intracellular protein distributions, and inductive
signalling, the authors present the existence of staggered travelling waves which
later evolve into ‘salt and pepper’ patterns, as observed in Drosophila neuronal
differentiation and wing hair formation [126]. Furthermore, when coupling a
mechanism for cellular protrusions with a lateral-inhibition spatially discrete
ODE system, a large family of distinct patterns is observed over a regular 2D
honeycomb spatial domain. Specifically, the generation of stripes, spots and
labyrinthine patterns from lateral-inhibition mechanisms, akin to those observed
in Reaction-Diffusion description equipped with a continuous domain [123],
evidencing the fundamental role of cellular connectivity in cell-fate determination
mechanisms.

The striped patterns, referred to as laminar patterns herein, driven by lateral-
inhibition mechanisms have been observed in various biological systems such as
in the mammary gland and zebrafish skin pigments [21, 128]. Though to achieve
laminar patterns using the lateral-inhibition model, it was demonstrated that
cellular protrusions must be preferentially directed perpendicular to the active
row of cells, to ensure contact with the inactivated cells and maintain their
activity [123]. Critically, mammary epithelial cells (MECs) do not possess such a

membrane protrusion mechanism but yet are highly polarised in their functional
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differentiated states with respect to adhesions affinities [129] and proliferation
[130]. These results suggest the existence of a ABP/PCP cell signalling polarity
mechanism of cell-cell receptors and/or activators to generate laminar patterns
using a lateral-inhibition mechanism for cell-fate determination.

As introduced in Section 1.4.4, an alternative approach to pattern
formation analysis in lateral-inhibition models was introduced in [117], where
cells are represented as vertices on a connected graph that interact using
dynamic input-output systems, known as interconnected dynamical systems.
Namely, interconnected dynamical systems are constructed from coupling ODE
subsystems using networks, whereby the internal kinetics are embedded within
each node. This approach generates analytic conditions for the existence and
stability of ‘salt and pepper’ patterning in cyclic domains, independent of the
size of the tissue, thus, extending the analysis conducted in [87, 124], restricted
to only a few coupled cells due to the nonlinearity of the systems studied.

Moreover, the graph-theoretic approach to juxtacrine systems was later refined
when graph partitioning was applied to represent patterning within collections of
cells [118], generalising the previous results of [117], which developed a framework
to analyse the existence and stability of a family of patterns within periodic
domains with spatial symmetries. These studies emphasise the relationship
between how cells are connected and the obtainable patterns, and specifically
generated topological methods to study the existence of a prescribed pattern
within the tissue. Nonetheless, these conditions were derived using static
domains and were heavily dependent on several assumptions regarding the
graph’s topology (reviewed in Section 2.1.3). These assumptions cannot always
be adhered to when investigating patterning on an evolving biological system,
although they may be true in certain quasi-steady stages of its development where
static cellular geometries may be applicable.

Mammary organoids are highly dynamic biological systems with respect to
spatial movement and biochemical interactions in the early stages of development
[16, 131]. During the early stages of development, MECs are capable of self-
organising to form a bilayer of cells surrounding a hollow lumen presenting layer-
wise contrasting Notchl (and DII1) expression, as discussed in Section 1.3.2.1 [49,
132]. The canonical intracellular interactions between Notch (Notchl) and Delta
(DI11) for cell-fate determination are classically used as an example of lateral-
inhibition kinetics [133] and presently, it is unclear whether this spatial patterning
of Notch is a consequence or cause of the morphology of developing mammary
glands. There is evidence to suggest that the laminar patterning of the bilayer of
cell-fate biomarkers are robust to morphological variations. Namely, the observed

laminar patterning of Notch expression in the mammary gland cannot be achieved
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by the canonical intracellular lateral-inhibition mechanism in isolation [49, 123],
providing further evidence of an intercellular intervention in signal transfer during
cell-fate determination.

Conditions defining laminar pattern formation in bilayer geometries using a
simple mathematical lateral-inhibition model describing activator anisotropy have
yet to be derived. Here, we apply the general interconnected systems framework
to a previously developed ODE model of Notch-Delta [115] and obtain conditions
on Delta cell-cell transmission that are sufficient for the bilayer laminar patterns
to form in agreement with experimental observations. Specifically, we induce
activator polarity within each cell by introducing layer-wise dependent edge
weights to the graph representing cellular connectivity, thus describing the signal
anisotropy within the network of cells. Using the layer-dependent connectivity
framework, we analyse the interplay of cellular neighbourhood composition and
activator polarity, independent of precise intracellular kinetics and physical
dimension, for the instability of the homogeneous steady state of the large-
scale dynamical system. Following properties of monotone dynamical systems,
the instability of the homogeneous steady state ensures the existence of pattern
formation for the given bilayer template. We then demonstrate the applicability
and limitations of the analytic activator ligand polarity conditions for static
domains to developing dynamic cellular networks, highlighting the requirement
of adaptive control mechanisms for pattern stabilisation in evolving connectivity
graphs.

This chapter is structured as follows. In Section 2.1.1 we start with a classical
ODE system used to study intercellular Notch Delta interactions and demonstrate
how to recast such kinetics as an interconnected dynamical system using regular
connected graphs in Section 2.1.2. In Section 2.1.3 we describe methods of graph
partitioning for large-scale system reduction that preserve global connectivity
properties. Next, in Section 2.1.4, we review the literature from interconnected
dynamical systems that we apply in this study, particularly outlining the results
that allow us to derive analytic conditions on cell-type dependent weightings of
Delta cell-cell transmission. In Section 2.2 we predict the existence and stability
of laminar patterns in regular bilayer structures by exploiting existing results in
graph theory, monotone systems and control theory [117, 118]. We apply the
analytic conditions to mammary organoids in Section 2.3.2 using a Notch-Delta
model (NDM), thereby employing a family of fixed regular 2D and 3D structures
to investigate the role of local neighbourhood composition on laminar pattern
formation. Finally, in Section 2.3.3, we use cell-based modelling to explore the role
the polarity in establishing and preserving laminar pattern formation in growing

bilayer domains. Critically, we show that polarity is a sufficient laminar pattern
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stabilisation mechanism in quorum sensing and non-quorum sensing regimes,

however, the loss of bilayer connectivity can cause pattern degradation.

2.1 Interconnected ODE systems for multicellular
pattern formation by lateral-inhibition

In this section we introduce a framework to investigate the interplay of domain
geometry and cellular signalling polarity in laminar pattern formation. To
elucidate the dependence of cell-type transmission of Delta in bilayer structures,
we consider the original lateral-inhibition ODE model constructed in [87]. By
adapting the spatial averaging term to include cell-type dependent weightings
on Delta transmission to represent cellular polarity, we impose signal transfer
anisotropy within the cellular system to promote bilayer laminar pattern
formation of Notch-Delta that are experimentally observed (figures 1.7a and 1.7b).

In addition, we introduce the graphical representation of cellular connectivity
and a framework for cellular coupling. We later review the properties of the
interconnected ODE system and its associated graph that are used in pattern

analysis for lateral-inhibition mechanisms.

2.1.1 A Notch-Delta model of intercellular lateral-
inhibition dynamics

The spatially discrete NDM developed by Collier et al. (1996) was the first explicit
lateral-inhibition model that was used to investigate fine-grained patterns that are
observed in a variety of biological systems [87]. The intracellular kinetics contains
only two components, Notch (N) and Delta (D) activation, simplifying the
underlying biochemical processes describing the cannocial cascade as discussed
in Section 1.3.2.1. When studying the dynamics of Notch-Delta in the mammary
organoid, we will consider N to be the NICD active protein concentration within
the cytosol and D to be the amount of available membrane-bound Delta ligands
on the surface of the cell, as depicted in Figure 1.6. The inverse relationship
between intracellular Notch and Delta is the key feature of the spatially discrete
ODE model, which is described by the negative feedback loop depicted in Figure

2.2 and thus is characterised by the following assumptions:

(i) Cells interact through Delta-Notch signalling only with cells with which

they are in direct contact, that is, adhering to the juxtacrine mechanism.

(ii) The rate of production of Notch activity is an increasing function of the

level of Delta activity in neighbouring cells.
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Figure 2.2: A schematic of the reduced intercellular Notch-Delta kinetics
describing a generic lateral-inhibition mechanism as proposed in [87].

(iii) The rate of production of Delta activity is a decreasing function of the level
of activated Notch in the same cell.

(iv) Production of Notch and Delta activity is balanced by decay, described by

a simple exponential decay with fixed-rate constants.

(v) The activity of Notch and Delta are uniformly distributed throughout the

cell.

(vi) There is the instantaneous transcription of downstream Notch targets, such

that the model assumes no delay in Notch and Delta interactions.

These assumptions outline the Notch-Delta lateral-inhibition model, which can

be formalised mathematically as

Ni=  f(Dy)) — mN; (2.1)
—— ——
NICD activation via NICD

Delta binding from degradation
adjacent cells

Di=  g(Ni) — pD; , (2.2)
—— ——
Delta inhibition Delta,
by NICD degradation

where f and ¢ are bounded increasing and decreasing functions respectively.

These functions have the form,

r 1
fa) = - j — and g(e) = T (2.3)

where parameters «, (3, jq, o > 0 and Hill coefficients r, s > 1. The subscript
1 corresponds to cell identity within the system and the definition of the local
spatial mechanism, (D;), will be discussed in Section 2.1.2 to embed the NDM

(2.1-2.2) system into a network of cells.
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2.1.2 A graphical approach to cellular connectivity with
signal anisotropy

As an initial approach to investigating the interplay of polarity and cell-cell
connectivity on cell-fate determination, we consider only undirected and regular
graphs representing spatial connectivity. Specifically, the undirected property
follows from the symmetry of contact-dependent signalling such that all cells in
contact have equal capacity to communicate. In addition, a graph is regular if all
vertices have the same number of edges emanating from them, and is denoted by
d-regular for d edges. This initial restriction to study regular graphs allows for
the exploitation of the edge-wise symmetries present within graphs to generate
quotient representations, which will later be discussed in Section 2.1.3.

To recast the NDM (2.1-2.2) as an interconnected dynamical system we
represent the cell-cell communication as an undirected connected N.-regular
graph G = G (V, E), where vertices v € V represent cells and edges e € E
correspond to cellular connections, as in Figure 2.3. For any vertices v; and v;
representing cells 7 and j, an edge, e; ;, is drawn which connects v; and v; if these
cells are signalling to each other. In the context of juxtacrine signalling, we say
that e; ; # () if the cell membranes of cell i and j are in contact.

To represent the cell-type stratified bilayer structures of the mammary gland,
we consider two layers of vertices separated layers of the tissue as seen in
Figure 1.7. Subsequently, we represent signalling polarity by filtering the signal
strength of cellular connectivity between cells ¢ and j using nonnegative layer-
wise dependent weighting coefficients w; ;. That is, w; ; = 0 if cells 7 and j are
not connected. If cells ¢ and j are connected and within the same layer then,
w;j = wy, and if cells ¢ and j are connected and are in different layers then

w; j = W, as highlighted in Figure 2.3. Formally,

wy ife;; # 0 and 7, = 7,
w;; =< wy ife;#0and 7 #71y, (2.4)
0 ife; =0,
where wy, wy € R.g and layer location of cell 7 is denoted by 7;. The structure of
the bilayer edge weighting is shown in Figure 2.3.

The graph G is considered an undirected graph such that w;; = w;;, due to
the symmetry of the contact-dependent signalling between any two cells. The
coefficients w; ; can be used to mediate Delta transmission between adjacent
cells dependent on cell-type inducing a membrane activator anisotropy within
the cellular connectivity graph and thus w; ; will be the focus of our study.

We introduce graph cellular connectivity to the NDM (2.1-2.2) using the

associated weighted adjacency matrix of G. We consider a system of N cells
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such that ' € {2n : n € N} to account for bilayer regular structures, i.e., there
are n cells in each layer. Then the weighted adjacency matrix of G is defined by
[w; ;] =W € ]RJZVOXN as in [117, 118], where we have extended their formulation
to include cell-type dependent edge weights.

As G is an undirected connected N.-regular graph, we are assuming the
lattice structures representing cellular connectivity are symmetric with respect
to each layer and have periodic boundaries in 2D and 3D. Critically, both of
these properties are induced by the regularity of the graph, that is, each vertex is
equipped with the same number of edges and associated weights. Following from
the bilayer structure of the graph G, the associated weighted adjacency matrix
W can be constructed from the matrices Wi, W, € R%/ DN N amely, W

has the following form,

MEME (2.5)

Here row i of W represents the cellular connections of cell ¢ to adjacent cells

wo [ W]

in the same layer and the rows of W5 correspond to the cellular connections
to cells of within the opposing layer, where cells indexed 1 to A//2 in the can
be considered as luminal cells and N/2 + 1 to N as basal cells. For example,
the standard orthogonal template for a bilayer of cells given in Figure 2.3, has

connectivity matrices,

o1 0 0 --- 0 1
10 1 0 --- 0 O
o1 o0 1 0 ---0
Wi =w, and W, :ngN’/Q, (26)
o --- 0 1 0 1 0
o o0 -~ 0 1 0 1
10 -~ 0 0 1 0

where Iy /s is the (N/2) x (N/2) identity matrix.

The network representation of cellular connectivity is introduced to the
NDM (2.1-2.2) via the averaging operator (-). Explicitly, layer-wise (or cell-
type) dependent Delta transmission between adjacent cells in static geometries is
described by .

(D(t)) = mWD(t)a (2.7)
where D(t) represents a vector of Delta concentrations for each cell in the system,
D(t) = [Dy(t), ..., Dx(t)]*. The value n; corresponds to the number of cells in the
same layer which is adjacent to cell 7, whereas ns is the number of cells adjacent
in the opposing layer, such that N, = n; + ny, for example, n; = 2 and ny, =1
in Figure 2.3. In addition, we introduce notation for the total scale weighting

for each cell, N,, = njwi 4+ nawo, for brevity. The inclusion of the scaling term
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Figure 2.3: An illustrative connectivity template for cell-type dependent weighted
graph structure of a bilayer N cells. We consider the edge structure from the
perspective of cell ¢ within a bilayer graph, where layer 1 and layer 2 vertices are
coloured orange and blue, respectively. The edge weights w; and wy determine
the strength of connectivity between cells in the same layer and different layers,
respectively.

preserves the averaging process that is assumed for the spatially well-mixed NDM
(2.1-2.2) (assumption (v)) [87], and also enables the direct comparison of cellular
connectivity to a probability transition matrix of a reversible Markov chain, such
that in each row (1/Ny,) > w; ; = 1 for all 4, as previously discussed in [117]. Each
node within the network is now equipped with the lateral-inhibition dynamics,
which defines a large-scale dynamical system composed of topologically connected
subsystems, thus, the establishment of equation (2.7) recasts the NDM (2.1-2.2)
as an interconnected dynamical system.

By representing cells as vertices in the connected graph G, we can now
manipulate the topology of the graph to investigate parameter regimes of w; and
wq producing an edge weight anisotropy, such that we obtain the desired cell-fate
patterning. In this chapter, we explore a variety of regular periodic (cyclic) fixed
lattices 2D and 3D to generate graphs that are shown in Figure 2.5. We assume
that e;; # 0 if cell j lies within a circle (or sphere) of radius p. drawn around
cell 7 where the rest length of the lattice is unitary. The circle (or sphere) can be
viewed as the cell membrane to which the Notch receptors and Delta ligands are
anchored. In addition, we introduce notation for the cell-type ratio for each cell,

which is defined as,

_ # of adjacent cells of the same cell-type  ny

(2.8)

T

~ # of adjacent cells of a different cell-type  ns’

due to the symmetry of the domains (regular undirected graphs), R, is
homogeneous for all cells in the system for the given connectivity graph G.
We chose three representative lattice structures in this study: (1) grid, (2)
triangulated and (3) overlapped grid, to characterise the quasi-steady cellular

configurations that may occur during the development of mammary organoids.
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(a) VN connectivity. (b) Moore connectivity.

Figure 2.4: A diagram of the cellular neighbourhoods defined by (a) Von
Neumann and (b) Moore on an unitary static grid lattice.

We then increase the connectivity radius, p., to obtain different neighbourhoods
around each cell.

For example, when considering a unitary grid lattice, we examine two common
cellular neighbourhoods used within the field of Cellular Automata [134]. That is,
taking p. = 1 yields a Von Neumann neighbourhood, which is defined by a central
node, surrounded by 4 other nodes in the north, east, south and west directions
(Figure 2.4a) [135]. Whereas increasing the connectivity spheres radius such that
pe = V2, we obtain a Moore neighbourhood, that includes the diagonal nodes
missing from the Von Neumann neighbourhood (Figure 2.4b) [135].

[lustrations of the various 2D and 3D bilayer geometries explored in
both analytical and numerical investigations for laminar pattern formation in
mammary organoids are given in Figure 2.5 with a summary of the graph
properties given in Table 2.1.

In this section, we recast the classical NDM (2.1-2.2) into an interconnected
dynamical system using layer-wise dependent weighted graphs and outlined the
specific edge structures we consider in our computations. This enables the
analysis of cellular connectivity structure coupled to the intracellular kinetics
in large-scale systems, providing a general approach to intercellular interactions.
In the following section, we discuss methods of reducing the dimensionality of
large-scale systems, whilst preserving the connectivity structure and thus the

behaviour of the dynamical systems.
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(a) Example bilayer graphs for 2D geometries.
3D Von Neumann 3D Overlapped
(isometric view) (top view)

o

-0
N\
/7
o

-0
N\

/ .\
\.

o\ /0\
/
o/ N\ o/

3D Triangulated 3D Moore
(top view) (top view)

X.‘ x.l 3./ \ >< X
W S

ANANAN ¢

X
X
XN

O R

(b) Example bilayer graphs for 3D geometries.

Figure 2.5: Connectivity diagrams of the bilayer mammary organoid. Layer 1 cells
are shaded orange and layer 2 cells are shaded blue. (a) Representative diagrams
of 2D geometries studied, solid black lines correspond to cellular connections. (b)
Schematics of 3D lattices, grey lines correspond to connections between layer 1
cells, black lines are connections between layer 2 cells and purple lines represent
connections between the layers.
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Lattice type Connectivity radius, p. Cellular connectivity, N, Layer-wise ratio, R,

2D Von Neumann (2DVN) 1 3 2

2D Triangulated (2DT) 1 4 1
2D Moore (2DM) V2 5 2/3

3D Von Neumann (3DVM) 1 5 4

3D Overlapped (3DO1) 1 8 1

3D Triangulated (3DT) 1 9 2

3D Overlapped (3DO2) V2 12 2
3D Moore (3DM) V2 13 8/5

Table 2.1: A summary of the lattice geometries in 2D and 3D that can be found
in Figure 2.5 outlining the cellular neighbourhoods.

2.1.3 Graph partitioning for large-scale system dimension
reduction

This study applies the pattern analysis framework of Ferreira and Arcak to edge
weight anisotropic bilayer graphs. Specifically, the symmetries of the cellular
connectivity graph G = G(V, E) were used to develop analytical conditions for
the existence and stability of inhomogeneous steady states in lateral-inhibition
ODE models independent of the precise tissue geometry [118]. These methods
were employed by considering contrasting pattern states of cells as partitions
of the graph which can be viewed as a prescribed pattern template. A graph
partition 7 is the grouping of vertices v € V' into the sets P, C V such that the
subsets P; are disjoint [136]. For example, each cell in G, represented by a vertex
v € V, can be collected into a set that converges to the same biochemical state,
thus producing subsets of V' defining the graph partition 7 (Figure 2.6a). Using
graph partitions, we define two additional properties that are key for the analysis
conducted in [117, 118] for pattern analysis in large-scale interconnected systems.

Equitable partitions are those that preserve the underlying structure of a
graph G by using the regularity (symmetries) of the edge structure such that all
vertices v; € P; have the same number of edges with identical weights. Thereby
selecting representative cells from each subset P; we generate a quotient graph
that has the potential to reduce the number of vertices in the graph whilst
retaining the topology of the original connectivity. Figure 2.6a illustrates the
reduction of a cell-type stratified bilayer regular graph to a quotient graph of

only two representative vertices.

Definition 2.1.1 (Equitable partitions and quotient graphs [137]). Let G =
G (V,E) be a graph with adjacency matric W. Consider a partition of © of G

that allocates each vertex v € V' into one of the sets Py, ..., P,. The partition 7 is
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(b) An equitable graph. (c) A bipartite graph.

Figure 2.6: Graph partitioning, symmetry reduction and example graphs. (a)
A diagram representing the partitioning and symmetry reduction process for a
bilayer structure of two subpopulations representing a mammary organoid, see
Section 2.1.2. The graph defining the bilayer is partitioned into layers, such that
layer 1 cells lie in the partition P, and layer 2 cells lie in the partition P. By
exploiting the symmetries of edge connectivity, a reduction of vertices is made
to consider only representative cells from each partition, P, and P;, generating
a quotient graph. (b) An example graph with the equitable partitions property.
The partitions are highlighted using colours, the diagram highlights that the blue
node always has three connected orange nodes, and any orange node has only
one blue node connected. (c) An example graph with the bipartite property. The
full graph consisting of both blue and orange nodes can be decomposed into two
disjoint sets of vertices highlighted by the shaded regions.

said to be equitable if there exists w;; for all i,j € {1,...,k} such that

Z Wy = wi]’ Yu € Pi> (29)
’UEPJ‘
where w;; are the elements of W . Moreover, the graph of a single representative
vertex from each partition Py, ..., Py, constructed from the reduced adjacency matriz

[w;;] = W s called the quotient graph and is denoted by G/m = G.

Intuitively if 7 is an equitable partition of G, then the edge structure, namely,
the number of edges and associated edge weights are identical, independent of the

choice of vertices in the same set P;. An example of an equitable partition m with
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two vertex sets P, and P, is given in Figure 2.6b. Furthermore, we introduce an
additional graph property that is required for monotone system transformations

that are discussed in the following section.

Definition 2.1.2 (Bipartite graphs [136]). A graph G is said to be bipartite if
G can be constructed by the union of two disjoint sets of vertices such that no

vertices within the same set are connected.

Figure 2.6¢ depicts an example of a bipartite graph. The bipartite property
of a graph G need not induce the regular structure as is the case of an equitable
partition however it can limit the types of connectivity possible, which may
detract from the biological relevance of the connectivity graphs in large-scale
systems as discussed in [117]. Although, it has been shown that the bipartite
property of the quotient graph is not a restriction in the case of two distinct
subpopulations [118].

To apply the results of [118] to the bilayer tissue geometries that we consider

in this study, we make the following assumptions on the connectivity graphs:

(A1) There exists an equitable partition 7 of the graph G that groups the vertices

into two sets P, and Py;
(A2) The quotient graph G,, is bipartite omitting self-loops.

The 2D and 3D bilayer structures outlined in Section 2.1.2 conform to (A1) and
(A2) as we assume each layer of the N regular graph is constructed from cells
of the same type, for example, see Figures 2.5 and 2.6a. Critically, Ferreira et
al. (2013) use (A1) and (A2) to develop methods of pattern templating, namely,
using quotient graphs to generate a pre-defined pattern structure for contrasting
states of representative cells [118]. Specifically, the dimension reduction from
the equitable partition 7 acts on the scaled weighted adjacency matrix W, =
(1/N,)W as constructed in Section 2.1.2 such that for two representative cells

in the bilayer system, the scaled reduced adjacency matrix has the form

niwi nawsm
W, = niwit+ngws  Nijwitnawz ( )
0 — naws niwi ) 210

niwi+ngwz  NiwWi+n2w2

following from the connectivity symmetry of G induced from the regular edge
structure.

Informally, the reduced scaled adjacency matrix (2.10) represents the
connectivity of the partitions as proportional values between representative cells
from each partition, where we consider each partition to contain a single cell type
(Figure 2.6a). Substituting the quotient graph for cellular connectivity into the

interconnected dynamical system constructed in sections 2.1.1 and 2.1.2 generates
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a quotient dynamical system, which is more amenable to deriving analytic bounds
on signal polarity for laminar pattern formation. The links between the dynamics
of quotient and large-scale dynamical systems are discussed in detail in Chapter
4.

We have shown that the large-scale interconnected ODE systems can be
reduced to smaller, analytically tractable quotient systems for bilayer regular
structures of two distinct subpopulations. In the following section, we further
discuss interconnected systems in generality and existing results that leverage
properties of intracellular kinetics and their associated connectivity graphs to

isolate the spatial and temporal influence on pattern convergence.

2.1.4 Monotone interconnected dynamical systems

The interconnected lateral-inhibition model constructed in sections 2.1.1 and
2.1.2 can be generalised to form a single-input-single-output system (SISO), a
common representation of interconnected ODEs in control theory with a single
state variable connecting the respective subsystems [116]. Formally, the SISO of

a lateral feedback model has the form,

x; = f(Ti, ), (2.11)
yi = h(x:), (212)

for each cell i € {1,..., N'}, where x; € X is a vector of reactants (e.g. Notch and
Delta), u; € U is the input value to each cell, determined by the discrete spatial
operator (-), as defined in equation (2.7). The signal output is given by y; € Y.
Namely, for w = [uy,...,un]? and y = [y1, ..., yn]*, we have that u = Wyy . The
function f : X x U — X defines the nonlinear dynamics of the feedback model,
and h : X — Y is the function defining the relationship between the intracellular
kinetics and the output signals of the cell. It is assumed that both f and h are
continuously differentiable. A diagram of cell-cell lateral-inhibition interactions
from the perspective of a SISO system is given in Figure 2.7.
For example, for the lateral-inhibition model defined by the NDM (2.1-2.2),
we have that x; = [NV, Di]T, where the internal kinetics are of the form,
u;) — i N;
N T
for f(-) and g (-) the increasing and decreasing functions as defined in Section
2.1.1.  The output signal of each cell is the current Delta value y; =
h ([NZ-,Di]T> = D;, and thus the input signal of cell ¢ is determined by the
connectivity structure of G such that w; = (WyD),. As we consider the input

signals u; to be composed of only a linear combination of output signals y; from
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other cells, the interconnected system defined by the NDM (2.1-2.2) is closed-loop

with no external stimuli.

~.
L
wi =y wiy;

i~j

Figure 2.7: A signal flow diagram for a single cell in a SISO interconnected lateral-
inhibition system. The scalar input signal u; is determined by the output signals
of the connected cells to cell ¢ via the connectivity graph G, namely, i ~ j if cell
¢ and cell 7 are in contact, where each output signal strength y; is mediated by
the edge weight w; ;. The input signal u; then stimulates a response from cell ¢
which is determined by the intracellular dynamical system @; = f (x,u;). The
resultant changes to the state variables @; update the output signals of the cell
y; thereby influencing the behaviour of those cells connected to cell 7.

To summarise the internal dynamics of each cell, we introduce the
characteristic transfer function 7" : U — Y, which defines the input-to-output

signal transfer of the dynamical system for each cell,
T():=h(50)), (2.14)

where S : U — X maps the information from connected cells to the intracellular
dynamical system (2.11). Namely, the function S (-) is the solution to the
intracellular dynamical system (2.11) for input signal v € U. As we consider
the transfer function to emulate the cellular response to receptor activation, it
is assumed that T (u;) is positive and bounded, and characteristically, T (u;) is
a decreasing function for lateral-inhibition and increasing for lateral-induction
[117]. For the nonlinear dynamics required to produce patterning via lateral-
inhibition mechanisms [138], the characteristic transfer function, 7' (u;), is
generally algebraically intractable as it is constructed by the composition of
nonlinear functions that define the intracellular kinetics [117].

Although directly intractable, we can use the standard method of linearisation
to gain insights into the behaviour of the transfer function (2.14). We do not
present the derivation here (see [117] for details) but it can be shown that the

derivative of the transfer function (2.14) can be linearly approximated by
on\ (Of\ "' [Of
T’ =—(= == =

(v) (8m) (8m) (8u)
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z=S(u)




Namely, the components A, B and C' form the linearised SISO system

near steady states in the input, output and internal spaces U, Y and X

respectively such that the linearised components are evaluated with respect to a
given input u, by

4= (5] ey (00|, o~ ()
ox 2= (us) ou 2= (us) ox

A key property of SISO lateral-inhibition models is the monotonicity of the

(2.18)

=S (us)

transfer function T (u;). Monotone interconnected systems preserve the order of
trajectories within respective nonempty subsets of Banach spaces [115]. Namely,
if ¢ (x*,t) = ¢ (x*), is a solution to a monotone dynamical system with initial
condition x*, then ¢ (x1) < ¢y (x2) for all &y < @5 and ¢ € (0, 00], where <
is considered element-wise. However, to formally define the ordering of solutions
for interconnected systems, we first need to introduce the spaces that the input,
output and internal kinetics lie in, denoted as trajectory spaces [115].

The trajectory spaces, K C R", we consider are extended orthants in

Euclidean space which have the following properties:
1. K is a cone, that is, ak € K for all « € R5p and £ € K.
2. K is convex, for any a, 8 € R>g and &y, ky € K then ak, 4 Bks € K.
3. K is pointed, namely, {0} € K.

An example of the above properties of the trajectory space is shown in Figure 2.8.
The systems we consider represent intracellular protein activation and thus always
lie in the positive orthant (i.e. @;,u;,y; > 0) which conforms to the properties
of the pointed, convex cone, K. However, the positivity of these cones may alter
following a coordinate transformation thus requiring the general definition stated
above. Given a cone K, we define partial ordering such that =, € K, then
x < & means that £ —x € K [117]. The trajectory spaces of the interconnected
system (2.11-2.12) X,U and Y, can be defined as cones K*, KV and KY as
they are closed and bounded vector spaces of R™ [115]. The formal definition of
monotonicity of SISO systems (2.11-2.12) is given as follows.

Definition 2.1.3 (Monotone SISO interconnected systems [115]). Given the
cones KV, KY KX for the input, output and state spaces, respectively, the I0
system &; = f(x,w;), y; = h(x;) is said to be monotone if for all i € {1,....,N'}
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we have x;(0) < &;(0) and w;(t) < u;(t) implies that the resulting solutions satisfy
x;(t) < x;(t) for all t > 0, and the output map is such that x; < &; implies
h(z;) < h(x;).

It has previously been shown that the interconnected system defined by the
NDM (2.1-2.2) is monotone with respect to the cones KV = Rsq, K¥ = R« and
X ={x € R? : 2y > 0,75 < 0} [117]. These cones outline the characteristic
behaviour of the lateral-inhibition mechanism such that if the input signals of
Delta from adjacent cells are monotonically increasing, we expect the output

signal of Delta in the receiving cell to be monotonically decreasing.

Figure 2.8: An example of a pointed, convex cone K in Euclidean space, where
K={x eR®: & =a;v| + ayvy + azv3 Va; € R5g}.

The monotonicity of SISO systems (2.11-2.12) has previously been used to
investigate the stability of component-wise steady states in biological contexts
[115, 117, 118]. Namely, monotone interconnected systems yield predictable
behaviour via the trajectory cones and thus the geometry of the cellular domain
can be manipulated using the connectivity graph G to achieve the desired states
for the cells.

In control theory, the stability of SISO systems (2.11-2.12) can be assessed
by analysing the transition of inputs and output between components of the
connected system. A particular measure of a connected system is the Lo-gain,
which is a nonnegative quantity that describes the response of a system to an

input. We first provide a general definition of a £,-gain.

Definition 2.1.4 (£,-gain of a SISO system [139]). The L,-gain, v, > 0, of a
SISO system (2.11-2.12) is defined by

Yip = SUp (M) (2.19)

t<t ||U1<t)’|p
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for all y; and u; # 0 for i = 1,...,N, and t > 0 denotes the truncation of
the Hilbert spaces for the input and outputs of the system, L, (U) and L, (Y),

respectively.

The L,-gain, 7;,, is the maximal ratio of output to input over a specified
region of time for the output and input domains defined generally over Hilbert
spaces. In the biological systems we consider, all functions are smooth, continuous
and differentiable and thus satisfy these general conditions. However, the L,-
gains of an interconnected system require analytic forms of inputs, u;(¢), and
outputs, y; (t) for each cell which are not obtainable in large-scale nonlinear
systems. Although, for monotone systems such that the output map h(x) > 0
for all # € X, we have that the L,-gains of a nonlinear SISO system can be

approximated by
Yig=|-CA™'B| = T"(u)] (2.20)

for the linearisation of the SISO system about the steady input state, u;, as
derived previously (see [140] for derivation), these properties will be discussed
in further detail in Chapter 4. Critically, the output signals we consider in
the biological systems represent protein activation and thus are nonnegative,
i.e. we have that h(x) > 0 for all ® € X is always satisfied. Therefore,
by demonstrating a nonlinear SISO system is monotone, we have a convenient
procedure to compute the Lo-gains for each cell to measure the output signal
response to input perturbations, providing a control measure of cell state stability.
For the remainder of the study, we consider only the £5-gains for each cell as this
is the standard norm for the Euclidean vector spaces, therefore we set 7,2 = ;.

The Lo-gains of interconnected SISO systems are particularly useful for
understanding the stability of the feedback between the connected components.
The Small Gain theorem yields a sufficient bound on two interconnected

components for the global stability of feedback.

Theorem 2.1.1 (Small Gain theorem [139]). For all bounded inputs, a SISO
system (2.11-2.12) of two interconnected cells ¢; and co, in a closed-loop are

locally asymptotically stable if ¢y and co are independently stable and

Y12 < 1, (221)

where v, and vy are the Lo-gains of ¢1 and cq, respectively.

In terms of multicellular systems we consider, Theorem 2.1.1 states that given
intracellular kinetics that are not self-exciting in isolation, i.e. A is asymptotically
stable, then the interconnection of these two cells remain globally stable provided

their respective gains (transfer function dynamics, 7" (u;)) are suitably bounded.
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The application of an equitable partition m to generate a quotient graph G,
consisting of only two representative cells allows for the use of Theorem 2.1.1
in the quotient interconnected systems representing cell-type stratified bilayer
geometries that we consider in this study.

We now present the results previously derived in [118] that generate and
maintain binary patterns in large-scale interconnected SISO systems using the
monotonicity of the lateral-inhibition mechanisms and regularity of the cellular
connectivity structures via equitable partitions. The first result we consider
provides a simple condition for the instability of the homogeneous steady state of
the quotient interconnected SISO system. Critically, provided the SISO system
(2.11-2.12) is monotone with a bounded transfer function, the instability of the
homogeneous steady state yields the convergence to contrasting fixed states for

each representative cell.

Theorem 2.1.2 ([118]). Let m be an equitable partition of G such that (A2) is
satisfied. Let \, the smallest eigenvalue of reduced quotient matriz associated with
Gr. If the input-output characteristic function, T (u;), is positive, bounded and

decreasing, and if for the homogeneous input steady state, u*, we have
T (u*) |\, < —1, (2.22)
then there exists heterogemeous steady states in the representative vertices of G,.

The second result derived in [118] that we consider defines conditions for
the stability of heterogeneous steady states via Lo-gains of the representative
cells within the quotient system. By exploiting the regularity of the large-scale
connectivity graph, and therefore assuming each cell within the same partition
behaves identically, the Lo-gains for those cells will also be identical. Let
T = diag{71, ..., %} represent the L£y-gains from each representative cell in each
patterning partition P, ..., P;. In addition, if A is a square matrix with the set

of eigenvalues o (A), then the spectral radius of A is defined by
p(A)=max{|\|: Ae€d(A)}. (2.23)

Using the spectral properties of the connected graph defined by the cellular
domain, the stability criterion for the heterogeneous steady states is stated as

follows.

Theorem 2.1.3 ([118]). Consider the quotient system as defined in Theorem
2.1.2. The steady state pattern defined by heterogeneous steady states is locally
asymptotically stable if

p(MT) <1, (2.24)
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where M is a reduced quotient adjacency matriz that satisfies (A1) and (A2),

and p(-) represents the spectral radius.

The application of Theorem 2.1.2 and Theorem 2.1.3 to the signal anisotropic
bilayer geometries defined in sections 2.1.2 and 2.1.3 allow us to derive conditions
for the amount of signal polarisation for a given connectivity structure that
required to generate and maintain laminar patterns using lateral-inhibition

kinetics.

2.2 Existence and stability of laminar pattern
formation in quotient SISO systems

In this section, we derive conditions on the cell-type signal weights w; and ws
of the connectivity graphs constructed in sections 2.1.2 and 2.1.3 that yield
the existence and stability of heterogeneous states in quotient bilayer systems.
Specifically, by leveraging the monotone properties of the quotient SISO systems,
we significantly reduce the complexity involved in juxtacrine pattern analysis in
multicellular systems to investigate the role of anisotropic cellular connectivity in

cell state stratification.

2.2.1 Conditions on cell-type signal strength for the
existence of bilayer laminar patterns

We apply Theorem 2.1.2 to the reduced geometry of a bilayer periodic lattice
described in Section 2.1.3. The following result yields a distinct monotonic
relationship between same-layer and cross-layer signal weights when we consider
the vertex sets P, and P, of G to contain layer 1 and layer 2 cells, respectively,

as shown in Figure 2.6a.

Theorem 2.2.1. Let G be an undirected, connected graph that satisfies (A1) and
(A2) where the quotient graph G, has the associated reduced scaled adjacency
matriz as defined in (2.10). Consider T (-) the input-output transfer function of
a lateral-inhibition SISO system (2.11-2.12) such that T (-) is positive, bounded

and decreasing. Then there exists heterogeneous steady states between partitions

P1 and P2 Zf
T (u*)| — 1\ we
| = 2.25
wy; < (|T’(u*)| + 1 RT’ ( )

provided that njw; < naows.

Proof. The result follows directly from the application of Theorem 2.1.2 to
the regular bilayer structures with layer stratified cells-types that define the
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sets P and P,. Specifically, we consider the general quotient reduced matrix
W, as defined in equation (2.10) and seek the smallest eigenvalue. By direct

computation, we have that

O'(WQ) = {)\1 = 1,/\2 =

niw; — Naws }

(2.26)
ni1wi + NaWs

As Ay < Ay independent of the bilayer geometry, and, we have Ay < 0 from
the assumption that njw; < now, then Ay = A, in Theorem 2.1.2. Applying
Theorem 2.1.2 to the bilayer geometry, we substitute Ay into inequality (2.22) as

follows
T ()] (M) - (2.27)
n1wW1 + NaWs
which can be rearranged to yield inequality (2.25). O

Inequality (2.25) bounds the cell-type dependent signal strength and
highlights the influence of cellular connectivity on pattern formation by R, the
cell-type ratio in the neighbourhood of any given cell. For example, as we increase
the number of connected cells within the same partition (n;) then we require
greater amounts of signal polarisation (edge weight anisotropy) directed towards
those cells within the other partition to induce laminar patterns, i.e. w; must

decrease. Critically, as

[T ()] - 1
T (w)] +1
for all |7"(u*)] > 1, then Theorem 2.2.1 indicates that w; < wy in all

0< <1 (2.28)

physiologically relevant spatial domains (appropriate values of R;) for the
existence of polarity-driven laminar pattern formation. That is, preferential cross-
layer signalling is required for laminar pattern existence in bilayer geometries with

lateral-inhibition kinetics.

2.2.2 Conditions on cell-type signal strength for the
stability of bilayer laminar patterns

Applying Theorem 2.1.3 to the geometry of the general quotient representation
of the bilayer of cells (2.10) yields the following restriction on the signal polarity
strength parameters, w; and ws, for the stability of the heterogeneous states
that are produced by Theorem 2.2.1. Namely, the following statement provides
sufficient signal polarisation conditions for the maintenance of laminar pattern

formation between static cells in each partition P, and Ps.

Theorem 2.2.2. Let G be an undirected, connected graph that satisfies (A1) and
(A2) where the quotient graph G, has the associated reduced scaled adjacency
matriz as defined in (2.10). Consider the Lo-gains of the representative cells, v,
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and o from the partitions Py and Py associated with the heterogeneous steady

states 1 and xo, respectively. Then if any of the following gain relations hold:

(1) 11+72 <2

w2

(ZZ) Y1+ Y2 > 2 and w < (m) R

then the local asymptotic stability of the heterogeneous steady states 1 and x5 is
guaranteed if
niwq
R (7 +72 —2172) <1—m7% (2.29)
1s satisfied. Moreover, if v1 > 1 and vo < 1, or vice versa, then the laminar

pattern stability criterion (2.29) has the form

I =772 ) wWa
wy < —. 2.30
' <’71 +%—mrr—1) R: ( )

Proof. Consider the reduced scaled weighted adjacency matrix W, (2.10)
associated with the cell-type partitioned quotient graph G.. Let a = njw; /N,

and b = nows/N,, and therefore we have,

L P =

where b = (1 — a) due to the row stochastic property of the reduced adjacency
matrix Wy. The matrix W, T is nonnegative and irreducible as each entry is a
product of positive values. By the Perron-Frobenius theorem [141], p (WOF) is

a real eigenvalue of W T. Solving for the eigenvalues of W, T yields

2
- + a? (y1 —72)" +4(1 —2a) 7172
p(WoT) = “(%2 02) | \/ 5 , (2.32)

and so by applying Theorem 2.1.3 to the spectral radius (2.32), we ensure the
local asymptotic stability of the heterogeneous states associated with v; and ~,.
If the necessary conditions (i) or (ii) for pattern stability are satisfied, then we
have that

V@ (1 = 1) + 40— @119z < 2= a (31 + 75) (2.33)

is well-defined as the leftmost term of inequality (2.33) must be real and positive
by the Perron-Frobenius theorem. Namely, Theorem 2.1.3 can only be satisfied
provided the conditions (i) or (ii) hold. Subsequently, both sides of inequality
(2.33) are positive and therefore squaring both sides preserve the inequality, which

can be expanded and rearranged as follows
Y1Y2 ((1 —a)® — a2) +a(n+7) <1 (2.34)
which yields inequality (2.29) from further rearrangement.
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In the case where 73 > 1 and 75 < 1 (or 73 < 1 and 75 > 1), then
(71 — 1) (72 — 1) < 0. Moreover, this implies that

71 -+ Y2 >1 + Y172, (235)

after expansion. In addition, inequality (2.34) can be rearranged to the following

form

niwy (71472 — 7172 — 1) < (1 = 172) ngws. (2.36)

Therefore by inequality (2.35) the left-most terms of inequality (2.36) are positive
and so the division of inequality (2.36) by (71 + 72 — 7172 — 1) preserves direction
of the inequality, producing the pattern stability criterion explicitly in terms of

signal weights w; and ws,. O

Corollary 2.2.1. If the homogeneous steady state u* of a monotone SISO system
(2.11-2.12) yields |T" (u*) | > 3, then the gain relation (ii) in Theorem 2.2.2 is

always satisfied.

Proof. Without loss of generality, we have that v < [T (u*)| < 71 as the
contrasting input states u; and wuy will diverge from u* in opposing directions
by the monotonicity of the SISO reduced system [118]. From inequality (2.25)
we know that 1 < 7 must hold as w; € Rx, that is |77 (u*) | > 1 is required for
the existence of laminar patterns. Therefore, if we assume that the homogeneous
steady state of the monotone SISO system (2.11-2.12) is unstable, producing
contrasting states in the representative cells, then inequality (2.25) is satisfied.
Comparing the pattern existence inequality (2.25) and the necessary condition

(ii) for pattern stability, we have that inequality (ii) holds when

1 2 T (u*) | —1
< < :
Mm—1 m+r—2 T" (u*) | + 1

(2.37)

where the left-most term follows from v, < 7;. Rearranging inequality (2.37)

yields
2T (u") |
7" (w) | =1

then applying our assumption 7" (u*) | < 1, inequality (2.38) can be satisfied by

< 71, (238)

solving the more restrictive bound

2IT" (u") |

which has the minimum of |T"(u*)| = 3. Moreover, this implies that v, > 3
which immediately satisfies 71 + 72 > 2, and therefore condition (ii) holds. [
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Inequality (2.29) outlines the relationship between cellular connectivity
(ny1,n9) and signal protein feedback (w;,ws) that is required to be balanced
to ensure the maintenance of pattern formation in bilayer static geometries.
However, we note that the Ly-gains are dependent on the geometry, as they
are a function of the input value defined by the discrete spatial operator (),
see Definition 2.1.4. Thus, inequality (2.29) cannot determine explicit conditions
for the relationship between geometry and feedback model, as in the existence
inequality (2.25). However, provided the Lo-gains of the representative cells
satisfy the appropriate conditions outlined in Theorem 2.2.2, inequalities (2.25)
and (2.30) are in a directly comparable form with respect to signal transfer
dynamics.

In addition, inequality (2.34) and therefore inequality (2.30) describes a
relaxation of the Small Gain theorem for closed-loop systems, commonly used
in control theory applications [142]. To demonstrate this relaxation of the Small
Gain theorem, w.l.o.g. assume that 75 < 71, as we expect the partitions P; and
P, of G to obtain contrasting solution states. In this case, inequality (2.34) is

bounded from above by setting v = 71,

MYz (1= 2a) +a (v +72) < (1 —2a)y +2a), (2.40)

where a = njw;/N,, as in Theorem 2.2.2 and noting that (1 —2a) > 0 from
Theorem 2.2.1. Therefore if

7 (1 —2a)y1 +2a) <1 (2.41)

holds, then inequality (2.34) must also be satisfied. The positive parabola
defined by inequality (2.41) has roots 734+ = 1 and - = 2a — 1 < 0.
Namely, if 747 < 1 then the dynamical system is locally asymptotically stable.
Moreover, if 73 < 1 then 717, < 1, thus satisfying the Small Gain theorem
(Theorem 2.1.1). As a special case of Theorem 2.2.2; if each cell in the cellular
domain has no adjacent cell within the same pattern partition, namely n; = 0,
then inequality (2.34) is equivalent to the Small Gain theorem, as demonstrated
previously for checkerboard patterns using lateral-inhibition models (Figure 2.1)
[118], highlighting the applicability of the general form of cellular connectivity

defined in Section 2.1.3 to control mechanisms of lateral-inhibition systems.

2.3 Notch-Delta laminar pattern formation in
mammary organoids

To illustrate the results of Section 2.2, we use the Notch-Delta lateral-inhibition

model outlined in Section 2.1.1 that was recast as an interconnected dynamical
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system in sections 2.1.2 and 2.1.4. Namely, we seek cell-cell signal polarity
conditions between luminal and basal cells in the mammary organoid to achieve
the experimentally observed laminar pattern formation of Notch in a bilayer of
cells (Figure 1.7). Specifically, we use the laminar pattern existence and stability
signal strength bounds derived in Section 2.2 to isolate regions of w; and wy that
facilitate the aforementioned Notch patterns in quotient systems representing
the family of static regular graphs described in Section 2.1.2. Furthermore,
we validate the analytic regions of w; and ws using fixed lattice large-scale
simulations for each graph. Furthermore, we then investigate the applicability
of our static domain analytical results to dynamic cellular domains using cell-
based modelling in 2D in Section 2.3.3 and in 3D in Appendix A.

2.3.1 Static lattice simulations

The 2D fixed lattice geometries were considered as a 100 cell system, split
equally as luminal and basal cells as demonstrated in Figure 2.5a. This cyclic
geometry generates a dynamical system of 200 state variables that were coupled
via the scaled adjacency matrix (1/N,)W as previously discussed in Section
2.1.2. Similarly, for the 3D fixed geometries in Figure 2.5b, the interconnected
dynamical systems were constructed with 120 cells, producing a dynamical system
with 240 state variables. For both 2D and 3D geometries, the ODE systems were
solved numerically using the ode15s function in Matlab 2019b. The simulations
were solved for 100-time units. If all solutions varied less than 1 x 10~* over four
consecutive iterations, then we assume that the system was considered to have
converged to a steady state. We note that all simulations presented in this study
satisfied the convergence criteria.

To determine if the system has converged to laminar patterns of Notch-Delta
expression, the mean value of Delta expression was taken from each layer of cells.
Explicitly, let d; denote the mean final Delta values in each layer of cells (7 = 1, 2).
The difference Ad = |d; — ds| indicates the existence of laminar bilayer pattern
formation. We considered the system to have achieved a laminar bilayer pattern
if Ad was greater than a prescribed tolerance, § > 0.

The static simulation parameter sweeps for w; and wy were conducted over
a discretised 150 x 150 regular grid lattice for w; € (0,0.25] and wy € (0, 1],
resulting in 22500 simulations per static geometry. In all static lattice simulations,
we choose a = 0.01, = 100, uy = up =1, s = 1 and r = 2 as parameter values
for the NDM (2.1-2.2), as previously defined [87].
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2.3.2 Cell-type dependent signal anisotropy regions using
a Notch-Delta lateral-inhibition model in static
bilayer domains

We consider the bilayer cellular domain described by the regular graph G to
be partitioned by layer. Namely, let © be an equitable partition of G such
that all luminal cells are allocated in P, and basal cells allocated in P as in
Figure 2.6a. To apply both Theorem 2.2.1 and Theorem 2.2.2 to locate signal
strength parameter regimes for laminar patterning, we first explicitly recast the
spatially discrete ODE (2.1-2.2) in the form of a quotient SISO system (2.11-
2.12). Let =; = [N;, D;]* denote the vector of state variables of the system,
where 7 designates cellular identity. Then the input to each cell is the local spatial
information received via the (-) operator, such that u; = (D;) = W D. Similarly,
the output of each cell is the Delta expression y; = D;. To apply Theorem 2.2.1
to our biological model, we need to determine the following: (i) the derivative
of the transfer function, 7', of the SISO system and (ii) the homogeneous steady
state, *, of the dynamical system.

(i) The derivative of the transfer function can be derived by taking the partial
derivative of the SISO system w.r.t. the input, output and state variables,
as shown in equation (2.15). Thus, for NDM (2.1-2.2) as presented as an
interconnected system in Section 2.1.4,

oh of —py 0 of [ omi

5s = 0 1] am:[——wf - —uD] and 5 = [ (o) ]
i g (1+8N7)

(2.42)
Therefore, multiplying the matrices in equation (2.42) and making the
substitution N; = f(u;)/un at steady state, yields the following,

— N 0 -1 aruz_lz
T'ui)=—[0 1 ]| _ psvit (atup)”
(1+8N;7)° HD
— OzﬁTS,u?V (O[ + u:)871 U’zs_; . (243>
po (i (o +u) + fui?)
(ii) We now solve the NDM (2.1-2.2) for the homogeneous steady state. This
problem is reduced to solving f (xz*,D*) = 0 as u} = D = D* for all i =

1,..., N in the case of a system of identical cells. Solving the system (2.1-2.2) for

homogeneous steady states leads to the following polynomial for D*,
Bun (D)™ + iy (upD* — 1) (a + (D)) = 0. (2.44)

To apply Theorem 2.2.1, we require that |T7"(u*)| > 1 as w; > 0 by definition.

This condition is equivalent to the requirement derived by direct linear analysis
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of a single cell as in [87], where the authors demonstrate that the existence of the

homogeneous steady state instability can only occur when
f(u)g' (N*) < —1. (2.45)

It can be shown that T"(u*) = f'(u*)g' (f (v*) /un) /(uypp) for a closed-loop
system of two cells [117], then applying the same parameter groupings and values
for pun and pp as in [87] yields the equivalent condition. Moreover, |T" (u*)| is a
monotone increasing function with respect to r (Figure 2.9), hence increasing the
nonlinearity of the ODE system relaxes the restrictions on w; for the existence
of pattern emergence imposed by Theorem 2.2.1, emphasising the relationship
between the connectivity of the cells and the characteristics of the intracellular
ODE system.

Solving the cubic polynomial (2.44) when r = 2 yields a homogeneous steady
state D* = 0.049, and subsequently, we have both (i) and (ii). Applying
Theorem 2.2.1 to the NDM system (2.1-2.2) using equation (2.43) and D* yields

the following bound on signal strength parameters,

wy < pm%, (2.46)

for pe, = (|77 (u*)| — 1)/ (|T" (u*) |+ 1) = 0.21. Specifically, inequality (2.46)
defines a strict (wq, ws) parameter space for the emergence of laminar patterning
between layers (region below the black line in Figure 2.10b), highlighting the
requirement of substantial cross-layer signal anisotropy for a polarity-driven HSS
instability given the Collier NDM kinetics.

As we have found the necessary bound on w; for laminar pattern formation,
we now seek to use Theorem 2.2.2 to impose a sufficient bound on w; to ensure
laminar pattern stability. To apply Theorem 2.2.2, we require the Lo-gains for
each representative cell at steady state 7, and 7, from P, and P;, respectively.
By the monotonicity of the NDM system (2.1-2.2) with respect to the cones
KY =Rsg, K¥Y = —KY and KX = {z € R?|x; > 0,25 < 0} [117], we are able
to use the steady state relation (2.20) to compute the gains of the pattern states.
To determine the Lo-gains, we solve for the heterogeneous steady states x; and

x,, with associated input steady states

D D D D
uy = nwy 1];[1‘ NoWo g and  uy = nwy 2];1[‘ NoWo 1’ (2.47)

then using equation (2.43), v1 = |7"(uy)| and 72 = |T"(ug)|. For each
static geometry outlined in Table 2.1, a parameter sweep of the signal strength
parameter space (wq,wy) was conducted to highlight regions that satisfy the

conditions (i) or (ii) and inequality (2.29) from Theorem 2.2.2, where the
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Figure 2.9: Monotonicity |7"(u*)| with respect to r. Parameter values were chosen
as parameter values a = 0.01, 5 = 100, uy = pup = 1 and s = 1. For each r, the
homogeneous steady state was solved using equationEquation 2.44. The shaded
region represents the values of r that satisfies |T”(u*)| > 1, which is required for
the instability of the homogeneous steady state in Theorem 2.2.1, highlighting a
lower bound of r;, = 1.5.

heterogeneous steady states of the representative cells ; and x5 were numerically
solved. The resulting stability regions in the (wy,ws)-space (red shaded regions
in Figure 2.10b) have the same linear form as the analytical existence bound
inequality (2.46). Therefore, assuming the same form of relationship between wy,
we and R, a ubiquitous gradient parameter [ was extracted from each static
lattice parameter sweep. That is, to ensure the local asymptotic stability of the

laminar bilayer patterns (Figure 2.10a) in both 2D and 3D,

w
W1 < Paab (2.48)

must be satisfied, for pya = 0.04 determined using linear regression (R? = 0.99).
We have provided a refinement on inequality (2.46) from necessary to sufficient
for laminar pattern formation using the NDM system (2.1-2.2). Nevertheless,
this defines a highly restrictive parameter bound on w; for the given intracellular
kinetics parameters, implying that almost all cell-cell signals must be directed
towards cells in the opposing later emphasising the requirement of luminal-basal
layer contact.

Finally, using static lattice simulations for each of the 2D and 3D geometries
described in Table 2.1 (see Section 2.3.1), we conduct a parameter sweep over the
(w1, ws)-space to verify the necessary bound of inequality (Equation 2.46) and
the sufficient bound of inequality (2.48.) Namely, the NDM system (2.1-2.2) were
numerically solved for each of the connectivity graphs and allowed to converge to

steady state, thereby the difference in Delta activation was measured between the
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layers of cells to verify the existence of laminar patterns. The parameter regions
that exhibited the layered patterning using a pattern tolerance of 6 = 0.1 (see
Section 2.3.1) were consistent with the analytical inequalities (2.46) and (2.48)
as shown in Figure 2.10 by the blue-shaded regions. Furthermore, the regions
defining the observed patterns from numerical simulations had the same linear
upper bound for w; as a function of w, for all 2D and 3D geometries. Therefore, as
conducted for the stability inequality (2.48), we extracted a ubiquitous gradient
parameter p,,s. Namely, laminar patterning in a bilayer of cells can be observed
if w, satisfies,
Wy

wy < pobsR_T (2.49)
where pops = 0.11 is lifted from our numerical data (R? = 0.99). Note that due
to the symmetry of the system, that is, each cell has identical internal kinetics
that are spatially coupled by a regular and undirected graph, then to achieve
the laminar patterning in the correct direction, the system required a small
perturbation using initial conditions. Moreover, as the pattern tolerance § — 0
(see Appendix 2.3.1) then pyps — Per, due to the contrast between the layers
becoming weaker, as in Figure 2.10c. Thus the arbitrary choice of § defines what
is considered acceptable patterning, though we note that the necessary bound
provided by 2.2.1 is always satisfied.

As the observed pattern regions lie within the existence bound regions (peps <
Pex) and the sufficient stability bound regions are a subset of the observed pattern
regions (Psiap < Pobs) I (w1, wq)-space (Figure 2.10b), we numerically verify the
analytical conditions imposed on the signal strength parameters w; and ws by
Theorem 2.2.1 and Theorem 2.2.2 using the NDM system (2.1-2.2). In each
case, for existence, stability and numerical observation, there exists a consistent
form for the upper bound of the cell-type dependent signal strength parameter
wy, which relates cellular connectivity to signal strength polarisation, via R,

independent of lattice dimension.

2.3.2.1 Implications of the NDM static domain laminar pattern
analysis

In summary, from the analytic and empirical upper bounds on the homotypic
signal strength, w;, outlined above reveal that the lattice geometries with the
low R, values require less active polarisation to generate and maintain laminar
patterns. For example, the 2DM lattice (see Table 2.1) has lowest neighbourhood
cell-type ratio with R, = 2/3, and therefore has the largest regions in (wy, ws)-
space for existence, stability and observed laminar patterns (Figures 2.10b and
2.10c). In contrast, the 3DVN lattice has the largest R, value, thus producing
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(c) Example laminar patterns for the 2DM geometry.

Figure 2.10: Cell-type dependent signal strength polarisation regions for laminar
pattern formation in static bilayer geometries. (Continued on the following page.)
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Figure 2.10: (Continued.) (a) The left diagram represents the (wy, wy) parameter
space that yields conditions for bilayer laminar patterning. The region above the
black line corresponds to the stability of the steady state, where the black line
is the upper bound of w; provided by inequality (2.25) in Theorem 2.2.1. The
blue line is the upper bound of w; determined from numerical simulations of
the ODE system and the red line is the upper bound for analytical stability of
the heterogeneous steady states provided by inequality (2.29) in Theorem 2.2.2.
Representative patterns are embedded into the 2D Triangulated lattice. (b)
(w1, ws) parameter space highlighting laminar pattern regions shown in (a) for
each static geometry outlined in Table 2.1 with example simulation results shown
in (c) using the 2DM lattice (highlighted). The magnified region of (wy, w9)-space
demonstrates the high density of parameter values with the capacity to produce
laminar patterning, denoted by +, which defines the blue observed regions in all
static lattice simulations. Red points represent the parameter values used in the
example simulations on the right. For further details on static simulations, see
Section 2.3.1.

the smallest patterning regions and therefore a large amount of polarisation is
needed to produce laminar patterns (Figure 2.10b). These findings highlight
that laminar pattern formation using a lateral-inhibition mechanism is highly
sensitive to neighbourhood composition of the bilayer structure, suggesting that
the contrasting phenotypes of the basal and luminal cells (elongated and cuboidal
shapes, respectively) may play a significant role in pattern maintenance during
mammary development. Though the cell-type composition is an important factor,
we found that all 2D and 3D geometries we considered required signal polarisation
to achieve laminar patterning, such that w; < wq (Figure 2.10b), indicating the
existence of a polarity mechanism within the intracellular system.

The graph partitioning methods applied here highlight the flexibility of
the cellular domain in pattern formation analysis.  Specifically, the only
information required is the cell-type neighbourhood composition for any given
cell, independent of the physical dimension. Therefore, we propose such a
neighbourhood composition sensing mechanism could be used by cells to maintain
the observed pattern formation in developing systems where connectivity graphs
are not regular and independent of time. That is, our simplified modelling
framework indicates the existence of a mechanism in which activator ligands
adaptively localised to specified regions on the cell surface dependent on the cell-

type composition of adjacent cells.
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2.3.3 Adaptive signal anisotropy mechanisms using a
Notch-Delta lateral-inhibition model in growing
bilayer domains

In Section 2.3.2, analytical and numerical bounds on the polarity ratio, w; /ws,
were derived for the existence and stability of Notch-Delta polarisation in static
bilayer cell domains. Motivated by the consistency of the laminar patterning
of Notch in a healthy developing mammary gland [21, 49], we explore if these
static bounds can produce and maintain laminar patterns in growing bilayer
domains'. In addition, we investigate the role of quorum sensing in polarity
modulation. Quorum sensing is the process of changing the behaviour of a
cell dependent on its current microenvironment using both chemical signals
and mechanical cues and has been observed in mammary epithelia to influence
proliferation and differentiation rates of MaSCs from local tissue densities [144].
Subsequently, we study the use of adaptive signalling polarity dependent on local
cellular neighbourhood compositions as a stabilisation and energy optimisation

mechanism for cell-fate determination.

2.3.3.1 Simulating growing bilayers

As an initial approach to modelling growing bilayers to explore the role of
polarity in Notch pattern formation, we consider a growing monolayer of
epithelial cells in 2D representing a cross-section of a mammary organoid.
Namely, we simulate growing bilayer domains using a cell-based approach by
implementing the vertex model (VM) framework within the Chaste (Cancer,
Heart And Soft Tissue Environment) library [119, 145] as these models are able
to generate heterogeneous cellular and tissue morphologies have been designed to
investigate mechanochemical interactions which include short-range cell signalling
[102]. Alternative cell-based modelling frameworks are also applicable to model
juxtracrine signalling in spatially dynamics tissues such as the Overlapping
Spheres or Voronoi Tessellation frameworks [119]. However both frameworks
approximate cellular morphology which would fail to capture the contrasting
phenotypes in a mammary bilayer. For a detailed review on the applicability of
alternative cell-based modelling frameworks, see [102].

Cells are represented by polygons with dynamic vertices, wv;, that are

dependent on space and time as shown in Figure 2.11. The position of each

!This section of the chapter differs from the reference paper [143] as here we focus polarity-
driven pattern formation on growing bilayers. For the original section which explored stochastic
connectivity graphs using cell-based modelling, see Appendix A.
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vertex, v;, is denoted by 7; and evolves according to first-order dynamics

d’f‘i
dt

N— = Figor, (2.50)

where F;,;, is the total force acting on vertex ¢ and 7 is the drag coefficient.
We employ the Nagai-Honda (NH) energy potential model [146] for vertex forces
which are composed of three parts: (1) deformation energy, (2) membrane surface

tension energy, and (3) cell-cell adhesion energy, and has the form

9 ne—1
F,ng = —V; Z (a (A — Aok,)2 +c (Ck — 2y 77A0k> + Z bk,jdk,j) :
keN; Jj=0

(2.51)

N; denotes the set of polygon indices assigned to v;. The values A; and Ay,
are the current and target cell area of the polygon associated with v;. Whereas
C}, is the current cell perimeter and it is assumed that the cell aims to conserve
cell membrane length resulting in a circular shape. The positive coefficients a
and ¢ define the contribution of cell deformation and surface membrane tension
in vertex dynamics, respectively. The final term in equation (2.51) represents
differential adhesion between neighbouring cells dependent on cell-type, where ny
is the number of vertices associated with polygon k, by ; is a positive constant
dependent on cell-types and dy, ; is the distance between the vertices v; and v,
ordered anticlockwise from polygon k (Figure 2.11).

We note that the NH energy potential model is designed to describe apical
cellular dynamics, specifically for tissues with constant geometry in the apical-
basal axis [146]. Therefore, to employ the NH model to describe the cellular
dynamics of a cross-section of a mammary organoid, that is, the apical-basal
axis of the basal-luminal bilayer, we relax the model constraint for minimising
energies near circular cellular geometries by increasing the deformation energy
coefficient, a, see Table 2.2. Alternative energy-based models have been proposed
to model apical-basal dynamics using the VM framework [147]. Namely, the
authors include an additional outward normal force term to minimise the local
curvature of the tissue, specifically to investigate tissue buckling from internal
stress. As similar mechanical processes has been suggested to aid mammary
branch initiation and lumen maintenance [131, 148], it would be interesting to
incorporate this addition term into the NH model in future studies. However,
we note that the apical-basal energy model proposed in [147] still considers only
the apical surface of a cellular monolayer and therefore is not directly applicable

here.
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Figure 2.11: A representative cell in a VM. Each vertex is equipped with a
unique identifying index and each polygon representing the cells are defined by
an ordered list of vertices, for example, cell; is given by [v;, ..., v;16]. Edges are
drawn between vertices that are assigned to the same polygon and are adjacent
in the ordered list.

It has been demonstrated that lumen pressure is present in developing
mammary organoids and that internal pressure is a factor in lumen preservation
[149, 150]. Subsequently, we introduce an additional outward pressure force on
each vertex which is emanating from the centre of the tissue. The lumen pressure
force is assumed to decay exponentially from the centre of the tissue and therefore
is given by

r;

—-c
Fi1p=piy——exp (—pallri — f]), (2.52)
|lri =€l

i
where p; and py represent pressure force magnitude and decay, respectively, and
c(t) is the position of the centre of the tissue at time ¢. For simplicity, we
allow the pressure force (2.52) to act on all vertices to encourage outward growth
away from the lumen. By selecting low values of p;, we ensure that this force
is weak relative to the active mechanical forces acting on each vertex. Similarly,
choosing py appropriately ensures the force acts dominantly on the interior interior
vertices. We note that this force should act only on the interior vertices as this
represents the initial internal fluidic pressure produced from the apoptosis of
inner most luminal cells [105]. Furthermore, imposing an explicit pressure term
at the interior vertices and incorporating the curvature penalisation force terms
introduced in [147] may more accurately describe bilayer dynamics determined
by the tight adhesion junctions formed at the apical surface of the mammary
organoid, which generate the irregular MEC morphologies. As we are concerned
only with Notch-Delta patterning on dynamics bilayer domains, we suggest these
implementations for future studies.

In addition, we also impose stochastic movement of cells to encourage the

dynamic cellular neighbourhood compositions and is implemented by the random
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force

2€
At
for £ a constant defining the size of the random perturbation, At the simulation

E,rnd — v, (253)

timestep and v a sample for a standard multivariate normal distribution, as
previously defined in [102]. Therefore, we define the total force acting on each
vertex by

F,,os = F;ny + F, 1p + Fj 4, (2.54)

where the mechanical dynamics governed by equation (2.50) are solved using the
forward Euler method with timestep At [151].

To simulate growing bilayers that resemble developing mammary glands, we
consider three generic cell-types: (1) boundary cells, (2) interior cells, and (3)
ghost cells. The boundary cells are located on the outer ring and are equivalent
to myoepithelial cells. The interior cells are located inside the boundary cells to
simulate the luminal population, and the ghost cells represent the hollow lumen
as shown in Figure 2.12. Mammary lumen formation is driven by an apoptotic
mechanism from sustained contact with luminal cells in the absence of basal
contact [105, 152] and therefore we define simple local neighbourhood rules for

cell-type specification:
e Cells on the tissue boundary are boundary-type;
e Cells not on the tissue boundary are interior-type;

e Cells neighbouring six interior-type cells for over 3 time-units are ghost-

type.

Ghost-type specification is terminal to represent cell death whilst maintaining
lumen structure, whereas we allow for plasticity between boundary and interior
types.

Boundary and interior cells are assumed to proliferate where the total cell
cycle length, (Teyele), is determined at the birth of the cell. The duration of the
cycles for boundary and interior cells are sampled from a Gamma distribution
with parameters determined by observed cycle lengths in basal and luminal
subpopulations in the mammary gland [153], see Table 2.2 for cell-type dependent
distribution parameters. Ghost cells are non-proliferative as they represent the
lumen.

An additional measure to promote and maintain growing bilayer domains is
the introduction of directed proliferation. Namely, the apical-basal polarity of
the mitotic spindle in proliferating cells is critical in the development of bilayer

tissues and lumen formation [105, 148, 154] such that cells divide along the tissue
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Figure 2.12: An example of the cell-type architecture during the VM growing
bilayer simulations. Boundary cells representing myoepithelial /basal cells are
coloured blue, interior cells representing luminal cells are coloured orange and
ghost cells representing the lumen are coloured grey.

surface to prevent protrusions and lumen filling, and to encourage mechanical
buckling of the tissue for branching morphologies. Therefore, upon cell division
of a boundary or interior cell, the axis of division is determined by a new edge
placed through the centroid of the cell which passes through the arithmetic mean
of the centroids of the neighbouring cells of a different type, see Figure 2.13. Two
new vertices are placed at the intersection of the division plane and the dividing
cell to produce a daughter cell along the surface of the tissue.

All simulations are initialised with cells in the bilayer ring as shown in figures
2.12 and 2.14, and fixed seeds were used to generate pseudo-random numbers for
stochastic spatial domains. Parameter values of the mechanical system dynamics
can be found in Table 2.2.

2.3.3.2 Emergence and stability of Notch laminar patterning with
fixed and adaptive polarity

Each cell in the VM is equipped with the NDM (2.1-2.2) as implemented in [102].
The method for coupling the NDM and the cell-based dynamics are as follows. At
each mechanical timestep, after cell positions have been updated, the input signal
Delta, u;, is calculated using the cell-type dependent edge weighted adjacency
graph defined by the tissue mesh. Then over the short time interval between the
next mechanical timestep, [nAt, (n + 1) At], the input signal Delta is assumed to
be constant and the NDM (2.1-2.2) is updated using an adaptive Runge-Kutta
scheme. This implementation scheme for coupling signalling dynamics and cell
mechanics is fully contained within the Chaste software [119] and further details,

see [102].
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Parameter Description Value Dimensions Reference

n Drag coefficient 1 Time (Length)™! [145]

Deformation 5
“ energy coefficient 30 Force (Length) )
Ao, Target boundary cell area 0.8 (Length)? [155]
Ao, Target interior cell area 1 (Length)? [155]
Ay, Target ghost cell area 1 (Length)? -
Membrane surface 1
c energy coefficient 50 Force (Length) [102]
Boundary-boundary
bup cell energy coefficient L Force )
Ghost-ghost cell
by energy coefficient 1 Force )
Interior-Interior
i cell energy coefficient 1 Force )
Interior-boundary
bis cell energy coefficient 1 Force )
Interior-Ghost
big cell energy coefficient 1 Force )
Boundary-ghost
bog cell energy coefficient 0 Force )
Lumen pressure 1
p1 magnitude coefficient 0.2 Force (Length) )
Lumen pressure . .

D2 decay coefficient 0.05 Non-dimensional -

3 Random force coefficient 0.003 (Time) ! (Length)? -
Teyelep Boundary cell cycle length T (13.2,1.2) Time [153]
Teyele,i Interior cell cycle length I'(15,2) Time [153]

At Simulation timestep 0.005 Time [102]
Table 2.2: Parameter values used in VM simulations of growing bilayers.

Parameters referenced by - were selected for bilayer maintenance.
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Figure 2.13: A schematic of the steps involved in the apical-basal division with
respect to a dividing boundary cell. Boundary cells are coloured grey and interior
cells are coloured red.

When transitioning to dynamic spatial domains, we cannot assume the
preservation of layer-wise edge symmetry in the connectivity graphs during bilayer
growth and consequently, we cannot apply the equitable partition theory to
analyse laminar pattern formation. Instead, we use the static domain inequalities
(2.48-2.49) to gain an intuition for ligand activator polarisation conditions in
dynamic geometries to generate and maintain laminar patterns. In particular,
we focus on how a cell responds to the microenvironment via two polarisation
mechanisms: (i) globally fixed values of the polarity ratio w; /wy and (ii) a locally
adaptive polarity ratio w; /wy. By investigating these two types of signal strength
mechanisms in the dynamic cellular domains, we can measure the influence of
varying cellular connections on pattern stability as the system evolves.

The fixed polarity mechanism (i) is used to represent high inertia of cellular
adaptability to the local environment of the cell, that is, layer-wise signal
transmission strengths are defined at birth. Here, the wy/ws is set to agree with
the observable pattern inequality (2.49) for R, = 1. In contrast, the adaptive
(ii) polarity mechanism is used to represent low inertia of cellular response to the
microenvironment. For each cell, the layer-wise polarity ratio w;/wy is updated
at each timestep to satisfy the observed static inequality (2.49) by determining
R;;, i.e., the cell-type composition of the neighbourhood cell <.

Cell-based NDM simulations were initiated from a small bilayer structure on a
hexagonal lattice and performed for 100 time units as shown in Figure 2.14. Due
to the stochasticity of cell cycle lengths and imposed forces, the simulations were

repeated for ten prescribed seeds of pseudo-random number generation. For each
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Figure 2.14: Example simulations of Notch laminar pattern formation in a
growing bilayer domain with fixed and adaptive polarity mechanisms. Simulations
are performed for a period of 100 time units with a fixed pseudo-random
number generation seed to reproduce the spatial domains for polarity mechanism
comparisons. Cells are coloured by Notch values and the grey regions represent
the hollow lumen.
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different growing domain geometry, the NDM (2.1-2.2) was solved using the fixed
and adaptive polarity mechanism, initialised Notch and Delta values perturbed
about the homogeneous steady state as in the static domain analysis in Section
2.3.2. An example of a growing bilayer domain is in Figure 2.14.

In all of the growing bilayer simulations, the polarity induced by the observable
laminar pattern inequality (2.49) derived on static domains is sufficient to produce
and maintain laminar patterns of Notch, independent of the polarity mechanism.
This is evidenced in Figure 2.15 as the interior cells expressed a median 9-fold
and 8.6-fold increase in Notch expression over the boundary cells for the fixed and
adaptive mechanisms, respectively, at t = 100. These relative differences in Notch
are comparable to those observed in mammary epithelial cells where a 9.8 to 12.3-
fold increase in Notchl gene expression was found in luminal populations when
compared to stem cell enriched basal population [49], demonstrating that Notch
activator polarity is able to reproduce the same order of magnitude in differential
Notch expression using a simple lateral-inhibition model. This suggests that
either polarity mechanism is a potential cell-fate regulator for lateral-inhibition
kinetics in mammary development.

Adaptive polarity produces homogeneous pattern states of Notch between
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boundary and interior cells throughout the growth of the tissue as shown in
Figure 2.14. Namely, for ¢ > 50 there is low variance in the Notch distributions
centred about the laminar pattern states, specifically in the boundary cells where
neighbourhood compositions always consist of both boundary and interior cells
(Figure 2.15). However, the loss of opposing cell-type connectivity in the interior
subpopulation introduces Notch expression irregularities and slight variance
in the Notch distributions for the interior cells, indicating that an adaptive
polarity mechanism still allows for marginal subpopulation heterogeneity in Notch
dynamics. In contrast, the Notch variance in the tissues using the fixed polarity
is significantly greater in both the boundary and interior cells for ¢ > 50 (Figure
2.15). In particular, tissue regions where boundary cells were highly connected to
interior cells, typically located near the buckling positions, produced exaggerated
Notch expression niches as shown in (Figure 2.15), suggesting that cells with a
fixed layer-wise polarity mechanism are highly influenced by the local geometry of
the tissue. Alternatively, the adaptive polarity mechanism presents as geometry
invariant when forming laminar patterns of Notch.

When examining the polarity ratios from the adaptive mechanism simulation,
Figure 2.16 highlights that overall less polarity is required to initiate and
maintain laminar patterns when cells are able to actively sense their cell-type
neighbourhood compositions or density and adjust their signalling accordingly
than when compared to the fixed polarity simulations. Subsequently, the
relaxation of the activator localisation may minimise the energy required to
maintain bilayer structures whilst reducing the heterogeneity in Notch within the
subpopulations, mitigating plastic behaviour during development. Furthermore,
Figure 2.16 revealed that stricter polarity ratios are required in boundary cell
populations to maintain patterning reflecting that boundary cells have more on
average cross-layer connections than interior cells by the significant decrease in
the polarity ratio, w;/wy. Namely, the boundary cells become elongated along
the surface of the tissue due to the internal outward forces from proliferation
and lumen pressure, which increases connections to the interior cells, whilst
simultaneously decreasing the number of connections between interior cells to
boundary cells the volume of the cell is preserved. Thus, this process may indicate
that because of the wider audience, it is the boundary cells that are driving the
polarisation process and therefore the laminar patterns, whilst the interior cells

are reactive to their behaviour.
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(b) Interior cell Notch expression over time.

Figure 2.15: Summary Notch values in boundary and interior cells over time
using the fixed and polarity mechanisms. Box plots represent the aggregate
Notch values of each (a) boundary and (b) interior cells over all growing bilayer
simulations at times 0, 25, 50, 75 and 100. The horizontal dashed line represents
the homogeneous steady state value of Notch, N*. The asterisks (*) denote a
significant difference in variance of Notch distributions for p < 0.01 using the
Ansari-Bradley test.
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Figure 2.16: Polarity ratio values in the adaptive polarity mechanism growing
bilayer VM simulations. Solid lines represent the average polarity ratio for each
of the cells in all adaptive polarity simulations. Shaded regions correspond to a
standard deviation about the mean and the dashed line is the polarity ratio set
for all fixed polarity mechanism simulations. The dashed line represented the
fixed value of the polarity ratio used in all fixed polarity simulations w; /ws = 1.

2.4 Discussion

We have generated general conditions for exploring layer-wise dependent
juxtacrine signal strength polarisation conditions for the emergence and stability
of laminar patterning in symmetric bilayer structures via lateral-inhibition.
Leveraging previous results of graph partitioning on monolayers, we show how
the geometry of the cellular domain has a large impact on the capacity of the
system to produce heterogeneity. Moreover, using this framework, we replace the
algebraically demanding process of linear analysis of large multicellular systems
with an exploitation of the spectral properties of the quotient graphs, therefore
addressing the complexity issue discussed in previous juxtacrine pattern analysis
studies [138].

In Section 2.2, we provided necessary and sufficient conditions for the existence
of laminar patterns in a bilayer of cells. Both existence and stability inequalities
(2.25) and (2.29) highlight that increasing connectivity with opposing cell-types
allows for larger existence and stability regions in signal strength (wq, ws)-space.
In the context of mammary organoids with fixed, as global concavity of the
structure increases, luminal cells have a greater probability to connect with
more basal cells, thereby relaxing the existence and stability conditions imposed
by Theorem 2.2.1 and Theorem 2.2.2 by decreasing R,, the cell-type ratio
composition in the adjacent cells. However, this would violate the symmetry

between partitions required to apply both Theorem 2.2.1 and Theorem 2.2.2,
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hence we propose investigating asymmetric connections between layers of cells
may allow for a relationship between global curvature of the cellular structure
and pattern stability.

Allowing the global connectivity graph to be semi-regular such that each of
the basal and luminal subpopulations retain regular edge structure, though these
structures may differ between the partitions. Subsequently, the semi-regular
structures conform with the equitable partition requirement, thus enabling the
analytical study of laminar pattern formation with more authentic cell-cell
interactions, i.e. preserving phenotypes and subpopulation sizes, however, how
connectivity changes with respect to variation in tissue morphology are yet to be
investigated.

By studying a family of 2D and 3D static cellular domains of varying
connectivity, we gain insight into the emergence and stability of concentric
layer pattern formation in dynamic domains. Namely, by employing the
bounds on w; derived from the static simulations, we were able to generate
and maintain laminar patterns in growing bilayer domains using a classical
later-inhibition model NDM (2.1-2.2).  Critically, we demonstrate that
applying a fixed global polarity ratio (w;/w,) derived by the static domain
investigations is able to produce and preserve laminar patterns of Notch with
rapid neighbourhood changes, highlighting the viability of polarity as a cell-
fate stabilisation mechanism during the early stages of mammary organoid
development. Furthermore, introducing quorum sensing for adaptive polarity
further stabilises the patterning between the layers, providing homogeneous Notch
activation in each respective layer. These results demonstrate the applicability
of using static graph theoretic methods to explore intracellular behaviour in
spatial dynamic systems. We expect the 2D dynamic domain pattern formation
results presented in this chapter to agree in 3D bilayer morphologies following the
topological description of cellular connectivity in the pattern templating analysis.

In this chapter, we assume that the laminar pattern formation is driven purely
by signal strength polarisation between the layers, thus neglecting the effect
of the external environment on the biological system. That is, we neglect the
influence of stroma or extracellular matrix and the importance of the lumen
to the luminal cells in supporting the high contrast of Notch expression in
vivo and in vitro, respectively [48]. Thus, applying supplementary boundary
conditions in dynamic domains in addition to signal polarisation may achieve
laminar patterning, invariant to morphological perturbations.

Furthermore, we note that the model framework and parameters chosen for the
cell-based simulations were selected to preserve a bilayer structure in a growing

domain whilst encouraging the morphological differences in luminal and basal
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cells. Consequently, in Appendix A, using the Overlapping Spheres cell-based
model in 2D and 3D, we highlight the sensitivity of our pattern analysis methods
to the requirement of bilayer connectivity, specifically in the instance of a bilayer
disconnect resulting in sudden dissipation of laminar patterns (figures A.2 - A.3).
As it is common for luminal cells not to be in contact with basal cells during
the early stages of mammary organoid development (see Section 1.1.1), pattern
stabilisation during bilayer disconnection should be explored to determine if the
signal polarity is a dominant mechanism in cell-fate preservation. To explore
the role of loss of basal contact during mammary organoid development using
the interconnected methods applied in this chapter, an immediate extension is
to consider a more general pattern template for the inclusion of only luminal-
luminal contacts, generating three representative pattern cells in the quotient
graphs. Specifically, this luminal extension could be used to isolate the viability
of a polarity-guided lateral-inhibition mechanism for cell-fate commitment during
the initial stages of organoid growth.

Applying the analytical polarisation conditions of Theorem 2.2.1 and
Theorem 2.2.2 to the context of a mammary organoid using the Collier et al.
(1996) NDM we revealed that if patterns are to be experimentally observed then
we require almost no juxtacrine communication between cells within the same
layer. A plausible process to address the polarisation of Notch activators may
involve Cadherins [156], which are transmembrane proteins that mediate cell-cell
adhesions. Differential expression of Cadherins (E-cadherins are associated with
luminal cells and P-cadherins are associated with the basal cells) are suggested to
promote self-organisation to form bilayer structures in the mammary gland via
cellular affinity to homophilic interactions [156]. Increasing evidence observes an
exclusionary spatial relationship between Notchl and E-cadherins on the cell
surface in a variety of organs, and specifically in the mammary gland [157—
159]. In addition, it has been verified that E-cadherins located between luminal
cells promote lumen formation during mammary organoid development [160].
Therefore, we propose that there exists a Cadherin adhesion-dependent Delta
inhibition mechanism that promotes the localisation of Delta ligands on the

luminal-basal interface (Figure 2.17)2.

2Since our initial proposal of an agonistic interaction between Cadherins (Ecad) and Delta
(DI11) in [143] interaction, direct evidence of DIl1-Ecad exclusion has been found in neural
progenitor cells [161].
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Basal cells Notch Delta  Cadherin junctions

Figure 2.17: Proposed spatial distribution of Notch, Delta and Cadherin junctions
within a developing mammary organoid. Due to the adhesion required to
maintain the bilayer structure with a hollow lumen, tight junctions form,
inhibiting the function of the membrane-bound Notch receptors and Delta ligands
between cells in the same layers.
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Chapter 3

Investigating the effect of local
tissue structure on cell-fate
commitment

The morphology of mammary organoids is highly dynamic throughout
development, changing in response to hormonal and environmental cues [16,
22]. Subsequently, mammary organoids have the capacity to produce a range
of complex branch-like morphologies from simple spheroid structures, whilst
preserving the functional cell-type bilayer architecture (Figure 3.1). At the
cellular level, these substantial changes in organoid shape are driven by the
migration and proliferation of mammary epithelial cells (MECs) to generate a
network of ductal structures for the primary function of the host organ, the
production and secretion of lactate [23, 131]. Thus, the complex morphologies
of mammary organoids reflect the intricate interplay between different cell types
and signalling pathways that regulate the development and function of the organ.

Yet the geometry of the tissue plays a crucial role in regulating cell
signalling processes; variations in cellular spatial organisation affect local cellular
neighbourhood compositions, access to nutrients from external sources and
axis of polarity for proliferation, migration and signalling receptors [162, 163].
In diffusive paracrine signalling processes (described using reaction-diffusion
dynamics), it is well-established that variation in the geometry of the cellular
domain influences the convergent steady state patterning of the protein species
[164, 165], and that selection of boundary conditions (access to external growth
dependent nutrients) affects the susceptibility of geometry to generate pattern
bifurcations [166]. This phenomenon has been shown to give rise to a morphology-
biochemical feedback mechanism for branched architecture in mammary glands
[31]. In particular, it has been observed both experimentally and numerically
that the local tissue curvature dictates branching locations by altering the local
abundance of TGF-f, a cytokine that is actively diffused by MECs and inhibits
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Figure 3.1: Evolving morphologies of mammary organoids. Maximum intensity
z-projections are shown for spheroid and branching mammary organoids during
development. The top and right organoids are stained with basal and luminal
cell-type markers, Keratinb (K5) and Keratin8 (K8), respectively. The leftmost
organoid is stained for [-catenin (Bcat), indicating proliferative and stem-
like activity. Images are provided by Dr Bethan Lloyd-Lewis where detailed
descriptions of materials and methods for image acquisition can be found in [16].

proliferation by inducing apoptosis, such that growth is promoted in the most
convex regions of the tissue.

These morphological effects on spatial patterning are amplified in
developmental processes that employ juxtacrine signalling, i.e., contact-
dependent communication. Tissue morphogenesis is driven by cellular growth,
division and death, which fundamentally induces change to local cellular
neighbourhood compositions [167], and consequently, induces local change into
juxtacrine-dependent intracellular behaviour [51]. The deep links between
cellular connectivity topology and fine-grained juxtacrine patterning were first
explored at the global tissue scale by Webb and Owens in 2004 [126], where the
authors highlight that changing the cellular domain from square to hexagonal
lattice structures requires increased lateral-inhibition to generate consistent
checkerboard patterns. On a more local scale, stochastic heterogeneity in

cellular shape producing irregular cellular domains has been shown to yield local
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clusters of intracellular activity in lateral-inhibition processes [125], indicating
the existence of geometry-induced niche formation in developing systems.

Since these initial studies, the influence of cellular geometry on fine-grained
pattern formation by lateral-inhibition has been explored using a range of
methods such as intracellular phase-field models [50], agent-based models [168,
169], spatially discrete dynamical systems [117, 118] and continuum descriptions
[99-101]. Each of these studies demonstrates that geometric features of the
cellular domain have the capacity to induce the instability of the homogeneous
states in small systems of cells. Specifically, variations in cell volume and surface
area have been identified as geometric cell-fate promoters. Namely, contact-area
dependence of signal activator-receptor binding suggests that smaller cells are
more likely to signal senders, thus adopting the lineage trajectory associated
with low Notch high Delta [50, 169]. Critically, differences in cell shape are
commonly observed in early mammary gland development due to asymmetric
division of stem cells [170], suggesting a geometric influence on cell-fate symmetry
breaking in mammary organoids. Yet, the relationship between cell shape, cell-
cell connectivity and local tissue morphology is overlooked using these modelling
approaches.

Mammary organoids present as an unconstrained biological model of the
mammary gland due to the absence of fibroblasts that provide essential
signals for the function and maintenance of the tissue throughout development.
Therefore, organoids enable investigations of purely epithelial processes [15, 171].
Consequently, MECs within mammary organoids have an increased sensitivity
to plastic cell-fate behaviour [16, 20], and in particular, it has been shown that
artificial activation of Notchl leads to phenotypic basal-luminal switching [21]. In
agreement with the mammary (EpH4) curvature-dependent branching study [31],
rapid phenotypic changes for branch elongation via migration and proliferation
has been observed in mammary organoids [131].  Critically, morphological
regions with increased positive curvature contain increased stem-like cells, that
transition to a reduced dynamic state within the ductal regions. As phenotypic
reprogramming is often correlated with disease development and metastasis [172],
understanding the mechanisms that control cell-fate commitment is critical for
the preservation of healthy and functional tissue.

In Chapter 2 we demonstrated that signaling polarity has the capacity to
generate and stabilise bilayer laminar patterns of Notch, with a clear dependence
on cell-cell connectivity structure. Thus, motivated by the curvature-dependent
proliferation in MECs [31], in this chapter, we examine the efficacy of cell
signal polarisation in cell-fate control within different morphological regions

of mammary organoids. To address this statement, we first introduce an
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image analysis pipeline for the extraction of cell-type dependent connectivity
graphs and morphometric features of mammary organoids. We combine deep
learning methods for membrane detection with bespoke algorithms for cell-
type identification and vertex-curvature association to classify the connectivity
topology in local regions of organoids. Extending the local connectivity analysis
from imaging data, we use agent-based modelling to mimic experimental stamping
studies for tissue shape control to generate a morphology dependent cell-cell
connectivity regimes for developing mammary organoids.

As the input-output (I0) signalling framework introduced in Section 2.1
enjoys spatial flexibility from the topological description of cell-cell connectivity,
we employ this model framework to analyse the influence of local tissue geometry
on the sufficient signal polarity required to initiate and stabilise laminar patterns
of cell-fate determinants in MECs. We extend our existing theoretic insights
for regular bilayer connectivity structures derived in Chapter 2 to allow for layer-
wise semi-regular graphs, and highlight the existence of connectivity asymmetries
for the stability of laminar patterns with lateral-inhibition kinetics in generality.
Critically, by combining our image and synthetic connectivity data with our 10
analysis, we provide evidence for a polarity-driven cell-fate control mechanism in
developing mammary organoids in agreement with existing experimental studies
for MEC plasticity and branch elongation [31, 131].

The structure of this chapter is as follows. In Section 3.2 we describe and
employ an image workflow used to extract contact-based cell-cell connectivities
and local tissue curvature from confocal multiplex images of mammary organoids.
In Section 3.3, we supplement our initial insights from primary image data with
synthetic data from agent-based models to propose a characteristic relationship
between local tissue geometry and cell-cell connectivities. In Section 3.4, we
outline a general lateral-inhibition input-output (IO) model spatially coupled
using bilayer semi-regular graphs, whereby we analyse the influence of cross-layer
connectivity on the existence and stability of laminar pattern formation. Then in
Section 3.5, we revisit the canonical Notch-Delta kinetics from Chapter 2 to apply
our semi-regular pattern analysis methods to developing mammary organoids

with characteristic graphs identified by image and synthetic data analysis.
3.1 Development of an image analysis pipeline
for curvature-connectivity analysis

To investigate the effect of local tissue deformations on cell-fate dynamics in
mammary organoids, we design an image analysis pipeline to extract and couple

tissue curvature and local cell-type dependent signalling graphs from multiplex
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confocal images of mammary organoids. We combine a recently developed deep
learning package for membrane segmentation, PlantSeg [173], with additional
algorithms for cell-type classification, cell-cell connectivity weighted graph
construction and local boundary curvature estimation. The details of each
component of the pipeline are provided below with a pipeline summary presented
in Section 3.1.5.

3.1.1 CNN membrane prediction for confocal microscopy

Convolutional Neural Networks (CNN) are powerful and versatile tools for
semantic boundary detection [173, 174]. In particular, the U-net CNN is designed
to address the challenge of accurately segmenting objects in images by providing
a robust framework for both localization and segmentation [175]. It has a U-
shaped architecture consisting of a contracting path (encoder) an expansive path
(decoder). The contracting path captures the contextual information and extracts
high-level features from the input image through a series of convolutional and
pooling layers. This process gradually reduces the spatial dimensions of the
input. The expansive path, which is symmetric to the contracting path, aims
to upsample the encoded features to the original input resolution.

U-nets were initially designed for edge detection in low-resolution for 2D
brightfield and DIC images [175] has since been adapted to analyse 2D and 3D
multiplex confocal organoid images with improved accuracy compared to existing
intensity thresholding methods [176, 177]. PlantSeg employs a CNN with the U-
net architecture which is trained on a range of membrane-stained plant tissues
over different length scales in 2D and 3D. Recently, the trained CNNs in PlantSeg
have been shown to retain high accuracy for membrane detection in confocal
images of mammalian tissues with no additional retraining [178], demonstrating
applicability to organoid segmentation.

Before applying the CNN for membrane boundary prediction, we first remove
all background fluorescence noise by cropping around the tissue of interest. In
addition, we flatten all membrane markers into a single greyscale image to provide
the most complete coverage of each cell membrane in the tissue. Finally, the
images are then rescaled to match the training dataset.

The output of the CNN is a probability map of cell membranes masked
over the input image. These boundary probabilities are then used to guide cell
segmentation for semantic to instance object acquisition, i.e., assigning each cell
with a unique ID and associated properties. An example of the CNN output is

given in the pipeline summary Figure 3.5.
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3.1.2 Watershed and graph partitioning methods for cell
segmentation

Following boundary detection, PlantSeg also contains a variety of methods
for boundary-guided cell segmentation in 2D and 3D. For our application of
segmenting relatively noisy MECs from mammary organoids, we employ a
combination of watershed and hierarchical graph clustering methods. Namely,
a distance transform is applied to the boundary probability map that yields
potential cell centroids at the local maxima. These local maxima are then used
as initial seed locations for a watershed algorithm [179]. That is, boundary
probability map is viewed as a topographic surface where the intensity values
represent the elevation. Then filling the surface with water from the basins of the
map (initial seeds), pixels with the filled water regions as assigned to the same
instance object. Filling stops when large regions merge, i.e., the peaks of the
surface are submerged.

The watershed algorithms are calibrated to over-segment by allowing for
shallow minima through thresholding, potentially producing multiple instances
for the same cell. These instances will be later refined using boundary-guided
graph clustering methods. Critically, the watershed over-segmentation ensures
no cell is lost during the semantic-to-instance transformation process and has
been evidenced to provide increased accuracy when combined with graph-based
linkage filters [173].

The boundary-guided cell clustering of the watershed objects is performed
using the generalized framework for agglomerative clustering of signed graphs
procedure (GASP) [180]. Namely, watershed objects of the image are presented
using vertices and edges are drawn between adjacent components producing
a graph. The vertices are then clustered into the regions contained by the
boundaries of the cell membrane. Specifically, superpixellation is performed on
the watershed segmented objects to reduce the number of vertices of the region
graph such that any two adjacent watershed objects are connected with an edge.
Each edge is weighted by the mean boundary probability w, along the common
boundary of the two adjacent watershed objects.

The vertex pairs are then clustered based on the linkage criterion for edge
weights. That is, positive linkage is associated with vertex attraction and thus
are clustered, whereas negative linkage represents vertex repulsion. We apply the

averaged linkage criterion (denoted by HCC-avg in [180])

1
W=-—- > (2w - 1), (3.1)
2’EZ7‘7’ eeEi’j
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GASP

iteration

Figure 3.2: A schematic of a GASP vertex clustering iteration using the average
linkage weight criterion. Dashed lines presented instance regions produced by
over-segmented watershed methods. Gradient grey solid lines represent the
boundary probability map given by CNN output. Vertices correspond to each
region and edges are drawn between vertices if region boundaries are shared.
If the common boundary is aligned with the boundary probabilities, then edge
weights are negative, and are positive otherwise. Positively weighted connections
are combined into a single vertex, and then the process is repeated until only
negative weights are found.

where E; ; is the set of edges between the vertex clusters S; and S;. Intuitively,
if the boundary between two superpixellated objected lines on a membrane
boundary detected by the CNN, then the linkage between those objects will be
negative. After each pairwise clustering, linkage is recalculated and the process
is repeated until all clusters have a negative linkage. Figure 3.2 describes the
GASP clustering process and for further details on the GASP implementation,
see [180].

3.1.3 Identifying cell-types and constructing cell-cell
signalling graphs

In addition to direct membrane markers, if cells are stained with fluorescence
markers for basal or luminal phenotypes, an intensity thresholding method is
applied to classify the type of segmented cells. In the datasets used in this
study, basal and luminal cells are Keratinb (K5) and Kertain8 (K8) active as
in Figure 3.1. Therefore to delineate these cell types, the normalised sum of the
fluorescence markers is taken over each segmented cell and compared. To account
for different staining methods that produce plasma membrane-bound or cytosolic
fluorophores, the normalised sum can be globally scaled for each image stack.
Formally, let €., be the region of the image defined by the segmented cell,
C;. Define the cell-type marker intensity function I,k (x,y) which provides the
pixel value of the marker within the image, where the subscript mkr denotes the

Keratin biomarker. The locally normalised cell-type identifier is then given by
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Figure 3.3: A digram outlining the marching boundary approach for cell-type
dependent signalling graph construction. Luminal and basal cells are coloured
orange and blue, respectively.

Imkr (LL’, y)
o, Max (Lukr (2, 9))

€4

T = €mkr dxdy (3.2)
where €,,;, is the global scale to account for staining method. The cell-type, 7,

is specified by comparing the activation of the basal and luminal markers

(3.3)

Basal if Ty > T,
Ti = . .
Luminal otherwise.

To construct the cell-type dependent cell signaling graphs, which are used for
cell-fate pattern analysis, we use a membrane distance threshold. The vertices
v; of the graph, G, are given by the centroids of the segmented cell C;. Then
for all segmented cells C;, a ball of radius d, is centered on the boundary and is
traced over the perimeter. If any other cell is located within the ball, an edge
is drawn between them. As in our previous analysis of layer-dependent signal
polarity, edges drawn between cells of the same type (homotypic connections)
are scaled by w; > 0 and edges between cells of different types (heterotypic
connections) are scaled by wy > 0. This connectivity construction process can be
viewed as a boundary marching algorithm as depicted in Figure 3.3. Notably, the
connectivity distance threshold, d., presents the characteristic length scale of the
cell signalling mechanism such that d. ~ 3um represents juxtacrine singalling,
whereas d. ~ 15pum and d. ~ 30um correspond to short and long-range paracrine

signalling, respectively.

3.1.4 Local tissue curvature estimation

The local curvature of the boundary of 2D cross-sections of mammary organoids
is estimated through the circle fitting method, as described in [181]. Namely,

the segmented cells are binarised defining a singular segmentation for the
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Figure 3.4: A diagram outlining local tissue boundary curvature estimation. Red
points denote the positions of curvature estimation. The blue points are located
at distance £, of the red point along the boundary. A circle passing through all
three boundary points is constructed with centre given by the black point, with
radius r.. The magnitude of the curvature |s| at the red point is given by 1/r,,
and the sign of the curvature is dependent on whether the midpoint (grey) of the
blue points is inside or outside the boundary.

complete tissue where the boundary pixels are located using the imbinarize and
bwboundaries in the Image Analysis toolbox (Matlab 2021a). For each boundary
pixel zp;, two additional boundary pixels are selected at a distance %4, pixels,
Tpi+s,- A circle is then constructed, passing through all three points, x4 ;_s,, s,
and xy;45, providing a radius, r.. Critically, this circle is unique provided all
three points are not collinear [182], if these points are collinear, then we set k = 0
at xp;. The magnitude of the curvature at x;; is therefore |k| = 1/r., where the
sign of the curvature is determined by the position of the midpoint of x;;_5, and
Tp,it5, 1-€., whether the midpoint lies inside, or outside the boundary. Here, we
impose that midpoints within the boundary correspond to positive curvatures. A
summary of the local curvature estimation procedure is provided in Figure 3.4.
To couple local tissue deformations with cell signalling connectivity, we
associated the local curvature with the boundary vertices. That is, for any
segmented cell that lies on the boundary of the tissue, the average curvature along
the boundary cell edge is linked to the vertex representing that cell. As we only
consider bilayer connectivity structures, assigning only boundary vertices with a
morphological metric is sufficient to analyse how variations in tissue geometry

alters connectivity topology.
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3.1.5 Pipeline summary

A summary of the curvature-connectivty image analysis pipeline is provided in
Figure 3.5. Namely, using a combination of deep learning, watershed, graph
partition and thresholding methods, we produced a cell-type dependent weighted
cell signalling graph, where local connectivity can be classified by local tissue
curvature. Though we present and analyse 2D cross-sections of mammary
organoids in this chapter, this pipeline is seamlessly extendable to 3D organoids
provided confocal images are at a sufficiently high resolution, as demonstrated in

Appendix B.

Signal graph
construction

Preprocessing

Figure 3.5: An example segmentation of a mammary organoid using the
curvature-connectivity image analysis pipeline.

3.2 Initial insights into the curvature-connectivity
relationship from primary image data

We apply the connectivity-curvature image analysis pipeline to 2D cross-sections
of primary mammary organoids derived from transgenic mice (2-3 months)
carrying the genotype for mGFP K5 activation, kindly supplied by Dr Bethan
Lloyd-Lewis (University of Bristol). Organoids were additionally stained with
a cytosolic K8 marker for luminal phenotype, and nucleic marker, DAPI. The
confocal fluorescence images were acquired on an IX-71 inverted microscope
(Olympus, Essex, UK) with an ORCA-ER camera and SimplePCI software
(Hamamatsu Corporation, Hertfordshire, UK). For further details on methods
and materials for organoid culture and the imaging process see [16].

Following a manual annotation of a sample image generated by an expert
in organoid image analysis (Martina Bonassera, PhD candidate, ETH Ziirich),
validation of the pipeline for cell segmentation and cell-type classification

accuracy was performed. The accuracy of the cell segmentation was measured
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Manual Pipeline
segmentation segmentation

Figure 3.6: Curvature-connectivity pipeline validation of cell segmentation and
cell-type classification. Basal cells (K5 active) and luminal cells (K8 active) cells
are coloured blue and orange, respectively.

using the standard Jaccard index for automated S, and manually .S,,, segmented

pixel sets such that
|S. N Sinl

|Sa US|’

where J;,q = 1 and J;,q = 0, represent perfect and imperfect segmentations,

Jind = (3.4)

respectively [176]. Accuracy of the cell-type classification was conducted by
manually checking the correct cell-type has been identified with reference against
the K5 and K8 markers in the raw image.

Figure 3.6 shows the results of the pipeline validation for a single cross-section.
Namely, the Jaccard index, J;,q = 0.8672 and the pipeline identified 95.45%
cell-types correctly. The existence of artificial gaps between cell boundaries
within the manual segmentation decreases the Jaccard index and therefore we
propose the pipeline is adequate for preliminary investigations in the relationship
between tissue shape and local cell-cell connectivity. Future use of this pipeline in
more data intensive studies would required additional highly accurate annotated
validation samples to ensure fit-for-purpose, however, we note that we currently
have limited access to primary data.

The curvature-connectivity image analysis pipeline was then applied to five
2D cross-sections of primary mammary organoids, each increasing in size and
morphological complexity, denoted A-E in Figure 3.7. As further validation of
the pipeline cell-type classification, the proportion of basal and luminal cells in
all images analysis is consistent with existing experimental studies. That is,
luminal cells are typically the largest subpopulation, representing 50 —75% of the
total population [183]. Additionally, we observe that the organoids with more
irregular, branching morphologies have a increased luminal population, increasing
the likelihood of asymmetric cell-type dependent signal connectivity structures.

To this end, we explore the connectivity of the tissue boundary cells with
respect to homotypic and heterotypic neighbours, and local tissue curvature.

Assuming a contact-dependence for cell-cell signalling, which is associated with
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Figure 3.7: Curvature-connectivity analysis of 2D cross-sections of mammary
organoids. Organoids A-E are arranged with increasing volume and variance
in measured curvatures. Cell-type dependent connectivity graphs and tissue
boundary curvature are superimposed over the CNN detected cell boundaries.
Pie charts represent the proportions of cell-type detected. The heterotypic and
homotypic connectivity counts are shown for all cells along the outer boundary of
the organoid. Mean cell boundary curvature and heterotypic connectivity plots
are shown for the most frequent homotypic connectivity. Scale bar 50um.
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Notch-Delta interactions, we use a membrane connectivity distance of d. =
4pm.  As expected for 2D cross-sections of bilayer tissue, we found in all
organoids analysed, the most frequent number of homotypic connections among
the boundary cells is 2 (Figure 3.7). Subsequently, we focus on the heterotypic
boundary cell connectivity for those cells with only 2 homotypic connections,
indicated by the red boxes in the connectivity frequency plots in Figure 3.7.

Using local tissue curvature as a metric of morphological complexity, we
observe that increased variance of observed boundary curvatures correlates with
a wider range of heterotypic connectivities. Specifically, sample C presents a
developed bilayer in a spheroid structure and subsequently has a consistent
positive mean curvature, £y, ~ 0.02540.0062 (SD) and 2 heterotypic neighbours
in 64% of the boundary cells, with only 1 heterotypic neighbour being the second
most frequent (22% of boundary cells). In contrast, organoids D and E express
complex branch-like morphologies, with k4, € [—0.05,0.05], we record a wider
distribution of heterotypic connectivities among the boundary cells, which is
skewed towards increased heterotypic with respect to homotypic connections,
indicating the existence of curvature dependent cell-type dependent connectivity
asymmetries. In addition, the luminal cell-type proportions in organoids D and
E are only slightly larger than the smaller spheroid organoids A and B, yet
the heterotypic distributions are significantly different, further supporting the
theory that local tissue morphology alters cell-type neighbourhood composition
in mammary organoids.

Though organoids A, B, C and E provide preliminary indication of a negative
relationship between local curvature and heterotypic boundary connections,
limited data prevents reliable predictions of local cell connectivity from
macroscopic tissue measurements. Yet, after a transient period, it has been
demonstrated that kidney epithelial cells preserve their volume after rapid
changes to local boundary curvature [184], and thus variations in tissue curvature
dominantly alters cell surface areas [51]. Subsequently, from a geometric and
volume-preserving perspective, decreasing the local boundary curvature, bending
the tissue inward should increase the basal cell contact area at the basal-luminal
interface and therefore heterotypic connections with respect to the boundary cells

in the mammary organoid.

3.3 In silico curvature-connectivity data analysis

To test the negative curvature-connectivity hypothesis in MECs, we use agent-
based modelling to simulate growing mammary tissue in domains of varying

morphological complexity to generate synthetic connectivity data. Employing the
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Vertex Model (VM) framework for growing bilayer tissues introduced in Section
2.3.3, we mimic existing in vitro “stamping” experiments used to analyse the
influence of constrained tissue geometry on cellular behaviour [31, 185], thereby
applying the same methods of curvature-connectivity analysis as conducted on
the primary images, to generate sufficient data for the examination of local

connectivity prediction from tissue curvature.

3.3.1 VM calibration for curvature-connectivity data
collection

To measure the effect of prescribed tissue geometry on cellular behaviour,
methods of “stamping” controlled shapes into collagen gell for tissue growth
domains have been designed for in vitro studies [185]. In particular, the same
experimental design was used to demonstrate the curvature-dependent branch
elongation in mammary cultures [31], where epithelial fragments were seeded
within the collagen wells with prescribed geometries and grown to form tubules in
the shape of the prescribed well. Therefore, we reproduce this experimental design
in silico using the VM framework where we seed an initial small bilayer of cells
and allow the tissue to grow to the geometry of a fixed boundary, representing the
collagen well. Thereby, measuring local tissue curvature and cell-type dependent
neighbourhood compositions along the boundary of the tissue.

We use the same VM for growing bilayer domains as described in Section
2.3.3, with the parameters values provided in Table 2.2, however, here we suppress
the intercellular Notch signalling as we are interested in morphology dependent
epithelial packing. The tissue domain boundaries are defined by the following

parametric curve designed to mimic simple branching morphologies,

zy (0)| _ |(ro + rpsin (wf)) cos (0)
L/b (GJ - {(rowb sin (wh)) sin () (3:5)

for 6 € (0,2n], where ry represents the control spheroid geometry, and, r,
and w determine branch amplitude and frequency. In particular, r, = 0
generates a simple circle of radius rg, in which we set rq = 39.6um similar to
circular organoid C in Figure 3.7. Fixing w = 4, and increasing r, yields a
continuous transformation from spheroid to branch-like tissue boundaries. For
our simulations, we consider four fixed boundaries, denoted B1-B4, corresponding
to r, = 0,3.96,19.01, 26.93um, respectively, as shown in Figure 3.8. To ensure
consistency between our in vitro and in silico data analysis, boundary curvatures
are calculated using the same method as described in Section 3.1.4. Setting

luminal area Ay = 1 as in Section 2.3.3, then we have the characteristic length
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Figure 3.8: Fixed boundaries used in VM simulations for synthetic connectivity-
curvature data generation.

1L ~ 15.84um representing the cell diameter used for all VM simulation as
estimated from organoid C.

Each boundary cell is associated with a mean curvature rq,, which is
calculated by the average curvature along the boundary edges of the cell. In
the VM simulations, cells are said to be neighbours if they share a common edge,
i.e., adopting the contact-based connectivity considering in our in vitro analysis.
Simulations are initiated in a bilayer ring of boundary (basal) and non-boundary
(luminal) cell-types as shown in Figure 2.12, and were run until each boundary
cell was in contact with the prescribed boundary. Simulations were repeated ten
times for each boundary, and local boundary curvature and connectivity data was

measured at the final timestep.

3.3.2 Generating morphology and cell-type dependent
connectivity regimes

Figure 3.9 provides a summary of the curvature-connectivity data produced from
all fixed boundary simulations. As B1 represents our control boundary and was
calibrated with the same cross-sectional area as organoid C in Figure 3.7, we see
that our n wvitro and in silico boundary connectivity is consistent. That is, the
most frequent number non-boundary neighbours is 2, forming 66.3% of the total
observations, similar to the 64% observed in organoid C. Inline with connectivity
distribution observed in organoid C, we found no cells with over 3 non-boundary
neighbours, further supporting the comparability of our wn vitro and in silico
analysis.

Increasing the tissue boundary complexity induces a wider distribution of non-
boundary connections, specifically, observations of 4 non-boundary neighbours
became more frequent in the branch-like geometries (B3 and B4), consistent with

organoid E in Figure 3.7. However, these increased heterotypic connections are
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Figure 3.9: Synthetic connectivity-curvature boundary cells data. (Top) Example
simulations for each fixed tissue boundary B1-B4 are shown at the final time step,
where boundary cells are coloured by non-boundary neighbours. The boundary
edge of the boundary cells are coloured by the mean local tissue curvature.
(Middle) Violin plots showing the distributions of mean boundary curvature for
each non-boundary neighbours in all simulations (n = 10) for each fixed boundary.
(Bottom) Summary distributions of the proportion of non-boundary neighbours
over all simulations in each of the tissue boundary domains.

still the least common with respect to the connectivities observed in the simple
geometries (B1 and B2). In addition, the increased heterotypic connections (3 and
4 non-boundary neighbours) are correlated with negative local tissue boundary
curvature, which are located at the base of the branches, providing an explanation
of their infrequency.

Examining the range of boundaries, as initially proposed in our @n vitro
analysis, we find a negative relationship between local boundary curvature and
non-boundary neighbours, as predicted by the volume-preservation hypothesis
(Middle row of Figure 3.9). Namely, in the most varied tissue boundary
we investigated (B4), at the branch tips associated with the largest positive
curvature, the basal (boundary) cells have a compressed length along their

apical surface, reducing their potential contact region with the luminal cells
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(non-boundary). The opposite effect occurs at the base between two branches
(negative curvature), where basal cells express an elongated contact surface with
the luminal cells, and therefore increasing their likelihood of increased heterotypic
connectivity. These observations provide further indication of the predictive
power of macroscopic tissue metrics such as curvature on the microscopic
connectivity features.

To further understand the relationship between local tissue geometry and
cell-cell connectivity, we next examine the pair-wise connectivity within the B4
boundary simulations, i.e., the inclusion of the non-boundary cells in direct
contact with the boundary in our connectivity analysis. Namely, let no 1,,n2 1, €
N be the number of heterotypic connections for a boundary and non-boundary
cell, respectively, in each pair-wise connection along the boundary cells. Figure
3.10a highlights that the sign of the local boundary curvature provides predictive
insight into the pair-wise connectivity asymmetries between basal and luminal
cells. We observe that negative curvatures are associated with basal heterotypic
dominated pair-wise connectivities (ngr, > no,), whereas increased positive
curvatures, like those observed in the tip regions have luminal heterotypic
dominated pair-wise connectivities (ns r, > no.,). In addition, we find that equal
numbers of heterotypic connectivity between basal and luminal cells are located
in low curvature regions of the organoid.

The delineation of the heterotypic pair-wise connectivity with respect to local
boundary curvature enables the extrapolation of Figure 3.10a into characteristic
connectivity regimes in different regions of mammary organoids as shown in
Figure 3.10b. Critically, this allows for the approximation of local connectivity
structures within different morphological regions of the organoid. Using these
local structures, we can apply the cell-fate pattern analysis methods outlined in
Chapter 2 to explore the role of local tissue geometry in polarity-driven cell-fate

control.

3.4 Cell-fate analysis for local connectivity
variations

Motivated by the variations in cell-cell connectivity for luminal and basal cells
in local regions of mammary organoids, we explore the role of polarity in
juxtracrine signalling-dependent bilayer cell-fate determination with respect to
changes in local neighbourhood compositions. We extend the single-input-single-
output (SISO) analysis conducted in Chapter 2 to include layer-wise semi-regular
bilayer graph topologies in which we derive existence and stability conditions

for laminar patterns for a generic lateral-inhibition model. Subsequently, we
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Figure 3.10: Characteristic connection regimes for different morphological regions
a 2D cross-section of a mammary organoid derived from synthetic data. (a) Pair-
wise cross-layer connectivities of boundary cells are extracted from the B4 VM
simulations (n=247). Each connectivity pair is jittered near the true integer value
to show the frequency of pair observation. Points are coloured by mean boundary
tissue curvature of the boundary cell in the connected pair. The surrounding
connectivity bins are coloured by the average curvature observed within the bin.
(b) Approximated connectivity regimes generated from (a) and using curvature
as a morphological metric for organoid region. Example bilayer graphs are given
for selected cross-layer connectivities.

assess the applicability of polarity as a pattern control mechanism for various
characteristic regions of mammary organoids using the classical Notch-Delta

kinetics as previously studied in Section 2.3 for regular domains.

3.4.1 An interconnected dynamical system for semi-
regular bilayer graphs

Consider the generic SISO interconnected dynamical system as defined in Section
2.1.4, in which we briefly reintroduce in generality to accommodate semi-regular
connectivity graphs. Let N € N be the total number of cells in the interconnected
dynamical system then denote x; = [z;1, ..., xm]T € X C R, the concentration
of the intracellular proteins in cell 7 at time ¢, for ¢ € {1,...,A'}. Denote the
input and output signals for cell i by u; € U C R5¢ and y; € Y C R>(. Then the

interconnected SISO systems for protein evolution can be described by

dgi = f (mi’ui)a
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Figure 3.11: A representative layer-wise semi-regular bilayer graph, G. Vertices
are coloured by layer such that vertices in layer 1 and layer 2 are blue and orange,
respectively. The layer-wise edge weight structure is shown such that adjacent
vertices within the same layer and opposing layers are scaled by w; and ws,
respectively. All vertices within the same layer have an identical number of same
layer and cross layer connections generating the semi-regular edge structure.

where x; is the derivative of @; with respect to time. The function f : X x U —
X defines the intracellular protein interactions, and h : X — Y describes the
conversion from intracellular protein to output signal. We assume that both
f(-) and h(-) are C* everywhere in their domains. The input-output transfer
function T : U — Y describes the effect of variations to input signals on output
signals, summarising the behaviour of the intracellular dynamics. As in Chapter
2, we assume that T (+) is bounded and sufficiently smooth, i.e. C? everywhere,
conforming to the properties of modelling intracellular protein dynamics [117].
Critically, for lateral-inhibition and lateral-induction cell-cell interactions, 7" (-) is
characteristically decreasing and increasing, respectively.

To investigate cell-fate patterning in the mammary organoids using templating
methods, we assume that each cell in the SISO system (3.6) is coupled by a bilayer
layer-wise semi-regular graph, where cells are represented as vertices and an edge
is drawn between two vertices if they are signalling to each other. Explicitly,
each cell in the same layer has the same number of intralayer and interlayer
connections, in addition to identical edge structure, as shown in Figure (3.11).
Denote W € RJZVOXN the weighted adjacency matrix associated with the semi-
regular cell-cell communication graph, G = G (V| E), for the V and E the vertex
and edge sets defining the graph. Adhering to the well-mixed conditions of generic
lateral-inhibition models [87, 124, 125], we assume that W is row-stochastic such
that >, (W),; = 1 for all i. We impose that the vertices of the G are indexed
layer-wise such that Ly = {v1,...,v1,|} and Ly = {v|,41,...,un} as depicted in
Figure (3.11).

To represent signal polarity, connected vertices within the same layer (v;,v; €
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Ly or Ly and v; ~ v;) have edge weight wy € R-(. Similarly, vertices connected
from opposing layers (v; € Ly, v; € Lo and v; ~ v;) have edge weight w, € Ryy.
Denote the row-normalised counterparts of wy and wy by w; and w,, respectively,
then W has the block form

WLLl ‘/"72,L1
W= |,~ \T —~ (3.7)

(War,) Wi,
where ‘//‘\/1, Ly, € ]RL_%'X‘L“ contains all intracellular connections that are scaled by
wy for the vertices in L;. Similarly, ﬁ\/l, Lys € R'ZL(? XIL2l contains all intracellular
connections that are scaled by w; for the vertices in L,. The matrix WZ,LI €
R'ZL(}MLQ' denotes the interlayer connections with respect to the L; vertices where
connection is each scaled by w,;. Owing to the undirected edge connections, the
interlayer connections with respective to Ly vertices can be represented as the

transpose of WZLI € R‘ZL(}leLQ'.

Following the graphical description of cell-cell signalling, the output signals,

y;, are transformed to input signals u; by the relation,
u=Wy, (3.8)

where u = [uy, ...un|” and y = [y1, ...yn]?. Subsequently, the semi-regular SISO
system (3.6) is a closed-loop system with no interactions from external sources,
i.e., extracellular matrix or surrounding organoids, discussed further in Section
3.6.

Leveraging the layer-wise semi-regular structure of the cell signalling graphs
G, we apply the laminar pattern templating methods that were introduced in
Chapter 2, to derive analytic conditions on laminar pattern existence and stability
with respect to signal polarity and variations in cross-layer connections. An
alternative perspective of the pattern templating methods for spatial dimension
reduction is the construction of equivalence classes where vertices are equivalent if
they converge to the same pattern state. For laminar cell-fate patterning, vertices
are said to be equivalent if they are contained within the same layer, L, or L.
As we consider bilayer geometries, this produces only two equivalence classes of
representative vertices from each layer, generating our spatially reduced quotient
graphs as stated in Definition 2.1.1.

In the case of layer-wise semi-regular bilayers, the topological quotient graph
structures are identical to those considered in Chapter 2 (Figure 2.6a), however,
the respective polarity edge weights have a different form. Namely, for the layer-
wise equitable partition 7o, the quotient graph, G,, has the reduced weighted

adjacency matrix

(3.9)

= a 1—a
W:[l—b b ]
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where

niL nir
a= ! and b= 2
N1,0, W1 + No 1, Wo N1,L, W1 + No 1, Wo

for ny 1, and ny 1, the number of same-layer connections for any given vertex in

(3.10)

layers 1 and 2, respectively. Similarly, ny ,, and ng 1, define the number of cross-
layer connections for any vertex, with respect to layers 1 and 2. For example,
in Figure 3.11, ny 1, = ni, = 2, nar, = 1 and nyr, = 3. This formulation
allows for differing edge structures between the layers of cells, whilst preserving
the row-stochasticity of the weight averaging of signals in a low-dimensional
representation.

We have previously studied the cases of symmetric bilayer domains in which we
concluded that signal polarisation may weaken if cross-layer connections increase
to maintain laminar patterning, as demonstrated in Chapter 2. By relaxing the
regularity constraints on the connectivity graphs, we further this investigation by
focusing on the signal polarity required to induce laminar patterning in bilayer

tissues with locally varying complex morphology, as observed in Figure 3.9.

3.4.1.1 A focus on cross-layer connectivity and polarity for laminar
pattern existence with lateral-inhibition

Applying Theorem 2.2.1 for laminar pattern existence to general quotient
layer-wise semi-regular graphs, G,,, we generate necessary conditions for the
convergence of laminar patterns in our associated large-scale SISO systems.
Specifically, the following statement provides an explicit relationship between the
signal graph topology and polarity weights which are required for the instability
of the homogeneous steady state (HSS) generating the asymptotic convergence

to contrasting states in the quotient space.

Theorem 3.4.1. Let G be an undirected, layer-wise semi-reqular bilayer graph
and let o be the equitable partition that generates the laminar pattern quotient
graph, Gr,, composed of two representative vertices of L and Ly. Denote W
the associated reduced weighted adjacency matriz (3.9) for G.,. Assume that the
mput-output transfer function, T : U — Y, is positive, bounded and decreasing,

then the reduced SISO system converges to contrasting states if

2
—(nl,Ll M2, Lo +N1,LyM2 Ly )+\/(n1,L1 N2, L, +n1,L2n2,L2) +4(|T" (u*)|2=1)n1, 1, 72,0, 71,L9M2, Ly
2(|T" (u*)|[+1)n1, Ly n1, Ly )

(3.11)

wy
w2<

for u* the homogeneous input signal steady state.

Proof. As T () is sufficiently smooth (C?), bounded, and decreasing, then there
exists a homogeneous input signal state, u* which satisfies the homogeneous input-

output relation

[w*, u* )t = WI[T (u*), T (u*)]", (3.12)
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by Lemma 2 in [186]. Subsequently, the application of Theorem 2.1.2 to our
reduced SISO system (3.6) at the HSS generates the following inequality for the

convergence of contrasting states in the quotient graph,

min (Spec (W)) |T" (u*)| < —1. (3.13)
By direct computation, Spec (W) = {1,a+ b — 1}, and therefore as w;y,ws > 0
and G is a semi-regular, connected bilayer graph, we have a,b > 0. Consequently,

1L<|T" (u")|(1—a—0b), (3.14)

which we use to isolate the polarity coefficients w; and wsy from the connectivity
parameters of G,,. Rearranging inequality (3.14) after substitution of a,b using

equation (3.10), we have that

1
wy < M, + ™, L2 ) S (3.15)

N1, W1+ Nop,We My L, W1 + N 1, W 7" (u) |

Establishing the positive common denominator in for the lower bound of

inequality (3.15), we next collect terms of w,

w? (201, 1,n1.1,) + w1ws (N1,1, N2 1, + N1.1,M0.1,)

1
< <1 - |T’(u)|> (w (n1,z,n1,1,) + wiws (N,1,n2, 1, + N11aN2,L,) + WiN2 1MoL, )
(3.16)

and so we obtain a quadratic for ws, which has the explicit form

(n1,zam,z, (177 (W) [P+ 1)) wi + ws (1,1, 12,0, + 12, 0,00,1,) W1+ wing,mar, (1= |17 (w¥) [) < 0.

(3.17)
Using inequality (3.17), we solve for the values of w; that satisfy the inequality.
That is,

p)
*(nl,L1n2,12+n2,L1nl,L2)Jr\/(nl,Ll712,L2+n2,L1n1,L2) +4(|T' (u*)|2=1)n1,1, M2, 1., 71, Ly M2, Lo
wy < W2,

2(|77 (w*)[+1)n1, 0, n1, L,
(3.18)
where the positive solution is obtained as w; > 0 by definition. Dividing through

by wy > 0 achieves the desired inequality (3.11). O]

Remark 3.4.1. Necessary conditions for the semi-reqular pattern existence
inequality (3.11) to be satisfied are:

(i) |T" (w)| > 1;

(ii) min (Spec (W)) < 0.
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The existence condition (i) corresponds to the necessary requirements of the
intracellular kinetics for the instability of the HSS independent of spatial
connectivity. We have shown in Section 2.3.2 that this property to be equivalent to
the classical linear stability analysis conducted for Notch-Delta lateral-inhibition
kinetics in [87]. Whereas (ii) implies that a + b < 1, which highlights that
dominant cross-layer signalling is required for HSS instability with respect to

laminar patterning.

Theorem 3.4.1 provides a bound on the signal polarity ratio w;/wy for the
existence of laminar patterning that is dependent on the signal graph connectivity
and intracellular kinetics. If the upper bound of inequality (3.11) decreases,
wy /wy must also decrease for the HSS instability to be driven by the spatial
eigenvalue associated with laminar patterning. Critically, this induces signalling
anisotropy as wj;/ws — 0 corresponds to signalling activity only at the basal-
luminal interface. In sections 3.2 and 3.3 we have observed that cross-layer cell-cell
connectivity regimes alter characteristically in local morphologies of the bilayer
tissue of mammary organoids, as summarised in Figure 3.10b. Therefore, the
following statement highlights how the polarity restrictions can be relaxed with

respect to increasing cross-layer connectivity.

Corollary 3.4.1. The upper bound of the laminar pattern existence inequality

(5.11) is strictly increasing with respect to cross-layer connectivity.

Proof. Define E : N> — Rs( where

E (nap,,nor,) = \/(7Z1,L1n2,L2 + 711.L2n2,L2)2 +4 (7" (u*) |2 = 1) ny L, 2,0, 11,0020, — (M1,0,M2.0, + N1,0,M0, L, )

(3.19)
is the cross-layer connectivity component of the upper bound inequality (3.11)
assuming that the same-layer, n; , and n 1,, connections remain constant. The

monotonicity E (na,,ne.,) follows directly from the computation of VE where

OE  _ n TL1,L17’L2,L2+TL1,L27’L2,L1+2(|T’(u*)|2—1)7’L1’L1n2’L2 1
Ona,r, Ll \/(n ng Lo +N1 LN )2+4(\T’(u*)|2—1)n N2 LN, LoMN ’
1,L1M2,Ly 711, L5M2 Ly 1,L1M2,L1M1,LoM2, Ly
(3.20)
and similarly,
OE  __ nLL 1L, Ly +1, Ly, Ly 21T (W) 2=1)n1 1yma 1, 1
- L 2 '
Ona, 1, \/(nl,L1n2,L2+"1,L2”27L2) +4(|T’(u*)|2—1)7’l1,L1TL2,L1nl,L2n2,L2
(3.21)
or the monotonicity of the gradient, we require tha
For th tonicity of the gradient, quire that
2
N1 n2L, + nrane,r, + 2 (177 (W) [* = 1) nypina r, 1>
)
2
\/(nl,Llnz,Lg +n1,,m2.0,)" + 4 (T (u*) [2 = 1) 1 £y n2,0, 70,0572, 1
(3.22)
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oF

for
0 Ona 1,

> 0, and

Ny 0,MN2 L,y + Ny ,M2 1, + 2 (’T’ (U*) |2 — 1) Ny1,0,M2. 1,

—1>0,
\/(nl,LanLg + TL1,L2TL2,L2)2 +4(|T" (w*) |2 = 1) ny g, no.0, M1 L,M2.L,
.23)
for aniEL > 0. Rearrangement and squaring both side of inequality (3.22)
s b2
simplifies to
(201, 1,0, T () ) (IT" (u*) |2 = 1) > 0. (3.24)
Inequality (3.24) holds as |T” (u*)|* > 1 as required for HSS instability. Thus,
OF 0
T L > U.
b1

Using the same argument for inequality (3.23), we have

(201 1,m0,0, | T (u*) ) (|T" (w*) |2 = 1) > 0, (3.25)

that yields

FE (na.1,,na.1,) with respect to partial ordering in N2. ]

oE
8’”2’[/2

> (0. Therefore, VE > 0 which guarantees the monotonicity of

For the existence of laminar patterning in the large-scale 10 system (3.6), we
have demonstrated that for fixed intralayer connections, increasing the cross-layer
connections relaxes the constraints on the necessary amounts of signal polarity
for the degradation of cell state homogeneity, in agreement the exploration
investigations of regular signalling structures in Chapter 2. Critically, this
relation is independent of the precise lateral-inhibition (competitive) kinetics,
highlighting how local tissue and cellular morphology can influence mammary
cell-fate commitment from a simple connectivity perspective.

As we have illustrated an inverse relationship between local tissue curvature
and cross-layer connectivity using a combination of primary and synthetic data
(Figure 3.10b), the symmetry of monotonicity following Corollary 3.4.1 with
respect to ng 1, and ngy 1, implies that both the mammary branch fold and branch
tip regions tissue have a similar capacity to induce laminar cell-fate patterns. For
example, using our synthetic 2D data, regions with the largest local boundary
curvature, ngr, ~ 1 and ngr, ~ 3, whereas regions with negative boundary
curvature, we have nyr, ~ 3 and nyy, ~ 1. Yet, mammary epithelial cells
present different phenotypic behaviours within different regions of the mammary
organoid. Specifically, cells near the tip of an elongating branch are more stem-
like, with increased proliferation and migration to extend the tissue into the
extracellular matrix [131]. While the cells that form ducts and the base of a
branch are observed to be more committed to the functional myoepithelial and

luminal phenotypes, with low migration and decreased proliferation [170].
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The cell-fate pattern existence analysis using Theorem 3.4.1 is insufficient to
distinguish between these regions owing to the symmetry of the undirected graphs
used to describe the cell-cell signalling, and consequently provides no insight into
the intercellular mechanisms that govern the distinct behaviors of the cells in these
regions. Instead, we use a combination of signal stability and pattern templating
methods to elucidate the potential of polarity to control cell-fate plasticity with

cells expressing opposing cell-fate biomarkers, i.e. different output signal states,

Yi-

3.4.2 The emergence of cell-fate conductor cells for the
stability of laminar patterns

Before stating the signal stability conditions for semi-regular bilayer graphs, we
first briefly review the gain of a closed and interconnected dynamical system
with respect to biological tissues. The gain of a cell is the absolute ratio of
input, u;, and output, y; biochemical signals, and provides a measure of how the
intracellular kinetics effect the transformation from input to output. Employing
the Lo norm, || - [|2, to obtain the magnitude of both input and output signals,
we acquire a Lo-gain, 7;, for each cell in our tissue, i € {1,..., N}, as defined in
Definition 2.1.4. Let I' = diag (71, ..., 7wv) be a diagonal matrix containing the
gain for each cell. Applying the quotient mapping to G using the laminar pattern
template partition, 7y, we impose cells within the same later behave identically.
Consequently, cells within the same layer will have identical Lo-gains, ; = 7,
for all v;,v; € Ly or Ly. Therefore, when investigating the stability of laminar
patterning in the quotient IO system (3.6), define T’ = diag (7,,7,), where 7, = ~;
for all v; € Ly and 7, = ~; for all v; € Ly. Applying the layer-wise semi-regular
graph structures to the Lo-gain stability criterion (see Theorem 2.1.3) we generate

the following statement for the stability of laminar patterns.

Theorem 3.4.2. Let G be an undirected, layer-wise semi-reqular bilayer graph
and let o be the equitable partition that generates the laminar pattern quotient
graph, G,, composed of two representative vertices of Ly and Ly. Denote W the
associated reduced weighted adjacency matriz (3.9) for G.,. Let 7, and 7, be the
Lo-gains associated with the heterogeneous input signal states, uj and ul, for each

representative cell in G,,. Then the laminar pattern state is locally asymptotically

stable if

wr _ nypnag, (V1 — 1) + napanar, (2 — 1)
wa 2na,,m1,L, (T —1) (72 — 1)

\/(”LLW&,LZ (T = 1)+ nuponar, (Fo— 1)) +4F, — 1) T, — 1) F172 — 1) nazyno,n, i an2.1,
2n4,0,M1,L, (71 - 1) (72 - 1) '

(3.26)
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for 71,7, # 1. However, if y; =1 and 7, < 1, or 7, =1 and 7, < 1, then the

laminar pattern state is locally asymptotically stable.

Proof. Invoking Theorem 2.1.3, we have that the quotient SISO system (3.6) has

locally asymptotically stable heterogeneous pattern states if
p(WT) <1, (3.27)
where p (+) denotes the spectral radius and

W T a7 (1—a)7,
WT = _ _ . 3.28
A=0)73  07 (3:28)
As ¥,,7, > 0, then W T is a non-negative and irreducible matrix. Therefore, by
Perron-Frobinius theorem for non-negative and irreducible matrices (Theorem
3.1 in [187]), we have that p (WT) = max (Spec(WT)). Computing the
eigenvalues of W T yields

_ 1 - - — — —

p(WT) =3 (a% + b7, + \/(cm +b7,)" —4(a+b—1) vm) - (329)
Applying the stability condition inequality (3.27), the expression can be reduced
to

ayy + 7, =1 <(a+b—1)77, (3.30)

as p (Wf) is a positive real eigenvalue and therefore taking roots preserves
the inequality. Reintroducing the a and b into inequality (3.30) using their
connectivity-polarity definition in equation (3.10) and rearranging yields the

following quadratic in the polarity coefficients

ny,m,L, (V1 — 1) (1 4+ 7o) wi +wa (n,0,n0,0, (71 — 1) + n1,0,m0.0, (T2 — 1)) w1 + ng,0,79,1,7,7aw5 < 0

(3.31)
which can be solved for wy. If (7; —1) (5, —1) < 0 then the lower bound of
inequality (3.31) is a negative parabola with respect to wj, and therefore the
largest root to obtain inequality (3.26). Else if (7, —1)(3; —1) > 0, then
inequality (3.31) is a positive parabola with respect to w; and therefore the
smallest root is taken to obtain inequality (3.26), where both conditions conform
with min (Spec (W)) < 0 which is necessary for the existence of laminar patterns.
However, without loss of generality, if 7, = 1. Then inequality (3.30) simplifies
to 0 < nor,we (1 —7,) which is only valid for 7, < 1. O

Using the quotient representation of the signalling connectivity, the Lo-gain
laminar pattern stability condition given by Theorem 3.4.2 enables the assessment
of the efficacy of signal polarisation for plasticity control in local regions of

mammary organoids. For the general case where 7,7, # 0, then inequality
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(3.26) reveals the asymmetries in pattern stability with respect to changes in
the cross-layer connectivities of signalling graph G. Namely, for fixed same-
layer connections, nq 1 and nq ro, then ny 11 scales the influence of 7, and ng 1o
scales 7, for the amount of signal anisotropy that is sufficient to stabilise cell-fate
determinants.

To elucidate the specific role of the cross-layer connectivities in the stability
of laminar patterns, consider the function F' : N> — R that defines the upper
bound of the polarity-dependent stability inequality (3.26) such that

n2,25 (=D +n2,0, 2= =/ (m2,1, (h=D+n2.0, (7-1)) “+4(5, =D (=) (7172~ Dna,z, na,
F (n27L] , n27L2) _ 2,L5 71 2,L1\V2 \/< 2,Lg 12n1(71i111)1(72271) ) 1 2 172 2,L1M2,Ly
(3.32)

in the case of identical same-layer connectivities ny = ny, = n1r,. To ensure

that F' (no,r,,n2,1,) € R we assume that 7,7, <1 and (7, — 1) (7, — 1) <0, i.e.,
we assume the stability of the laminar pattern state using the Small Gain theorem
(Theorem 2.1.1). Without loss of generality, 7, > 7, as the representative cells
converge to contrasting states and therefore the signals emanating from vertex v
will have a larger effect on the system dynamics compared to v,. Critically, we
observe that the Small Gain assumptions guarantee a pattern control asymmetry

with respect to the connectivity of tissue such that

OF B oOF
8n27L1 8n2,L2

> 0, (3.33)

as numerically verified with examples given in Figure 3.12a.
If we place further mild and sufficient restrictions on the gains of the quotient
system, we guarantee inequality (3.33). From direct computation, we have that

oF  OF -7,
Mo, Onar, 47 —1)(F—1)
(22, Ty =) +n20, T2 = D)) T = 7))+ 20 = 1) G — 1) (7172 — 1) (N2, — n2.1,)
4 =1 T = 1) (a0 (Fy = 1) 4oy By = D+ 40— 1) (o — 1) (7% — D mapama,
(3.34)
Following algebraic manipulation, inequality (3.33) is satisfied if and only if

M- F—1) @7 —1) (ng,Ll - ng,LQ)
+ ((71 - 72) (1 +7 — 71) -2 (71 - 1) (72 - 1) (7172 - 1)) N2,1,M2,Ly
+ (7= ns, — (7 —ng g, <0 (3.35)

As 0 < (7, — 1) (7,75 — 1) < 1 from the Small Gain assumption, then we have
that

Mm=-D@F-Dm7-1) <G -1, (3.36)
and thus the ng 1, terms of inequality (3.35) are negative. In addition, by solving

the quadratic polynomials of 7, from the coefficients of the n% r, and nar,na 1,
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(b) Asymmetry in cross-layer influence of laminar pattern stability.

Figure 3.12: The dependence of polarity-driven laminar pattern stability on cross-
layer connectivity. (a) A sample of regions of the quotient Lo-gain space is shown
for the existence of asymmetric cross-layer connectivities for laminar pattern
stability such that inequality (3.33) is satisfied. The Small Gain assumptions
F17, < land (7, — 1) (5, — 1) < 0 are a subset of the asymmetric connectivity
stability regions in all cross-layer connectivities considered. (b) Contour plots
demonstrating the asymmetry in cross-layer connections in the upper bound of
the polarity ratio w;/ws by the stability inequality (3.26) for 7, > 1, 7, < 1,
and 7,7, < 1. The same-layer connectivities were set to ny, = nir, = 2 for all
plots.
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terms of inequality (3.35), then if 7, € (3 —2V/2, 1/2), we have

1+ =) <0 and 7 -1)F—-1)FF—1)<F—1) (3.37)

which ensures that the ng,Ll and ng r,no, terms of (3.35) are also negative.
Hence we have that the asymmetric stability inequality (3.33) is satisfied given a
sufficient range of values of 7,.

The combination of analytic and numerical methods of examining the semi-
regular polarity-dependent stability inequality (3.26) reveals that there must
exist a dominant layer of cells controlling the stability of the laminar patterns.
Specifically, the cross-layer connectivity of the vertex with the largest gain can
have a substantially greater influence over the amount of polarity required to
stablise the patterns when compared to the lower gain vertex, and critically, this
discrepancy increases as the difference in gains increases, as shown in Figure 3.12b.
Therefore, Theorem 3.4.2 suggests that if a lateral-inhibition mechanism governs
cell-fate commitment in mammary epithelial cells, then there exists morphological
regions of a branching organoid that are more susceptible to polarity-driven
plasticity events, i.e. loss of laminar pattern stability, purely from the local
geometry of the tissue. Specifically, this suggests the existence of a layer of cells
that coordinate the cell-fate behaviour of the opposing layer, and without an
audience (cross-layer connections) these cell-fate instructions are insufficient to
maintain a distinct phenotypic bilayer of cells.

Throughout our analysis of the polarity-dependent stability inequality (3.26),
we have assumed that the Ly-gains of the quotient SISO system (3.6) are
independent of connectivity and polarity. At steady state, the Lo-gains of a
system are equivalent to the derivative of the transfer function, 7, = |7" (u]) |
for © = 1,2, as discussion in Section 2.1.4. Therefore, in the following section
we examine the inclusion of the non-monotonic £,-gains on the signal anisotropy
required to stablise laminar patterns by introducing explicit lateral-inhibition

kinetics.

3.5 Further support for polarity-dependent
cell-fate control in developing mammary
organoids

We revisit the lateral-inhibition dynamics of the Notch1-DIl1 kinetics for cell-fate
commitment in mammary organoids [48], where we now allow for semi-regular
connectivity structures to explore the impact cellular and tissue morphology,

extending the regular graph pattern analysis conducted in Section 2.3.2. Firstly,
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we redefine the Notch1-DIl1 IO model for cell-fate determination, then applying
the existence and stability conditions derived in Section 3.4, we highlight specific
morphological regions of mammary organoids that are more susceptible to
plasticity event from a polarity control perspective.

Consider the Notch Delta model (NDM) derived in [87] describing core
features of lateral-inhibition dynamics as previously defined in Section 2.1.1.
Denote the level of active intracellular Notchl and DII1 in cell ¢ by N; and D;,
respectively. Then applying the IO representation to the NDM, let ; = [N;, D;]7,
such that the IO system (3.6) has the form

T

. u;

N; = ot — 1N Ni,

. 1

D; = TN ppDi,

yi = D, (3.38)

for r,s > 1 and o, 8, un, up > 0. The Delta signal outputs are transformed to

input signals by the linear relation
u=WD, (3.39)

where uw = [uy,...,un]?, D = [Dy,...,Dy] and W is the weighted adjacency
matrix associated with a layer-wise semi-regular graph G with block structure as
given in equation (3.7). Applying the laminar pattern template to G using the
equitable partition 7y, we generate the quotient NDM 10 system such that we
consider only two representative cells, i € {1,2} (N = 2), where intercellular
interactions are now defined via the quotient weighted adjacency matrix, W,
such that

[uy, us)" = WDy, Do]", (3.40)

where the general row-stochastic form of W is given in equation (3.9). Inline with
the connectivity regimes derived from cross-sections of primary and synthetic
mammary organoids (figures 3.7 and 3.9), we will assume that same-layer
connectivities are identical, ny , = ny,,. This allows us to isolate the impact of
variations in cross-layer connectivities on the laminar patterning of Notch in the
mammary organoid.

To further reduce the dimensionality of the quotient IO system (3.38) and to
analyse the existence and stability of laminar patterns using the methods derived
in Section 3.4, we require the transfer representation of the intracellular kinetics.

Namely, near steady states, we have

_afrspy (a+up)* !

1o (3 (o +ub) + pui®)?

T' (u;) = (3.41)
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Figure 3.13: A diagram of the quotient NDM SISO system (3.38) constructed
by the laminar pattern template partition, 7y, for semi-regular signal graphs.
Vertices are coloured layer-wise with blue and orange vertices in L; and Lo,
respectively. The IO flow diagram of the NDM kinetics are shown for a generic
cell in the quotient graph. A reduced characteristic transfer representation of the
NDM IO dynamics highlights the decreasing 1O relation of lateral-inhibition.

as derived in Section 2.3.2 by linearisation of the NDM IO system (3.38), noting
that 7" (u;) < 0 for all u; € U indicating the lateral-inhibition intercellular
interactions. A summary of the quotient representation of the NDM IO system
(3.38) for laminar pattern analysis is given in Figure 3.13.

To apply the semi-regular laminar pattern existence condition from Theorem
3.4.1, we require the homogeneous input signal steady state, v*. From our simple
Notch-Delta formulation and previous analysis of the IO NDM (3.38), we have

that u* = D*, the homogeneous steady state of Delta, where
Bup (D7) + i (upD* = 1) (a+ (D))" = 0. (3.42)

To compare our semi-regular analysis to the regular connectivity analysis
conducted in Chapter 2 we select the same intracellular parameter values, which
are given in Table 3.1. Therefore, equation (3.42) yields a cubic polynomial in
D* which can directly solved to obtain D* = 0.049. Subsequently, |T" (u*)| =
1.537 > 1, satisfying our necessary requirement for instability of the homogeneous
steady.

Invoking Theorem 3.4.1 for the existence of laminar pattern in the associated
semi-regular large-scale 10 system (3.6), we have that the quotient NDM

IO system (3.38) will converge to contrasting heterogeneous states provided
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Parameter Description Value

o Notch activation constant 0.01
o) Delta de-activation constant 100

Notch activation
cooperativity from input signals

Delta de-activation cooperativity

5 from intracellular Notch !
N Notch degradation rate 1
D Delta degradation rate 1
. No. o.f same—layer 9
’ connections in layer 1
", No. of same-layer 9

connections in layer 2

Table 3.1: Parameter values used in the analysis laminar pattern for semi-regular
graphs using the NDM IO kinetics (3.38). The intracellular NDM parameters are
selected from [87], as in Chapter 2. The intralayer connection parameters follow
from the imposed 2D cross-sectional presentation of a mammary organoid.

inequality (3.11) holds. Figure 3.14a shows the pair-wise monotonic behaviour of
the upper bound of inequality (3.11) with respect to cross-layer connectivities as
predicted by Corollary 3.4.1. Namely, in agreement with our polarity-driven
pattern analysis of regular connectivity networks, increasing the cross-layer
connections, ngr, and ngr,, reduces the necessary amount of signal polarity
required for HSS instability, with symmetry across ny, = nor,. Consequently,
following our connectivity analysis conducted on cross-sections of mammary
organoids, this suggests that both the branch tip and fold regions have identical
Notchl laminar pattern potential as highlighted by the characteristic cross-layer
connectivity regimes superimposed over the polarity landscape.

Independent of the cross-layer connectivity symmetries, these findings suggest
polarity-driven inhomogeneous Notch1 activity has a greater affinity to layer-wise
semi-regular connectivity structures when compared to regular structures as we
observe a maximal 1.38-fold increase in the sufficient polarity ratio w; /wy for HSS
instability between connectivity regimes I (or I1I) and II. Therefore, discrepancies
in cellular shape between the layers of cells may promote the symmetry
breaking of intracellular fate determinants during early organoid development.
In particular, asymmetric cell division (both in size and intracellular protein
distribution) of mammary stem cells has been observed to initiate morphological

branching events and is promoted via Notch1 activation, suggesting a feedforward
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Figure 3.14: The influence of cross-layer connectivity on the Delta signal polarity
for the (a) existence and (b) stability of the laminar patterns using pattern
templating methods. Cross-layer connectivity regimes of developing mammary
organoids identified in Section 3.3.2 are superimposed on the connectivity
landscape. (a) The pair-wise monotonic behaviour of cross-layer connectivity
on the upper bound of inequality (3.11) for the NDM kinetics (3.38) for pattern
existence. (b) The asymmetric behaviour of cross-layer connectivity on the upper
bound of inequality (3.26) for the local asymptotic stability of laminar patterns.
The parameter values used to produce these plots are given in Table 3.1. Both
cross-layer connectivity domains were uniformly discretised over a 50 x 50 grid.
Polarity ratio values where linearly discretised between 0 and 0.4 with 100 values
to determine sup (wq /wy) for each cross-layer connectivity combination, resulting
in a total of 2.5 x 10 computations in (b).

mechanism of cell-fate and morphological heterogeneity for ductal development
[170, 188].

To apply Theorem 3.4.2 for the stability of the laminar patterns in the quotient
NDM IO system (3.38), we require the Lo-gains associated with the heterogeneous
steady input signals, 7, and 7,. Near steady state, it can be shown that the
Ly-gains are equivalent to the singular values of the derivative of the transfer
function [116], as these represent the largest local changes to the input to output
dynamics. Subsequently, we have 7, = |T" (uf) | as T" (u}) is a scalar function,

i = 1,2 (SISO). The heterogeneous steady input states for the quotient NDM IO
system (3.38) are given by

uiy=a(D}—D3)+ D; and uy="0b(D;— D)+ D;j (3.43)
where D} and Dj are the heterogeneous steady states Delta in each representative
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cell. The parameters a and b are the quotient connectivity parameters for layers 1
and 2, respectively, as defined in equation (3.10). Without loss of generality, as the
quotient NDM IO system (3.38) enters a laminar pattern state, we have D} > Dj.
In addition, increasing cross-layer connections, nyr, and nsr,, decreases the
value of a and b, as these represent the same layer input signal contributions.
Consequently, as a,b — 0 by high signal polarity and increased cross-layer
connections, then uj < uj. Figure 3.15a demonstrates that |77 (u}) | is decreasing
for all u; > 0.005, and therefore we have that 7, < |7" (u*) | < 7,. Subsequently,
7, will dominate the contribution of 7, for the stability of patterning due to
the relatively significant increase in 7, as uj decreases, providing initial evidence
for the predicted stability asymmetry with respect to the representative cells
proposed in Section 3.4.2.

Setting the left-hand side of the quotient NDM IO system (3.38) to zero, we

generate the following system of equations,

(pv (o + (a (D} — D3) + D3)))°
(un (a+ (a (D = D3) + D3)))° + Bup (o + (a (D} — D3) + D3))™
(3.44)

D} =

(uy (@ + (b (D5 — D) + DO))*
(un (@ + (b(D3 — D) + D7)))” + Bup (o + (b(D; — D7) + DT»T:?: 45)

D; =

which we numerically solve! to determine the heterogeneous steady states of
Delta, D} and Dj, to obtain an upper bound on the polarity ratio w;/wq for
the stability of the laminar patterns.

The polarity-connectivity landscape for the stability of Notch laminar
patterning determined using Theorem 3.4.2 is shown in Figure 3.14b, where we
impose without loss of generality that D} > Dj and thus 7; > 7,. Confirming
the predicted asymmetry of the polarity-driven stability potential with respect
to cross-layer connectivity, we observe the polarity required to stabilise laminar
patterns is substantially less in connectivity regimes associated with branch base
morphologies when compared to the ductal (spheroid) and branch tip regions.
For example, the graphs with the connectivity ng ;, = 3 and ny , = 1 (regime I)
present a 3.23-fold increase in the maximal polarity ratio w;/we when compared
to graphs with ny 1, = 2 and ng 1, = 2 (regime II).

Critically, these observations suggest that polarity is a viable control
mechanism for cell-fate commitment in morphological regions where myoepithelial
(basal) cells have more cross-layer connections than the luminal cells, i.e.,

tissue regions like the base of a branch within mammary organoids where the

'Numerical solutions to equations (3.44-3.45) were found using the fsolve function in
Matlab (2021a), which uses the trust-region-dogleg optimisation algorithm [151].
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(a) Gain dynamics for the NDM kinetics.
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(b) Small gains are sufficient but not necessary for the stability of laminar patterns.

Figure 3.15: The L1-gains associated with laminar patterns in semi-regular bilayer
geometries. (a) A plot of the input-output transfer function (3.41) for the NDM
IO system (3.38). The homogeneous transfer state for the given homogeneous
input signal, u*, is highlighted with a solid marker. The inset provides a zoomed
region about the homogeneous steady state. Gain dynamics with respect to
the heterogeneous steady states are indicated with arrows such that 7, < 7.
(b) The largest Lo-gains of the quotient NDM system (3.38), 7, and 7,, that
satisfy the stability inequality (3.26) are shown for all 2500 computations used
to generate the connectivity-polarity landscape in Figure 3.14b. Each point is
coloured by the value of the upper bound of the polarity ratio for the stability of
laminar patterns by inequality (3.26). The region below the solid line corresponds
to the Small Gain bound 7,7, < 1 whereas the region below the dashed line
represents a numerically determined bound on the Ls-gains for the stability of
laminar patterns, for all cross-layer connectivity regimes considered in Figure
(3.14). The parameter values used to produce these plots are given in Table 3.1.
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apical surface of the myoepithelial cells is elongated, while basal surface of the
luminal cells is reduced as a consequence of tissue bending [189]. Therefore, the
basal cells are positioned as the cell-fate pattern conductors of the mammary
organoids due to their characteristic increase in the output signal DII1 [49], and
thus lack of contact, and subsequently, communication with basal cells may
result in loss of consistent laminar patterning of cell-fate determinants. These
propositions predict the existence of polarity-induced increased plastic behavior
via Notchl in MECs near the branch tip regions, while lineage commitment
should be stable near branch initiation, in agreement with existing experimental
observations [131, 170, 188]. Fundamentally, if cell-fate is determined via
canonical Notch interactions, then these findings predict that Delta activator
should be asymmetrically distributed along the basal-luminal interface of the
outer basal cells.

Each pair of the Lo-gains, 7, and 7,, used to generate the connectivity-polarity
landscape for laminar pattern stability (Figure 3.14b) is shown in Figure 3.15b.
Notably, each 7, and 7, satisfied the asymmetric connectivity inequality (3.33)
for laminar pattern stability in quotient IO systems. Only a minority of the 7,
and 7, pairs satisfied the Small Gain bound 7,7, < 1, but these restricted gains
presented the largest upper bound for the polarity ratio w;/wy using inequality
(3.26). That is, the Small Gain bound is a subregion of the numerically fit
gain bound? p7, (¥, + p2) < p3 where p; = 0.634, py = 0.316 and p3 = 2.417,
supporting that the Small Gain theorem (Theorem 2.1.1) is sufficient but not
necessary for the stability of laminar patterns. Namely, the stability criterion for
semi-regular graphs (Theorem 3.4.2) provides greater insight into the influences of
connectivity and polarity on the local pattern dynamics. Yet, we observe that the
Lo-gain pairs associated with the least amount of signal polarity (highest w; /ws
ratios) required for pattern stability satisfy the Small Gain bound 7,7, < 1.
Thus, figures 3.14b and 3.15b suggest that the Small Gain assumptions proposed
in Section 3.4.2 are sufficient to guarantee the asymmetric connectivity inequality
(3.33) for laminar pattern stability. However, further work is needed to verify this.

Large-scale simulations of the NDM IO system (3.38) calibrated using the
quotient analysis for the stability of laminar patterns are provided in Figure
3.16. In agreement with the quotient NDM IO system (3.38) analysis, we found
that the cross-layer connectivity regimes associated with the branch tip and
branch base generate significantly different Notch dynamics, demonstrating the

inability of polarity to control Notch dynamics in tip-like morphologies, while

2The coefficients of gain bound sufficient for laminar pattern stability of the quotient NDM
IO system (3.38) were determined using the 1sqnonlin function in Matlab (2019a) [151], R? =
0.997.
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sup (w1 /ws)

0.1 0.2

Figure 3.16: Large-scale simulations of the NDM IO system (3.38) with the
characteristic branch base and branch tip connectivity graphs. Simulations are

presented with |V| = 120 and w;/wy = 0.125. Trajectories are numerically
determined using the ode45 function in Matlab (2021a) with initial conditions
locally perturbed about the HSS [N* D*| = [0.194,0.049]. Cross-layer

connectivity parameters are shown with respect to the polarity-connectivity
landscape sufficient for laminar pattern stability in the associated quotient 10
systems. Parameter values for the NDM IO system (3.38) are given in Table 3.1.

convergent laminar patterns are formed in the branch base structures. Notably,
the polarity-driven HSS instability condition is identical for both large-scale
dynamical systems due to the symmetry of inequality (3.11) with respect to cross-
layer connectivities (Figure 3.14a), indicating a dominant role signal stability in
pattern generation. Therefore, further investigation is required to understand the
links between the large-scale and quotient IO systems with respect to the stability
conditions sufficient to control desired patterns in systems with multiple steady

states.

3.6 Discussion

In this chapter, we have used a combination of primary and synthetic data to
demonstrate the predictive power of tissue curvature for estimating local cell
signalling graphs in simple branching morphologies. This generated characteristic
connectivity regimes for different regions of 2D cross-sections of mammary
organoids, which were used to analyse the influence of local epithelial packing
structure on polarity-driven cell-fate stability using IO models. Specifically, we
provide evidence that convex locations of mammary organoids, like branch tips,
are more susceptible to polarity-assisted plasticity events and loss of laminar
patterning of Notchl using a lateral-inhibition mechanism when compared to
concave regions, like the base of a branch.

Following from the generality of our SISO analysis in Section 3.4 models, we
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predict the existence of a cell-fate commitment coordinating cell type purely
from the edge topology of the cell signal graph, independent of the precise
lateral-inhibition kinetics and intracellular parameterisation. Critically, under the
assumption that the signal gain must be larger in basal cells, as they typically have
reduced Notchl activation [21, 48], we isolate the outer basal cells as the cell-fate
coordinators in developing mammary glands. Specifically, the stability of laminar
patterns in bilayer tissues is significantly more sensitive to the connectivity
of basal cells when compared to luminal cells. Thus, we show increasing the
heterotypic connections of basal cells reduces the amount of active layer-wise
signal anisotropy sufficient to stabilise cell-fate biomarkers.

These results are partially consistent with the size-dependent lateral-inhibition
patterns predicted in silico [190] and validated in vitro in CHO-K1 monolayers
[169]. Namely, the authors demonstrate that smaller cells are more likely to
become the signal senders (high DII1) suggesting that the outer layer of cells
should converge to a low-Notch state for cell-fate stability as expected, as basal
cells are approximately 20% smaller than luminal cells (confirmed using our image
analysis). However, the form of their argument follows a surface-area approach
such that cells with reduced cell-cell contact surface area have limited access
to activator-receptor binding locations, preventing the intracellular activation of
Notch. In contrast, our curvature-based approach to Notch patterning revealed
that increasing the surface area of the basal cells at the basal-luminal interface
increased the stability of the laminar patterns of Notch in mammary bilayers.
Although, the contact area signal activation mechanism suggested in [169] may
account for the cross-layer polarity (w; < wsy) necessary for laminar patterning in
lateral-inhibition systems, suggesting that the total basal-basal contact area (w)
must be significantly less than the basal-luminal contact area (wq) for cell-fate
commitment.

We predict that the differences in these conclusions may be due to the
differences in tissue domain type considered in each study, i.e., we consider
abstract bilayer geometries using graphs whereas the size-dependent studies
focused on regular monolayers [169, 190]. Therefore, our approach provides an
alternative polarity-connectivity theory for cell-fate commitment in mammary
organoids, further highlighting the often under appreciated role of tissue geometry
in fine-grained pattern formation. In particular, the generic perspective of
signal polarity taken in this study calls for further investigations into the direct
mechanisms that drive signal activator asymmetries in mammary orangoids,
specifically cell shape and contact regions.

From an experimental perspective, our proposed tissue curvature-dependent

cell-fate patterning is in agreement with geometry-induced branch elongation
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[31] and cellular plasticity [191] studies conducted on MECs. However, explicit
experimental evidence of asymmetric distributions of Deltal on the membrane
surface of MECs is yet to be found. Therefore, to verify our claims of the active
role of polarity in cell-fate stability, similar collagen well “stamping” experiments
for prescribed tissue geometries be applicable to observe DIl spatial distributions
in various morphological regions of mammary organoids, specifically, comparing
the concave and convex regions which should present the large discrepancies as
predicted by our theoretical investigations. Furthermore, the protein Neuralized1
has been shown to actively promote DII1 apical-basal polarity in epithelial cells
[192], and is required for healthy differentiation in MECs [193]. These studies
suggest that supplementation of Neuralized1 and tissue geometry may exaggerate
DIl polarisation in mammary organoids and therefore may be exploited for
experimental validation of a polarity-driven cell-fate commitment mechanism.

Organoids are fundamentally 3D tissues and therefore our approach to analyse
and calibrate the 10 models using data extracted from 2D cross-sections of
mammary organoids is a direct limitation of this study. We note that this
approach was only taken due to limited access to high-resolution primary images
of mammary organoids with basal and luminal cell-type markers. Appreciating
that the 2D analysis provides only a subset of the region-based connectivity
information, both the image and IO analysis conducted in this study are
immediately valid for 3D investigations, in preparation for future studies. Namely,
the curvature-connectivity image analysis pipeline was originally designed for
3D analysis and is fully described in Appendix B. In addition, the topological
description of the interconnected 10 models used for cell-fate pattern analysis
is independent of spatial dimension, that is, the analytic exploration in Section
3.4 revealed the monotonicity of laminar pattern existence and cross-connectivity
asymmetries in pattern stability hold independent of the precise cell signalling
connectivity and intracellular kinetics of the model 10 system. Thus, it is
anticipated that the qualitative conclusions drawn from our data analysis will
be preserved when extended to a 3D context, primarily attributed to the isolated
impact of tissue curvature on heterotypic connectivity. This assertion is critical to
reinforce the robustness and validity of our findings on the interplay of geometry
and polarity in cell-fate determination.

When performing the IO analysis in Section 3.4, pair-wise luminal and
basal connectivity regimes were employed to generate local quotient cell
signalling graphs facilitating low-dimensional representations of the global
system. Consequently, each pair-wise quotient graph representing a distinct local
region of the mammary organoid was analysed in spatial isolation, assuming

global layer-wise symmetry in edge topology. Thus, how the coupling of these
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local quotient connectivities to form a representative global signalling graph
affects the cell-fate pattern dynamics remains to be studied. A natural extension
of the semi-regular 10 framework considered in this chapter to accommodate
the piece-wise connections of the local quotient graphs is to adopt the balanced
systems approach from network dynamics synchronisation which relaxes the
topological symmetries to instead agree with the geometric symmetries of the
tissue [194]. Specifically, using the formal construction of equivalence relations
over the weighted graph to form equitable partitions for quotient representation,
under the constraint of sum constant edge weightings. That is, by initially
embedding weak-coupling of the laminar pattern templated quotient graphs in
a multilayer representation, exploiting the structural symmetries in the coupled
mutlilayer adjacency matrices may be exploited for spectral decompositions in
polarity-driven pattern analysis [195], allowing for similar analytical approaches
applied in this chapter but for more varied edge topologies.

The cell-fate analysis in this chapter only considered the resultant changes
in local neighbourhood cell-type compositions from the variations in tissue
curvature. Yet, cells have mechanosensing mechanisms for adapting to changes
in tissue geometry, independent of their neighbourhood, which is particularly
relevant when measured curvatures are closed to the characteristic lengths of the
cells [162]. For example, deformations to the cytoskeleton induces the activation
of the Hippo pathway in MECs [196]. This complex signalling cascade has
been shown to play a pivotal role in mediating cell-cycle progression, and has
furthermore been demonstrated to exert a significant influence on the dynamics of
Notch signalling in MECs [197], evidencing a direct curvature cell-fate relationship
in mammary organoids. In addition, fibroblast growth factor (FGF) signalling
plays a critical role in branching morphogenesis by regulating migration and
differentiation of MECs for ductal elongation [16, 198], and also is known to
agonistically interact with the Notch pathway [199]. Importantly, FGF activity
is also directly regulated by tissue curvature as demonstrated in lung branching
and intestinal crypt formation [108, 200], providing further support for geometric
dependence of MEC cell-fate control via pathway crosstalk.

Thus, to fully appreciate the multitude of factors contributing to cell-
fate control in MECs during mammary organoid development, signal pathway
crosstalk must be considered.  Coupling inter and intracellular pathway
interactions often generates multiple spatially dependent variables, which
are inaccessible using our current modelling approaches. Subsequently, to
comprehensively explore the role of tissue structure on intracellular patterning,
a general framework for fine-grained pattern analysis should be established to

account for multiple simultaneous spatially dependent signal processes.
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Chapter 4

A framework for analysing
polarity-driven laminar patterns
with multiple cell-cell
communication channels

In chapters 2 and 3, we studied cell-fate dynamics in mammary bilayers using
a single signalling pathway. Yet, the cellular regulatory mechanisms that
determine cell states are complex, often involving multiple inter-linked genetic
regulatory networks (GRNs), commonly referred to as pathway crosstalk [201].
Consequently, pathway crosstalk may induce multiple modes of independent cell-
cell communication channels, such as contact-based (juxtacrine), or short-range
diffusive (paracrine) cellular interactions between local cells [16, 48]. Thus, cells
potentially receive local tissue information from a range of sources to consistently
select the appropriate cell type for functional ductal formation.

Due to the additional complexity involved with pathway crosstalk, from
unknown intracellular kinetics to spatial cell-cell interactions, the precise role
polarity has in influencing intracellular kinetics that governs cell-fate choices is
widely unresolved [202]. Therefore, in this chapter, we extend the general single-
input-single-output (SISO) modelling framework, initially introduced in Chapter
2, to include crosstalk kinetics in generality. This allows us to study the interplay
of polarity and multiple cell-cell signalling mechanisms in generating laminar
patterns of biomarkers, conforming with the process of cell-fate determination of
developing bilayer tissues.

Following Turing’s seminal paper in 1952 [93], the majority of theoretical
results of pattern formation in developmental biology focus on diffusion-driven
instabilities of reaction-diffusion (RD) systems [97, 203]. RD systems rely on
the assumption that cells communicate using short-range and/or long-range

paracrine signalling mechanisms, namely the local diffusion of proteins coupled
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with intracellular kinetics. However, there exist many pattern-forming biological
systems that rely on non-diffusive, juxtacrine communication, such as lateral-
inhibition mechanisms, facilitating fine-grain pattern formation [27, 204].

The fundamental differences in paracrine and juxtacrine signalling motivate
contrasting modelling approaches. The diffusion process in paracrine signalling
extends to a spatial continuum limit, generating systems of partial differential
equations (PDEs) allowing protein patterns to form over multiple cell lengths
to represent phenomena such as morphogen gradients over the tissue [97]. In
constrast, the discrete nature of juxtacrine signalling induced by membrane
contact necessitates the use of spatially discrete systems of ordinary differential
equations (ODEs) [138]. Subsequently, these contrasting modelling paradigms
restrict the specific continuum and discrete approaches to pattern analysis in
systems where both diffusive and non-diffusive mechanisms are present.

Graphs representing spatially discrete analogues of diffusive mechanisms have
previously been employed to homogenise the analytical approaches to pattern
formation and, further, investigate cell structure on pattern emergence [205].
That is, graph vertices depict cells and edges are drawn between cells if they
are communicating via diffusive proteins. Critically, this approach preserves the
concept of cell identity within diffusive models and transforms the systems of
PDEs into much larger systems of ODEs, consistent with the juxtacrine model
formulation. However, the central theme of pattern analysis is understanding
the conditions that yield the degradation of stable homogeneity of the system
and is typically conducted via linear stability analysis with coupled spatio-
temporal components [87, 95, 124]. Consequently, the high dimension of these
ODE descriptions and required nonlinear kinetics of multicellular domains limit
analytical approaches which lead to many studies focusing on spatially reduced
systems accompanied by numerical simulations for the larger cellular domains
[87, 124, 138]. Critically, the analysis conducted on such spatially reduced models
is insufficient for predicting the types of patterning observed numerically [124],
with similar results for cell-resolution discretised diffusive systems [206].

The graphical methods of fine-grain pattern analysis using input-output
(I0) systems, as initially proposed in [117] and applied in chapters 2 and 3,
were later extended in [186] and [207] to include multiple channels of cell-cell
communication. The authors simultaneously couple diffusive and non-diffusive
signalling mechanisms within the interconnected dynamical systems framework
using directed multilayer graphs, namely graphs with unidirectional edges
connected to cells with multiple input and output signals. Both studies applied
the pattern templating methods described in [118], which were applied to yield

analytic insight into the capacity of the mixed-signalling mechanism IO systems
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to generate the desired pattern. However, both studies focused on dynamical
systems describing purely competitive cell-cell kinetics (e.g. lateral-inhibition)
with unweighted connectivity graphs, leveraging characteristic cell properties
for long-time behaviour. Namely, the influence of edge weights (polarity) and
generic intracellular crosstalk kinetics on pattern existence and convergence in
these multi-channel interconnected systems is yet to be investigated.

The spatial scalability of the interconnected methods of pattern analysis
follows from the theory of monotone dynamical systems [115]. Provided the
intracellular proteins regulated by the prescribed GRN react monotonically to
intercellular stimuli, then global dynamics become predictable in a closed-loop of
cells and facilitate the introduction of control theoretic tools for pattern stability
[118]. Although the restriction to bipartite connectivity graphs was imposed
in [117] and [207] as a sufficient measure to preserve the monotonic behaviour
of lateral-inhibition models in the large-scale forms, these restrictions limit the
biological applications. Such conditions can be relaxed when seeking pattern
existence in quotient systems, as demonstrated in [118] but how such behaviour
translates to the large-scale counterpart is not fully understood.

In chapters 2 and 3, we have analysed the role of polarity in laminar
pattern formation using interconnected methods for a single juxtacrine signalling
mechanism [143]. Here, we generalise and extend these results to include multiple
signalling mechanisms of any type using a multilayer graph approach as defined in
[207]. Namely, we explore the interplay of multilayer network topology and edge
weights in laminar pattern formation in bilayer tissues using dynamical systems
of generic cooperative and competitive kinetics.

Initially, we present conditions for the existence, uniqueness and instability of
a homogeneous steady state for a large-scale multi-input-multi-output (MIMO)
dynamical system which extends the conditions of [207] to yield analytically
applicable statements for low-spatial order intracellular GRNs. Thereafter
we use methods of multilayer graph partitioning to derive polarity conditions
for the existence of laminar patterning in large-scale systems. Critically,
we demonstrate the graph commutativity requirements imposed in [207] for
simultaneous diagonalisation can be relaxed when seeking patterns of only two
states, allowing a broader range of quotient connectivities to be explored.

We investigate the spectral links between quotient and large-scale dynamical
systems. We prove positional changes of the eigenvalues associated with laminar
patterns in the multigraphs are dependent on the amount of polarity for non-
bipartite graphs. We then discuss the implications of spectral rearrangements
with respect to bipartite graphs and laminar patterning. Combining our insights

from the spectral rearrangements and quotient system analysis we explore the
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convergence of laminar patterns in the associated large-scale dynamics systems.
In the final section of this chapter, we extend the £,-gain interconnection stability
criterion to analyse MIMO systems. Using spectral properties of the multilayer
graphs, we show that assessing the stability of a MIMO system does not increase
the dimensionality of the problem when compared to SISO systems, providing
analytical access to generating bounds on cell signal gains for pattern stability

using the polarity and topology of the MIMO system.

4.1 Existence of cellular heterogeneity

In this section, we are interested in deriving conditions for the existence and
instability of a homogeneous steady state (HSS) of a large-scale dynamical
system that describes intracellular kinetics within a tissue of cells. First, we
define the types of interconnected dynamical systems considered in this study,
namely, coupling the multiple input and output signal dynamics of individual
cells using weighted connectivity graphs associated with each respective signalling
mechanism.  Thereafter, we exploit the repetitive structure of large-scale
interconnected dynamical systems to provide analytically tractable conditions
for the existence, uniqueness and stability of the HSS that is necessary for the

investigation of spatially-driven cellular heterogeneity.

4.1.1 The signal polarity interconnected system for
bilayer geometries with multiple signal mechanisms

Consider a large-scale interconnected dynamical system representing N spatially
discrete cells, each containing n intracellular proteins. Namely, for each cell
i € {1,..,N}, let &; = [z;1,...,7,)" € X C R%, be the concentration of the
n intracellular proteins. The cellular signal inputs and outputs are defined by
w = (Ui, Uip)T Yi = [Yins - Y]] € UY C RL,, respectively, for some r
with 1 <7 < n. The interconnected ODE system has the form

z; = f (i, u;), (4.1)

where x; represents the derivative with respect to time. The function f : X xU —
X defines the intracellular protein dynamics which are dependent on external
stimuli, w;, produced by connected cells. We define cellular connectivity in terms
of multiple signalling mechanisms later in this section. Furthermore, h: X — Y
describes the translation of intracellular dynamics to signal outputs of the cell.
We assume that both functions f (-) and h () are both C? over their respective
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domains to ensure the continuity of the corresponding linearised system that is
required for the interconnected pattern analysis in Section 4.2. The structure
of the IO system (4.1) in the context of the tissue is shown in Figure 4.1. For
convenience, when discussing tissue behaviour, we define the large-scale vectorised
counterparts of the intracellular state variables, signal inputs and outputs by
=[x, xN]T, u=|uy,..,uy] and y = [y, ..., yn]".

For the transition of signal outputs to inputs, we assume that each output
signal is independent and defines a linear relationship between output and input
signals. Let V = {vy,...,ux}, be vertices representing the cells in the tissue,
then for each output signal y; ; there is an associated connectivity graph G; =
G; (V, E;), where Ej is the set of edges for each output signal mechanism 1 < j <
r. Note that the vertex set V is identical for each connectivity graph whereas
edge structure may differ between the respective graphs to allow for different
signalling mechanisms within the IO system (4.1). For example, the cellular
connectivity graphs of contact-dependent and long-diffusion mechanisms have
potentially different edge structures as it is expected that the average degree of
the contact-based graph is less than that of a diffusive mechanism due to the
physical constraints of cellular junctions (Figure 4.1).

Algebraically, the cell-cell interaction graphs are represented using the
weighted adjacency matrix, W; € R];OXN. Let W = {W,} be the set of weighted
and row-stochastic adjacency matrices, namely, for any j € {1,...,r} and any row
i € {1,...,n} then the row-sum ), (W), = 1 which represents the weighted
average of signal transfer between connected cells. In addition, we assume that
the connectivity graph G; associated with W; is undirected and connected, and
thus W; irreducible, i.e., there exists no permutation matrix that transforms W;
to upper triangular form [208].

To preserve the order of signal outputs, y; ;, and therefore the cellular structure
within the IO system (4.1), we define the global interconnection matrix, P, that
is constructed by interweaving each W; € W in order of output signal defined
by v, j, namely,

,
P=> W;®D;, (4.3)
j=1
where ® is the Kronecker product and D; = diag(d;i,...,0;,) for &;; the
Kronecker delta function
5ii = {1 = (4.4)

0 i+
The global interconnection matrix P € R™*™V  therefore, produces a

multilayer graph, Gp, that is layer-wise independent as shown in Figure 4.1.
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Figure 4.1: A graphical representation of the IO system (4.1) for bilayer
geometries with multiple signalling mechanisms defined by the global adjacency
matrix P (4.3). Example 2D bilayer graphs are shown for contact-dependent
short and long-range diffusion over the same vertex set representing the cells in
the tissue, which are explicitly shown with membranes in G; to highlight the
bilayer cellular structure. Each of the connectivity graphs is then embedded
within the same vertex set as indicated by the dashed arrows. Therefore, each
vertex contains the intracellular kinetics defined by the IO system (4.1), which
responds to the signal outputs of adjacent cells for each signalling mechanism,
which are transformed to signal inputs by P, as defined in equation (4.5).

Critically, the construction of P defines the linear relationship between global
signal outputs and inputs

u = Py (4.5)
where the cell-wise input-output structure is preserved. The fundamental cellular

identity-preserving structure of P is demonstrated in the following example.

Example 4.1.1. Consider the two general matrices

ail a2 bir bio
W, = and Wy = 4.6

! le a221 2 {521 522] ( )
for the 10 system (4.1) with only two cells each with two signal inputs and outputs
i.e., 7 = 2. Then the global interconnection matriz, P, has the form

a1 0 a192 0

_lair an 10 bii bio 00 |0 b 0 b2
P= {@21 6122}@)[0 O]—i_lbm 522]@)[0 1} a0 axp 0| (4'7)

0 by 0 by

119



To study the role of layer-dependent signalling polarity for the generation of
laminar patterns in bilayer geometries, we consider each graph to have two layers
Ly = {v1,...,v1,} and Ly := {v|p,|41, ..., un } where |L1| =1,..., N — 1, as shown
in figures 4.1 and 4.2.

This layer-wise grouping of the vertices also provides a consistent structure
to the weighted adjacency matrices W, € W. As a first approach to the
layer-dependent signal polarity, we consider only two values of edge weights for
connected cells in the same and different layers as highlighted in Figure 4.2.
Namely, consider the graph G associated with W, then if v;,v; € L; (or Lo)
such that v; and v; are connected by an edge in G, and are in the same layer, then
(Wi)ij = wﬁ’“], where w[l’“] is the row-normalised intralayer edge weight. Similarly,
if v; and v; are in different layers, v; € L; and v; € Lo, and are connected in
Gy then, (Wy);; = wg’“], where w[j} is the row-normalised interlayer edge weight.
Consequently, when vertices are indexed consecutively from L; then Ly, each Wy,

has block form

W, W

L1 2,11

W, = (ﬁ\/[k] )T Wi | (4.8)
2,y 1,Lo

where ﬁ\/l, L € R'ZL(}‘X‘L” contains all intralayer connections scaled by w[l’“] for all

the vertices in L1, ‘//‘727[,1 € R‘ZLOI‘XIMI contains all interlayer connections scaled

by w[j] for all the vertices in L;. Similarly ﬁ\/l,,;z € R'ZL(?‘X‘LQ' accounts for
the intralayer connections within Ls. As each Gy is undirected, the interlayer

connections for all vertices in Lo, are represented by WQT L., that is, Wy is

symmetric when |Li| = |Ls.

Example 4.1.2. The weighted adjacency matrix Wy associated with Gy in Figure
4.2 has the block matrices

o @ 0 o 0wl W 0 0 - 0 0]
a0 wlY o o o
Wi, = - ‘ and Wap, = ‘ ,
ol 0 0 @y 0
" o o 0wl o] L0 0 0 0 @l
(4.9)
for 1?151] = wgl]/|wm| and ﬁ)y = w£11/|w[1]| where |wltl| = 2w£1] + wgl] is the

normalising factor for all rows ensuring the row-stochastic property of Wi. From
the regularity of Gy in Figure 4.2, we have that ﬁ\/LLI = ﬁ\/l,Lz as the connections

within layers are identical for Ly and L.

To summarise the internal cellular dynamics in terms of signal inputs and

outputs, as proposed in [117], we introduce the transfer function T' : U — Y
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Figure 4.2: Layer-dependent edge weight structure in bilayer graphs. A 2D bilayer
graph, G;, with contact-dependent edge connections highlight the layer vertex
partitions with vertices in L, and Ly coloured orange and blue, respectively. The
edge weight structure within and between the layers is shown with edges between

vertices in the same layer weighted by wgl] and connected vertices in different

layers weighted by wgl].

that describes cellular signal output response with respect to changes to input
signals determined by connected cells. It is assumed that T (-) is bounded and
C? which conforms with the biological context of the IO system (4.1), namely,
the intracellular expression must remain finite with continuous dependence on
the cellular microenvironment. The introduction of T'(-) allows the analysis of
the IO system (4.1) from an alternative macroscopic perspective, such that T' ()
retains the underlying features of the intracellular kinetics defined by f (-) and
h () while not explicitly defining the intracellular interactions. For instance,
intercellular communication of lateral-inhibition and lateral-induction pathways
have a decreasing and increasing transfer function T’ (-), respectively [117, 209].
Explicitly, the transfer function allows for the definition of the auxiliary input-

to-output transition relation
w=P[T (u),.. T (u)]", (4.10)

which reduces the analytic complexity of the macroscopic analysis of spatially
driven pattern formation in large-scale systems as the dependence of cellular
coupling is more accessible in this form [117, 118, 207]. However, these methods
require that the characteristic behaviour of the GRNs is known with respect to
intercellular signals i.e., prescribing monotone properties for T' (u;).

In the following section, we show that the zeros of the auxiliary input to
output transition equation (4.10) are the steady states of the 10 system (4.1),
thus enabling stability analysis of the homogeneous steady states macroscopically.
Subsequently, we derive conditions for the existence and uniqueness of the HSS

in the large-scale system. Thus, to induce polarity-driven pattern formation
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within the IO system (4.1), we seek sufficient conditions for the instability of HSS

dependent on the bilayer connectivity graphs Gy, and in particular, the polarity

weights, wgk} and wgg].

4.1.2 Existence, uniqueness and stability of the homogeneous
steady state in the large-scale IO systems

The majority of statements presented in this section were initially stated in [207]
for MIMO 10O systems. Here, we have independently proven them and partially
extended them to comment on the uniqueness of the homogeneous steady state
(HSS). We include all results for completeness with a focus on the application
to mixed signal mechanisms in bilayer geometries. Consider the C? function
S : U — X that describes the changes to the intracellular kinetics «; by the input
signals u; emanating from connected cells. Therefore, the following statement
demonstrates that the zeros of the auxiliary transfer relation (4.10) are the steady
states of the IO system (4.1).

Lemma 4.1.1 ([186]). Assume that for some ug € R" the function f (x,uy) =0
has a solution denoted by xo = S (ug) and therefore T (uo) = h (S (uy)). If ug
satisfies

Uug T (up)

| =P : (4.11)

U T (up)
then o = S (ug) is a steady state of the 10 system (4.1). Conversely, if S () is
injective and xq is a fized point of the 10 system (4.1), then the corresponding
ug satisfies the auziliary system (4.11).

Following from Lemma 4.1.1, we now study the transfer dynamics defined by
T (-) for the existence of the steady states of the IO system (4.1). Critically, as
T () represents changes in intercellular signalling, T'(-) is bounded. Therefore,
the following statement ensures the existence and uniqueness of a homogeneous

steady state of the 10 system (4.1) using the boundedness of transfer dynamics.

Lemma 4.1.2. Let ug € R" such that the conditions of Lemma 4.1.1 hold and
u* = 1y®ug. Then, there exists ¢y € R™ such that x* = 1y ®x is a steady state
if the 10 system (4.1). Moreover, if Of (x,ug) /Ox is invertible for all x € X

then x* is unique.

Proof. Tt is sufficient to show that there exists uyg € R” such that u* = 1y ® uy
satisfies the auxiliary system (4.11) as @y = S (ug). As each W; € W is row-
stochastic, then the global interconnection matrix P is also row-stochastic by

construction. Consequently, there exists an eigenvalue A of P such that P1,y =
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A1,y [210], and therefore the proof follows from verifying the existence of uq that
satisfies wg = AT (uy).

By the bounded property of T : U — Y, there exists some constant m > 0
where ||AT () ||2 < m. Consider the function F' : B,, — By, where F' (-) = AT ()
and B,, = {v € R" : ||v||]2 < m}, noting that B,, is a convex set and the continuity
of F (+) is induced by the continuity of T (-). Therefore, by the Brouwer Fixed-
Point Theorem [211], there exists some ug € B,, such that up = F (ug) =
AT (u).

The uniqueness of the HSS is guaranteed by the following. Assume that for
any ug € R” there exists Ty, T2 € R" where both are solutions to f (x,uy) = 0.
Specifically, f; (®1,u0) = fj (T2, up) for all j € [1,n]. Therefore by the Mean

Value Theorem [212], we construct the linear system

0 g_gﬁ(%uo) e ng;(fU,UO) 11 — T
- 5 : (4.12)
0 g_g{?(w7 ’LLO) T %(.’E, uO) jl'n - E2n

and from the Invertible Matrix Theorem the kernel of 0 f/0x contains only the

null vector [213], i.e. T = To. O

Remark 4.1.1. If the transfer function T : U — Y is Lipschitz continuous with
Lipschitz constant k € (0, 1], namely,

T (wi) = T (u;) [[2 < kfJui — ul]2 (4.13)

for allu;,w; € U. Then the HSS defined in Lemma 4.1.2 is unique by the Banach
Fized-Point Theorem [214], independent of the invertibility of f (x,u).

As we seek spatially driven instabilities of the HSS, we assume the asymptotic
stability of * in the absence of cellular connections. We say a fixed-point of a
system is stable if the associated Jacobian has all eigenvalues with negative real-
part. Therefore, we are assuming that A := 0f /0x; evaluated at x, is stable i.e.,
the intracellular kinetics are not self-exciting in the absence of interconnections.

A necessary feature for polarity-driven pattern formation in spatially discrete
interconnected systems is the connectivity-induced instability of the HSS, x*,
associated with the IO system (4.1), which can be approached by linearisation.
The following results provide a convenient method of analysing the linear stability
of homogeneous large-scale 10 systems by assuming each cellular connectivity
graph G; commutes, thus enabling the parallel computation of eigenvalues for
each adjacency matrix W, € W, reducing the dimensionality of the linearisation.
We note that assuming commutativity of all G; does not restrict the study

of anisotropic signalling in biological systems, which is discussed in Appendix
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C, where we provide sufficient conditions for the construction of families of

commutative graphs.

Lemma 4.1.3. Let A = 0f/0x;, B = 0f/0u; and C = Oh/0x;, be each
evaluated at the steady state xo for fized ug. Let the steady state of the global
10 system be x* = 1y ® xy. Assume that all W; € W commute and denote
A; = diag (M1, ..., \rj) where \;; is the jth eigenvalue of W, w.r.t. the common
etgenbasis of all matrices in VWW. Then x* is asymptotically stable if A+ BA,;C

1s stable for all j and unstable otherwise.

Proof. Linearisation of the global 10 system (4.1) about the fixed point &* =
Iy ® x( yields the Jacobian

J=In®A+(Ix®B)P(Iy®C),

=Iy® A+ (Iy® B) (im®D1> (Iy®C),

i=1
=Iy®A+) W,®BDC, (4.14)
i=1

by direct substitution of the definition of P in terms of the independent signalling
mechanisms and the mixed products property of Kronecker products [215]. As
W, W; = W;W, for all W;, W; € W and all matrices W, are real and symmetric,
then there exists a matrix R that simultaneously diagonalises all adjacency
matrices W; € W [213]. Moreover, the eigenbasis defined by R fixes the order
of the diagonal entries in each Z; = R™'W;R = diag (\i1, ..., A\ y) such that
the sum of the diagonalised matrices Z; is unique. Specifically, reordering the
eigenvectors that form the eigenbasis R would only permute the sum of the

diagonal values of Z;.
Consider the transformed Jacobian H = (R™' ® I,,) J (R ® I,,) then by the

mixed products property of Kronecker products

H=(R'9IL)Iyv®A)(RI,)+ (R'®I,) (Z W, ® BDZC> (R®1,),

i=1

= R 'IyR® I,AI, + Z R 'W,R® I,BD,CI,,

i=1
=Iy®A+)» Z ®BDC. (4.15)
i=1
By the diagonal structure of Z; the matrix H has the block diagonal form
A+> ,\i1BD,C
H = ; (4.16)
A+>_ \.BD,C
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and therefore, as > A\;;BD;C = BA;C then the eigenvalues of H are those
of A+ BA,C for all 1 < j < N. Consequently, if A+ BA,;C has eigenvalues
with all negative real-part, for all 1 < j < N, then H is stable and therefore

the stability of J follows by the bijection between the linearised systems H and
J. O

Before discussing the behaviour of flows of the 10O system (4.1) near the HSS,

we first introduce a convenient condition for the instability of a matrix.

Lemma 4.1.4 ([118]). If M € R™" is stable then (—1)"det (M) > 0.
Conversely, if (—1)" det (M) < 0 then M has an eigenvalue with positive real-
part.

Invoking lemmas 4.1.3 and 4.1.4 leads to the following sufficient condition for
the instability of the HSS associated with an IO system (4.1) with commuting

connectivity graphs G;.

Theorem 4.1.1. Consider the large-scale 10 system (4.1) that is spatially coupled
via the global interconnection matriz P (4.3) such that each W; € W commute.
Denote DT = 0T /Ou; and let A; = diag(\1j,..., A\ j) where \;; is the jth
eigenvalue of W; w.r.t. the common eigenbasis of all matrices in VW. Then the
HSS " = 1§ ® xq is unstable if there exists a A, such that

T

10w <0 (4.17)
i=1
where p; ; are the eigenvalues of A;DT (wg) and ug is the steady state input vector

associated with xg.

Proof. By Lemma 4.1.3 we only need to show that there exists a positive
eigenvalue of A + BA;C for A; some diagonal matrix of eigenvalues of
all matrices W; € W to demonstrate the instability of the HSS. Consider
(—1)"det (A + BA;C), then by Sylvester’s Determinant Identity [216] we have
that,

(~1)"det (A + BA;C) = (—1)" det (A) det (I, + A,CA'B),
= (—=1)"det (A)det (I, — A, DT (uy)), (4.18)

where the final equality holds from DT (uy) = —C A™'B as derived in [117].
As A is stable by assumption we have that A™! exists and (—1)" det (A) > 0
by Lemma 4.1.4. Therefore if det (1, — A;DT (up)) < 0 then * = 1y ® x is
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unstable, by the converse statement of Lemma 4.1.4. Hence as the determinant

of a matrix is the product of the eigenvalues [213], we have that

T

det (I, — A;DT (uo)) = [ (1 = i) (4.19)

=1

for all matrices A; (1 <j < N). O

Applying the HSS instability condition derived in Theorem 4.1.1 IO systems
with one, or two, spatially dependent components, i.e., SISO and double-input-
double-output (DIDO) interconnected systems produces simple forms of the
instability condition (4.17). Explicitly, the IO system (4.1) is SISO when r =1
and DIDO when r = 2. Let Spec (M) denote the set of eigenvalues of M then
we recover the SISO instability condition Theorem 2.2.1 derived in [117], where

we allow for generic intracellular kinetics here.

Corollary 4.1.1. Consider the large-scale 10 system (4.1) and denote DT =
0T /Ou;. We have:

(i) If the 10 system (4.1) is SISO with connectivity matrizx Wy then the HSS

" =1y ® x is unstable if
1< Al,jT, (UO) (420)
for some Ay ; € Spec (W7).

(i1) If the IO system (4.1) is DIDO with global interconnection matriz P
constructed by the commutative adjacency matrices Wy and Wy then the
HSS x* = 1Ny ® x s unstable if

for some A; = diag(\1j,Na;), where A\i; € Spec(Wi) and Ay €

Spec (W3) both associated with the same eigenvector.

Proof. In the case of a SISO system when r = 1, the T" : U — V is a scalar
function and we have that inequality (4.17) simply becomes 1 — A ;7" (ug) < 0
yielding the SISO condition (4.20). For a DIDO system where r = 2, there are
two potentially different adjacency matrices W7 and W5 that form P. Therefore
from inequality (4.17) we have that

0> (1—p)(1—p2) =14+tr(—A,;DT (uy)) + det (—A;DT (uy)) ,
=1—tr (A;DT (up)) + (—1)" det (A;DT (uy)),
=1—tr (A;DT (up)) + det (A; DT (uy)), (4.22)
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using the relations between determinant, trace and the eigenvalues of a matrix
[213]. Rearrangement of inequality (4.22) yields the DIDO HSS instability
condition (4.21). O

The HSS instability conditions outlined in Theorem 4.1.1 allow the study
of polarity regimes via graph edge weights to induce heterogeneity of cellular
states within the bilayer tissues using analytic methods. Critically, the sufficient
patterning conditions of Theorem 4.1.1 are independent of the precise intracellular
kinetics as we do not impose any specific features on the transfer function, T (-),
other than the mild requirement of boundedness that follows immediately when
modelling protein dynamics.

In the following section, we introduce methods of graph partitioning
for templating laminar patterns in bilayer geometries that produce analytic
conditions for the existence of the laminar patterns with multiple signalling
mechanisms. In particular, we show that the commutative properties of the
adjacency matrices W; € W required for the HSS instability condition in
Theorem 4.1.1 can be relaxed when seeking dichotomous cell states in bilayer
structures with same layer connectivity symmetries, namely semi-regular bilayer
graphs. In addition, by restricting the characteristic behaviour of intracellular
kinetics to competitive interactions, we ensure that the HSS instability converges

to laminar patterns by applying results from monotone dynamical system theory.

4.2 Laminar pattern convergence with monotone
kinetics in semi-regular bilayer graphs

The instability of the HSS of the IO system (4.1) does not imply the existence
of stable heterogeneous cell states, even in systems with a unique HSS and
bounded dynamics as there may exist oscillatory or chaotic solution trajectories.
We leverage results from monotone dynamical systems and techniques of graph
symmetry reduction to ensure the convergence to dichotomous cell states at the
instance of HSS instability in the bilayer geometries. These methods of discrete
pattern analysis were first introduced for SISO systems in [118] and later briefly
extended to MIMO systems in [207]. Here we demonstrate the applicability of
these methods to two-state pattern formation with pathway crosstalk kinetics
in signal anisotropic bilayer geometries. In addition, we emphasise the link to
the corresponding large-scale 10 system (4.1), namely, when are the predicted

patterns in the symmetry-reduced system preserved in the large-scale system.
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4.2.1 Monotone kinetics for pattern convergence

Let ¢ (x1) and ¢, (x2) be two solutions to the 10 system (4.1) where x; < x5
are initial conditions, where we consider < and < to operate component-wise.
It is said that the dynamical system (4.1) is monotone if ¢, (x1) < ¢, (x2) for
all t € [0,00) [187]. Furthermore, the 10 system (4.1) is said to be strongly
monotone if ¢; (1) < ¢ (x2) for all t € [0,00) [187]. Critically, the property of
strong monotonicity is crucial for the asymptotic convergence of solutions ¢, (x)
on bounded domains X C R%, analogous to the Monotone Convergence Theorem
for bounded sequences [217].

A dynamical system can be shown to be monotone by studying the sign
structure of the associated Jacobian matrix on convex domains. The trajectory
domain X is convex if for any a,b € X then ta + (1 —¢)b € X for all ¢t € [0,1],
i.e., there exists a line segment between any two points in the domain that lies
in the interior of X. Note that it does not restrict the solutions of the IO system
(4.1) as RY, is a convex set and X C RZ,;. The monotone identification via
the Jacobian matrix relies on the inter-component monotonicity of vector-valued
functions, initially studied by Kamke [218], leading to the classification of type

K functions.

Definition 4.2.1 (Type K functions [187]). A function g (-) is said to be type K
if for each i, g; (a) < g; (b) for any two points a,b € X satisfying a < b and

a; = b; where X is a convexr domain.

Type K functions are a generalisation of monotone vector-valued functions
(Figure 4.3) that allows for non-monotone components. This property is

demonstrated in the following example.

Vector-valued functions

Type K functions

Figure 4.3: A representative diagram of the function inclusion space of vector-
valued functions with respect to type K and monotone functions.
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Example 4.2.1. Consider the real-valued vector function g : Réo — ]RQZO defined
by

ot = [ L) (429

Then define points in the domain a = [a1, as]” € R:y and b = [by,bo]" € R%,
where ay; = by and ay < by. In addition, let ¢ = [c1, co]T € R2 S0 and d = [dy, do]? €
Rzzo where ca = dy and ¢; < dy . Hence g (@) is type K as

91 (b) — g1 (a) = b3 + cos (b7) — a§ — cos (a}) = b3 — a3 > 0, (4.24)
and similarly,

g2 (d) — g2 (€) = dy +sin(dz) — ¢y —sin(c) = dy — ¢ > 0. (4.25)
However, g (x) is not monotone over R%, as g1 ((21,0)) £ g1 ((y1,0)) for all
z1,Y2 € Rsy.

The identification of type K functions in dynamical systems leads to the

sufficient condition for monotone trajectories.

Lemma 4.2.1 (Type K monotone systems [187]). Consider the general
autonomous dynamaical system
s=g(2), (4.26)

where z € Z and Z C R™ is convex. Then the dynamical system (4.26) is
monotone if it is type K. Furthermore, by the Fundamental Theorem of Calculus,
the general autonomous dynamical system (4.26) is guaranteed to be type K when

the row-sums of the associated Jacobian satisfy

3 gg, > (4.27)
JF#i Zi

foralll <i<n.

A direct consequence of Lemma 4.2.1 is that the IO system (4.1) is monotone
provided that all off-diagonal components of the associated Jacobian are non-
negative for all * € X as previously applied in large-scale IO pattern formation
studies [117, 186]. In addition, Hirsch [219] provided a sufficient condition for
strong monotonicity that is dependent on the irreducibility of the Jacobian of
the dynamical system. Specifically, a matrix M is said to be irreducible if there
exists no permutation matrix U such that U7 MU is in upper block triangular
form [216].

Lemma 4.2.2 ([187]). Consider the dynamical system (4.26) as in Lemma 4.2.1.
If the Jacobian, 2 52, is irreducible and type K for all z € Z then system (4.26) is

strongly monotone.
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The combination of lemmas 4.2.1 and 4.2.2 yield sufficient conditions for
the identification of strongly monotone dynamical systems using standard
linearisation methods, which are particularly applicable to interconnected
dynamical systems. Namely, connected undirected graphs have irreducible
adjacency matrices [220].

Time-dependent monotone systems are often characterised into two distinctive
classes: cooperative dynamics where all solutions are monotone in forward-
time (t — o0), and competitive dynamics where all solutions are monotone
in backward-time (¢ — —oo) [187]. It has previously been demonstrated that
competitive dynamics lead to pattern generation in large-scale 10 systems,
specifically, when studying processes of mutual cellular inhibition which are a
common feature of cell-fate dynamics in developing tissues [117]. For example,
the lateral-inhibition interactions of Notchl and Deltal are often found in tissues
with a dichotomy of spatially organised cell-types and conform to the monotone
competitive description [48, 87]. Extending these notions, we consider a wider
range of intracellular kinetics that include purely competitive (lateral-inhibition),
purely cooperative (lateral-induction), and a mix of these kinetics, which we later
demonstrate can become monotone in the presence of polarity. Subsequently,
these types of kinetics can be classified by the following assumption on the
behaviour of the transfer function T'(-) to ensure the asymptotic convergence

of solutions with tissue heterogeneity.

Assumption 4.2.1. The local input linearisation of the transfer function

DT (u;) has one of the following sign structures:

__ — e — _- —_ + o o — +_
Lateral-inhibition: Sy = : or 8= :

- = - = - + - +

- - - =] |+ - + —

— - - - - + — 4]

+ + + + - + - +
Mized-kinetics: S; = : or S =

- = - = - + - +

+ + + 4] -+ — 4]

[+ + + ] [+ - + -
Mized-kinetics: Sy = : or Sh=

+ + + + +o- + -

- - - -] + - + -]
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[+ + + 4] [+ - + -

+ o+ o+ - 4+ - 4+
Lateral-induction: Ss = : or 8=

T + - + -

+ + + +] - + ~ +]

for all w; € U where any sign can be replaced by zero provided DT (u;) is

irreducible.

Lemma 4.2.3. The sign structures S; and S} (j € {0, 1,2,3}) are related via the

following involutory linear transformation w; = Mwu,; for M € R™" of the form

—~

M = diag (—1,(-1)*, .., (=)', (-1)"), (4.28)

such that if sgn (DT (u;)) = S;, then sgn <MDT (MUJ M) = &, and vice

Versa.

Proof. The statement follows by direct computation. Given X € RTf" then

(JT/IXM) = (- (X), (4.29)

7’7]‘

and therefore for i + j odd, (X), ; switches sign. O]

The conditions imposed on the intracellular kinetics by Assumption 4.2.1
are applicable in the context of cellular pattern formation as activation
and repression of intracellular signals are typically modelled using monotonic
functions, such as Hill or logistic functions that relate to Michaelis-Menten
kinetics for enzyme-catalyst reactions [221]. Furthermore, the irreducibility of
DT (u;) follows immediately if there exist no zero entries, that is, each spatially
dependent component is continuously dependent on all other spatially dependent
components. Moreover, the irreducibility of a matrix can be easily determined
for low-order matrices by assessing the available paths in the associated directed
graph (digraph) of the matrix as demonstrated in Figure 4.4. Namely, if there
exists a path of edges between any two vertices then the adjacency matrix is
irreducible [222].

In the following section, we will use the monotonic properties of the
transfer function to predict the existence of laminar pattern formation in bilayer
geometries graph partitioning. In particular, we focus on the analysis of the
transfer function, as this considers only the spatially dependent components of
the 10 system (4.1), which potentially reduces the dimensionality of the analysis

while preserving the underlying behaviour of the system.
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G (DT (u)) G (DT (u))

0 0

N\ /N

A 9 @

) a )

]

- 0
sgn (DT (u;)) = |— 0 sen (DT (u;)) = | — z)—

o+ +

\ J \ Y,
(a) An irreducible DT (u;). (b) A reducible DT (u;).

Figure 4.4: An example of DT (u;) with sign structure S| and associated digraph
topologies for (a) irreducible and (b) reducible intercellular kinetics. (a) As there
exists a path of directed edges between any vertices v; to v; for 4, j € {1,2,3} in
G (DT (u;)) then DT (u;) is irreducible. (b) There exists no path from vy to v
or vz in G (DT (u;)) and therefore DT (u;) is reducible.

4.2.2 Dimension reduction by graph partition for polarity
laminar pattern existence

We have previously used methods of graph partitioning to template desired
patterns in regular and semi-regular large-scale 10 systems. Here we apply these
techniques to MIMO systems with semi-regular connectivity graphs as briefly
considered in [186], where we highlight the applicability of these methods to
constructing bespoke intracellular kinetics by exploiting the symmetries of the
cellular connectivity graphs, G, thereby analysing only representative vertices
from each pattern partition of the large-scale graphs, vastly reducing the
dimensionality associated 10 systems.

Under the assumption of monotone transfer kinetics (Assumption 4.2.1), we
provide sufficient conditions for the existence of polarity-driven laminar patterns
in bilayer geometries with multiple spatially dependent components using graph
partitioning. Critically, we demonstrate the prior requirement of commutative
connectivity graphs G; can be relaxed when seeking patterns with only two
contrasting states, such as binary cell-fate determination.

The method of pattern templating via graph partitions seeks to group cells
that are assumed to have the same steady-state solutions and therefore implies
that cells within the same group behave identically. This assumption allows for
the study of two representative cells from each layer in the bilayer large-scale
graphs, G, to predict the existence of laminar patterns as shown in Figure 4.5.

As stated in Chapter 2, we are formally assuming the existence of an equitable
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partition, 7y, of the vertices v; € V' into the pattern groups L; and L, of each
layer for all connectivity graphs Gi. This means that v € L; has the same number
of adjacent vertices in both L; and L, independent of the vertex, v [208]. We
are imposing that cells within the same layer have the same edge connectivity
structure, and therefore the connectivity graphs G, must be layer-wise regular
as in Figure 4.5. Algebraically, the partition 7y is equitable if there exists some

[k] > () such that

wij

Sl =wl) vue L, (4.30)
UEL]'

where wl[jl are the 77th elements of the row-stochastic adjacency matrix Wy, € W

[208]. In addition, we say that the laminar pattern partition, 7y, is simultaneously

equitable if w9 is equitable for all graphs Gy.

Figure 4.5: An example of templating for laminar patterns in bilayer geometries
using the equitable partition my. The cellular connectivity graph, Gy, is semi-
regular such vertices within the same layer, L, or Ly, have the same number
of adjacent vertices in each of the layers which induce an edge symmetry with
respect to vertices in the same layer. The equitable partition, s, leverages
the edge symmetries of G to generate a quotient graph Gy ., consisting of two
representative cells, one from each layer L, and Ls.

Let W), € R%Q be the reduced adjacency matrix for the quotient graph
Gr.my = Gi/m2 as depicted in Figure 4.5, that are element-wise composed with the
constants defined by equation (4.30). Applying the IO preserving interconnection
matrix definition (4.3) to the set of reduced adjacency matrices, we have the

reduced interconnection matrix of the form,
i=1

noting that the row-stochastic property of each W; € W is preserved in the

quotient mapping such that each W, is row-stochastic. In particular, as the

133



partition my allocates the vertices v € V into either of the sets, Ly or Lo, each

reduced adjacency matrix is of the form,

(4.32)

Wk:|: ar 1—ak:|

1—0br by

for all k € {1,...,r}r, where ay, by € (0,1) are composed of the polarity weights

wgk} and wgk]. Explicitly, a; and by have the layer-dependent form

”[1k]L w)” n[lk]L wlt

— s 1 o Lo

e N B o S o o R R (4.33)
1,011 2,L1 %2 1,L, W1 9,L, W2

where the superscripts correspond to the spatial connectivity mechanism, k£, and
n[lk}LJ > 1 and n[Qk]LJ > 1 are the number of connected vertices in the same and
opposing layer, respectively, from the perspective of each layer, j = 1,2. For
example, n[lk]Ll = n[lk]L2 =2, n[;]Ll = 2 and ngk]LQ =1 for G in Figure 4.5.

A key property of the equitable partition, 7y, is the preservation of
eigenvalues when mapping between the large-scale and quotients graphs, that
is, Spec (Wk) C Spec (W},) [208]. Using this property, any spatially driven
instability of the HSS observed in the quotient system also exists in the associated
large-scale system. However, to apply the HSS instability conditions derived
in Theorem 4.1.1 to large-scale connectivity graphs, we require that all W
must commute to generate a common eigenbasis for simultaneous diagonalisation.
Commutativity is not preserved in the quotient transformation in general due
to the reduced form of equation (4.32). Although, the following statement
enables the use of the HSS instability conditions independent of the commutative
properties of W, by demonstrating the existence of a common eigenbasis for all

reduced adjacency matrices partitioned by .

Lemma 4.2.4. Let P € RZZTOXQT be the reduced mixed interconnection matric
(4.31) associated with the equitable partition ms. Given any matric X € R
where X = I, ® X the eigenvalues of PX are those of X and KQXV where
Ay = diag(ay +by —1,...,a, + b, —1).

Proof. By definition of the family of the reduced adjacency matrices (4.32),
Spec (Wl) = {1,a; + b; — 1}, where all reduced adjacency matrices share the
common eigenvector v; = 1,, associated with the common eigenvalue XM = 1.
Without loss of generality, let R be the transformation matrix for W, such that
R'W R is in Jordan normal form [223]. As v; must represent a column of R
as it is an eigenvector for all W;, then let v, form the first column of R such that
ﬁflwlﬁ has diagonal entries 1 and a; + by — 1, respectively. Moreover, as each

W, e RQZf)?, then R~'W,R must be upper triangular form as 1 is a common
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eigenvalue for all 1 < ¢ < r, that is, R simultaneously upper triangularises
the family of reduced adjacency matrices such that each ﬁflwiﬁ has diagonal
entries 1 and a; + b; — 1.

Consider the invertible transformation R = R ® I.. Denote the adjacency
triangulation transformation of PX by H = R'PXR. Therefore, we have
that

(fz@Ir),
W @Di) (1,0 %) (Ro1).

D, X. (4.34)

I
ﬁ- A A
—_

“oryea
>(.:1

Specifically, H is of block upper triangle form such that

(4.35)

IL.X ZX
0 AQX

where Z is some real r X r matrix constructed by interweaving the upper right
entries of the transformed reduced adjacency matrices. Thus the eigenvalues of
H are those of X and KQY , which are the eigenvalues of PX via bijective
transformation defined by R. n

Subsequently, by seeking the existence of laminar patterns using the partition
my, Lemma 4.2.4 enables an analytic approach to determine the spatially driven
instability of the HSS with any combination of layer-wise semi-regular bilayer
graphs. Specifically, we need only determine the eigenvalues of DT (u*) to ensure
the HSS instability condition (4.17) is satisfied.

Applying the strongly monotone properties of the transfer kinetics outlined
in Section 4.2.1, we seek to ensure the asymptotic convergence of heterogeneous
solutions in the instance of HSS instability. However, it can be shown that the

interconnection matrix, P, and consequently the reduced interconnection matrix

P is reducible.

Lemma 4.2.5. Let P be the interwoven matriz defined in equation (4.3) and let

Q be the permutation matriz such that

Q: [IN®€1,...,IN®GT]. (436)
where e; = [(5“, cee 51-7,,]T. Then
Q' PQ = diag(W1,...,. W,). (4.37)
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Proof. Consider the permutation map 7 : {1,...,7rN} — {1,...,rN} such that

7(z) = ((x — 1) modr) N + V;lJ +1 (4.38)

which permutes the rows and columns of P so any row and columns W, of P

become adjacent for 1 <i < r. In cycle notation, 7 (x) defines the mapping

1 2 r r+1 --- rN
(1 N4l - (r—DN+1 2 ... (r—l)N+N> (4.39)

which represents the column and row permutation of P. The cycle (4.39) defined

by equation (4.38) yields the following matrix representation
Q=[Iv®e,..Iy®el], (4.40)

namely, Q; ;) = 1 and zero entries else. Therefore applying the transformation

Q to P produces the block diagonal representation where
QT PQ = diag (W, ..., W,). (4.41)
]

The existence of a block diagonal form of P (and P by identical construction)
by Lemma 4.2.5 highlights that P is a reducible matrix. However, we recover
the irreducibility of P and P by multiplication with a suitable class of matrices.

To demonstrate this result we first provide a useful statement for the powers P
(4.3).

Lemma 4.2.6. Let P be the interwoven matriz defined as defined in equation
(4.8). Then for alln € N

P = Z W ® D;. (4.42)
=1

Proof. The result follows by induction. Assume for some k € N that equation
(4.42) holds. Consider the case for k + 1,

(isz@Dz) :<im®Dz> (inQ@Dz) )
(i W, ® Dz) (i VVik & Dz) ) (4.43)

where the second equality follows from the inductive hypothesis. Note that

DiDj B { 0rxr 1 # J, <444)

136



then by expanding equation (4.43) and applying the mixed-product property of

the Kronecker product leads to the following cancellations,

(im®D1> (imk@)Dz) = (W) ® D) (imk@)Dz)

i=1 i=1 i=1

i=1

=W Wf@D + -+ W,W'e D,,

=> W' oD, (4.45)

i=1
That is, the inductive hypothesis is satisfied and therefore equation (4.42) holds
for all n € N. ]

Now we have an accessible method of computing the powers of P and P using
Lemma 4.2.6, we next show the irreducibility of linearised IO systems that are
required to satisfy the strongly monotone condition defined in Lemma 4.2.2 can
be preserved provided that the global interconnection matrix (4.3) is coupled to

irreducible matrices.

Lemma 4.2.7. Let P be the mized interconnection matriz (4.3) and
Q = diag(Qq, ..., QN) such that Q € R™ " is irreducible for each k € {1, ..., N}.
Then PQ is irreducible.

Proof. A graph is said to be strongly connected if there exists a path between any
two vertices. We aim to show that the graph defined by the weighted adjacency
matrix PQ is strongly connected and therefore use the property that a graph is
strongly connected if and only if the associated adjacency matrix is irreducible
[222].

For an unweighted, nonnegative adjacency matrix M, it can be shown that
the (i, 7)th element of MP* represents the number of ways to travel from vertex v;
to vertex v; along exactly k edges. Therefore if M defines a connected graph of [
vertices, then M contains no zero entries for all (i, ), that is, there exists a path
between any two vertices in less than, or equal, to [ steps, where the converse
statement is also true [222]. In the case of weighted, nonnegative adjacency
matrices, the elements (7, 7) of M* no longer represent the number of ways to get
from vertex ¢ to vertex j along exactly k edges, but are non-zero if there exists a
path between v; to vertex v; along k, or less, edges.

The set of vertices has cardinality |Vpg| = N owing to the total number

of interconnections within the large-scale 10 system (4.1). Hence consider the
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adjacency matrix (PQ)TN. From Lemma 4.2.6 it can be shown that

rIN

- (Z W, ® Di) => WV e D, (4.46)
i=1 i=1

and by the above argument WY has no zero elements as each W; represents a
connected graph of N vertices. Therefore, P™ is the interweave of r completely
non-zero matrices and thus w.l.o.g. for any non-zero elements p; ; of PN then
Ditr; and p; i, are also non-zero. Specifically, there exist no two non-zero
elements in P™ that are more than r elements apart in each row and column,
as in Example 4.1.1 where r = 2, N = 2. In addition, define Q;" = Q,. By
assumption, Qj, has no zero entries for all i,j € {1,...,r} by irreducibility and
so Q™Y = diag <Q1, e QN) Applying the definition of the matrix product, the
elements of (PQ)™ are given by

(PQ™),, szquj #0 (4.47)

k=1
for all 4,5 € {1,...,7N}, as every column of Q™" contains r consecutive non-zero
elements. Therefore (PQ)TN has no zero elements, which implies that the graph
of PQ is strongly connected, thus PQ is irreducible. O

The statement of Lemma 4.2.7 applies also to the reduced interconnection
matrix P as it has an identical structure to the corresponding large-scale
interconnection matrix P and therefore the irreducibility of the product is
preserved under the quotient mapping by 7. Hence by ensuring the irreducibility
of the Jacobian of the reduced IO system (4.1) spatially coupled by P, then by
Lemma 4.2.7 and Assumption 4.2.1, the following statement provides polarity-
dependent conditions that guarantee the existence of laminar patterns in semi-
regular bilayer graphs by using the strongly monotone dynamics of solution

trajectories.

Theorem 4.2.1 (Existence of laminar patterns in MIMO systems with
semi-regular graphs). Consider the 10 system (4.1) with interconnection matriz
P (}.3). Let my be the layer-wise simultaneously equitable partition for all
bilayer connectivity graphs, Gy, defined by P such that the associated reduced
interconnection matriz P (4.31) defines the reduced 10 system of representative
cells from each layer. Assuming that Assumption 4.2.1 is satisfied and there exists
Ay such that the HSS instability condition (4.17) and the monotonic conditions:

(M1) n [k] < n[Qk]L W Vi sgn (DT) =Sy or S|,
(M2) (—1)16Jrl n[lk]L w[lk] < (—1)chrl n[Qk]L wgf] if sgn (DT) = Sy or S,
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(M3) (—=1)*nl, W < (=1)* 0l Wi if sgn (DT) = S, or S,
(M4) ni w > 0l wi if sgn (DT) = S5 or S},

for all i € {1,2},k € {1,..,r}, are satisfied, then any solutions in the

netghbourhood of the HSS, x*, converge to laminar patterns in the reduced system.

Proof. Following from Lemma 4.11 we consider the auxiliary dynamic system
defined by the transfer kinetics for the reduced 1O system

tj _ Eﬂ L P E 2231 — F (), (4.48)
as this represents the behaviour of the reduced 10 system using only the spatially
dependent components. Note that the fixed points of the auxiliary system (4.48)
are those of the IO system (4.1). Namely, the auxiliary system (4.48) has HSS
z* = 1,®u for the cell-wise input steady state ug associated with *. Linearising

the auxiliary system about the HSS yields the following Jacobian

2—1: (2*) = —I, + P (I, @ DT (%)) . (4.49)

First, we show that sign structures, §; and S for j € {1,2, 3,4}, are equivalent
up to linear transformation on the Jacobian (4.49). Following that, we then use a
cooperative bijective transformation using the signal polarity parameters to show
that the auxiliary system is strongly monotone. Critically, the boundedness, in
combination with strongly monotone kinetics of the transfer function, ensures the
convergence of heterogeneous solutions in the auxiliary system (4.48) and thus
the reduced IO system by Lemma 4.11. A sketch of the following proof is given
in Figure 4.6 in the case of the monotonic conditions (M1).

Denote the reflection transformation M = I, ® M for M as defined in
equation (4.28) in Lemma 4.2.3. Note that M~! = M and therefore M~ = M.
Introducing the coordinate transformation w = Mz, the Jacobian (4.49) with
respect to w yields

M (681: (Mw)) M= (12 ® M) (—I, + P (I, ® DT (Mw))) <12 ® 1\7) :

=L, + (Lo M) (Zwk ®Dk> (I ® DT (Mw)) (L@ M),

k=1

= I + (;Wk@@Dk) (I2 ®M) (I, DT (Mw)) (Iz ®M) )

N - (Z W, ® Dk> (12 ® MDT (Mw) JT/E) ,
k=1
(4.50)
where the third and fourth equality follow from the commutativity of diagonal
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matrices and the mixed multiplication property of the Kronecker product. By
Lemma 4.2.3, the invertible linear transformation defined by M converts between
DT sign structures S; and S}. Therefore, we continue by considering the transfer
function with Sgn (DT (-)) = S; as the core kinetics of the systems.

From Lemma 4.2.4 the polarity dependent eigenvalues \;» of W, have
eigenvectors, wv;o, with sign structure sgn(v;5) = [—,+|T.  Therefore,
motivated by polarity-driven patterning and the requirement of the positivity
of the dominant instability mode for monotone kinetics [187], we construct a
transformation, R, to ensure that any polarity-driven instability satisfies the
monotonicity criteria, that is, monotone with respect to alternating domains.
Consider the transformation R = R ® I, where R = diag (—1,1). Noting again
that R°! = Ras R = R. By similar calculations as above, it can be shown

that by the coordinate transformation w = Rz the Jacobian (4.49) has the form

F
R (8 (R'w)) R=—-1I, + Z RW R ® D, DT (Rw), (4.51)
0z pet
where the quotient adjacency matrix is transformed to the following form
e ag — (1 — Clk)
RW R = . 4.52
g {— (1—bg) b } (4.52)

Therefore, let 7 (i) = (i —1) mod r + 1 then the row-sum of the transformed
auxiliary Jacobian (4.51) can be expressed as

(209 = 1) > (DT (Rw)), 1<i<r,
Z];ﬁz (R (BF (Rw) R))zj _ J=1T,Z75J

(2b,5) — 1) Z (D, DT (Rw))ij r4+1<i<2r
=Lt

(4.53)
For each sign structure S; the monotonic conditions (i-iv) are sufficient to
ensure the non-negativity of the row-sum by imposing the appropriate sign of
the coefficients (QaT(Z-) — 1) and (QbT(i) — 1). Explicitly, if sgn (DT) = Sy, we
require each (2a7(i) — 1) < 0 and (QbT(i) — 1) < 0 which is satisfied by (M1). For
sgn (DT') = Ss, we require we require each (2aT(i) — 1) > 0 and (21)7(1-) — 1) >0
which is satisfied by (M4). For the mixed kinetics sgn (DT) = &1, Sy, we require
that the coefficients (2a7(i) — 1) and (2b (i) — ) switch sign as 7 (i) increases,
such that (2(17@) — 1) < 0 and (QbT(Z) — 1) < 0 is associated with the negative
rows and, (2(17(1-) — 1) > 0 and (2b”- — ) > 0 is associated with the positive
rows of DT, both satisfied by (M2) and (M3), for sgn (DT') = S, S, respectively.

Critically, for each sign structure S; the monotonic conditions (M1-M4) guarantee

> (R (gF (Rw) R>)ij >0 (4.54)

JF
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for all i € {1,...,2r}, thus satisfying the type K condition in Lemma 4.2.1.
Furthermore, by Lemma 4.2.7, the transformed auxiliary Jacobian (4.51) is
irreducible and therefore the auxiliary dynamical system (4.48) is strongly
monotone (cooperative) with respect to the laminar pattern transformation R.
The cooperative auxiliary dynamical system (4.48) is monotone with respect
to the standard domain R%j and has a positive eigenvector v > 0 associated with
the polarity driven instability Ay of the transformed HSS Rz* by the Perron-
Frobenius Theorem [141]. Consequently, for small €, any solution starting at
Rz = Rz* + ev must have positive derivative and increase in the transformed
trajectory domain R% [187]. Critically, if the solutions of the cooperative
auxiliary dynamical system (4.48) are bounded, then the strongly monotone
property ensures the convergence to another steady state, Rz** # Rz*.

The transfer function T (-) is bounded and so there exists b > 0 such that
IP[T (1), T (22)]"I]2 < b (4.55)

for all z;. Thus, as the cooperative auxiliary dynamical system (4.48) is
monotone with respect to R%, we have that the sets centred about the HSS
Vi = Rz + (R¥;N[0,b]*") are forward invariant, i.e. ¢, (Rz) € Vi for all
t € [0,00). Therefore all solutions are bounded within a compact domain and thus
converge to Rz** # Rz* by the Cooperative Irreducible Convergence Theorem
(Theorem 4.3.3 in [187]). Subsequently, the corresponding non-transformed
system (4.48) must have each vertices with solutions in V, and V_, respectively,
ensuring contrasting cell-wise solutions. Finally, as any steady state solution to
the auxiliary dynamical system (4.48) is a steady state of the associated reduced
10 system (4.1), by Lemma 4.11 the reduced IO system (4.1) converges to laminar
patterns. ]

From Theorem 4.2.1 we can conclude that the existence of a polarity-driven
instability of the HSS implies the existence of heterogeneous steady states
within the quotient system. This follows as solution trajectories diverge when
transforming between competitive to cooperative systems as highlighted in Figure
4.6. Moreover, as the competitive dynamics of the reduced 10 system (4.1) are
isomorphic to cooperative dynamics, all periodic solutions are unstable [224],
implying the convergence to contrasting cell states. The following example
demonstrates how Theorem 4.2.1 can be applied to prove the existence of laminar

patterns in large-scale 10 systems.

Example 4.2.2. Consider the DIDO system with two spatially-dependent
components describing lateral-inhibition with a diffusive crosstalk as represented

in Figure 4.7,
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Figure 4.6: A sketch of the proof of Theorem 4.2.1 for system transformations for
the monotonic case (M1) where I, is the identity matrix, M is the competitive

sign structure transformation, R is the competitive to cooperative transformation
and ¢, (zo) is a solution trajectory with initial condition z.

im =0 (uzl) * g2 (%2) : f1 (%2) — L1,
Tio = fo(xi1) — 22,

Yi1 = T42,

(4.56)
(4.57)
Tig = g3 (i1) — @3, (4.58)
(4.59)
(4.60)

Yi2 = T4 3,

for each cell 1 < i < 60. The functions f; and g;, 7 = 1,2,3, are positive,
bounded, and increasing and decreasing functions, respectively, of the form,
xkj 1

fi(x)=——— and g;(z)= T+ B0

4.61
o + ki (4.61)

where o, B, ki, hy > 0. Let u;1 and u,; 2 be defined be short-range diffusion and
contact-based bilayer connectivity graphs Gy and Go, respectively as in Figure
4.7 Explicitly, we have that oulputs are converted to inputs via the global
interconnection matrixz such that u = (W7, ® D1+ Wy ® Dy)y for Wi, W, €
W. Here, we focus on the associated reduced I0 system (4.56-4.60) which is
defined by the simultaneously equitable partition mo. Namely, in the reduced 10
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system, outputs are converted to inputs by u = (Wl @D+ W, ® Dg) y where

2w£1] 4w£1] Qw?] 2w£2]
Jm— (1] (1] [1] [1] J— [2] [2] [1] [2]
2 4 2 4 2 2 2 2
W= |20 e 2 and Wy = |21 2w 2w F2w (4 .62)
Wy 2wy 2w 2wy
2w£1] +4w£1] 2w[11] +4w£1] 2w[12] +2w£2] 2w[12] +2w£2]

1 1 2 2 1 1 2
such that n[l}Ll = n[l]L2 = n[l]L1 = n[l]L2 = 2, n[Q]Ll = 71[2]L2 = 4 and n[z}Ll =

nﬂz = 2. We seek to show the existence of polarity-driven laminar patterns
using the quotient graphs and so we first require the HSS of the IO system (4.56-
4.60), then we derive the derivative of the transfer function DT (u;), highlighting
that Assumption 4.2.1 is satisfied. Applying Theorem 4.2.1, we generate polarity

regimes for the existence of patterning.

Short-range
diffusion

Figure 4.7: A schematic of the IO system considered in Example 4.2.2.

The HSS of the 10 system (4.56 - 4.60) can be determined by solving

g1 (f2(21)) - g2 (f2 (21)) - f1 (g5 (21)) — 271 =0 (4.63)

for a7 by setting w1 = x;2 and u; 2 = x; 3, conforming to homogeneous input and
outputs of the tissue. Furthermore, the HSS defined by solving equation (4.63) is
always stable in the absence of interconnections. This can be shown by considering

the linearisation of the intracellular kinetics

-1 figigy O
A= gf — |l "1 o, (4.64)
Li g4 0 -1

As det (A) = fig1 fog5 — 1 < 0 always holds by the monotonicity of the functions
f; and g;, then the HSS defined by solving equation (4.63) is unique by Lemma
4.1.2. In addition, A has eigenvalues

pr=—1, pp=—-1++\/fig1f395 and pz=—1—+/fig1f295 (4.65)
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and so as p1, R (pa) , R (u3) < 0 we have that A is stable. Thus any instability of
the HSS will be induced by the interconnection of cells in the tissue.

The derivative of the transfer function can be determined by linearisation
of the 10 kinetics (4.56 - 4.60) as demonstrated in [117] such that DT (u;) =
—CA'B where B and C are the linearised inputs and outputs respectively as
in Lemma 4.1.3. For the 10 system (4.56 - 4.60), the derivative of the transfer

function has the form

010 1 fig195 0 19291 919211
DT (u;) = —det (A) ™ [0 0 1} £ 1 0 0 0o |,
95 1919595 1 — f1919 0 0
! ! ! £/
— _det(A)! J192f291 9192f1f2]’ 4,66
( ) [flgzgigé 9192]({93 ( )

where each of the functions f; and g; are evaluated using the corresponding
arguments for the given input state w;. The product of bounded functions are
bounded [215] and subsequently DT (u;) is element-wise bounded as f;, g;, f; and

g; are bounded. In addition, from the monotonicity of f; and g; we have that

sgn (DT (w;)) = {; ﬂ — s (4.67)

and so the IO system (4.56 - 4.60) satisfies Assumption 4.2.1. Therefore by
Theorem 4.2.1 we have that for the 10 system (4.56 - 4.60), which spatially
coupled using the quotient graphs Gi r, and G r,, then the instability of the HSS,
in addition to the monotone polarity conditions w[11] < wa and w?] < wg],
produce contrasting cell-wise states.

By Corollary 4.1.1 we apply the DIDO instability inequality (4.21) to the 10
system (4.56 - 4.60). As det (DT (u;)) = 0, the DIDO instability inequality

(4.21) reduces to 1 < tr (A;DT (u;)), namely the HSS is unstable only if

1 wgl} — ng] w[ﬂ — wéz]
1 < —det (A) —7 7 | [ fot | g | 91o2figs | (4.68)
w; +w

wgl] + 2w£1] 5

for the reduced 10 system (4.56 - 4.60). The monotone polarity condition (M1)
w%l] < 2w£1] and w?} < wg] of Theorem 4.1.1 confirm that each of the reduced
connectivity matrices must have negative eigenvalues to produce the instability of
the HSS as f19291f5 < 0 and gi1g2f1g5 < 0 by the monotone properties of the
functions f; and g;. Critically, the HSS instability inequality (4.68) highlights
that as the layer-wise activator/receptor polarity increases, i.e. wgi] < wgﬂ, the
potential to induce laminar patterns also increases in the quotient system. Then by
the spectral retention property of the equitable partition mo, we have that laminar

patterns must exist in the pattern space of the associated large-scale system.
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To illustrate the application Theorem 4.2.1 to the 10 system (4.56 - 4.60)
numerical verification of the polarity parameter regime for laminar pattern

existence determined by inequality (4.68) is given in Figure 4.8.

Cell 1 Cell 2

05 , 0.4 02— 02
1 — o~ o)
: 70.2 0.1 0.1
04, No patterning ' | s . E =0 &0
0.3 X& | 0 50 100 0 50 100 0 50 100
= X t t t
0.2 ' 0.4 02 0.2
- V4 N @ /
0 0E— 0 - =1
0 0 50 100 0 50 100 0 50 100
o 05 1 15 2 25 ) ) :

[1]

Figure 4.8: Polarity parameter regimes for the existence of laminar patterns in the
10 system (4.56-4.60). For fixed wl! = w? = 1, inequality (4.68) in addition to
the monotone polarity conditions wgﬂ < wéﬂ and w?} < 2w£2] to define a regions
in (wgl],w?])-space for the existence of laminar patterns. The dashed line in

the (w[ll}, w?])—space corresponds to the monotone condition (M1) w%” < Qw[;}.

Example simulations are given for polarity parameter values inside the pattern
region, (0.5,0.1), and outside the pattern region (1.5,0.35). Initial conditions
were given as small random perturbations about the HSS, * = [0.18,0.03, 0.05].
10 system (4.56-4.60) parameter values and details on simulations are given in
Appendix D.

As demonstrated in Example 4.2.2, the method of pattern templating for
contrasting solutions between cells in opposing layers can be used to show the
existence of layer-wise differing steady states via polarity-driven instabilities.
However, the associated large-scale systems may have many locally stable steady
states that produce the pattern space of the IO system, which could have been
lost during the dimension-reducing transformation by the partition, my [118].
Therefore, in the following section, we investigate the spectral properties of the
bilayer connectivity graphs to ensure that the laminar patterns produced by
Theorem 4.2.1 are indeed globally dominant, namely, the behaviour observed

in the quotient systems are preserved in the large-scale counterparts.

4.2.3 Spectral links between quotient and large-scale
bilayer connectivity graphs

For linearised dynamical systems near steady state, the local solution trajectories

are a linear combination of the associated eigenvectors scaled by the corresponding
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exponent of the eigenvalues [225]. Thus, in the instance of steady-state instability,
all trajectories close to the steady-state will locally tend in the direction of the
eigenvector associated with the largest real-part eigenvalue. Critically, to ensure
the monotone convergence of laminar patterns in the reduced IO systems in
Theorem 4.2.1, we transformed the polarity-dependent eigenvector to be directed
in the positive orthant, conforming to the behaviour of cooperative dynamics.
Thus, motivated by this positive direction transformation, we seek to understand
when the eigenvalue associated with laminar pattern formation dominates the
large-scale spectra to ensure perturbed trajectories from the HSS to be preferably
pointed in the direction to achieve layer-wise contrasting states in the large-scale
IO systems.

Previous studies on pattern formation using IO systems have imposed the
sufficient condition that the large-scale and quotient multilayer connectivity
graphs Gy, are bipartite, as this generates monotone dynamics with respect to the
bipartition vector [117, 118, 186, 207]. Namely, a graph Gy, is said to be bipartite
if the vertices v € V can be partitioned into two independent sets V; and V5
such that no two vertices in the same set are adjacent [220]. Example bipartite
bilayer graphs are given in Figure 4.9a. However, it can be demonstrated that for
bipartite bilayer graphs, the polarity-dependent eigenvalue, ijg, associated with
laminar pattern formation cannot be minimal in the spectrum, a requirement
for local laminar pattern trajectory dominance near the HSS with competitive

kinetics.

Lemma 4.2.8. Let Gy be a bipartite bilayer graph with weighted adjacency matriz
W, € W. Then for any w[lk],wék] > 0 the polarity-dependent eigenvalue XM

associated with the reduced adjacency matriz Wy, satisfies
A2 7 min (Spec (W},)). (4.69)

Proof. Consider A\ ; € Spec(W}), then by the spectral symmetry of bipartite
graphs about the origin we have that —\; ; € Spec (W) [220]. As W), € W then
Ak1 = max (Spec (Wy)) = 1 by the connected and row-stochastic properties of
W, [210]. Consequently, —\j; = min (Spec (W})) = —1. However, the minimal
eigenvalue of the reduced adjacency matrix W, defined by the laminar pattern
partition, 7, must be of the form Ago = ap + b — 1 for ag, b, € (0,1) by
Lemma 4.2.4. Critically, this implies that A\, € (—1,1) and therefore A, #

min (Spec (W},)) for any layer-wise polarity values wgk], wgk] > 0. O
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(b) Example spectra of bipartite bilayers.

Figure 4.9: Structure and spectra of bipartite bilayer connectivity graphs. (A)
Example regular bipartite graphs where vertices are coloured with respect to the
bipartition sets V; and V5 in black and white, respectively. (B) Spectra of two

bipartite graphs Gop and Gsp is shown for wgk] = 0.05 and wgk] = 0.2 for fixed

wgd = 1 (k € {2D,3D}) where the eigen index refers to the position of the

eigenvalue when listed in ascending order. The dashed red lines correspond to
the polarity-dependent eigenvalue Xk,g highlighting its position with respect to
the ascending spectrum of the associated large-scale graph. The vertices of the
graphs are coloured layer-wise to emphasise their bilayer structure.

A direct consequence of Lemma 4.2.8 is that if the large-scale IO system
(4.1) with competitive kinetics and spatially coupled by a bipartite bilayer graph
Gk, any trajectory initiated from a small perturbation of an unstable HSS will
not be dominantly travelling in the direction of the eigenvector associated with
laminar patterning. Critically, the eigenvector that direct solutions towards
laminar patterns are the weakest component of the linear combinations of
eigenvectors that approximate the trajectories near the HSS. Subsequently, it
has previously been shown that the dominant patterns by the bipartition vectors,
independent of graph edge weights [207] for purely competitive kinetics. Figure

4.9b demonstrates the consequences of Lemma 4.2.8, and for the given bipartite
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graphs, the laminar patterning polarity-dependent eigenvalue ng defines a
spectral gap about the origin which is verified in Appendix E.

Following Lemma 4.2.8, we focus our attention on the spectral investigation of
non-bipartite bilayer graphs. As we are interested in the polarity-driven pattern
events using a pre-defined pattern template, 7o, we seek to understand where Ay

is positioned in the spectrum of the associated large-scale graph Gy.

Lemma 4.2.9. Let Gy be a non-bipartite reqular graph with weighted adjacency
matrizc Wi, € W and eigenvalues in descending order Ay > ... > A\ n. Consider

the following polarity regimes:

(1) cross-layer dominated polarity regime, wgk] < wgc], then Xk,g = AN,

(II) same-layer dominated polarity regime, w[lk] > wgc], then Ao = Apo,

where Xk,g is the polarity dependent eigenvalue of Wy,.

Proof. As ms is an equitable partition of Gy, there exists a lifting matrix L €

{0, 1}7*2 which defines the quotient mapping algebraically
WiL = LW,, (4.70)

as defined in [220]. The lifting matrix is constructed by grouping vertices of Gy
with the associated partition, for example, L;; = 1 if v; € L;. By the block
definition of Wy, the lifting matrix for bilayer graphs has the form

1 0
A L 4.71

{O|L2|71 Liz,)0 ( )
Consider polarity-dependent eigenvalue ng = ar + by — 1 and associated
eigenvector Ty = ¢(—1,1)" of W, for any ¢ € R\{0}. Following equation
(4.70), multiplication by Dy 2 yields

W, LDy 5 = LW 00 = M\, 2 L0 2 (4.72)

and therefore Lvy o is an eigenvector of the large-scale graph G; and has the

normalised form

1 [-1
Loy = —— | , 1l 473
YT UN { LiL) )

for the polarity-dependent eigenvalue Xk72 = a; + b, — 1. We focus on the position
of eigenpair (Xk’g, Lﬁm) within Spec (W},).

The Rayleigh quotient provides a bound on the numerical range of a matrix
[220] and for Wy, is defined by

YWy

Rw, (y) = Ty (4.74)
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The regularity of G implies that W}, is symmetric and therefore by the Min-Max
theorem we have that Ry, (y) € [min (Spec (W})), max (Spec (W}))]. Note that
if vy; is an eigenvector of Wy, then Rw, (vk;) = k-

The eigenvectors of W), form an orthonormal basis in R as W), is real and
symmetric, and therefore y’y = 1. By the block structure of W}, (4.8) and direct

computation, the Rayleigh quotient can be expressed as follows

L1| | 1]
) k
- (Wl[,[}q) yly] + Z ( 2[[]/1> yzy]
i=1 \ j=1 j=|L1|+1
N |L1]
3k 2k
(S e 3 (W),
i=|La|+1 \ j=1 —|L1|+1 J

(4.75)

In the cross-layer polarity regime (I), w [k] <K w2 , by definition of the weighted

adjacency matrices W), we have that 0 < (‘//1\/1[]%1) o, (Wl[]i) < <W2[k£1) <1
ij ij ij
and the Rayleigh quotient can be estimated by

|L1| N N |L1|

Rw, (y) = Z Z (WQ[ICL) LYY |+ Z Z (ﬁ\/z[k[],1> Yy |
i=1 \j=|L1|+1 Y i=|L1]+1 \ j=1 It
(4.76)

which is minimised when y;y; < Oforany ¢ € {1,...,|L;|} and j € {|L;|+1, ..., N}.
As each eigenvector of W, is orthonormal, Lvy, 5 is the only eigenvector to satisty
this minimisation property because any other eigenvector g has g;y; > 0 for some
i € {1,...,|L1|} and j € {|L1| + 1,..., N} by orthogonality, y"g = 0. Therefore
k2 = min (Spec (W})) for wg] < w[k] by the Min-Max theorem for symmetric
matrices [220].

In the same-layer polarity regime (II), wgk} > wé’“}, we have that 0 <
(ng) K (‘//‘\/1@1) o (1//1\/1[’%2) < 1. The maximum eigenvalue A\y; = 1
with the léssociated norglalised poslizcive eigenvector

1
ohs = =l ) (4.77)

by the row-stochasticity of W}, and thus we seek the second largest eigenvalue.

Following our previous approach, the Rayleigh quotient in the same-layer polarity
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regime (II) has the approximate form

[La| [ L] N

Rw, (y Z Z(WIM) TR Z (Wﬂz) iy, | .

i:|L1|+1 = |L1|+1

(4.78)

which is maximised when y;y; > 0 for all 4,j € {1,...,|L|} and 4,5 € {|L1| +

., N}. Critically, the only eigenvectors to satisfy this property are vy, and
Lw,,» by orthogonality. Then as Xk,g < A1 = 1, we have that Xk’g = Mg 2-

O

We have demonstrated that we can control the position of the polarity-
dependent eigenvalue ), in the ordered spectrum of the large-scale adjacency
matrix Wy, by imposing high signalling anisotropy in bilayer structures. Critically,
in cross-layer polarity regimes (I), the extrema of the spectra is preserved in
the quotient mapping, mo, and therefore local behaviour about the HSS will be
consistent in the reduced and associated large-scale 10 system.

The block representation of the Rayleigh quotient (4.75) indicates that the
number of same-layer, ny,,, and cross-layer, nyr,,, connections for each cell
dictates the amount of polarisation required to achieve the spectral positions
defined Lemma 4.2.9. Namely, n; ,, determines the number of (ﬁ\/l[%m) >

a7

0 and ngy, determines the number of (WQ[%M) > 0 in each row sum.
2) .

Consequently, achieving A\, = Ak, requires less polarity in graphs with a large
number of cross-layer connections, and conversely Xm = M2 requires less polarity
in graphs with a large number of same-layer connections. A demonstration of this
property and Lemma 4.2.9 is given in Figure 4.10.

Theorem 4.2.1 demonstrated that the existence of laminar patterns is
dependent on the existence of polarity within the quotient connectivity graphs
to induce both HSS instability and monotonicity of solutions. In this section, we
have shown that polarity, namely the values wgk} and wgd, can be used to control
the position of the eigenvalue associated with laminar patterns in the quotient
graphs in the spectra of the large-scale graphs. Therefore, in the following section,
we explore whether solution behaviours observed in the reduced systems are
preserved in the associated large-scale systems when the quotient graphs preserve
the extrema of the spectra of the large-scale graphs. Namely, we show that the
analysis conducted on the reduced 10 systems yields global pattern convergence

in high polarity regimes.
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(a) Spectral shifts in a cross-layer polarity regime (I).
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(b) Spectral shifts in a same-layer polarity regime (II).

Figure 4.10: Eigenvalues associated with laminar pattern trajectories tend to
change position in the large-scale spectra in regular non-bipartite bilayer graphs
with high signal anisotropy. Cell connectivity graphs G; and G, from Example
4.2.2 with vertices coloured layer-wise are shown on the left. The spectrum of
each graph is then shown in ascending order where the eigen index corresponds
to the increasing ordering of the eigenvalues. The polarity-dependent eigenvalue
ko is shown in red with dashed lines to highlight the position in the large-scale
spectra. (a) For fixed wgk] = 1, the values of w?] decrease from left to right
to demonstrate the transition to a cross-layer polarity regime (I). (b) For fixed
wgk} = 1, the values of wgk] decrease from left to right to demonstrate a transition
to a same-layer polarity regime (II).
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4.2.4 Polarity induced laminar pattern formation derived
by quotient systems for large-scale bilayer geometries

We explore the conditions in which the patterns predicted using the dimension
reduction technique of quotient templating are the globally dominant patterns
produced in the large-scale IO systems. We have demonstrated in Section
4.2.3 that the spectra of regular non-bipartite bilayer connectivity graphs can
be bounded by the extrema of the spectra of the associated quotient graphs
defined by my. This implies that the polarity-driven HSS instability imposed by
the pattern existence condition of Theorem 4.2.1 in the quotient systems must
also exist in the large-scale systems and can become dominant in high-polarity
regimes. Therefore, we focus our attention on whether the large-scale 10 system
is monotone with respect to the eigenvector locally directing solutions to laminar

patterns, thus preserving trajectory direction.

Lemma 4.2.10. Consider the large-scale 10 system (4.1) spatially coupled
by the global adjacency matrix P (4.3) where Wi, € W for k € {1,...,r}.
Let Assumption 4.2.1 be satisfied and the laminar pattern partition, mo, be
simultaneously equitable, for all reqular and non-bipartite connectivity graphs Gy,.
Given that the global monotonic (GM) conditions:

(GM1) w&k} < w[Qk] if sgn (DT) = Sy or S,

(GM2) (—1)"*! wl < (—1)"*! wl if sgn (DT) =&, or Sy,
(GM3) (1)l <« (=1)* Wl if sgn (DT) = S, or S,
(GM4) wﬁ’“} > w[Qk] if sgn (DT) = S; or S,

are satisfied then the large-scale 10 system (4.1) generates monotone solutions in

the direction of laminar patterns.
Proof. Similar to Theorem 4.2.1 we consider the large-scale auxiliary system

21 z21 T(Zl)
=—|:|+P| = F(2), (4.79)

ZN ZN T(ZN)

which has identical behaviour to the large-scale 10 system (4.1) by Lemma 4.1.1.
First, we will construct the sign structure of the eigenvector associated with
laminar patterns in the large-scale graphs. Then, by transforming the auxiliary
system (4.79) to ensure the positivity of the laminar pattern eigenvector, we
demonstrate that the large-scale 10 system (4.1) has the capacity to become
type K in high polarity regimes in bilayers.
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Linearising the auxiliary system (4.79) about a generic point z € RZY yields

DT (Zl)
—Ly+ P (4.80)
DT (ZN)

OF
0z

where T (+) satisfies Assumption 4.2.1. From Lemma 4.2.3 the bijective coordinate
transformation Mw = z, where M = Iy ® M , converts between sign structures
S; and S; (1 € {0,1,2,3}), and therefore we continue with sgn (DT (+)) = S;
without loss of generality.

The reduced graphs associated with the laminar pattern template Gy , of

regular graphs G has eigenvalues Xk,l =1 and X]ﬁQ = aj + b, — 1 with normalised

wgl] woe[]

by definition of the reduced adjacency matrix W, (4.32). Subsequently, the

eigenvectors

polarity dependent eigenvector has sign structure sgn (vy.2) = [—, +|7. As shown
in Lemma 4.2.9 there exists a matrix L € {0,1}"*? that maps the large-scale

graph into the quotient graph such that
LW, = W,L, (4.82)

where L allocates the vertices of the large-scale system into the reduced
groups associated with the laminar pattern template [220]. From the quotient
to large-scale algebraic relation (4.82), we have that Lvy, is an eigenvector
of W, with eigenvalue \,,. Specifically, this implies that the eigenvector
associated with laminar patterning in the large-scale graphs has the sign structure
sgn (Lvys) = [—, ..., —, +, ..., |7 which has |L;| and |Ls| negative and positive
entries, respectively. Hence, the matrix R = diag (—1,...,—1,1,...,1) orientates
the laminar patterning eigenvector Lvy o in the positive orthant, i.e., ﬁLﬁm > 0.

We next introduce the transformation w = Rz where R = R ® I,
noting that R~! = R. Following this change of variables, let X; =
diag (DT (21), ..., DT (21,))) and X, = diag (DT (z1,41) » ... DT (2zn)), then
by the layer-wise block formulation of the bilayer adjacency matrices, Wy, (4.8),
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the linearised auxiliary system (4.80) has the form

OF X 0
R—R~=—1I, RP R,

0z N [ 0 Xz]
o : -y X1 O
I (;RVV"@DJ | {0 —XJ |
B | Wi, @D Wi @D\ [x, o
B> B (ﬁ\,—[ﬂ >T®D< Wil eD,||] [0 —Xs]

i=1 2,1 ? 1,Lo ?
<I/)[\/1[’]Ll ® Di) X1 - (WQ[Z]M ® D1> X

= —I.n+ i \T i
(4.83)

by the mixed-product and block-product properties of the Kronecker, product
[226]. The transformed auxiliary system (4.83) is monotone if the off-diagonal
row-sum is non-negative by Lemma 4.2.1. Namely, if 7 (i) = (i — 1) mod r + 1

then

r r|L1] 7|La|

Wl S (X, - Bl Yo (X)), 1<i<rlLy,
oF B j=1,j7i j=1,j#i
; R=—R ) Lyl rlLa|
J#i K Al NG .
_wg()] Z (X1>ij+w[1()] Z (Xz)ij r|L1| +1<i<rN.
. j=1,j#i J=1,j#1

(4.84)

" are the row-normalised components of wz[»k], then if sgn (DT') =

Sy, then X, and X, are non-positive matrices and thus resultant row-sums are
positive if condition (GM1) is satisfied. Conversely, if sgn (DT) = Ss, then
X and X, are non-negative matrices and so the positivity of the row sum is
guaranteed if condition (GM4) holds. For sgn (DT) = &1, Ss, then X; and X,

have alternating positive and negative row entries, and thus conditions (GM2)

Note that w

and (GM3) ensure row-sum positivity, respectively.

Critically, from the GM conditions we have that,

oF
> <R8—R) >0 (4.85)
i e

for all 1 < i < rN. Therefore the auxiliary system (4.79) is type K by Lemma
4.2.1 and so is monotone in the direction for solutions associated with laminar

patterning in high polarity regimes. O

Applying the cooperative transformation in high-polarity regimes to an 10
system (4.1) where the extrema of the spectra are preserved in the quotient

mapping guarantees the global convergence of laminar patterns in the large-scale
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systems. Critically, this extends the existence statement of Theorem 4.2.1 to

sufficient conditions for large-scale laminar patterning.

Theorem 4.2.2 (Global convergence of laminar patterns in highly-polarised
regimes). Consider the highly polarised 10 system as defined in Lemma 4.2.10. If
the laminar pattern existence criterion, Theorem 4.2.1, is satisfied, then laminar

patterns are globally convergent in the large-scale 10 system (4.1).

Proof. Following Theorem 4.2.1, by analysing the quotient graphs there exists Ay
such that the HSS instability condition (4.17) is satisfied. In addition, Lemma
4.2.10 guarantees that the 10 system (4.1) generates monotone solutions in the
direction of laminar patterns, such that the eigenvector associated with Xk,2 is
directed in the positive orthant, ﬁLEm > (. Furthermore, Lemma 4.2.7 ensures
that the linearised 10 system is irreducible and thus the IO system (4.1) is strongly
monotone by Lemma 4.2.2.

By the identical arguments of Theorem 4.2.1, the corresponding large-scale
auxiliary system (4.80) has bounded solutions, which induces the convergence
of solutions to steady-state Rz™ # Rz* by the Cooperative Irreducible
Convergence Theorem (Theorem 4.3.3 in [187]). Critically, mapping back to
the original coordinating system guarantees that vertices in different layers have

contrasting solutions. O

The sufficient conditions for large-scale laminar patterning outlined in
Theorem 4.2.2 ensure that the behaviour observed in the quotient systems is
preserved in the corresponding large-scale systems in highly polarised parameter
regimes. Subsequently, this enables an analytic approach to pattern prediction as
we can fully determine the spectra of the quotient graphs Gy, », independently and
without imposing commutativity conditions on the reduced adjacency matrices.
The following example demonstrates the accessibility of the analysis for large-

scale 10 systems with spatially coupled multilayer connectivity graphs.

Example 4.2.3. We revisit FExample 4.2.2 to seek a polarity regime that
guarantees the global convergence of laminar patterns using analysis conducted
in the quotient systems when templating the large-scale system using the equitable
partition, wo. Namely, in conjunction with the results of applying Theorem 4.2.1
to the DIDO system (4.56-4.60) as in Example 4.2.2, we also invoke Theorem
4.2.2 to isolate regions of polarity parameter values for wgl] and w?] that ensure
global monotonicity of solutions with respect to laminar pattern trajectories.
Namely, as the DIDO system (4.56-4.60) has sgn (DT) = S|, then we seek to
satisfy condition (GM1) such that the extrema of the quotient graph spectra are

the extrema of the large-scale graphs.
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As the large-scale and quotient graphs are row-stochastic, we always have
max (Spec (W})) = max (Spec (Wy)) = 1, (4.86)

therefore, the quotient graphs retain the mazrimum eigenvalues, and so now we
focus on the preservation of the minimal eigenvalues.

In Figure 4.10a we have demonstrated that for w[lk] < 0.5 and wgk] =1,
the quotient connectivity graphs for short-range diffusion and contact-dependent
signalling mechanism, Gy r, and Gar, have the capacity to bound the spectra of
the large-scale graphs G, and Gy from below. Critically, this implies that for any
w%k} < 0.5 with fized wgc} =1, that induced HSS instability, the solutions of the
DIDO system (4.56-4.60) will be locally directed towards laminar patterning and
so following from Theorem 4.2.2, for sufficiently small w[lk] < 0.5, the large-scale
DIDO system (4.56-4.60) will converge to laminar patterns.

To highlight the results of applying both theorems 4.2.1 and 4.2.2 to the
example DIDO system (4.56-4.60), regions of pattern convergence were found
numerically in Figure 4.11 which includes examples of large-scale simulations for
which laminar patterns are and are not dominant. It is worth noting that the

magnitude of the difference between wgk} and wgk] 1s dependent on the magnitude

of the entries of DT (u;) and thus assuming that w[lk] < wgﬂ] is sufficient for the
monotonicity of the large-scale system but is not necessary to satisfy the type K
criteria (Lemma 4.2.1). Subsequently, selecting polarity parameters in which both

the HSS instability condition for the reduced system (4.68) and
min (Spec (W})) = min (Spec (W},)) (4.87)

are satisfied resulting in the large-scale system converging to laminar patterns

without requiring significant cross-layer polarity.

As highlighted in Example 4.2.3, theorems 4.2.1 and 4.2.2 facilitate the
analytic study of laminar pattern formation in large-scale interconnected
dynamical systems, independent of the number of cells in the system or
physical dimension owing to the topological definition of the connectivity graphs.
Hence the pattern analysis conducted on the quotient systems can evolve from
explorative (in which geometries enable laminar patterning), to constructive
(how much edge weight manipulation is required to robustly generate laminar

patterns).
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0.4 No patterning
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0.2

Pattern existence
0.1

Figure 4.11: Polarity parameter regimes for the existence and convergence of
laminar pattern in the large-scale 10 system (4.56-4.60). The grey existence

region is determined using the quotient system analysis and is defined by polarity-
driven HSS instability inequality (4.68) for fixed wgﬂ = wg] = 1. The green
convergence region highlights the subset of the grey region in (wgl}, w?])—space

in which min (Spec (Wk)) = min (Spec (W})). Example large-simulations are
shown for polarity parameters inside the convergence region, (0.6,0.2), and inside
the existence region (1.5,0.05). Large-scale bilayer graphs are shown with both G,
and G, embedded in the same vertex set with edges in black and red, respectively.
Vertex colour corresponds to the values of z;; in each v;. Simulations were
initiated from small random perturbations about the HSS of the IO system
(4.56-4.60) and first and final states are shown following trajectory convergence.
10 system (4.56-4.60) parameter values and details on simulations are given in
Appendix D.

4.3 Extending the small-gain criterion for
quotient stability in MIMO systems

We have demonstrated quotient IO systems can be used to determine the
trajectory behaviour of the associated large-scale IO systems by controlling the
relative amount of signalling polarity between cells, such that solutions must
converge to laminar patterns. However, patterns need to be robust to both spatial
and temporal perturbations to be able to describe cell-fate determination in a
developing biological system. Therefore, to determine the stability of laminar
patterns with a focus on the interconnection strength between cells, we extend
the small-gain criterion for pattern stability (Theorem 2.2.2) to include multiple
inputs and outputs. Critically, this provides a sufficient low-dimensional and

semi-analytic method to assess the robustness of the laminar patterns found using
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our analytic approaches.

The gain of a cell is simply the magnitude of the ratio of input signals to
output signals [227]. Moreover, the Lo-gain, ;, of a cell ¢ is the ratio where
the L5 norm, || - ||2, is applied to obtain the input and output signals as defined
previously (Definition 2.1.4). Subsequently, v; remains a scalar for MIMO systems
and provides a measure of the signal sensitivity of cells.

Let ' = diag (71, ..., vv) be the diagonal matrix of Lo-gains of the 10 system
(4.1). By definition, cells with identical behaviour i.e. the same input signals wu;
and output signals, y;, will have identical Lo-gains. Hence, v; = v; Vo;,v; €
Ly (k=1,2) as imposed by the laminar pattern partition my. Therefore, when
seeking laminar patterns, we have that I' = diag (711 \L1]s Yo L2|), where 7, are
the Ly-gains of the two representative cells in the reduced IO system (4.1).
When analysing the stability of quotient systems, define T' = diag (7,,7%,) as the
reduced Lo-gain matrix. Before stating the MIMO small-gain stability criterion,
we first provide the following statements for spectral decoupling of the global

interconnection matrix of a MIMO system.

Lemma 4.3.1. Let P be the interconnection matriz as defined in equation (4.3).

Then P has the following properties:

()
Spec (P) = U Spec (Wy) (4.88)

k=1

including multiplicities;

(ii) if Wy is invertible for all k € {1,...,r}, then the inverse of the
interconnection matriz P is the interweave of the inverse of the adjacency

matrices. That is,

P'=) W '® D, (4.89)
k=1

(iii) the trace of the interconnection matriz is the sum of the traces of the

adjacency matrices

tr(P)=> tr(Wp), (4.90)

(iv) the determinant of the interconnection matriz is the product of the

determinant of the adjacency matrices

det (P) = ﬁ det (W) . (4.91)
k=1
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Proof. Let A\, ; € Spec(W}) with its associated eigenvector vy ;. Define the

interweave extension of vy, ; by

Ok,1
6k,j = Vg, j & . (492)
5km

Applying the definition of an eigenvector to P yields

Py = (Z W, ® Di> By,

i=1

=1
::(:EE:-vaka @Dl)i[dhl;".y 6hrTT> )

i=1

::‘L%QM%7@9[5k47"‘ 75km]7¥ (4'93)

where the last two equalities follow from the mixed product property of the
Kronecker product and that direct multiplication of the Kronecker matrix and

vector is non-zero only if ¢ = j. Therefore we have that

Py, ; = Wiv,; ® [5k,1; Ty 5k,r}T = A\, jVk,; @ [5k,17 Ty 5k,r]T = A\i,jUkjs
(4.94)
thus Ay ; is an eigenvalue of P with associated eigenvector vy ;.
Next, assume there exists Wk_1 for all 1 < k < r. Consider the following

matrix R defined by the multiplication
Iz:: <j€::vEQ:Q§-l)k> (:zz:lvviflé§-l)k> )
k=1 k=1

= (W, ® D) (Z w, ! ®Dk> +..+(W,® D,) (Z w ! ®Dk> :
k=1 k=1

(4.95)

From the mixed-product property of the Kronecker product and equation (4.44),

we have that equation (4.95) reduces to
R=W W '@D +..+W,W ' D,,

— ZI” ® Dy = Iy, (4.96)

k=1

hence the inverse of P is given by P~ =" W, "' ® D, as required for (ii).

159



The trace of a Kronecker product is the product of the trace of each
matrix independently [215] such that tr (Wj @ D;) = tr (W},) tr (Dy,). Therefore
applying the trace to the definition of P (4.3) yields

tr(P):tr (ZWk@)Dk) :ZtI”(Wk@Dk): (Wk tI’ Dk Ztr Wk

k=1 k=1 k=1

(4 97)
where the second equality holds by the trace of the sum of matrices [215] and the
fourth holds by tr (Dy) =1 forall 1 <k <r.

Property (iv) follows immediately from (i) by expressing the determinant of a
matrix as the product of the eigenvalues including multiplicities [215]. From (i)
we have that Spec (P) = Spec (W7)U...USpec (W,) including multiplicities and
so we know the eigenvalues of P are all the eigenvalues of each Wj.. Subsequently,
the determinant of P must be the product of all these eigenvalues which leads to

the required representation

det (P) = (H Al,]) (H )\m) = det (W) ... det (W, Hdet (W)

7j=1 k=1
(4.98)
0

A direct consequence of Lemma 4.3.1 is that as W}, € W (and therefore W)
are nonnegative and irreducible, then the spectral radius, p, of the interwoven

matrix P is a real eigenvalue and is defined by

p(P) = max (p (W) = max (U Spec <Wk>) , (4.99)
k=1
by the Perron-Frobenius theorem [187].
Note that Lemma 4.3.1 also applies to P as they are constructed identically.
Using the spectral decoupling properties of Lemma 4.3.1, we next provide an
extension to the small-gain condition for SISO systems derived by [118] to MIMO

systems for laminar patterns.

Theorem 4.3.1 (Laminar pattern stability criterion for MIMO systems).
Consider the 10 system (4.1) spatially coupled by the interconnection matriz P
(4.83). Let s be the layer-wise simultaneous equitable partition for all semi-reqular
bilayer connectivity graphs Gy defined by P, such that the associated reduced
interconnection matriz P (4.32) defines the reduced 10 system of representative

cells from each layer. Let 7, and 7, be the Lo-gains associated with the
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heterogeneous input steady states ui and wj for each representative cell. Then
the laminar pattern state is locally asymptotically stable if

(SR (p(W,IN)) <1 (4.100)

where T = diag (71, 7).

*

Proof. Consider the coordinate transformation z; = x; — x} where x; = S (u}),
and so the laminar pattern state is located at the origin. From Assumption 4.2.1
we have that the transfer dynamics are nonnegative and bounded, which implies
that the IO systems (4.1) have finite Ly-gain, 7;, for each cell i € {1,...,N}.
Therefore, by the Bounded Real Lemma [228], there exists a positive definite
matrix @Q; such that for any Vj(z; (t)) = z7'Q.z; we have that V (z; (t)) <
YVulu; —yl'y;. Let d; > 0 and define D = diag (dy, ...,dy) to form the global

energy function

v (DI*@I)u—y (D®I,)y. (4.101)
Applying the 1O relation w = Py, inequality (4.101) becomes,

Viz)<y" (P"(DI*®I)P-D®I,)y,
—y" ((PeL)P) (DL)TeL)P—(DaL))y (4102

where equality (4.102) follows from the commutativity of diagonal matrices.

By Lyapunov’s second method for stability [142], the heterogeneous steady
states u] and uj are locally asymptotically stable if there exists a matrix D such
that

(reL)P) " (D®I,)(T®I)P—-(D®I,) (4.103)

is negative definite. From Theorem 4 in [229] we have that the matrix (4.103) is
negative definite if
ILy—(T®I,)P (4.104)

has eigenvalues with nonnegative real-parts [229]. As (I' ® I,.) P is nonnegative
then by Lemma 4.3.1 and the Perron-Frobenius theorem [141], the matrix (4.104)
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has real and positive eigenvalues if p ((I' ® I,,) P) < 1 in the large-scale 10 system
(4.1).

Conforming the laminar pattern template defined by 79, cells within the same
layer will have identical solutions and therefore identical Ls-gains. Therefore
in the reduced IO system, from Lemma 8 in [118]|, it can be shown that
p(T®I,)P)=p((T®1I,)P) for m an equitable partition. By definition of P
(4.32) and mixed-product property of the Kronecker product, we have that

TeoL)P=) TW,® D, (4.105)
k=1

Applying Lemma 4.3.1 to the matrix (4.105) we have that

p(T®I,)P)= max (p(TWy))= max (p(W,I)), (4.106)

and therefore assumption (4.100) guarantees the local asymptotic stability of the

heterogeneous states u] and wj such that z; converges to the origin. O]

Remark 4.3.1. For monotone systems the Lo-gains y; represents the largest local
changes to outputs y; for perturbations to the input u;, i.e. the maximal gradient
of the transfer function T (-) [116]. Namely, if o (M) is the set of singular values
of matrix M € R™™ ™ then ~; = max (o (DT (u}))).

Corollary 4.3.1. If W, is a nonnegative and irreducible matriz, then WL is

also nonnegative and irreducible as T is a positive diagonal matriz. Consequently,
p (W,T') = max (Spec (W,T)) . (4.107)

Proof. The statement follows directly by the Perron-Frobenius theorem for

nonnegative and irreducible matrices [187]. O

Corollary 4.3.2. If
lim (W,I)" =0 (4.108)

p—0o0

forallk € {1,...,r}, then the laminar pattern state is locally asymptotically stable.

Proof. The power convergence theorem of matrices [216] which states that the
limit (4.108) holds if and only if p (W,T') < 1. Therefore, the laminar patterns
are asymptotically stable by Theorem 4.3.1. O

Following the spectral decoupling property of P and P in Lemma 4.3.1, we
have demonstrated that assessing the stability of laminar patterns in a MIMO
system requires no additional computational complexity when compared to a

SISO system as each spectral radius can be computed independently. Critically,
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for MIMO systems with less than five inputs and outputs (r < 4), the laminar
pattern stability criterion (4.100) is analytically accessible as requires evaluating
singular values of the linearised transfer function. However, this is not a
completely analytic solution as we require the heterogeneous steady states of the
quotient nonlinear 10 system (4.1). We illustrate an application of the laminar

pattern stability criterion for MIMO systems (4.100) in the following example.

Example 4.3.1. Building upon our previous analysis in examples 4.2.2 and
4.2.8, we consider the DIDO system (4.56-4.60) to determine polarity regimes
that ensure the stability of the laminar patterns previously found. To determine
the Lo-gains of the reduced 10 system, we first require heterogeneous steady states

of the system which can be found by solving

iy =01 (arfo (25,) + (L—ar) fo (231)) - g2 (f2 (231)) - f1 (a2gs (27,) + (1 — a2) g3 (23,))
51)) [

2,1
$§,1 =0 (b1f2 (@1) + (1 =b1) fo ($>{1)) * 92 (fz (”E )) -1 (5293 (9531) (1—102) g3 (95 1))
(4.109)
for a3, and x5, derived by setting the derivatives of the reduced IO system (4.56-

4.60) to zero, and ay, by, are the diagonal entries of W, defined in Evample 4.2.2.
Subsequently, the heterogeneous steady input states of the DIDO system (4.56-
4.60) are given by

w = [alfz (ﬁl) +(1—a1) fo (3551)] and u* — [a2g3 (33;1) + (1 —a2) g3 (@1)]
! bifa (3,) + (1 —b1) fo (275 ,) 2 bags (73,) + (1 —ba) gs (=7,

from the IO relation (4.5). Therefore, the Lo-gains of the representative cells are
obtained by

7, = max (Spec <DT (ut)" DT (u“{))) and ¥, = max (Spec (DT (us)" DT (uZ))) )

(4.111)
that is, the singular values of the linearised transfer function at the pattern states,
and so we define T' = diag (7,,7,). Finally, we compute the eigenvalues of W T
for k = 1,2, taking the largest to determine the stability by applying inequality
(4.100).

Repeating this process over the (wg ], 12 ]> -space as explored in examples 4.2.2
and 4.2.3 defines a region within the convergence space that guarantees the local
stability of laminar patterns (Figure 4.12). The stability region lies about the
origin, skewed in the direction of the wgl], consistent with previous analysis
i examples 4.2.2 and 4.2.3. Therefore, the combination of our analytic and
numerical investigation highlights that the contact-based signalling, Go, is the
dominant mechanism in forming stable laminar patterns for the DIDO system

(4.56-4.60), as it requires the most cross-layer polarity ( 2l « w[2]>
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1 I:l Laminar pattern existence (A)
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Figure 4.12: Polarity parameter regimes for the existence, convergence and
stability of laminar patterns in the IO system (4.56-4.60) for fixed wg] = wgﬂ =1,
extending the laminar pattern regimes presented in Figure 4.11. Regions shaded
in blue satisfy the MIMO laminar pattern stability criterion (4.100). (A) and
(SA) in the legend refer to analytic and semi-analytic methods of laminar pattern
analysis, respectively. The 10 system (4.56-4.60) parameter values and details on
simulations are given in Appendix D.

4.4 Discussion

In this chapter, we have developed analytic methods for exploring the interplay
of cellular polarity and multiple signalling mechanisms in the emergence of
laminar patterns in bilayer tissues independent of the precise intracellular kinetics.
To facilitate such analysis we focused on methods of dimension reduction
of large interconnected dynamical systems that preserve fundamental cellular
behaviour. Specifically, we demonstrate that cell signalling transfer dynamics can
be treated as a proxy for intracellular components, reducing the dimensionality
of the spatially discrete ODE systems by analysing only the spatially dependent
intracellular components, which enabled us to provide sufficient conditions for
the existence and uniqueness of the homogeneous steady state.

In addition, we use the properties of commuting graphs to decompose large
MIMO systems into lower-order interconnected systems, decoupling the spatial
and temporal components. This not only has advantages in reducing the
computational cost associated with large-scale eigenvalue problems but also
enables the direct analysis of the influence each signalling mechanism has on
driving spatial instabilities of the homogeneous steady state. From a practical
standpoint, the requirement of commuting graphs of cell signalling currently
limits the applications of the large-scale HSS instability results in general

pattern formation problems, as discussed previously [207], and therefore we

164



provide analytic methods of constructing families of commutative weighted graphs
in Appendix C. However, our current methods are dependent on underlying
regularity in local connectivities to simultaneously diagonalise each signalling
graph and so to broaden the scope of the large-scale pattern analysis to cell-cell
signal graphs that more accurately describe developing bilayer tissues with local
connectivity irregularities, we required more general conditions for commutativity
of their associated weighted adjacency matrices. Omne potential and possibly
most general methods of conforming to the commutativity condition is the
construction of cell-cell signal graphs directly from a prescribed eigenbasis (co-
spectral methods) [230]. Namely, for a given row-stochastic and connected graph,
its eigenvectors form the eigenbasis of the space of commuting graphs. Therefore,
commuting adjacency matrices can be constructed by selecting different sets of
eigenvalues subject to structural constraints. A subset of this commutative space
would be defined by the commutative families defined in Appendix C.

By combining methods of multilayer graph partitions with monotone
dynamical systems theory, we demonstrate the existence of laminar pattern
formation with competitive kinetics relies on the amount of signalling polarisation
present within each graph. Critically, the application of equitable partitions
to the connectivity structures where layer-wise symmetries are present enables
drastic dimensionality reductions of the global dynamical system when seeking
contrasting steady-states between the bilayer of cells. Thereby exploiting the
eigenvalue structure of the quotient graphs we demonstrate the instability
conditions derived for large-scale interconnected dynamical systems that can be
applied to the reduced system, independent of the commutativity of the quotient
graphs. This facilitates the investigation of whether the pre-defined contrasting
states are achievable with the given kinetics. The symmetry requirements
of the equitable partitions need not be restricted to globally regular cell-cell
interaction graphs. We only require regularity within each partition which
therefore permits the application of semi-regular graphs for dimension reduction.
Such graphs can then capture the characteristic traits of the biological system
such as subpopulation phenotypes and tissue curvature, and their influence on
intracellular behaviour as highlighted in Chapter 3.

The partitioning methods of prescribing patterns allude to studying the
inverse problem, specifically, starting with the desired pattern of the tissue and
then defining constraints for the intracellular kinetics that have the potential
to induce such instabilities, as previously demonstrated in spatially continuous
Turing systems [231]. Namely, we have demonstrated that if the spatial network
has the capacity to induce monotone dynamics, then potential patterns of the

system are determined by the sign structure of the network eigenvectors as
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highlighted in Lemma 4.2.10. Hence, prescribing networks with the desired
eigenvector sign structure, and kinetics can be designed to induce monotonicity
and HSS instability. Furthermore, as the full and quotient system analysis
depends only on the topology of the connectivity networks, the results from this
study are immediately applicable to more biologically relevant 3D morphologies.
Classically, introducing 3D structures drastically increases the computational
complexity in pattern formation analysis [203, 232, 233], yet the topological
approach allows for the transition between physical dimension with no additional
requirements as discussed in [143] and Chapter 2.

Investigating the link between the reduced and large-scale dynamical systems
when seeking laminar patterns, we demonstrate the statements of laminar
existence derived using pattern-templating can be globally convergent in the
corresponding large-scale interconnected system in high polarity regimes. To
show the existence of a monotone transformation we imposed weak but sufficient
conditions that in general wgk] < wgk], or wgk] > wgk], depending on intracellular
dynamics, highlighting the requirement of edge weight anisotropy for laminar
pattern formation. We suspect that this condition can be significantly refined by
illustrating a dependence on the magnitude of entries of DT (u;) when applying
the type K criterion for monotone solution behaviour, namely, having a prior:
estimations of the size of the cellular output signals for given input signal regimes.

As discussed in the previous interconnected monotone systems studies of
pattern formation [117, 186, 207], the most limiting assumption in large-
scale systems analysis is the existence of competitive to cooperative monotone
kinetics transformation, which previously relied on the sufficient requirement
of the connectivity graphs being bipartite. =~ However, in Section 4.2.4 we
not only demonstrate that laminar patterns are not the dominant pattern
of bipartite bilayer graphs but also manipulating graph edge weights of non-
bipartite graphs enables competitive to cooperative kinetics transformations
for laminar pattern formation. Critically, this allowed us to extend the
MIMO modelling framework introduced in [207] to include kinetics with both
cooperative (inductive) and competitive (inhibitory) features, broadening the
scope of applications to developmental systems with signal crosstalk, which is
fundamental in the investigation of cell-fate dynamics in mammary organoids
[16, 234]. The key feature of cooperative dynamics used in these pattern formation
studies is the guarantee of non-periodic solutions when considering bounded
kinetics [187]. Therefore another promising direction to ensure such solution
behaviour is the study of variational families associated with the interconnected

systems [235], that is, applying Lyapunov methods for non-oscillatory dynamics to
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enable the investigation of intracellular crosstalk inference in biologically relevant
morphologies.

Extending the Lo-gain interconnection signal stability criteria to include
multiple spatially dependent intracellular components provides a semi-analytic
method of assessing the stability of laminar patterns by bounding the spectra
of the gain matrix. We have demonstrated that the spectral radius of the
interconnected gains can be computed independently for each connectivity
mechanism, which vastly reduces the dimensionality of stability analysis when
compared to the standard linearisation approach on the quotient system. As
demonstrated in chapters 2 and 3, the Ls-gain conditions can be used to
investigate the influence of polarisation and local cell-cell connections on the
stability of cell-fate patterning and is now accessible for MIMO systems whilst
preserving the dimensionality of the SISO systems.

Throughout this chapter, we have reserved precise definitions of intracellular
kinetics and associated signalling mechanisms to consider general MIMO
dynamics. Subsequently, the generality of results presented here enables the
investigation of crosstalk of key molecular pathways with multiple spatially
dependent intracellular signalling components, such as the well-established Wnt-
Notch interactions that have been observed in both intestinal and mammary
epithelia [64]. Both the Wnt and Notch pathways are involved in cell-fate
determination and have been observed to have active polarity mechanisms during
tissue development [133, 236]. However, analysis conducted on existing models
have previously been limited to one, or two cells [89, 237|, the methods we provide
here allow us to study how the geometry of the tissue influences such cell-fate
choices, specifically within the bilayer structures commonly found in mammary

glands.
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Chapter 5

Discussion

Understanding the factors mediating plasticity events during mammary
morphogenesis is of critical importance for mammary organoid culture innovation
[20]. Though organoid culture technologies are rapidly developing [15], the
media conditions, and the consequential epithelial processes, that support the
self-organisation required for robust long-term mammary organoid expansion
require further investigation [16]. Subsequently, in this thesis, we examined how
two characteristic features of mammary glands; bilayer tissue architecture and
epithelial polarity, regulate cell-fate determination and commitment in mammary
epithelial cells (MECs).

We have used a variety of tools from monotone dynamical systems, graph and
control theory to examine how the cell-cell connectivity graph structure (local
geometry) and edge weights (signalling polarity) influence intracellular dynamics
of cell-fate determinants. That is, applying and extending the fine-grained pattern
templating methods for interconnected input-output (I0) dynamical systems
from [117, 118] to polarised mammary bilayer morphologies such that each chapter
in this thesis builds upon the spatial complexity of the tissue structures observed
within mammary organoids.

From symmetric to multilayer semi-symmetric bilayer geometries, our low-
dimensional representations of the collective intracellular dynamics enable the
isolation of particular cell-fate patterns. Thereby, providing alternative methods
from the standard techniques of classical linear analysis [87, 125] to derive
tissue scale pattern convergence and stability polarity conditions, independent
of the number of cells and the physical dimension of the modelled tissue due
to the graphical representation of cells. This approach allowed us to seamlessly
compare local tissue structures with respect to sufficient polarity conditions for
stable laminar pattern formation of cell-fate determinants, presenting a significant
advantage over fixed lattice approaches [99, 100, 138] when modelling spatially

dynamic biological systems.
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In Chapter 2, we introduced regular weighted bilayer graph structures to
the pattern templating methods developed in [118] for single input single
output (SISO) interconnected systems. This produced analytically approachable
conditions for the existence and stability of cell-fate determinants in developing
mammary organoids. Using our layer-wise orthogonal representation of cell
signalling polarity that represents both apical-basal and planar polarity, our
analysis highlighted that significant cross-layer signalling is required for laminar
patterning of cell-fate determinants with lateral-inhibition in physiologically
relevant spatial domains. Critically, these results are independent of the precise
intracellular kinetics, evidencing the requirement of sustained polarity during
cell-fate decisions and commitment.

Furthermore, both existence and stability conditions show that increasing the
number of connections between the layers of cells reduces the amount of signal
polarity required, which is further explored in Chapter 3 with respect to local
tissue geometries. Motivated by the dichotomous Notch1-Deltal gene and protein
expression observed in MECs [21, 49], we confirmed these general connectivity-
dependent polarity predictions using the Collier Notch-Delta intercellular model
[87] over a wide variety of static spatial domains.

Developing a cell-based model for growing bilayer domains using the vertex
modelling framework in Chaste [119, 145], we extended our polarity-driven
pattern analysis to dynamic spatial domains. We show that calibrating the cell
signalling polarity using our agglomerative static domain analysis of the Collier
Notch-Delta model is sufficient to initiate and sustain laminar patterns of Notch
during tissue growth. Furthermore, we demonstrate that cells using quorum-
sensing polarity mechanisms in cell-signalling present greater consistency in cell-
fate patterns, supporting an additive cell-fate commitment control mechanism in
developing biological systems.

We extended our analysis on polarity-driven cell-fate patterning in Chapter 3
to focus on the effects of local tissue geometry. We introduced an image analysis
pipeline designed to extract and couple local boundary curvatures, cell types and
cell-cell signalling graphs from confocal images of cell-type stained mammary
organoids. Using this pipeline on datasets provided by the Lloyd-Lewis lab
(University of Bristol), in addition to representative synthetic data from cell-
based models, we generate characteristic signal connectivity regimes for local
morphologies in mammary organoids. Namely, we suggest there exists an inverse
relationship between local boundary curvature and cross-layer connections with
respect to basal cells, facilitating the connectivity inference from macroscopic

imaging.
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In Chapter 3 we extend our pattern analysis conducted in Chapter 2, to
derive conditions for the existence and stability of laminar patterns of cell-fate
determinants in layer-wise semi-regular spatial domains. Critically, we highlight
the existence of a connectivity-driven asymmetry in controlling cell-fates between
basal and luminal cells using generic lateral-inhibition kinetics. Namely, the
connectivity of the cells with the largest signal gain dictates the capacity of
polarity to sustain laminar patterns. Revisiting the Collier Notch-Delta model
in combination with the characteristic connectivity regimes with mammary
organoid morphologies, we isolate the basal cells as the cell-fate coordinators,
consistent with existing volume-dependent studies of sender-receiver specification
[50]. Furthermore, the analysis supports that polarity has a greater efficacy in
concave tissue regions (branch bases) when compared to more convex regions
(branch tips). These results are in agreement with existing evidence of phenotypic
switching during branch elongation [131].

In Chapter 4, we generalise our existing SISO systems methods for pattern
analysis to develop a framework for analysing polarity-driven laminar patterns
of cell-fate determinants with multiple spatially dependent components, multiple
input multiple output (MIMO) systems. Using multilayer semi-regular bilayer
graphs to represent spatial connectivity, we extend existing multilayer 10
descriptions [207] to include cell signalling polarity. For general kinetics of
inhibition, induction and a mix of the two, we present novel analytically tractable
conditions for the existence and convergence of laminar patterns in large-scale 10
systems using component-wise independent polarity parameters. We show that
cell signalling using both inhibition and inductive kinetics must be orthogonally
polarised to ensure the convergence of laminar patterns.

We provided sufficient conditions on graph structure and signalling polarity for
the coherent links between the quotient and large-scale IO dynamics, highlighting
that previously used bipartite properties cannot be applied to systems with
laminar patterns [117, 186, 207]. Finally, we extend the pattern stability
conditions derived in [118] to MIMO systems. By exploiting the structure of
the multilayer cell signalling graphs, we show that analysing the stability of
MIMO systems requires no additional computational complexity when compared
to SISO systems. Furthermore, our MIMO stability conditions predict the
existence of a dominant cell signalling graph for laminar pattern stability within
the multilayer structure, controlled by polarity and edge structure. Critically,
our MIMO framework laminar pattern analysis framework enables us to examine
the additional influence of pathway crosstalk in cell-fate commitment during

mammary morphogenesis.
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5.1 Mammary organoid culture technologies

As an overarching summary, this study provides additional support for the
critical role of signalling polarity as a homeostatic control mechanism during
organogenesis. We have shown how epithelial polarity can extend the fine-grained
patterning potential of simple lateral-inhibition kinetics to form bespoke tissue-
dependent intracellular dynamics, independent of the physical tissue geometry.
Critically, this implies that different organs can employ the same core intercellular
motifs (such as lateral inhibition or induction) and polarity induced from
extracellular cues can fine-tune these behaviours for precise organ development.

Specifically, this study suggests that the establishment and preservation of
apical-basal polarity is fundamental to the stabilisation of cell-type stratified
bilayers in developing mammary organoids, independent of deformations to
local tissue morphology. That is, in chapters 2, 3 and 4, we consistently
demonstrate that if the Notchl-Deltal lateral-inhibition kinetics are a feature
driving differentiation in MECs, then substantial localisation of the activator
Deltal at the luminal-basal interface (cross-layer signalling) is sufficient for the
existence and conservation of layer-wise laminar patterns of Notchl, preventing
plasticity events. However, the local geometry of mammary organoids, namely,
local cellular neighbourhood compositions, mediates the efficacy of polarity for
Notchl laminar patterning.

To our knowledge, direct evidence of spatial localisation of Deltal-ligand or
Notchl-receptor is yet to be observed on the surface or within MECs. Namely,
there is a lack of literature concerned with the spatial distribution of Notchl and
its downstream counterparts at the single-cell resolution in the mammary gland
which is required to address the biological predictions produced in this study.
However, both Notch and Delta (homologues alike) have been shown to exhibit
polarity effects in various developmental contexts. Namely, Notch and Delta
have been found to localised at the apical and subapical compartment during
Drosophila wing disc development, respectively [67]. Similarly, in neuroepithelial
cells, Notch activity was preferentially located at the apical surface, forming an
intracellular Notch gradient [69]. Moreover, basally localised Notch receptors
have been associated with intra-lineage fate decisions in Drosophila sensory organ
precursor cells [68]. Taken together, these studies provide sufficient evidence for
the viability of polarity-regulated Notch-Delta interactions within MECs during
the initial stages of organoid development. However, further experimental work
should be undertaken to confirm this hythopesis.

Following the verification of polarity-guided cell-fate decisions in MECs,

a promising direction for mammary organoid culture innovation could be
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the control of epithelial polarity through appropriate media supplementation,
specifically for the industrialisation of mammary organoid production where
batch homogeneity is critical for reliability and reproducibility for consumers.
Control of polarity within organoid cultures has previously been considered in
intestinal organoids [238, 239]. These studies demonstrate how altering the
media conditions can reverse apical-basal polarity, which has specific applications
to nutrient/drug up-take interactions, as access to the apical cellular surface
is available. = However, polarity mediation for homeostasis through media
conditions is currently not considered in mammary organoids expansion [20].
Neuralizedl is a protein that simultaneously promotes apical-basal polarity of
Notchl by facilitating activated Notch release into the cytosol within localised
regions [240, 241]. Subsequently, investigations into the regulated activation of
Neuralizedl in mammary organoid cultures for Notch polarity mediation may

provide preliminary insights for culture innovation.

5.1.1 A summary of testable biological propositions
derived from theoretical cell-fate pattern analysis

The cell-fate pattern analysis conducted in chapters 2, 3 and 4 produced a range
of biologically tractable hypotheses relating to the stability of bilayer phenotypic
structure in mammary organoids. Each has been discussed in the respective

chapter and here we provide a brief overview of these predictions.

5.1.1.1 Deltal-Notchl localisation at the basal-luminal interface

A consistent result of this study is that if the canonical Notchl-Deltal kinetics
govern cell-fate decisions in MECs then external inventions are required to
produce the laminar patterns of Notchl expression as experimentally observed
[48, 49, 56]. Following our interconnected IO modelling analysis, we show
polarised signalling of Deltal is sufficient to form such patterns, independent
of precise tissue structure. Subsequently, our analysis predicts that Notchl-
Deltal interactions occur along the apical-basal axis, specifically at the membrane

interface between the luminal and basal layers of cells.

5.1.1.2 Spatial exclusion of Deltal and Ecad in luminal subpopulations
promote polarisation

In Section 2.4, we propose a mechanism simple exclusion-based mechanism that
may promote the polarisation of Notchl-Deltal interactions in MECs. Following
recent experimental findings that suggest the existence of agonistic Deltal-Ecadl

interactions and spatial exclusion on the cellular membrane [160, 161], in addition
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to the expression of Ecad in the luminal subpopulations [157, 158], we suggest that
the polarisation mechanism driving the laminar patterns of Notchl is supported
by the instigation of differential adhesion that is required for the initial stages of

lumen formation in mammary organoids [131].

5.1.1.3 Tissue curvature mediated plasticity events in mammary
organoids

A core result from Chapter 3 is the existence of an asymmetry in Notchl-
dependent phenotypic stability with respect to local tissue geometry. Specifically,
we use a combination of curvature-connectivity analysis on primary and synthetic
data to guide our pattern stability analysis on competitive IO systems to
demonstrate that MEC plasticity events are more likely in regions of high
positive curvature, like a branch-tip. In these regions, our analysis suggests that
polarisation of Notchl-Deltal signalling is insufficient to control and generate
laminar patterns of Notchl. Similar geometry-dependent MEC behaviours have
previously been obsevred in the context of disease progression [31] however have
yet to be experimentally studied in terms of Notch dynamics. We discuss the

experimental implications of this study further in Section 3.6.

5.2 Polarity and fine-grained pattern analysis

The control of fine-grained patterns using cellular polarity has been studied for
over two decades, with the majority of applications dedicated to the influence
of planar cell polarity in hair follicle formation in the Drosophila wing, as
reviewed in [242]. For example, directed intracellular diffusive ligand-receptor
induction kinetics coupled to intercellular lateral-inhibition kinetics was shown to
be sufficient to generate follicle-like cell clusters given sufficient polarity strength,
even with irregular cellular domains [126]. Although planar cell and apical-basal
polarity are intimately linked [243, 244], the influence of apical-basal polarity in
tissue cell-fate regulation is often overlooked. The modelling techniques presented
in this study simultaneously encapsulate both planar and apical-basal polarity
in cell singalling from a multiscale perspective, enabling the comparisons and
requirements of each polarity process for homeostatic intracellular dynamics.
The central theme of our analysis is using quotient presentations of the spatial
structures to isolate cell-fate patterns within the tissues. Such methods were
initially introduced by Steward, Golubitsky and co-authors in the early 2000s
[112, 113], focusing on graph structure influence dynamical synchrony within
subgroups of cells, classifying dynamics motifs from edge structure maps. Later,

Rufino and Arcak extended the quotient transformations by the introduction
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IO system representations, allowing for qualitative analysis of intracellular
cellular dynamics using only characteristic information [118]. These quotient IO
representations have later been used to predict the existence of lateral-inhibition
kinetics underlying spontaneous gene expression in F. coli cell lines [245]. In
this thesis, we have extended these quotient IO methods to consider polarity,
i.e., anisotropic cell signalling through edge-weighted graphs. This has allowed
us to relax the bipartite tissue structure constraints and types of intracellular
kinetics considered in [117, 118] for pattern convergence and stability, improving
the applicability of this analytical framework to a wider range of problems in
developmental biology.

Though we have focused on cell-fate dynamics within mammary organoids,
our bilayer representations are immediately applicable analysing intracellular
behaviours to other polarised tissues with ductal structures such as salivary [246]
and sweat glands [247]. Furthermore, as we exploited symmetries within the
weighted graphs to generate low-dimensional quotient representations for pattern
templates, such methods can be naturally extended to any tissue with distinct
and regular structural features where spatial symmetries can be approximated.
For example, the crypt and villi structure of the intestine [248] or the cell-type
patterns in branched morphologies in the lung [249].

A direct application of the IO modelling framework developed in this thesis
is to modelling fibroblast-epithelial cell-fate dynamics at various cross-sections
of the intestinal crypt. The existence of a BMP-Wnt-Notch exchange between
fibroblasts and epithelial cells forms competitive cell-cell interactions that dictate
both fibroblast and epithelial phenotypes [250]. The fibroblast-epithelial cellular
architecture is similar to the mammary duct, forming a bilayer with an outer
layer of elongated fibroblasts and an inner layer of cuboidal epithelial cells [251].
Subsequently, it would interesting to study the existence of phenotypic patterning
in the context of a Wnt gradient as cross-sections are taken moving up the cyrpt
from the perspective of disease initiation.

The 1O patterning methods developed in this thesis can also be naturally
extended to analyse cellular systems with multiple layers of cell and well-
defined phenotypic patterning. An example of a multilayer system with distinct
phenotypic compartments is the epidermis, dermis and hypodermis layers of
human skin [252]. However, applying templating methods to complex structures
may still produce large quotient representations. That is, the more features
preserved within the tissue under a partition mapping, the larger the dimension
resultant quotient 10 system. Consequently, such analytic approaches to fine-
grained pattern analysis may still be limited in systems with complex spatial

geometries.
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Although quotient representations of weighted graphs were yet to be
considered in the context of polarity-guided cell-fate patterning, they have
been used to isolate components within large intracellular genetic regulatory
networks [253]. Using gene interaction graph structure coupled to transcription
dynamics, genetic synchrony spaces can be formed from weighted interactions by
seeking equitable partitions. Such methods can be used to highlight genetic
redundancy and demonstrate dynamic equivalences between genetic networks
within various healthy and disease contexts. It would be interesting to combine
these spatial perspectives of weighted quotient representations to examine tissue-
scale implications from the dynamics of large intracellular genetic regulatory
networks. For example, exploring the vast genetic networks associated breast
cancer metastasis constructed from a ground-up approach [254], specifically in

the context of loss of polarity.

5.3 Future directions

An immediate direction for further work is the application of the multichannel
results outlined in Chapter 4 to explore the inclusion of the feedforward
Notchl-Jaggedl interactions in MEC cell-fate commitment. In addition to
the contrasting expression of Notchl and Deltal between basal and luminal
cells, Jaggedl is preferentially expressed in luminal cells [21, 49]. These
observations are in agreement with the inductive kinetics of Notchl-Jaggedl.
That is, Jaggedl is transmembrane Notchl receptor activator, requiring cell-
cell contact for Notchl-Jaggedl binding. However, intracellular activation of
Notchl leads to the upregulation of Jaggedl in the same cell [255]. Our analysis
from Chapter 4 predicts that orthogonal signalling polarity between Jaggedl
and Deltal communication is required for laminar patterns of Notch. Using
existing intracellular models of Notch-Jagg-Delta kinetics [256, 257], it would
be interesting to investigate if the additional feedforward mechanism plays a
role in stabilising Notchl patterning, relaxing our current substantial polarity
constraints.

In addition, the laminar pattern analysis framework presented in Chapter
4 enables the investigations of crosstalk intracellular kinetics with different
signalling mechanisms. Thus, a promising direction for future work is the
analysis of Wnt-Notch cell-fate regulation, as discussed in Section 4.4. By
applying existing intracellular Wnt-Notch crosstalk models [89, 237], we are
able to explore how the differences in signalling mechanisms can influence cell

fate decisions within local morphologies of the mammary organoid. However,
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further work would be required to ensure the transfer monotonicity of the Wnt-
Notch crosstalk interactions, specifically the Wnt kinetics in isolation are non-
monotone (based on preliminary unshown analysis). There exist methods to
recover transfer monotonicity through monotone dynamics decomposition for
near monotone systems [258], which can be employed by weakly coupling non-
monotone components.

In Chapter 4, we show that with monotone transfer kinetics, the sign structure
of the eigenvectors of the connectivity graphs dictates the patterns produced by
the global dynamics (see proof of Lemma 4.2.10). Specifically, we demonstrated
how edge weights can be manipulated to ensure that desired patterns generated
from templating methods are globally convergent in the context of bilayer
geometries with simple weight structures. These observations suggest that the
spectral composition of weighted connectivity graphs can be used for intracellular
kinetics inference. That is, suppose we are provided with a specific dichotomous
pattern within a tissue, then by embedding edge weight structures, we seek the
eigenvector sign structure that is aligned with the cell states of the observed
pattern. From the structure of the edge weight, classifications of intracellular
kinetics may be inferred using monotone transfer presentations. The design of
systematic algorithms for graph-guided intracellular kinetics inference in polarised
tissues may be used to accelerate the intracellular kinetics model design process
in biological systems with limited access to temporal intracellular data, such
as the subcellular dynamics of the mammary organoid as presented in this
study. An example application of such as methodology is the exploration of
mechanically-dependent intracellular kinetics that relate cell-fate decisions in
mammary organoids. In a proposed future study in collaboration with Dr Bethan
Lloyd-Lewis, we suggest these methods to accelerate the experimental design
process to identify the core coupling interactions between the Wnt, Notch and
Hippo pathways under mechanical perturbations. Namely, identifying compatible
intracellular models of these pathways under varying cell-cell signalling networks
as mechanical stress is induced over the tissue.

A significant limitation of the IO methods of cell-fate pattern analysis applied
in this study is the restriction to static spatial domains, which is inherently a
poor assumption when modelling developing biological systems. Subsequently,
introducing temporally evolving graphs into our interconnected IO pattern
analysis framework will facilitate the examination of the influence of transient
and long-term edge structure rearrangements in polarity-driven pattern control.
Namely, the analytic consideration of cell birth, death and migration using the
graph edge topologies. Persistence and loss of pattern subspaces have previously

been studied under elementary graph operations such as vertex addition, removal,
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and rewiring in unweighted graphs [259]. By extending these methods to consider
weighted vertex interactions and IO representations of intracellular dynamics, we
facilitate analytical links between the fine-grained pattern analysis conducted
using IO methods and the cell-based models, which may provide novel insights

into the viability of polarity control plasticity events during morphogenesis.

5.4 Concluding remarks

We have studied the interplay of local tissue geometry and cell signalling
polarity and their effect on cell-fate determination and commitment in mammary
organoids. Fundamentally, we demonstrate that if lateral-inhibition kinetics are a
component of the processes driving the cell-type stratified bilayer structures, then
cell signalling polarity is required to initiate cell-fate specification and to prevent
plasticity events, independent of the local tissue geometry. However, we show that
local geometry can influence the amount of signal anisotropy required for cell-type
stability. Critically, this work proposes that epithelial polarity is a dominant
factor in cell-fate symmetry breaking and plasticity prevention, and hence the
manipulation of these mechanisms through organoid culture technologies holds
potential for enhancing phenotypic and genetic stability during the extended
expansion of mammary organoids.

This work highlights the importance of tissue geometry and signal polarity for
healthy mammary morphogenesis. However, these two features of the mammary
gland are only a portion of the components within the complex machinery
controlling homeostasis. Including additional homeostatic control mechanisms
from mechanical-biochemical interactions, intracellular crosstalk and extracellular
conditions should be considered to develop a comprehensive understanding of cell-
fate dynamics in mammary organoids. However, we have demonstrated that by
combining techniques from image analysis, interconnected dynamical systems,
control theory, graph theory and cell-based modelling, we can gain a deeper
understanding of the underlying processes that govern mammary development
than applying any one of these fields alone, even when analysing relatively simple

intercellular interactions.
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Appendix A

Limitations of polarity for
laminar pattern preservation in
stochastic spatial domains

In Section 2.3.3, we demonstrate that polarity is able to generate and sustain
laminar patterns of Notch in growing bilayer domains. To ensure consistency
between our analytic and VM simulations, we imposed the preservation of
bilayer morphologies. However, these cell-type delineated bilayer architectures are
only an approximation of the tissue observed experimentally, specifically during
early stages of lumen formation where the loss of basal contact is a common
feature for initiating apoptosis and the core of the epithelial fragment [105, 160].
Subsequently, we briefly study the influence of stochastic connectivity in polarity-
driven laminar pattern existence and stability. We use cell-based models in 2D
and 3D in bilayer configurations with stochastic movements to explore if fixed
and adaptive variations of the polarity conditions derived for static domains in

Section 2.3.2 preserve patterns.

A.1 Methods for lattice free simulations using
a cell-based model

Cell-based simulations were carried out using Chaste v2019.1 (Cancer, Heart and
Soft Tissue Environment) [119], where the Overlapping Spheres (OS) framework
was used to enable seamless transition between 2D and 3D geometries. In
addition, it has been previously demonstrated that OS models are highly
applicable to study short ranged signal-reaction networks in cellular systems due
to the mechanical methods used to define cellular contact [102].

In this modelling framework, cells are connected by a mechanical force which
is proportional to the region of overlap of spheres defined around each cellular

node, as shown in Figure A.1. Here, we used the OS force model as defined in
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[260], where the displacement of two nodes representing cell centres is represented

by the vector r;; = r; — r; and the force between the cells is defined by,

A rii(t)||—si5(t
135815 (£) 735 (1) log (1 + %) for |ri; (D] < si;(t),
— ~ 75 (t)||—si; (¢
Fij(t) = 4 i (s (1] = (1)) i (8) exp (—h L2 O02O) o si5(6) < iy (1)]] < T
" for |7y (8)]] > s,

(A.1)
where 7,5, s,;(t) > 0 are the spring constant and rest length between cells i and
jJ. 74(t) corresponds to the unit vector of r;;(t) and k. defines the decay of force
between the cells. Upon cellular division, the rest length s;;(¢) of both parent and
daughter cells are set to s = s;;(¢)/2 and will tend back to s;;(t) in finite time
as the cell grows. In all simulations, a random motion was introduced to each cell
to stimulate a dynamic cellular domain. The random motion was implemented
by an additional force acting on each cell node at each timestep,

28

rand __ s
Frove = A (A.2)

where £ is a constant defining the size of random perturbation, v is a vector of
samples from a standard multivariate normal distribution and At the timestep
of the simulation, as previously defined [102]. The resultant force acting on cell

1 is defined by,
N;

Fo(t) = F™+ ) Fy(t), (A.3)
J

for N; is the number of cells within the cut-off distance, 7y,.c. Using this
resultant force acting upon each cell, we relate this to cellular movement using
the assumption that the inertia terms are small in comparison to the dissipative
terms acting upon the cell. This is because both in vivo and in vitro cells move
in dissipative environments with small Reynolds number [261], thus the position
of each cell is governed in the Aristotelian regime, such that the velocity of a cell
is proportional to the force acting on it. Namely, the spatial dynamics of each

cell are determined by,

d’l"z‘
— Fres(¢

T (), (A4

v

where v > 0 denotes the damping constant of the spring force. Equation (A.4) is
solved using the simple forward Euler method to determine the location of each
cell at each timestep, At, as given in Table A.1 [151].

Simulations were initialised with a bilayer structure, as in Figure A.1b. Basal
and luminal cell types were considered to be mechanically identical to isolate
the effects of neighbourhood cell-type composition on Delta patterning. Cells
were assumed to not proliferate in both 2D and 3D simulations, this was done to

control the spatial organisation of cell types in each layer.
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(a) Force diagram of OS model. (b) Initial bilayer structure.

Figure A.1: The cell-based model using the Overlapping Spheres framework. (a)
A schematic of the mechanical dynamics that determines the motion of a cell
using the Overlapping Spheres framework. The mechanical force acting on each
cell is proportional to the region of overlapped space between any two nodes
which are the centre of spheres with radius r.. The mechanical force between
cells 7 and 7 can be interpreted as a spring force and due to the relevantly low
viscosity of the medium, it is assumed that the motion of each cell is governed in
an Aristotelian regime, that is, the force is directly proportional to the velocity of
the cell. (b) An example of the 2D initial spatial conditions when simulating the
bilayer spheroid. The colours of the cells denote cell types, where the blue and
orange cells are the basal and luminal cells respectively. The present example has
a spheroid radius of 3 cell diameters (CD).

The NDM (2.1-2.2) kinetics were integrated into each cell in the population
and was solved using the explicit Runge-Kutta45 method [151], which is built
into the Chaste software. At every timestep, each cell would sweep through
the population to determine the connectivity neighbourhood, which is defined
by all nodes within a radius of p., as in the fixed geometry simulations. In the
simulations presented in this section, we assume the connectivity radius, p., is
equal to the mechanical cut-off length, r,... Once a cellular neighbourhood has
been determined for each cell, the average Delta is calculated using equation (2.7),
and then updated in the state variables to be used to solve the next timestep of
the NDM (2.1-2.2). In all dynamic lattice simulations in this section, we choose
a=0.01, =100, uy = up = 1, s = 1 and r = 2 as parameter values for the
NDM (2.1-2.2).

The seeds used to initialise the generation of the pseudo-random numbers
were fixed for all simulations to compare signal strength parameters on dynamic
domains. In addition, ws = 1 was fixed for each comparison simulation.

Parameter values used in all cell-based simulations can be found in Table A.1.
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Parameter Description Value Units Reference

teot Total simulation time 100 h [102]
At Simulation timestep 0.01 h [102]
i Spring constant 25* NCD™! [102]
Sij Spring rest length 1 CD [102]
T'max Force cut-off length 3/2* CD [102]
k. Decay of force 5 Dim’less [260]
13 Random motion perturbation 0.0025* Dimless [102]
v Damping constant 1 NhCD! [262]

Table A.1: Table of parameters used in each cell-based simulation. The unit of
length CD refers to the fixed cell diameter used in simulations. The asterisks *
indicate parameter values tuned for bilayer structure maintenance.

A.2 The degradation of laminar patterns upon
bilayer disconnect

We simulate dynamic cellular domains using cell-based modelling such that each
cell is represented as a point in space equipped with a connectivity radius that
corresponds to the cell membrane. We say that cells are connected if their
connectivity regions overlap in space, which generates a connectivity graph as
described in Section 2.1.2. By embedding small amounts of stochastic motion
in addition to spring-like mechanical properties to a bilayer of cells, we generate
a time-dependent stochastic connectivity network that artificially approximates
junction transitions in developing tissues. Furthermore, each node is designated
a cell type which allows for the study of cell-type dependent signal edges for
stochastic networks when coupled with the NDM intracellular kinetics (2.1-2.2)
as in Section 2.3.3.

When transitioning to dynamic domains, we cannot always satisfy the
equitable property of the cell-type partitions P, and P, in the bilayer connectivity
graph due to the absence of regularity. Consequently, the analytical conditions
derived in Section 2.2 cannot be applied at each timestep of the simulations,
instead, we use the static domain inequalities (2.48-2.49) to gain an intuition
for ligand activator polarisation conditions in dynamic geometries to generate
and maintain laminar patterns. Similarly to Section 2.3.3, we explore fixed
and adaptive polarity mechanisms which agree with the connectivity-polarity
inequalities derived for static regular domains. Specifically, we determine the

efficacy of both pattern control mechanisms by the mean difference in Notch
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activation between each cell-type, AN, and is defined as
A 1 Y
AN = 57 > (1= 6oy rm) Ni — N > brir ) Ni, (A.5)
where N is the total number of cells, N7, is the number of luminal cells and Np is
the number of basal cells. The function d.(;) ~(p) is the cell-type Kronecker delta

function,

1 if cell 7 is a basal cell,
Or(i)r(B) = { (A.6)

0 if cell 7 is a luminal cell.
Specifically, AN = 1 implies complete laminar patterns of Notch activation,
whereas AN = 0 is considered as no consistent laminar patterns between the
layers of cells.

In this stochastic connectivity investigation, we consider two globally fixed
polarity parameters values to agree with the static stability bound (2.48) and the
static observed bound (2.49), which is denoted by ‘Fixed psiap” (Fpstar) and ‘Fixed
Pobs’ (FPobs ), respectively. Namely, the values of wy and wy are fixed for all cells at
simulation initialisation to agree with either bound using the initial connectivity
structure of the bilayer system (Figure A.1b). As previously considered in Section
2.3.3, we also consider the quorum sensing methods of adaptive polarity, such that
cells sense their cell-type neighbourhood composition and adjust signal polarity
levels accordingly. Namely, during the adaptive polarity simulation, each cell
ensures that the observed static polarity bound for laminar patterning formation
(2.49) is satisfied, denoted by ‘Adaptive pops’ (Apops)-

Simulating each signal strength mechanism, Fpgap, Fpsiap, Apops for 100
time units highlighted that conditions defining laminar pattern regions in static
geometrics, inequalities (2.48) and (2.49), allow for the emergence of laminar
patterns in stochastic edge graphs up to small spatial perturbations, Figure A.2a.
That is, each mechanism initially (¢ < 50h) produced concentric contrasting layers
of Notch expression, however, as the bilayer geometry became deformed due to the
random perturbations of each cell, the definition between layers was lost by 100
hours (figures A.2a-A.2c). Thus, information about layer-wise signal polarisation
is preserved when partitions of the connected graph are no longer equitable,
however, the retained information is insufficient for the long-term stability of the
Notch states.

In terms of pattern intensity and retention, using the Fixed pgq, polarisation
mechanism performed the best (Figure A.2a). Though due to the high contrast
between layers, the variance in Notch expression quickly becomes very large once
consistent patterning is lost, figures A.2a-A.2c. The region of (wy,ws)-space,

defined by inequality (2.48), which is sufficient for the stability of heterogeneous
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Figure A.2: 2D dynamic cellular domain simulation results of fixed and adaptive
signal strength polarisation with each simulation using a globally fixed value of
wy = 1. (a) Cell-based simulations of a cross-section of a bilayer spheroid. The
simulations were run for 100 hours, initialised with cell-type stratification, and
ODE initial conditions x(0) = [0.1,0.2]7 and x;(0) = [0.2,0.1]" for basal and
luminal cells, respectively. The colour of each sphere represents the intracellular
level of Notch. No noise was introduced to the ODE systems for Notch and Delta
dynamics, the variability in these values presented is induced by the small spatial
perturbations on each cell. (b) Violin plots summarising the Notch values in (a)
over four 25h periods. Shaded regions denote the probability density of the AN
values over each period. The black and red lines are the means and medians of
the AN values, respectively. (c¢) A plot of the AN value for each signal polarity
mechanism over time. Shaded regions represent standard deviations from the
mean Notch expression of each cell type. (Continued on the following page.)
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Figure A.2: (Continued.) (d) An additional output plot for the adaptive signalling
mechanism demonstrating the disparity of w; values for basal and luminal cells
over time. Shaded regions represent standard deviations from the mean w; of
each cell type.

states between layers of static bilayers is highly restrictive, such that w; &~ 0 for
all 2D and 3D geometries. In the context of the mammary bilayer, the simulation
using Fixed pgqp accounts for the situation of almost no Delta ligands located on
the luminal-luminal and basal-basal interface, supporting the existence of a Delta
inhibition mechanism at these membranes.

The Fixed pgps signalling mechanism produced the least contrast of Notch
expression between layers initially and was quick to lose the consistency of
expression, therefore performing the worst out of the signal strength mechanisms
with respect to pattern retention (figures A.2a-A.2c). However, the Adaptive pops
signal strength mechanism yielded the greatest pattern retention over the total
time, highlighted by the lowest variance from AN values, see figures A.2a-A.2c.
As Adaptive pys allows for w; =~ wsy under highly heterotypic neighbourhood
compositions (Figure A.2d), this highlights that homotypic signalling may be
observed provided the adjacent cells are highly polarised. Subsequently, this
supports the observation of the cell-wise heterogeneous membrane distribution
of Notch within the luminal compartment whilst maintaining the concentric
patterning given that the Delta activators are primarily located on the basal-
luminal interface.

Furthermore, using the Adaptive p.,s signal strength mechanism revealed that
there are stricter polarisation conditions in the basal cells than luminal cells while
laminar patterning is maintained, for ¢ < 50h (Figure A.2c). Subsequently, by
the inverse relationship between the cell-type connectivity and lateral-inhibition
model (Theorem 2.2.1), the restricted cellular signalling imposed on the basal cells
may induce laminar pattern formation within the luminal cells, whilst allowing
for greater luminal-luminal cell communication (Figure A.2d). Critically, at ¢ ~
50h, a basal cell was disconnected from the luminal layer, producing a transient
irregularity for w; values (bounded above by inequality (2.46)), and therefore
initiating the deterioration of laminar patterning.

The analysis conducted on static geometries suggested that the signal strength
conditions on w; are independent of the physical dimension. We show in Figure
A.3 that simulations of 3D spheroids are in agreement with 2D cross-sections.
Namely, both the fixed and adaptive signalling mechanisms are capable of
generating laminar patterning but are unable to retain the definition of the layers

for long periods with stochastic edge cellular connectivity. Due to the increase

184



of cells in the 3D simulations, the variance of local connectivities is greater as
random motion applied was to each cell at every timestep. Consequently, the
time at which consistent laminar patterning is lost much earlier at ¢ ~ 20h when
using the same parameter values as in the 2D simulations.

In summary, these results indicate that our current methods of static laminar
pattern analysis are insufficient for providing insight into systems with stochastic
edge connectivity where we allow for loss of bilayer connectivity. We have
demonstrated in Section 2.3.3 that polarity is a feasible mechanism controlling
lateral-inhibition laminar cell-fate determination in growing bilayers, dynamic
spatial domains where neighbourhood exchanges are common. However, the
underlying formation of the VM cell-based description allows for a consistent
bilayer structure throughout the simulation, even with stochastic vertex
movement, satisfying our fundamental assumption of bilayer graph connectivity
used to derive our analytic polarity-dependent patterning conditions for static
domains. This assumption is violated in these OS simulations, as we allow
for bilayer disconnection which ultimately led to the deterioration of laminar
patterns. Therefore, a potential remedy for these misalignments between the
VM and OS cell-based model results could be found in applying mean-field
descriptions [263] of bilayer connectivities in an attempt to relax the consistent
bilayer connectivity assumptions used in the analytic investigations in Chapter

2.
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Figure A.3: 3D cell-based simulation of a bilayer spheroid representing a
developing mammary organoid using examples of the adaptive and fixed signal
strength mechanisms. (a) The simulations were run for 100 hours, initialised
with cell-type stratification and ODE initial conditions xz(0) = [0.1,0.2]7 and
xr(0) = [0.2,0.1)T. The colour of each sphere represents the intracellular level
of Notch. A slice through the midpoint of the spheroid is presented to visualise
the internal cell dynamics. (b) A plot of the AN value for both Fixed peps
and Adaptive p.s signal polarity mechanisms over time for the 3D simulations.
Shaded regions represent standard deviations from the mean difference Notch

expressions of each cell-type.
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Appendix B

Extending the
curvature-connectivity image
analysis pipeline to 3D

In preparation for future data-driven studies, we describe a natural extension
of the image analysis pipeline designed in Section 3.1 for 2D cross-sections
to reconstruct the 3D structures from the confocal image stacks of mammary
organoids. To do this, we apply the 2D pipeline to each image within a z-stack,
constructing a cell-type dependent signalling graph for each slice, then clustering
vertices in the z-axis we generate a 3D graphical representation of the mammary
organoid. Geometric surface features such as curvature are also extended to their
3D analogues. An overview of the pipeline is given in Figure B.1 and an example
of the 3D construction is shown in Figure B.2. We note that these 3D methods
were not applied in this study due to limited access to high-resolution 3D images

of mammary organoids that were stained for cell-type markers.

B.1 Constructing 3D graphs from 2D slices

For each slice in the stack, we apply the 2D curvature-connectivity pipeline
described in Section 3.1 to generate a cell-type dependent signal connectivity
graph, where the vertices represent the centroids of the segmented cells. To bind
these graphs representing the 2D cross-sections into one single graph, we use a
distance-based vertex clustering method. Specifically, we consider the vertices
associated with each cell-type separately to ensure that only cells of the same
type are clustered. Vertices in each layer are then stacked with a separation
distance consistent with the z-resolution prescribed from the confocal imaging.

Applying a weighted distance 2-norm || - ||, 2, defined by
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Figure B.1: A diagram of the 2D and 3D extension of the image analysis pipeline

for cell-type dependent signal graph construction and boundary surface curvature
estimation.
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for some @ = [zy,...,2,] € R" and ¢; > 0. Fixing n = 3 for points  in 3D
space, we bias the norm for z-stack inclusion by setting ¢1 = o =1 and @3 > 1,
as these scale the z, y and z component magnitudes, respectively. Namely, this
z-bias norm generates an ellipsoid vertex clustering region for each cell, such that
vertices v; and v;, with position vectors x; and x;, are in the cluster set Sj if
l|x; —xj||p2 < 0, for some threshold 6, > 0. A new cluster vertex vy, representing

the cluster of vertices in Sy is then generated, where v, has position
3 (B:2)
LT = 5 Z;, .
Skl . '

i.e., the arithmetic mean of the vertex positions with the cluster Sy.

To construct the edges of the 3D graph, we use a method of connectivity
inheritance for the new cluster vertices. Let v, and v; be the cluster vertices
for the cluster sets S; and &;, then if v; € S and v; € §; and v; ~ v; in a 2D
graph cell-type dependent signalling graph, then vy ~ v;. That is, clusters are
connected if vertices between the clusters are connected. Note that the clusters
are cell-type dependent as the vertex clustering was conducted separately for
the basal and luminal vertices, and therefore the type-dependent weighted edge
structure is preserved in the 3D graph. An example of the 3D z-stack clustering

is given in Figure B.2.

B.2 Curvature in higher dimensions

A natural extension of the curvature of a boundary in 2D is the Gaussian
curvature of a surface. As a generalisation of 2D curvature, Gaussian curvature
measures how much a surface deviates from being flat at a given point and is
defined as the product of the principal curvatures at that point on the surface.
The principal curvatures are the maximum, K,,q,, and minimum, £,,;,, curvatures
of the surface at that point, and are determined by the shape of the surface in
two perpendicular directions [162]. Therefore, we have K = Kjapkmin for the
Gaussian curvature.

To calculate the Gaussian curvature on the surface of an organoid, we stack
the filled boundary mask from each 2D segmented slice, creating a solid volume
in 3D. The size of the voxels in the 3D space is aligned to the image resolution
to ensure no artificial elongation or compression in the z-axis of the solid volume.
The boundary surface is then transformed into a triangulated mesh where we then

apply the discrete surface curvature estimation algorithm presented in [264].
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B.3 Example, limitations and code availability

An example of the 3D curvature-connectivity pipeline is provided in Figure B.2,
using organoid C from our primary 2D image analysis in Figure 3.7. We note that
PlantSeg [173], which is used to segment cell membranes in Section 3.2, allows for
direct 3D segmentation. However, we observed poor accuracy with a very high
computational demand when attempting to generate direct 3D segmentations,
even after parameter tuning. We suspect this is due to noise and heterogeneity
of light intensity induced by confocal imaging because the boundary detection

CNNs were trained on high-contrast membrane images of Arabidopsis cells.

CNN membrane Cell segmentation Type-dependent
prediction network construction

Curvature-connectivity
analysis

Gaussian curvature, Kk (pm’z)

H e
-0.05 0 0.05

Type-dependent 3D network

o
Connectivity
inheritance

y (um) g

Figure B.2: An example of the outputs of the 3D curvature-connectivity image
analysis pipeline at each stage for a spherical mammary organoid with basal and
luminal cell-type markers.

Subsequently, we found improved accuracy from segmenting each 2D cross-
section individual, allowing for fine parameter tuning at each z-depth. Yet, this
pseudo-3D method for curvature-connectivity analysis is time-consuming and still

requires high-resolution imaging in each x-y plane. Provided we obtain sufficient
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quality and quantity of imaging data in the future, we suggest re-training the
existing CNNs in PlantSeg for 3D mammary organoid segmentation, which has
been shown to drastically improve segmentation accuracy in intestine, hepatic,
and neuroectoderm organoids with as little as 10 stacks using the same U-net
architecture [177].

The source code for the 2D and 3D curvature-connectivity image analysis
pipeline can be found at https://github.com/joshwillmoorel/Mammary_

image_analysis.
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Appendix C

Conditions for commutative
undirected weighted graphs in
biological systems

Section 4.1 focuses on the application of graphs to represent cell-cell interactions
with various signalling mechanisms over a fixed tissue domain. Here, we show
that graphs describing these interaction mechanisms with different signal ranges
commute underlying cellular domain is assumed to be regular, namely, the same
edge structure for all vertices. Critically, we extend conditions for commutative
graphs produced previously in [265] to derive convenient conditions for generating
sets of commuting graphs with the inclusion of cell signalling polarity, modelled
by anisotropic edge weights.

An example of the regular tissue structure can be seen in Figure C.1, where
we highlight the differences in edge connectivity for characteristic short-range and
long-range diffusive cell-cell signalling, with respect to the central cell. Assuming
that diffusion is isotropic in direction but not in terms of signal strength (as this
is controlled by the polarity edge weights), we see that the short-range diffusion
is a subgraph of long-range diffusion in terms of edge connectivity due to the
regular structure of the hexagonal lattice of cells. Subsequently, the assumption
of regular morphological structure of the cells within a tissue generates identical
edge structure in the connectivity graphs of cell-cell interactions for all cells, as
shown for short-range and long-range diffusive cell-cell signalling in Figure C.1.

In general, let V' = {vq,...,ux} be the set of vertices representing each cell
in the tissue. Define the connectivity template 77 to be the edge and weight
structure of all vertices v; € V that is used to construct a simple, undirected and
di-regular graph Gy, such that the 7; has d; weighted edges and no self-loops as
shown in Figure C.2. Namely, the template 77 is applied to every vertex ensuring

that edge weight values agree.
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Figure C.1: A representative edge connectivity template for cell signalling with
long and short range diffusion on a regular lattice of hexagonal cells. Edges
emanate from the representative central vertex which defines a connectivity
template for each cell in the tissue. A radius of cell-cell interaction is drawn
for each diffusive mechanism with edges coloured in blue and red for short and
long-range mechanisms, respectively.

Let Gy be a subgraph of G; constructed by removing an edge from the
connectivity template 77 which is denoted by 75 and thus Gy is constructed
similarly, see Figure C.2. Following this construction of the subgraph, G
will inherit the structure of the weighted connectivity template defined for G,
however, we allow the edge values on the connectivity template to differ between
Gi and G,.

The graphs G; and G, have weighted adjacency matrices W7 and W,
respectively. Critically, we say that G; and G, commute when their associated
adjacency matrices commute. To measure the commutativity of the two matrices,

we define the commutator as follows
[A,B] = AB — BA. (C.1)

Specifically, matrices A and B commute if [A, B] = 0.

To explore how regular edge structure influences the commutativity of G; and
G, we modify our current representation of adjacency matrices. Let E;; be the
N x N matrix with 1 at the (¢, 7)-th entry and 0 else. We can represent any
N x N matrix M in terms of matrices E;; by the following

i=1 j=1

As Gy and consequently Gy are undirected graphs, their adjacency matrices are

symmetric. Denote Ey; 3 = E;;+ FEj; and thus we represent any adjacency matrix

193



T T2
o o o

w?] w[12]

Figure C.2: An example of constructing a graph and a subgraph using
connectivity templates. Using an orthogonal bilayer lattice of vertices, the
connectivity template 7; defines two same-layer connections and one cross-layer
connection weighted by wgl] and wél], respectively. Applying the template to every
vertex in the lattice generates the 3-regular graph G;. The connectivity template
Ts is derived by removing the cross-later edge from 77, constructing a 2-regular
graph G, where we allow wgl} #* w?].

associated with an undirected weighted graph by
W, =3 wll By (C:3)

where (W), = wl[?]. As demonstrated in [265], the commutativity of graphs can

be characterised by the commutativity of the matrices Ey; j;, particularly the

commutator of any two adjacency matrices has the form

N N N N
(W, W,] = Z Z SN wlwd (B, B - (C.4)

The commutator within the summand of equation (C.4) can significantly reduce

the number of terms of the sum as demonstrated in the following statement.

Lemma C.0.1 ([265]). Let E;; be the N x N matriz with 1 at the (i,j)-th entry
and 0 else. Denote Ey; jy = E;; + Ej; then

[E{i,j}a E{k,z}] =ik (By — Eu)+6j (Eg — Ei)+0i (Ej — Eyy)+0u (Ej, — Ey;j) .
(C.5)
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Moreover, at most one of the terms of equation (C.5) is nonzero. The commutator
is nonzero if and only if |[{v;, v;, v, v, }| # 3. Thus an unweighted edge commutes

with another unless (and only unless) they share a single vertex.

Lemma C.0.1 yields two conditions for graph commutativity: (1) identical
edges in G; and G, commute and (2) edges in G; and G, with no common vertex
commute. Subsequently, to analyse graphs where these two conditions are more
common, we introduce the difference graph H with adjacency matrix W3 = W; —
W,. In particular, H is regular with degree d3 with d3 < d;. The construction of
‘H leads to our first condition for the commutativity of G; and G, which allows for
the use of ‘H which may reduce the number of cases required to check for vertex

sharing edges, i.e. reducing the number of non-zero terms in equation (C.4).

Lemma C.0.2. Let Gy be a weighted, reqular and undirected graph constructed
using a connectivity template T1 and Gy be a reqular subgraph of Gy constructed
by edge removal from Ty. If H is the difference graph of Gi and Gy then Gy and

Gy commute if and only if H and Gy commute.

Proof. The result follows from the definition of the difference graph and direct

calculation. Assuming G; and G, commute, consider the product

WoW; = Wy (W, — Wy) = WoW, — W22 =W W, — W22 = (W) — W) W, = W3 W,
(C.6)

implying that H and G, commute. Similarly, assume that H and G commute,

WiW, = (Wy + W3) Wy = W2+ WsW, = Wi+ WoWs = Wy (W, + W3) = WoW,,
(C.7)

and therefore G; and G, commute. O

From Lemma C.0.2, we now seek conditions in which [Wy, W3] = 0 for graph
commutativity. Before stating the commutativity conditions for G; and Gy in
the cases of differing or identical edge weights, we first need to define two vertex

connectivity properties.

Definition C.0.1 (a-step path and circuits [208]). Let G be a graph with vertices
v e V. An x-step path is a sequence of x+1 vertices denoted by the tuple (v;, ..., v;)
such that consecutive vertices are connected by an edge. A path is closed if it starts
and ends at the same vertex i.e. (v;,...,v;). Furthermore, a circuit of length x is

a closed x-step path of distinct vertices.

Using vertex paths in graphs, we can quantify the minimal number of paths
and circuits emanating from a single vertex that is required to ensure that H and

G, commute. We are specifically interested in counting 2-paths, an example of
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this is given in Figure C.3. We demonstrate that we can bound the number of 2-
paths by knowing the number of unique edge weights defined in the connectivity
template. Namely, denote n, the number of 2-paths with alternating edges from
H and G5 such that the product of these edges weights are unique.

Let e5 and e3 be the number of unique edge weights emanating from vertex v;
in H and Gy, respectively. As H and G, are regular and undirected then n, = eses.
Moreover, 0 < n, < d;dy, where the upper bound of n, is achieved when all edges
emanating for any vertex have different edge weights in both H and G, and,
g1 and G, share no common edge weights. Both results follow directly from the

connectivity template construction of G; and Gs.

I I
102

O""c'l""d) O-zl-CE) O

Figure C.3: Unique alternating 2-path weight products from a representative
vertex. G; is the complete graph K, with each edge stemming from a vertex
having a different weight a;. The subgraph G, is 2-regular with edge weights b;.
The difference graph H corresponds to the edge difference between G; and G,
such that ¢; = a; — b;. As each node has 2 and 3 distinct edges in Gy and H,
representatively, there are n, = 6 unique 2-path edge products emanating from
any given vertex. All 2-paths with respect to vertex v; are shown.
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C.1 Commutativity conditions for graphs and
subgraphs with identical edge weights

In the case Gy is constructed by only removing edges from the connectivity
template 77 of G, preserving the original edge weights, then (Wg)ij < (Wh)y-
The difference graph H is then constructed from those edges contained in G;
but not in Gy, i.e. H and Gy have disjoint edge sets. Consequently, we need
only to consider the case of a single shared vertex between edges in H and G,
to guarantee their commutativity by Lemma C.0.1. Specifically, the following
statement yields a necessary and sufficient condition for Gy and H commutativity
which is dependent on the existence of circuits with edges alternating in G, and

‘H. An example of alternating edge circuits is given in Figure C.4.

Lemma C.1.1. Let G, be a weighted, reqular and undirected graph constructed
using a connectivity template T1 and Gy be a reqular subgraph of Gy constructed by
reqular edge removal where G and Gy have identical weights on common edges.
Gi1 and Gy commute if for any vertex v; € V there exists n, distinct 4-vertex
circuits consisting of alternating edges from Gy and H where the product of the
edge weights first two edge weights are equal to the product of the final two edge

weights in the circuit.

Proof. If n, = 0 then there exists no alternating 2-paths from vertex v; with
edges from G, and H. This case follows directly from Lemma C.0.1 since
[E{i,j},E{k,j}] = 0 for all vertex indices (i,7,k,l € {1,..., N}) as no two edges
of H and G, share a common vertex. Consequently, [W5, W3] = 0 which implies
(W7, W3] = 0 by Lemma C.0.2.

If n, # 0 there exists a common vertex between two edges from H and G,. Due
to the regularity of Gy, G, and consequently H, the symmetry of the structures
allows for the investigation of commuting edges emanating from a single vertex.
Consider the vertices v;, v, and v; such that there exists a 2-path connecting v;
and v; through v, on alternating edges from H and G, starting with G,, without
loss of generality. As v; and v; share the common connected vertex vy, Lemma
C.0.1 yields [Eu, By # 0.

Reversing the order of the commutator with a common connected vertex has

the following property
[Eay Bway] = — (B — Eji) = — [Ejigy, By (C.8)

following from Lemma C.0.1. Namely, reversing the path order changes the sign
of the commutator. As H and G, have a disjoint edge set, there exists no such

reverse direction 2-path from v; and v; passing over v, starting with an edge in
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‘H. However, from the constructive symmetry of the connectivity induced by the
connectivity template, there exists some vertex vy # v, where there exists a 2-
path from v; to v; over vy starting with an edge from H, forming an alternating

edge 4-circuit from v; to itself. By equation (C.8), the commutator of this 4-circuit

becomes

[E{j,k’}y E{k’,z}} == Ejz' - Eij - — (EZ] - EJ) - — [E{z,k}a E{kyj}i| . (C9>
Critically, the existence of vy implies that wl[i]w,[g and —wﬁj,w,{j}i are within the
summand of equation (C.4). Hence if wl[.i]w,[j;] = wﬁ],w,[ji]i then these non-zero

terms in equation (C.4) cancel. This process can be repeated over all alternating
4-circuits emanating from v;, cancelling all terms associated with v; in equation
(C.A4).

By the regularity of the graphs and therefore the symmetries of the edge
structures in Gy and H, there are only n, unique alternating edge 4-circuits with
the graphs and thus there exists an automorphism that assigns any identical
alternating 2-path connected vertices to v; and v;. Subsequently, all non-zero
terms of equation (C.4) cancel, yielding [W3, Ws] = 0 and therefore G; and Gy
commute by Lemma C.0.2. n

Corollary C.1.1. Let Gy be a reqular undirected unweighted graph and G, be a
reqular subgraph of graph of G1 constructed by reqular edge remowval. If there exists

an alternating edge 4-circuit in Go and H then Gy and Go commute.

Proof. G; undirected implies that wl[;] = 1 if v; is adjacent to v; and wg] = 0 else.

Go inherits the undirected property from G; by construction. Therefore, for the
existence of a 4-circuit of alternating edges in Gy and H, it is guaranteed that
wi]wg = w][?,j,w,g]i = 1. Following from the edge structure symmetry induced by
regularity in G, and H, there exists an automorphism that relabels the vertices of
G- and ‘H which reconstructs all possible 4-circuit of alternating edges emanating

from v;. ]

These graphical methods of demonstrating commutativity of subgraphs
by exploiting the symmetries induced by a connectivity template are
computationally efficient as the number of cases that we are required to check
only depends on the degree of the vertices and are critically independent if the
number of vertices in the graph. We demonstrate this feature in Figure C.4 where
we highlight that when wgl] = w?] the graphs G; and G, from C.2 commute by

Lemma C.1.1 and the existence of a single alternating edge 4-vertex circuit.
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Figure C.4: Commutativity of a simple periodic bilayer graph and a subgraph

constructed from edge removal. The graphs G; and G, from Figure C.2 are shown
with the difference graph H for the case w[ll] = w?}. The single unique alternating

edge 4-vertex circuit for G, and H is given below starting at the yellow vertex
and passing through the blue, green and orange vertices, respectively.

C.2 Constructing families of commuting undirected
regular weighted graphs

Next, we consider the case when edge weight values are not preserved when

removing edges from the connectivity template 7; to construct subgraphs. For
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this case, H and G may have commonly connected vertices with different weights,
i.e. in Figure C.3, v; and vy are connected by weighted edges by and ¢y in Gy and
‘H, respectively, where by # c5. Therefore we cannot exclude the existence of
2-paths that return to the starting vertex in our analysis. Hence the following
statement includes such common edge structure. Specifically, including such edge

structures increases the number of cases that we are required to validate.

Lemma C.2.1. Let G, be a weighted, reqular and undirected graph constructed
using a connectivity template Ty and Gy be a reqular subgraph of G, constructed
by regular edge removal with differing edge weights. Gy and Gy commute if for
any v; there exists n, distinct closed 4-step paths consisting of alternating edges
from Gy and H such that the product of the edge weights first two edge weights
are equal to the product of the final two edge weights in the closed 4-step paths.

Proof. The result follows almost identically as the proof of Theorem C.1.1.
However, in the case of common vertices between edges (n, # 0) then the required
existence of vy need not be different from v, and therefore the adjacent vertices
defining the closed four-step may not be unique. Moreover, the regularity of Gy,
G, and H induce symmetries within the graphs as in Theorem C.1.1 and thus
there are only n, unique closed 4-step paths of alternating edges up to vertex

relabelling via a common automorphism on G, and H. ]

We now seek to reduce the number of computations required to generate a
family of commuting graphs by exploiting the symmetry of the structures defined
by the connectivity templates. Namely, if G; commutes with itself up to differing
edge weight values we show that any subgraphs G; and G; of G; must commute
with G; and each other. Critically, this construction allows us to generate a family

of commuting subgraphs derived from G;.

Theorem C.2.1 (Regular subgraphs commute). Let G; and G1 be two regular,
undirected and weighted graphs constructed from the same connectivity template
T1 where edge values are allowed to differ. If Gi and Gi1 commute then any
subgraph G; constructed by reqular edge removal commutes with Gi. Moreover,
if G; is another subgraph of Gy constructed by reqular edge removal, then G; and

G; commute.

Proof. For any v; € V', the number of edges with a unique weight value emanating
from v; is given by e;. Following from the commutativity of G; and G; and Lemma
C.2.1, there exists €2 unique closed 4-step paths consisting of alternating edges
from G; and G;. Critically, any subgraph G, of G; must commute by Lemma C.2.1

as it is constructed by regularly removing edges from G;, and all of the unique
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alternating 4-steps paths in G; and G, already exist in the unique alternating 4-
steps paths of G; and G;. The argument follows similarly for the commutativity
of any two subgraphs G; and G; of Gy, as the unique alternating 4-step paths in
G; and G; already exist due to the preservation of the edge weight structure via

the connectivity template construction. 0

Critically, checking the commutativity of only one graph with itself ensures the
commutativity of all regular subgraphs and therefore, Theorem C.2.1 provides a
convenient method of constructing larger families of commuting graphs which has
applications to polarity-dependent cell signalling mechanisms that operate over
different ranges. In the context of pattern formation in developmental systems,

families of commuting graphs can be constructed by the following steps:
1. Define a regular and periodic lattice representing a cellular domain.

2. Define a connectivity template, 77, on the lattice that represents the most

connected cell-cell signalling mechanism (largest degree).

3. Let 7; be the connectivity template with the same structure as 7; where

edge weights may differ.
4. Construct the graphs G; and G, from the templates 77 and 71, respectively.

5. Choose some vertex v; € V and show the existence of €7 alternating closed

4-paths emanating from v; of edges in G; and Gi.

6. Construct a commuting subgraph of G; by removing edges from 77 to

represent another cell-cell signalling mechanism.

The following example provides a demonstration of these steps and
the resultant family of commuting subgraphs that are inherited from the

commutativity of Gj.

Example C.2.1. Consider the fized and reqular bilayer hexagonal lattice as
in Figure C.5. Let Ty be the graph template describing long-range diffusion of
signalling ligands between cells that has a characteristic length scale of two cells,
namely, each cell is signalling to their closest 6 neighbours with associated weights
dependent on distance from the diffusing cell as given in Figure C.5. Applying
Ty to each cell in the hexagonal lattice whilst imposing that edges are undirected
produces the cell-cell connectivity graph Gi.

The connectivity template T: is formed by taking the same edge structure as
T1 but allowing the edge weights to differ such that wl[l] # ﬁ)lm as in C.5. We

construct the associated graph G from T using the same method as G,. We
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Regular cellular lattice

Figure C.5: Periodic bilayer graphs constructed from a hexagonal lattice and a
connectivity template. Connectivity templates 7; and 7: are shown on a portion
of the hexagonal lattice with respect to a fixed vertex highlighted in yellow. We
allow the edge weights in 77 and 7: to differ such that wz[l] #* UA},LU]. Example
graphs G; and G, constructed by 71 and 7T, are shown for V| = 60.

are left to show that G and G commute to generate a family of commutative
subgraphs from Gy by Theorem C.2.1.

Fach connectivity template Ty and T: has 3 distinct weighted edges emanating
from any given vertex, denoted by ey = é, = 3. Therefore by Lemma C.2.1, if
there exists 9 distinct closed 4-step paths of alternating edges from G; and G
where the product of the first two edge weights are equal to the final two edge
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weights, then G; and G commute. These paths can be formed by applying the
appropriate connectivity template to each vertex in the sequence of the path, to
return to the initial vertex in four steps, as shown in Figure C.6 for the alternating
closed 4-path @ This process is repeated for all edge weight combinations in Ty
and T7. All nine resulting alternating closed 4-paths are given in Figure C.6 and
consequently we have that G; and G, commute. Note that due to the symmetry
of the templates, we only needed to check the existence of the alternating closed
4-paths of @, @ and @ however all nine are shown for completeness.
Following from Theorem C.2.1, any subgraph of G, generated by removing
edges from the connectivity template T1 commutes with G and any other subgraph
produced similarly. Figure C.7 highlights a systematic approach to generating a
family of commuting graphs, each inherited from the connectivity template Ty.
Subsequently, we produced seven different commuting graphs, each with differing
edge weights by only examining the commutativity of the largest connectivity
template. Note that the characteristic representations of long-range and short-
range diffusion cell-cell signalling templates in Figure C.1 are given by Gy and G
in Figure C.7 for the bilayer lattice. These graphs are later used in large-scale

laminar pattern analysis in Chapter /.

The prescribed lattice geometry and connectivity template induces regularity
in the graphs we consider in this section, which represent cell-cell commutation.
Cellular structure regularity is not a feature observed in biological tissue due
to the intrinsic complexity and stochasticity involved in developing biological
systems [48]. However, the methods described here allow us to conveniently
construct commutative graphs, independent of the number of vertices and
numerical computation, which enables the study of large-scale tissues in cell-fate

pattern analysis (Chapter 4).
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Figure C.6: All possible closed alternating 4-paths of edges in G; and Gi
emanating from a fixed vertex highlighted in yellow and pass through the blue,
green and orange vertices, respectively. The construction of the second closed
alternating 4-path using the connectivity templates 7; and 7; is shown above.
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Figure C.7: A family of commuting weighted graphs constructed by subgraphs
of G;. Connectivity templates with associated graphs are shown with arrows
directing the subgraph inheritance.
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Appendix D

Computational methods for
MIMO simulations

The ODE systems in this study were solved numerically using the ODE15s solver
in Matlab (R2021a). Simulations were performed over a total of 10000 time
units in addition to a stopping event applied to the ODE solver to check for
solution convergence. Namely, if all trajectories varied less than 1 x 10~* over
four consecutive iterations, then we assume that the system has converged to a
steady state. We note that all simulations presented in this study satisfied the
convergence criteria.

Random initial conditions were sampled from a uniform distribution using
the rand function. The homogeneous steady state of the system was calculated
using the fsolve function that implements the trust-region-dogleg minimisation
algorithm [151]. Eigenvalues of the adjacency matrices were calculated using
the eig function from the Linear Algebra toolbox in Matlab (R2021a). To
visualise the approximate cell membranes in the large-scale simulation Voronoi
diagrams were drawn around graph vertices using the delaunayTriangulation
and voronoi functions within the Computational Geometry toolbox in Matlab
(R2021a). Ghost vertices were introduced to ensure that each graph vertex
has a closed boundary. The source code for the simulations presented in
Chapter 4 can be found at https://github.com/joshwillmoorel/Mixed_
Signal_mechanisms.

The intracellular kinetics parameter values of the 10 system (4.56-4.60) used

in all simulations are given in Table D.1 below.

Parameter (0%} (6) 51 ﬁg 53 k’l k’g h1 hg h3
Value 001110010100} 2|2 |2 |2]|1

Table D.1: Parameter values used in the simulations of the IO system (4.56-4.60).
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Appendix E

Proof of my-dependent spectral
gap for Gop and G3p from Figure
4.9B

The existence of a block off-diagonal canonical form of the adjacency matrix
of a bipartite graph is often exploited in spectral investigations [266]. For any
bipartite graph G, with adjacency matrix W), there exists a permutation matrix
U that re-indexes the vertices with respect to the independent sets V; and V,
such that

(E.1)

U'w,U = [ 0 X’“]

XT 0
where X is the biadjacency matrix [220]. Subsequently, the spectra of the
bipartite graphs have a distinct structure such that there is a symmetry of
eigenvalues respective to the biadjacency matrices, i.e., Spec (W) = Spec (X)) U
Spec (—X}). Leveraging the spectral symmetry of bipartite graphs and the
spectral retention of equitable partitions, we demonstrate that for the bipartite
bilayer graphs Gop and Gsp in Figure 4.9, the smallest eigenvalue of X}, is — Mg,

the polarity driven eigenvalue associated with laminar pattern template .

Lemma E.O0.1. Let G, be a regqular bipartite bilayer graphs as shown in Figure
4.9 (k = 2D, 3D) with associated weighted adjacency matriz Wy,. Consider the
equitable partition my such that the quotient graph, Gy r,, consists of only two
representative vertices in each layer of G, and has the reduced adjacency matriz
Wi (4.32). Then biadjacency matriz X, associated with W), satisfies

—XM = min (pg; : e € Spec (Xy)), (E.2)
where Xk,g is the smallest eigenvalue of W . with associated etgenvector Uy, 5.

Proof. We present the proof for Gop as the following argument holds immediately
for Gsp also. As we make use of the biadjacency form of Wsp, we first construct

the biadjacency transformation U. The bipartite bilayer graph Gop has vertex
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indices in layer-wise order as defined in Section 4.1.1 with block adjacency
matrices given in equation (4.9). To reorder the vertices of Gop such that vertex

groups V; and V5, are ordered consecutively, we define the permutation matrix

I, 2@ Dy 11,2 ® D,
U = | 1.l |L1|/ ’ -
{Ilevz ® Dy I, ® Dy (E.3)
where |L;| = |Ls| as each layer has the same number of vertices. In particular,

we have the biadjacency form

UT WU — Iipyjp @Dy Ly @ Do \Win, Wor, | L2 @ Dy I, )2 ® Do
Iinyj 2@ Dy Ly a @ Dh] (W Wi, | (a2 @ Do Lir,)2 © D’
| 0 Xy
_ [XZD : ] , (E.4)
for X,p in periodic tridiagonal form
B2 2 g . 0 &P
.2D]  ~[2D]  .[2D]
wy Wy wy
Xop = , (E.5)

. [215} .[2D]  .[2D]
wy Wy wy
_w[lm] 0 . 0 w[lm} @QD}_

noting that X1, = Xyp by the regularity of Gop and therefore UT WopU is
symmetric.

As the laminar pattern template partition 75 is equitable there exists a lifting
matrix L € {0,1}¥*2 that maps the large-scale adjacency matrix Wop into its
reduced form Wop such that

WQDL = LWQD, (E6)

as demonstrated in [137]. The lifting transformation is constructed by grouping
vertices associated with the partition my on Woyp for example L;; = 1 if v; € L;.
Owing to the block structure of Wyp (4.8) which follows from the layer-wise

vertex indexing, we have that

1 0
L= |L1],1 |L1],1 ) E.7
{szm L, (ED)

Critically, the lifting matrix L provides the algebraic link between the quotient
and large-scale graphs.

Following from the regular structure of Gop and direct computation, the
eigenvector associated with XQD,Q has the form Dapo = [1,—1]". The spectral
retention property of the equitable partition, my, guarantees that X2D72 €

Spec (Wap) where Lvsp o is the corresponding eigenvector for the large-scale
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graph Gop (by Theorem 9.3.3 in [220]). Explicitly, we have that the lifted

eigenvector is of the form

_ 1
Loy = {_llelﬂl} ) (E.8)

with associated eigenvalue X2D72. In the biadjacency matrix form (E.4), the

corresponding eigenvector has the transformed representation

v=U"Lop,=[1 -1 - 1 -1 1 =1 -~ 1 —1]". (E.9)

[

|L1] |L2|
The spectral symmetry of bipartite graphs ensures that if there exists
an eigenpair (XQDQ,V: [m,yT]) then there must also exist the eigenpair
(—XQDQ, U=z, —yT]) [220]. Therefore the eigenvector associated with —Aop o
has biadjacency form

p=[ -1 -1 -1 -1 1 -~ -1 1]". (E.10)

[\ J/ J/

vV vV
[L1] |L2|

which negates the signs of those entries associated with the latter half of the
vertices in Gop. Subsequently, the first || entries of & are an eigenvector of Xap
with eigenvalue —X2D72 following from the canonical bidjacency representation of

Wyp (E.4). We denote this reduced eigenvector in normalised form

b= -1 1 -1, (E.11)

VL] S

NV
|L1]

and therefore it remains to show that the eigenpair (—XQDQ, 131) is minimal in the
spectrum of Xop.
The Rayleigh quotient for Xop is defined by

¥y Xopy

Rxop, (y) = Ty (E.12)

and as Xyp is real and symmetric by the Min-Max theorem the Rayleigh quotient
is bounded by the maximal and minimal eigenvalues of the matrix, Rx,, (y) €
[Amins Amax] [220]. In particular, Rx,, (y) generates the eigenvalues of Xsp when
y is the respective eigenvector. Hence we show that ©; minimises Rx,, (y),
namely

arg min (Rx,, (y)) = v1. (E.13)
yeR‘Ll‘
lyll=1

where the normality constraint follows from Xsp being real and symmetric and

so the eigenvectors of Xsp are orthonormal with real eigenvalues.
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The normalised form of ; yields o ; = 1 and therefore the Rayleigh quotient
evaluated at o simplifies to Rx,, (71) = I)IT Wypr,. By direct computation, we
have that

|L1] |La]

ﬁ?XQD’jl = Z Z (X2D)k,j (’51)1@ (’;1)]‘ )
k=1 j=1
|L1]| [L1]—1

= Z (XQD)ii (’71)22 + Z (’71)1' ((X2D)i,i—1 (ﬂl)i—l + (XQD)i,i+1 (ﬁl)i-i-l)

o+ (51)1 (Ko (B1); + (Xan)y, (B1) 1)
+ (1)1, ((XQD)\L1|,1 (1), 4+ (XoD) 1, 241 (’71>|L1|—1) (E.14)

by the cyclic tridiagonal form of Xop (E.5). Critically as (Xsp),; > 0 for
all 4,7, then o Xoppy is minimised when sgn ((1),) # sgn ((#1),,,) for all
k € {1,...,|Li| — 1}, which is satisfied by definition of ;. Furthermore, the
orthonormal property of the eigenbasis of Xsp ensures that no other eigenvector
has this alternating sign structure which implies that _XQD,Q is the smallest

eigenvalue of Xop. O

A consequence of Lemma E.0.1 is the existence of a spectral gap about the

origin for Gop and Gsp.

Theorem E.0.1. Let Gy, and Gy, be defined as in Lemma E.0.1 and let N\, ; €
Spec (Wy). Ika,g < 0 then \; & (Xk,% _Xk,2)-

Proof. From Lemma E.0.1 we have that —)\,, = min (f,j = fu; € Spec (X))
and thus —Xm > 0. From the symmetry of the spectrum of bipartite graphs, we
have that Xk,z < 0 is the maximum of the negative eigenvalues of W}, therefore,
defining a region about the origin bounded by M, and _Xk,2 that contains no

eigenvalues. O]
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