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ABSTRACT

Context. The minimum mass for star formation is a critical parameter with profound astrophysical, cosmological and anthropic con-
sequences.
Aims. Our first aim is to calculate the minimum mass for PrimaryFragmentation in a variety of potential star-formation scenarios,
i.e. (a) hierarchical fragmentation of a 3D medium; (b) one-shot, 2D fragmentation of a shock-compressed layer; (c) fragmentation of
a circumstellar disc. By Primary Fragmentation we mean fragmentation facilitated by efficient radiative cooling. Our second aim is to
evaluate the role of H2 dissociation in facilitating Secondary Fragmentation and thereby producing close, low-mass binaries.
Methods. We use power-law fits to the constitutive physics, a one-zone model for condensing fragments, and the diffusion approxi-
mation for radiative transport in the optically thick limit, in order to formulate simple analytic estimates.
Results. (i) For contemporary, local star formation, the minimum mass for Primary Fragmentation is in the range 0.001 to 0.004 M�,
irrespective of the star-formation scenario considered. This result is remarkable since, both the condition for gravitational instability,
and the radiation transport regime operating in a minimum-mass fragment, are different in the different scenarios. (ii) Circumstellar
discs are only able to radiate fast enough to undergo Primary Fragmentation in their cool outer parts (R >∼ 100 AU). Therefore brown
dwarfs should have difficulty forming by Primary Fragmentation at R <∼ 30 AU, explaining the Brown Dwarf Desert. Conversely,
Primary Fragmentation at R >∼ 100 AU could be the source of brown dwarfs in wide orbits about Sun-like stars, and could explain why
massive discs extending beyond this radius are rarely seen. (iii) H2 dissociation can lead to collapse and Secondary Fragmentation,
thereby converting primary fragments into close, low-mass binaries, with semi-major axes a ∼ 5 AU (mSYSTEM/0.1 M�), in good agree-
ment with observation; in this circumstance, the minimum mass for Primary Fragmentation becomes a minimum system mass, rather
than a minimum stellar mass. (iv) Any primary fragment can undergo Secondary Fragmentation, producing a close low-mass binary,
provided only that the primary fragment is spinning. Secondary Fragmentation is therefore most likely in primary fragments formed
in the outer parts of circumstellar discs (since such fragments inevitably spin), and this could explain why a brown dwarf in a wide
orbit about a Sun-like star has a greater likelihood of having a brown-dwarf companion than a brown dwarf in the field – as seems
to be observed. Moreover, we show that binary brown dwarfs formed in this way can sometimes be ejected into the field without
breaking up.

Key words. hydrodynamics – instabilities – stars: binaries: close – stars: formation – stars: low-mass, brown dwarfs –
stars: planetary systems: formation

1. Introduction

The structure, physical properties and appearance of the
Universe are strongly influenced by the fact that most of the seri-
ously dense baryonic condensations in it are objects with masses
in the range 0.01 to 100 M�, i.e. stars. By seriously dense we
mean

ρ >∼ ρB ∼
[

me e2

2 �2 [4πε0]

]3
mp � 1 g cm−3, (1)

where ρB is the critical density separating thermally ionised
plasma from pressure-ionised plasma. The Universe would be
very different if comparable amounts of baryonic mass had con-
densed out into seriously dense objects with masses in the ranges
<0.01 M� and/or >100 M�, but – as far as we can judge – they
have not. It is therefore appropriate to ask why gravitational con-
densation, under a wide variety of circumstances, selects objects
in the mass range 0.01 to 100 M�.

1.1. The maximum mass for star formation

The upper mass limit is usually attributed to radiation pressure.
As a forming star accumulates matter, its luminosity grows faster
than its mass, and eventually – around 10 M�, in a spherically
symmetric model – the outward force of radiation pressure be-
comes greater than the inward force of gravity, making fur-
ther accretion difficult, but not impossible. More massive stars
can form, but their formation requires increasingly extreme
and contrived circumstances. One possibility is that the inflow
has already acquired such a high ram-pressure before it en-
counters radiation pressure that it cannot be reversed (McKee
& Tan 2003). Alternatively, if collapse starts from sufficiently
dense and homogeneous conditions, the accreting material is al-
ready within the dust-destruction radius when the central star
switches on, and so the accreting material does not experience
the outward force of radiation pressure acting on dust (Edgar
& Clarke 2003). Another possibility is that accretion is highly
aspherical (for example, by virtue of being channeled through
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a disc), and radiation pressure is then released along the direc-
tions not occupied by the inflow (for example, along the rota-
tion axis of the disc); this is sometimes called The Flashlight
Effect (Yorke & Sonnhalter 2002). The final possibility is that
stars above ∼10 M� form by merging of lower-mass stars in the
extremely dense and short-lived central cores of forming star-
clusters (Bonnell et al. 1998).

1.2. The minimum mass for star formation

The lower mass limit is usually attributed to the thermodynamics
of interstellar matter (Hoyle 1953; Rees 1976; Low & Lynden-
Bell 1976; Silk 1977; Boss 1988). In order for a condensation to
fragment, the Jeans mass in the condensation must continue to
decrease, and therefore the gas in the condensation must remain
approximately isothermal. This in turn requires that the conden-
sation must radiate away the PdV work done by compression,
as fast as it is generated. During the early stages of contraction
the rate at which PdV work is done on the condensation (i.e.
the compressional heating rate H) is of order the thermal en-
ergy divided by the freefall time. The radiative cooling rate (L)
depends on the emissivity and the optical depth of the conden-
sation; it may also depend on how well the gas is thermally cou-
pled to the dust, and on the ambient radiation field. The first con-
cern of this paper is with evaluating the conditions under which
L >∼ H , and hence the minimum mass for star formation by
Primary Fragmentation.

1.3. The formation of binary systems

A question closely related to the origin of stars is the origin of
their binary properties. The subset of brown dwarfs that are in
multiple systems appears to be concentrated in two distinct re-
gions of the parameter-space of multiple systems. If the primary
is a Sun-like star, the semi-major axis is usually large, >∼100 AU.
If the primary is a brown dwarf, the semi-major axis is usu-
ally small, <∼20 AU. Moreover, as pointed out by Burgasser et al.
(2005), there seems to be a significant population of hybrid triple
or higher-order multiple systems in which a close (<∼20 AU)
brown dwarf pair is in a wide orbit (>∼100 AU) around a Sun-
like star. The second concern of this paper is to explore a possi-
ble explanation for these binary statistics in terms of Secondary
Fragmentation, i.e. fragmentation facilitated by H2 dissociation.

1.4. Plan of the paper

In Sect. 2, we introduce the constitutive physics which we will
use. In Sect. 3, we analyse hierarchical fragmentation of a three-
dimensional medium, and estimate the resulting minimum mass.
In Sect. 4 we re-evaluate the notion of hierarchical fragmenta-
tion, and argue that it probably not a good paradigm for star for-
mation. In Sect. 5, we discuss one-shot fragmentation of a shock-
compressed layer, formed by two colliding streams. We derive
the resulting minimum mass, and argue that this is a much more
realistic scenario for contemporary star formation in turbulent
molecular clouds. We also explain why one cannot assume a pri-
ori that a minimum-mass fragment is marginally optically thick.
In Sect. 6 we discuss fragmentation of a circumstellar disc and
argue that this too may be an important source of low-mass stars,
but that it can only be effective at large distances (R >∼ 100 AU)
from the central star. This has important implications for the gen-
esis of exoplanets and brown dwarfs, and for the truncation of
massive protostellar discs. In Sect. 7 we discuss the nonlinear

thermodynamic effects associated with H2 dissociation and the
resulting Second Collapse of a protostar. We explain how these
effects may result in the formation of close, low-mass binaries,
with separations in good agreement with observation. We also
show that close, low-mass binaries could be formed in this way
in the outer parts of circumstellar discs and then ejected into the
field. In Sect. 8 we summarise our main conclusions.

1.5. A note on nomenclature

We shall assume that, when star-forming gas is approximately
isothermal (say d�n[T ]/d�n[ρ] <∼ 0.1), there are always den-
sity fluctuations on a wide range of scales. A density enhance-
ment which might develop into a star is in the first instance
termed a proto-fragment. If a proto-fragment is gravitation-
ally unstable, and its contraction time-scale is shorter than the
timescales of competing processes, it becomes a fragment. If
a fragment can radiate sufficiently fast to stay approximately
isothermal it becomes a prestellar condensation, and this con-
dition defines the minimum mass for Primary Fragmentation.
The implication is that a prestellar condensation is significantly
denser (say, at least one hundred times denser) than the ini-
tial proto-fragment. A prestellar condensation can subsequently
undergo Secondary Fragmentation during The Second Collapse
(i.e. when H2 dissociates).

2. Constitutive physics

2.1. Equation of state

We will be mainly concerned with contemporary star formation
in the disc of the Milky Way, and therefore with gas whose
chemical composition (by mass) is 70% molecular hydrogen,
28% atomic helium, and 2% heavy elements (in the form of
molecules – like CO – and dust). The mean gas-particle mass
is therefore m̄ � 4.0 × 10−24 g, the isothermal sound speed is
a = [kB T/m̄]1/2 � 0.06 km s−1 [T/K]1/2, and the number density
of H2 is nH2

� ρ/[4.8 × 10−24 g]. At gas-kinetic temperatures
T <∼ 100 K, the rotational levels of H2 are not strongly excited,
and therefore the adiabatic exponent is γ � 5/3. At higher tem-
peratures (300 K <∼ T <∼ 30 000 K) γ and m̄ decrease due to the
excitation of the rotational and vibrational levels of H2, the dis-
sociation of H2, and finally the ionisation of H

0
; we will consider

one of the consequences of these changes in Sect. 7.

2.2. Blackbody fluxes

For algebraic convenience, we will frequently interchange T , m̄
and a = [kBT/m̄]1/2. In particular, it will sometimes be useful to
express the flux from a blackbody surface as

FBB ≡ σSB T 4 =
2 π5 m̄4 a8

15 c2 h3
· (2)

2.3. Rosseland- and Planck-mean opacities

We will also assume that the Rosseland- and Planck-mean opac-
ities due to dust are – to order of magnitude – the same, and
given by

κ̄R (T ) � κ̄P (T ) � κ̄M (T ) = κ1
[T
K

] β
, (3)

with κ1 = 10−3 cm2 g−1 and emissivity index β = 2 for T <∼
100 K (i.e. in the far-infrared and submillimetre wavebands).
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3. Hierarchical Primary Fragmentation
of a three-dimensional medium

3.1. The Jeans mass in a 3D medium

In a uniform 3D medium, an approximately spherical proto-
fragment of mass m3 will only condense out if it is sufficiently
massive,

m3 > mJEANS 3 �
[
π5 a6

36 G3 ρ

]1/2
, (4)

or equivalently if it is sufficiently small and dense,

r3 < rJEANS 3 �
3 G m3

π2 a2
, (5)

ρ3 > ρJEANS 3 �
π5 a6

36 G3 m2
3

· (6)

Here the subscript “3” records that we are considering a proto-
fragment trying to condense out of a 3D medium.

3.2. The condensation time-scale for Primary Fragmentation
of a 3D medium

The timescale on which a Jeans-unstable proto-fragment con-
denses out of a 3D medium is given approximately by

tCOND 3 (m3) �
[

3 π
32 G ρ

]1/2 ⎧⎪⎪⎨⎪⎪⎩1 −
[
mJEANS 3

m3

]2/3⎫⎪⎪⎬⎪⎪⎭
−1/2

, (7)

i.e. proto-fragments with mass m3 � mJEANS 3 condense out on
a freefall timescale, whereas less massive proto-fragments take
longer, and proto-fragments with mass m3 ≤ mJEANS 3 take for
ever.

3.3. Hierarchical Primary Fragmentation of a 3D medium

The molecular-cloud gas from which stars are forming today in
the Milky Way is expected to be approximately isothermal, with
T ∼ 10 K, as long as it can radiate efficiently via molecular lines
and/or dust continuum emission. Therefore it has been argued,
following Hoyle (1953), that star formation proceeds in molec-
ular clouds by a process of hierarchical Primary Fragmentation.
An initially low-density massive cloud – which is destined to
form a proto-cluster of stars – satisfies condition (4) and starts
to contract. Once its density has increased by a factor f 2, the
Jeans mass mJEANS 3 is reduced by a factor f −1, and hence parts of
the cloud can condense out independently, thereby breaking up
the cloud into <∼ f sub-clouds. Moreover, as long as the gas re-
mains approximately isothermal (strictly speaking, as long as a
remains approximately constant), the process can repeat itself re-
cursively, breaking the cloud up into ever smaller “sub-sub...sub-
clouds”.

3.4. The Opacity Limit for hierarchical Primary
Fragmentation of a 3D medium

The process ends when the smallest sub-sub...sub-clouds are so
optically thick, and/or are collapsing so fast, that the P dV work
being done on them cannot be radiated away fast enough, and
they start to heat up. It is normally presumed that this determines
the minimum mass for star formation (e.g. Rees 1976; Low &
Lynden-Bell 1976; Silk 1977; Boss 1988), and the termination of

hierarchical Primary Fragmentation in this way has traditionally
been referred to as The Opacity Limit. Masunaga & Inutsuka
(1999) point out that the gas does not have to be optically thick
at The Opacity Limit.

3.5. The compressional heating rate for a spherical fragment

To estimate the minimum mass for hierarchical Primary
Fragmentation of a 3D medium, mMIN 3 , we first formulate the
P dV heating rate for a spherical fragment, neglecting the back-
ground radiation field,

H3 ≡ −P3
dV3

dt
= − 3m3a2

r3

dr3

dt
∼ 3m3a2

r3

[
Gm3

r3

]1/2
· (8)

Here we have obtained the final expression by assuming that the
collapse is dynamical and putting dr3/dt ∼ −[Gm3/r3]1/2.

3.6. The radiative cooling rate for a spherical fragment

The maximum radiative luminosity of a spherical fragment is

L3 �
16πr2

3σSB T 4

3
[
τ̄R (T ) + τ̄ −1

P
(T )
] , (9)

where

τ̄R (T ) � τ̄P (T ) � 3 m3 κ̄M (T )

4 π r2
3

(10)

are the Rosseland- and Planck-mean optical depths. We empha-
sise that T is the mean internal temperature of the fragment, and
not necessarily the surface temperature. The treatment of radi-
ation transport in Eq. (9) is based on the asymptotic forms for
radiative diffusion in the optically thick limit (τ̄R (T ) � 1), and
for local emissivity in the optically thin limit (τ̄P (T ) � 1). It is
justified in more detail in Appendix A. Eq. (9) gives a maximum
net luminosity because it neglects the background radiation field
(see below).

3.7. The opacity limit for hierarchical Primary Fragmentation
of a 3D medium, assuming τ̄ ∼ 1

If we follow Rees (1976) and assume that the fragment is
marginally optically thick, we can put

[
τ̄R (T ) + τ̄ −1

P
(T )
]
� 2, and

then – using Eq. (2) – the requirement that L3 >∼ H3 reduces to

r3 >∼ rCOOL 3 �
⎡⎢⎢⎢⎢⎣ 36 52

28 π12

G m3
3 c4 h6

m̄8 a12

⎤⎥⎥⎥⎥⎦
1/7

; (11)

ρ3 <∼ ρCOOL 3 �
⎡⎢⎢⎢⎢⎣210 π29

311 56

m̄24 a36

G3 m2
3 c12 h18

⎤⎥⎥⎥⎥⎦
1/7

· (12)

This will give a conservative minimum mass, because, in assum-
ing that the fragment is marginally optically thick, we are max-
imising its luminosity – all other things (m3, r3 and T ) being
equal.

3.8. The minimum mass for hierarchical Primary
Fragmentation of a 3D medium, assuming τ̄ ∼ 1

Conditions (5) and (11) require rJEANS 3 > rCOOL 3 and hence

m3 >∼ mMIN 3 �
[
52 π2

28 3

]1/4 m3
PLANCK

m̄2

[a
c

]1/2
· (13)
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Here mPLANCK = [hc/G]1/2 = 5.5 × 10−5 g is the Planck mass, and
m̄ cannot differ greatly from mp (the proton mass), so mMIN3 is
essentially the Chandrasekhar mass (∼m3

PLANCK
/m2

p
) times a fac-

tor [a/c]1/2 ∼ 10−3. We note the relatively weak dependence of
mMIN3 on T (∝T 1/4) and the relatively strong dependence on m̄
(∝ m̄−9/4).

For contemporary local star formation, we substitute m̄ �
4.0 × 10−24 g and a � 1.8× 104 cm s−1 (corresponding to molec-
ular gas at T � 10 K) and obtain mMIN 3 ∼ 0.004 M�.

3.9. Allowing for radiation transport effects in hierarchical
Primary Fragmentation of a 3D medium

There is no a priori reason why the limiting fragment should
be marginally optically thick (Masunaga & Inutsuka 1999), and
therefore we cannot necessarily put

[
τ̄R (T ) + τ̄ −1

P
(T )
]
� 2.

If we assume that the fragment is very optically thin, we must
put
[
τ̄R (T ) + τ̄ −1

P
(T )
]
� τ̄−1

P
(T ), and then after some tedious but

straightforward algebra we obtain

mMIN 3 �
31/2 5
23 π2

c2 h3

G m̄4 a3 κ̄M (T )
· (14)

Conversely, if we assume that the fragment is very optically
thick, we must put

[
τ̄R (T ) + τ̄ −1

P
(T )
]
� τ̄R (T ), and then after

some more tedious but straightforward algebra we obtain

mMIN 3 �
[

5 π4

27 33/2

c2 h3 a5 κ̄M (T )

G5 m̄4

]1/3
· (15)

In general one should use both Eqs. (14) and (15), and then adopt
whichever gives the larger value of mMIN 3 .

In the case of contemporary local star formation with T �
10 K, m̄ � 4.0×10−24 g, a � 1.8×104 km s−1, κ1 � 10−3 cm2 g−1

and β � 2, both expressions (Eqs. (14) and (15)) again give
mMIN 3 ∼ 0.004 M�, but this is because – coincidentally – frag-
ments of this mass are marginally optically thick (τ̄ � 1) at their
inception.

4. Problems with hierarchical Primary
Fragmentation of a 3D medium

The above analysis of three-dimensional hierarchical Primary
Fragmentation overlooks several effects which all act to in-
crease mMIN 3 . Indeed, three-dimensional hierarchical Primary
Fragmentation probably does not work. There is no conclusive
evidence that hierarchical Primary Fragmentation happens in na-
ture, nor does it seem to occur in numerical simulations of star
formation. There are three main reasons.

4.1. Merging

First, Eq. (7) clearly shows that at each level of the hierarchy, a
proto-fragment condenses out more slowly than the larger par-
ent fragment of which it is part, by virtue of the fact that the
proto-fragment is always less Jeans unstable than the parent frag-
ment. Therefore a proto-fragment is unlikely to survive as a dis-
tinct entity. Instead the overall contraction of the parent fragment
will usually cause a proto-fragment to merge with neighbouring
proto-fragments.

4.2. Accretion

Second, if there are no neighbouring proto-fragments with which
to merge, then, even if an isolated proto-fragment starts off with
a mass m3 ∼ mJEANS 3 , it will subsequently grow by a large factor
due to accretion. Therefore, before its contraction approaches
freefall and it separates out from the background, its final mass
will have become much greater than mJEANS 3 .

Although the following estimate is only indicative, we adopt
the formula for Bondi accretion (Bondi 1952). This gives a
growth rate

dm3

dt
=

e3/2 πG2 ρm2
3

a3

� e3/2 π4

23 61/2

[
m3

mJEANS 3

] [
m3

tFF

]
∼ 22

[
m3

mJEANS 3

] [
m3

tFF

]
, (16)

where tFF = [3π/32Gρ]1/2 is the freefall time in the background
medium of the parent fragment. The implication of Eqs. (7) and
(16) is that a proto-fragment with m3 ∼ mJEANS 3 takes several
freefall times to condense out, and during one freefall time it
increases its mass by more than an order of magnitude.

4.3. Back-warming

Third, individual proto-fragments will be back-warmed by the
ambient radiation field from other cooling proto-fragments,
which in principle fill a significant fraction of the celestial
sphere, and again this will reduce their net luminosity L3,
thereby inhibiting fragmentation.

5. Two-dimensional one-shot Primary
Fragmentation of a shock-compressed layer

5.1. Colliding flows, and star formation in a crossing time

In reality, 3D hierarchical Primary Fragmentation may be an in-
appropriate paradigm for star formation in molecular clouds.
There is growing evidence that star formation in molecular
clouds proceeds very rapidly, essentially “in a crossing time”
(Elmegreen 2000), i.e. whilst the molecular cloud is being as-
sembled. In this scenario, star formation occurs in molecular
clouds where two turbulent flows of sufficient density collide
with sufficient speed – and therefore sufficient ram pressure –
to produce a gravitationally unstable shock-compressed layer
which then fragments to produce prestellar condensations. This
mode of Primary Fragmentation is two-dimensional because the
motions which assemble a prestellar condensations out of a
shock-compressed layer are, initially, largely in the plane of the
layer. It is one-shot in the sense of not being hierarchical.

5.2. Geometric considerations

Strictly speaking, our discussion of shock-compression should
not be limited to layers, but should also consider other geome-
tries, in particular filaments and isolated globules. However, we
believe that the Primary Fragmentation of a shock-compressed
layer captures the essential elements characterising turbulent
fragmentation, viz. the dynamic interplay between ram pressure
and self gravity in producing prestellar condensations from in-
terstellar gas which is able to keep cool radiatively.

It might be argued that there is limited observational evi-
dence for shock compressed layers, but this is probably a selec-
tion effect. Such layers will only be easy to discern under the
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relatively rare circumstance that they are viewed edge-on – and
then they will be hard to distinguish from filaments.

Moreover, when a shock-compressed layer becomes grav-
itationally unstable, it fragments first into filaments, and then
into individual prestellar condensations (e.g. Turner et al. 1995;
Whitworth et al. 1995; Bhattal et al. 1998). The separation be-
tween adjacent filaments in the layer is then essentially the same
as the separation between prestellar condensations in the same
filament (and is given by the fragmentation length, 2rFRAG 2 , de-
fined in Eq. (31) below). This is a generic property of the grav-
itational fragmentation of a flattened structure, and is also seen
in cosmological simulations.

Filaments can also be formed directly if more than two turbu-
lent flows collide more-or-less simultaneously, and this is seen in
simulations of interstellar turbulence (e.g. Hennebelle & Audit
2005; Vázquez-Semadeni et al. 2006). A filament formed in this
way may then be dense enough to fragment gravitationally into
a chain of prestellar condensations.

More rarely, convergent turbulent flows may be sufficiently
well focussed to form a single compressed prestellar condensa-
tion which then collapses in isolation (Whitworth et al. 2006).

However, we will consider here only the case of a shock
compressed layer, because it is the simplest case to treat ana-
lytically, and probably also the most common case.

5.3. Growth of a shock-compressed layer

Specifically, we limit our discussion to the generic case of two
flows, both with uniform pre-shock density ρ, colliding head-on
at relative speed v. We assume that the effective isothermal sound
speed, a, in the post-shock gas of the layer satisfies a � v/2, or
in other words, that the Mach Number of the accretion shock
bounding the layer is large:

M � v

2a
� 1. (17)

Therefore the surface-density Σ of the layer grows according to

Σ(t) � ρ v t ; (18)

its density is ∼ ρM2 ∼ ρv2/4a2; and its half-thickness is

z(t) � 2 a2 t
v
· (19)

5.4. Structure of a shock-compressed layer

The layer is contained by the ram pressure of the inflowing gas,
rather than its self-gravity, as long as PRAM � ρv2/4 � GΣ2(t),
which reduces to

t � 1
2[Gρ]1/2

· (20)

Moreover, there is plenty of time for the layer to relax to hy-
drostatic equilibrium, as long as its sound crossing time, tSC (t) �
z(t)/a, obeys the condition tSC (t) � t. This condition reduces to
v � 2a, and is therefore automatically satisfied (see Eq. (17)).
Thus, until the layer fragments, it has a rather flat density profile,
i.e. the density throughout the layer is ∼ ρv2/4a2.

5.5. How to estimate the scale on which
a shock-compressed layer undergoes Primary
Fragmentation

Before proceeding to estimate the minimum mass for this case
(mMIN 2 ), it is appropriate to sketch the steps which our analysis

will take. Because the surface-density of the layer increases
monotonically with time (Eq. (18)), the Jeans mass mJEANS 2 (t)
(i.e. the minimum mass for a proto-fragment which could con-
dense out of the layer, given sufficient time) decreases monoton-
ically with time (Eq. (23)). Furthermore, it turns out that at time
t proto-fragments with mass mFASTEST 2 (t) � 4mJEANS 2 (t) condense
out fastest of all (i.e. faster than both smaller and larger proto-
fragments), and on a time-scale tFASTEST 2 (t) (Eq. (28)). Therefore
we hypothesise that non-linear fragmentation of the layer takes
place at time tFRAG 2 when the condensation time-scale of the
fastest condensing proto-fragment is of order the elapsed time,
i.e. tFASTEST 2 (tFRAG 2 ) � tFRAG 2 (Eq. (29)), and this determines the
mass of a typical fragment, mFRAG 2 � mFASTEST 2 (tFRAG 2) (Eq. (30)).
We note that this hypothesis has been corroborated by numerical
simulations using a variety of numerical codes (Whitworth et al.
1995; Turner et al. 1995; Bhattal et al. 1998; Dale et al. 2006).
Finally, mMIN 2 is the smallest value of mFRAG 2 for which the frag-
ment can radiate sufficiently fast to keep cool as it condenses
out.

5.6. The Jeans mass in a shock-compressed layer

A disc-like proto-fragment of radius r2, in a shock-compressed
layer, evolves according to

r̈2 ≡ d2r2

dt2
� − πG Σ(t) +

a2

r2
, (21)

where the first term on the righthand side of Eq. (21) represents
self-gravity, and the second term represents hydrostatic support.
It follows that at time t only proto-fragments with

r2 >∼ rJEANS 2 (t) � a2

πGΣ(t)
� a2

πGρvt
, (22)

m2 >∼ mJEANS 2 (t) � πr2
JEANS 2

(t)Σ(t) � a4

πG2Σ(t)
� a4

πG2ρvt
,

(23)

can start to condense out.
Here the subscript “2” records the fact that we are consider-

ing a proto-fragment trying to condense out of a 2D layer.

5.7. The condensation time-scale for a proto-fragment
in a shock-compressed layer

It is important to note that, in a shock-compressed layer, the
Jeans mass is a function of time; it decreases monotonically
as the surface density of the layer increases. We now need to
evaluate the condensation time-scale for a Jeans-unstable proto-
fragment, in order to determine the stage at which such a proto-
fragment actually has sufficient time to condense out of the
growing layer.

At time t, the time-scale on which an unstable proto-
fragment condenses out is given by

tCOND 2 (r2, t) �
{

r2

− r̈2

}1/2

�
⎧⎪⎨⎪⎩πG Σ(t)

r2
− a2

r2
2

⎫⎪⎬⎪⎭
−1/2

� a
πGρvt

⎧⎪⎪⎨⎪⎪⎩
[
rJEANS 2 (t)

r2

]
−
[
rJEANS 2 (t)

r2

]2⎫⎪⎪⎬⎪⎪⎭
−1/2

; (24)

or, in terms of m2,

tCOND 2 (m2, t) � a
πGρvt

⎧⎪⎪⎨⎪⎪⎩
[
mJEANS 2 (t)

m2

]1/2
−
[
mJEANS 2 (t)

m2

]⎫⎪⎪⎬⎪⎪⎭
−1/2

· (25)
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5.8. The fastest condensing proto-fragment in a
shock-compressed layer

It follows that, at time t, the fastest condensing proto-fragment
has

rFASTEST 2 (t) � 2 rJEANS 2 (t) � 2a2

πGρvt
, (26)

mFASTEST 2 (t) � π r2
FASTEST 2

Σ(t) � 4mJEANS 2 (t) � 4a4

πG2ρvt
; (27)

and that the fastest condensing proto-fragment condenses out on
a time-scale

tFASTEST 2 (t) � 2a
πGρvt

· (28)

We note that it is a generic property of the Primary
Fragmentation of a layer that there is a finite size of proto-
fragment which condenses out faster than both smaller proto-
fragments and larger proto-fragments (e.g. Larson 1985).

5.9. The epoch of non-linear Primary Fragmentation for a
shock-compressed layer

From Eq. (28) it follows that the accumulating layer will start
non-linear fragmentation once tFASTEST 2 (t) <∼ t, i.e. at

t >∼ tFRAG 2 �
[

2 a
πG ρ v

]1/2
· (29)

5.10. The scale of non-linear Primary Fragmentation for a
shock-compressed layer

Once non-linear Primary Fragmentation occurs in a shock-
compressed layer, the characteristic scale of the fragments which
form is

mFRAG 2 ≡ mFASTEST 2 (tFRAG 2 ) �
[

8 a7

πG3 ρ v

]1/2
; (30)

rFRAG 2 ≡ rFASTEST 2 (tFRAG 2) �
[

2 a3

πG ρ v

]1/2
; (31)

zFRAG 2 ≡ zFASTEST 2 (tFRAG 2) �
[

8 a5

πG ρ v3

]1/2
· (32)

5.11. Distinctive features of the Primary Fragmentation
of a shock-compressed layer

We assume that non-linear Primary Fragmentation occurs as
soon as it is possible, i.e. at t ∼ tFRAG 2 , and results in fragments of
mass ∼mFRAG 2 . This presupposes that there is enough substruc-
ture in the pre-shock gas on scales ∼rFRAG 2 to seed the fastest
condensing proto-fragments. With this assumption, we note the
following distinctive aspects of the Primary Fragmentation of a
shock-compressed layer.

(i) The characteristic mass, mFRAG 2 , and initial radius, rFRAG 2 ,
of a fragment both decrease monotonically with the mass
flux, ρv, in the colliding flows.

(ii) Fragments are flattened at their inception, with an aspect
ratio approximately equal to the Mach number of the ac-
cretion shock bounding the layer:
rFRAG 2

zFRAG 2

� v

2 a
� M � 1. (33)

(iii) mFRAG 2 is not simply the 3D Jeans mass (mJEANS 3 ; Eq. (4))
evaluated at the post-shock density (∼ρv2/4a2). It is larger
by a factor ∼12M1/2/π3.

(iv) The shock-compressed layer is still contained by the ram
pressure of the inflowing gas, rather than by self-gravity,
when its non-linear Primary Fragmentation starts, pro-
vided that tFRAG 2 < 1/2[Gρ]1/2 (see Eq. (20)), i.e. pro-
vided thatM > 4/π, which is satisfied automatically (see
Eq. (17)).

(v) The assumption that matter is still flowing into the accre-
tion shock bounding the layer at time tFRAG 2 requires that
the linear extent, L, of the pre-shock gas normal to the
shock exceed tFRAG 2v/2, i.e.

L >∼ LMIN �
[

a v
2 πG ρ

]1/2
· (34)

(vi) If the pre- and post-shock gases both subscribe to a
Larson-type scaling relation, so that the effective sound
speed, aEFF (including the contribution from the turbulent
velocity dispersion), scales with the mean density, ρ̄, ac-
cording to aEFF ∝ ρ̄ −1/2, then the pre-shock gas can have
the required extent, L, and still be gravitationally stable,
provided

L <∼ LMAX �
aEFF

[G ρ]1/2
�
[
v2

4 G ρ

]1/2
· (35)

(vii) Since LMAX/LMIN � [πM/2]1/2 > 1, there is a range
of L-values for which the pre-shock gas is gravitation-
ally stable, but the shock-compressed layer still undergoes
Primary Fragmentation whilst it is accumulating.

(viii) As in hierarchical Primary Fragmentation, a fragment in
a shock-compressed layer will only condense out if it is
able to remain approximately isothermal by radiating effi-
ciently.

5.12. The compressional heating rate for a fragment
in a shock-compressed layer

The compressional heating rate for a flattened disc-like fragment
in a layer is

H2 ≡ − P2
dV2

dt
� ρ v

2

4

2 π r2
2 z2

tCOND 2

∼ 2a5

G
, (36)

where we have obtained the final expression by substituting r2 =
rFRAG 2 , z2 = zFRAG 2 , and tCOND 2 = tFRAG 2 .

5.13. The radiative cooling rate for a fragment
in a shock-compressed layer

The radiative cooling rate for a flattened disc-like fragment is

L2 �
4 π r2

2 σSB T 4[
τ̄R (T ) + τ̄ −1

P
(T )
] , (37)

where the optical depths are now given by

τ̄R (T ) � τ̄P (T ) � m2 κ̄M (T )

π r2
2

· (38)

A detailed justification for Eqs. (37) and (38) is given in
Appendix A.
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5.14. The Opacity Limit and the minimum mass for Primary
Fragmentation of a shock-compressed layer

The requirement that L2 >∼ H2 then reduces to a limit on the
mass flux, ρv, in the colliding flows,

ρ v <∼ 8 π5 m̄4 a6 / 15 c2 h3[
τ̄R (T ) + τ̄ −1

P
(T )
] · (39)

If the fragment is marginally optically thick, we can set[
τ̄R (T ) + τ̄ −1

P
(T )
]
� 2, and then

m2 >∼ mMIN 2 �
[30]1/2

π3

m3
PLANCK

m̄2

[a
c

]1/2
· (40)

If the fragment is optically thin, we obtain

mMIN 2 �
15

4 π5

c2 h3

G m̄4 a3 κ̄M (T )
· (41)

If the fragment is optically thick, we obtain

mMIN 2 �
[
60
π7

c2 h3 a5 κ̄M (T )

G5 m̄4

]1/3
· (42)

In general one should evaluate both Eqs. (41) and (42), and then
use whichever gives the larger value of mMIN 2 .

In the case of contemporary local star formation with T �
10 K, m̄ � 4.0×10−24 g, a � 1.8×104 km s−1, κ1 � 10−3 cm2 g−1

and β � 2, (Eqs. (40)–(42)) all give mMIN 2 ∼ 0.001 M�, but this
is because once again the minimum fragment is – coincidentally
– marginally optically thick.

We stress that this really is a coincidence. The minimum-
mass fragment does not have to be marginally optically thick. At
any temperature, there is a critical opacity,

κ̄CRIT (T ) � 15
(2π)2

[
G2 c4 h6

m̄ (kB T )7

]1/4
· (43)

Under circumstances where the actual opacity falls below the
critical value, κ̄M (T ) < κ̄CRIT(T ), the minimum-mass fragment is
optically thin (and cannot cool fast enough because it is optically
thin). Conversely, when κ̄M (T ) > κ̄CRIT (T ), the minimum-mass
fragment is optically thick (and cannot cool fast enough because
it is optically thick); parenthetically, in this regime, somewhat
larger fragments which can cool fast enough are also optically
thick, but still (approximately) isothermal.

For T � 10 K and m̄ � 4 × 10−24 g, we have κ̄CRIT (T =
10 K) � 0.11 cm2 g−1, which just happens to be close to our es-
timate of the opacity in local star forming gas, κ̄M (T = 10 K) �
0.10 cm2 g−1. On the assumption that the amount of dust is pro-
portional to the metallicity, Z, but the intrinsic mix of grain prop-
erties is universal, we have

κ̄M (T )
κ̄CRIT (T )

∼
[ Z
0.02

] [ T
10 K

]15/4 [ m̄
4 × 10−24 g

]1/4
, (44)

thus, in regions like the outer parts of the Galaxy, where the
metallicity and/or the temperature are lower, the optically thin
expression should be valid. Conversely, in regions like the inner
parts of the Galaxy, where the metallicity and/or the temperature
are higher, the optically thick expression should be valid.

We note also that the minimum mass for two-dimensional,
one-shot Primary Fragmentation, mMIN 2 (Eqs. (40)–(42)), de-
pends on physical variables in exactly the same way as the
minimum mass for three-dimensional, hierarchical Primary

Fragmentation, mMIN 3 (Eq. (13)–(15)). This too appears to
be somewhat fortuitous, given that the expression for mJEANS 3

(Eq. (4)) is quite diferent from that for mJEANS 2 (Eq. (23)) or mFRAG 2

(Eq. (30)).

5.15. Advantages of two-dimensional, one-shot Primary
Fragmentation of a layer

In addition to delivering a smaller minimum mass, two-
dimensional one-shot Primary Fragmentation bypasses the
three problems associated with three-dimensional hierarchical
Primary Fragmentation which we discussed in Sect. 4.

First, there is little likelihood of neighbouring fragments
merging, since fragments with mass ∼mFRAG 2 condense out of
the layer faster than larger structures (see Eq. (25) and Larson
1985).

Second, accretion is less problematic. Boyd & Whitworth
(2004) have analysed in greater detail the radiative cooling of
a fragmenting layer, using a two-dimensional model, and tak-
ing into account both on-going accretion (as matter continues to
flow into the layer) and the energy dissipated in the accretion
shock. They find that the rate at which energy is dissipated in
the accretion shock is comparable with the rate at which the gas
in the fragment is heated by compression. For T � 10 K, the
minimum mass is ∼0.0027 M�. This fragment starts with mass
∼0.0011 M�, but continues to grow by accretion as it condenses
out. The minimum mass can be reduced further by decreasing T .

Third, there is little backwarming, because there are no other
fragments filling the part of the celestial sphere into which a
fragment radiates (i.e. perpendicular to the shock-compressed
layer).

6. Primary Fragmentation of a circumstellar disc

Another scenario which may be of more relevance to contempo-
rary star formation than three-dimensional hierarchical Primary
Fragmentation is the Primary Fragmentation of a massive cir-
cumstellar disc. Massive disc-like structures are observed around
some Class 0 and Class I protostars (e.g. Eisner et al. 2005;
Eisner & Carpenter 2006). However, they are quite rare, and we
therefore infer, either that discs seldom form, or that they are
short-lived. Numerical simulations support the latter inference.
For example, in simulations of the collapse and fragmentation
of intermediate- and low-mass turbulent cores (Bate et al. 2003;
Goodwin et al. 2004), massive disc-like structures form quite
commonly around the initial (primary) protostars, but then frag-
ment to form secondary protostars before they can relax to equi-
librium. Although massive circumstellar discs may be transient
structures, we can only analyse their stability analytically if we
assume that they are sufficiently regular to be approximately az-
imuthally symmetric.

6.1. The Toomre criterion for Primary Fragmentation
of an equilibrium circumstellar disc

A necessary, but not sufficient, condition for the Primary
Fragmentation of an azimuthally symmetric, equilibrium cir-
cumstellar disc is that the surface density Σ be sufficiently large,

Σ(R) >∼ ΣTOOMRE (R) � a(R) ε(R)
πG

(45)
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(Toomre 1964). Here R is distance from the primary protostar at
the centre of the circumstellar disc, a(R) is the local isothermal
sound speed,

ε(R) =

[
R

dΩ2

dR
+ 4Ω2(R)

]1/2
(46)

is the local epicyclic frequency1, and Ω(R) is the orbital angular
speed.

6.2. Criterion for Primary Fragmentation of a non-equilibrium
circumstellar disc

However, since in simulations of star formation circumstel-
lar discs fragment before they have time to approach dynam-
ical equilibrium, it is useful to have a criterion for Primary
Fragmentation which can also be applied to non-equilibrium cir-
cumstellar discs, where the epicyclic frequency is not properly
defined. Such a criterion can be derived, based on the local vor-
ticity, ω(R), which is defined even for non-equilibrium discs; the
only constraint is that the vorticity must be slowly varying on
the scale of a proto-fragment, so that it gives a realistic mea-
sure of the spin of the proto-fragment. We note that, in the case
of a Keplerian disc, the new constraint (Eq. (48), below) is ex-
actly equivalent to the old one, because in this circumstance
2ω(R) = Ω(R) = ε(R). Therefore the results we present sub-
sequently are not affected by which criterion we use (Eqs. (45)
or (48)).

Consider a small disc-like proto-fragment of radius rD with
its centre at distance R from the centre of the circumstellar disc.
Assume that the extent of the disc-like proto-fragment, ∼2rD , is
much smaller than the extent of the circumstellar disc of which
it is part, >∼2R. Radial excursions of the proto-fragment evolve
according to

r̈D ≡
d2rD

dt2
� − πGΣ(R) +

a2(R)
rD

+ ω2(R)rD . (47)

In Eq. (47), the first two terms on the righthand side repre-
sent, respectively, self-gravity and hydrostatic support (just as in
Eq. (21)). The third term on the righthand side of Eq. (47) repre-
sents centrifugal support. The subscript “D” records the fact that
we are considering a proto-fragment trying to condense out of a
circumstellar disc.

The righthand side of Eq. (47) has its minimum when rD �
a(R)/ω(R). This minimum is negative – signifying instability
against contraction – only if

Σ(R) >∼ 2 a(R)ω(R)
πG

· (48)

We re-iterate that this criterion for Primary Fragmentation of
a general disc (Eq. (48)) reduces to The Toomre Criterion
(Eq. (45)) if we substitute 2ω(R) = ε(R), as appropriate for a
Keplerian disc.

6.3. The condensation time-scale for a proto-fragment in a
circumstellar disc

From Eq. (47), the condensation time-scale for a proto-fragment
in a circumstellar disc is given by

tCOND D (R, rD ) �
{

rD

− r̈D

}1/2

�
{
πGΣ(R)

rD

− a2(R)
r2

D

− ω2(R)

}−1/2

· (49)

1 We have broken with convention in calling the epicyclic fre-
quency ε, rather than κ, simply to avoid confusion with the opacity.

6.4. The fastest condensing proto-fragment in a circumstellar
disc

tCOND D (R, rD ) has a minimum for rD � 2a2(R)/πGΣ(R), and there-
fore the radius, mass and growth time-scale of the fastest con-
densing proto-fragment at radius R are given by

rFASTEST D (R) � 2 rJEANS D �
2a2(R)
πGΣ(R)

, (50)

mFASTEST D (R) � 4 mJEANS D �
4 a4(R)
πG2 Σ(R)

(51)

tFASTEST D (R) �
⎧⎪⎪⎨⎪⎪⎩
[
πGΣ(R)
2a(R)

]2
− ω2(R)

⎫⎪⎪⎬⎪⎪⎭
−1/2

. (52)

If we define

Q(R) ≡ 2 a(R)ω(R)
πG Σ(R)

, (53)

the condition for Primary Fragmentation of a general disc
(Eq. (48)) becomes Q(R) <∼ 1, and Eqs. (50) to (52) reduce to

rFASTEST D (R) � Q(R) a(R)
ω(R)

, (54)

mFASTEST D (R) � 2 Q(R) a3(R)
Gω(R)

, (55)

tFASTEST D (R) � 1[
Q−2(R) − 1

]1/2
ω(R)

· (56)

6.5. The typical fragment mass in a dynamically forming
circumstellar disc

Equation (45) is also approximately the condition for spiral
modes to develop in an equilibrium circumstellar disc, and these
will have the effect of redistributing angular momentum. As a
result, the inner parts of the circumstellar disc may simply ac-
crete onto the central primary protostar, and the outer parts may
simply disperse without fragmenting. The implication is that
Primary Fragmentation is much more likely if – as in the nu-
merical simulations of Bate et al. (2003), Goodwin et al. (2004),
Hennebelle et al. (2004) – the approach to instability is dynamic,
rather than quasistatic.

To explore this dynamic situation, we assume that the cir-
cumstellar disc grows in mass rather rapidly, and is thereby
launched directly into non-linear fragmentation with Q ∼ 0.5
(rather than Q edging gradually downwards past unity, and in-
stability having first to grow slowly through a linear phase). The
radius, mass and condensation time-scale of a typical fragment
are then

rFRAG D (R) � a(R)
2ω(R)

, (57)

mFRAG D (R) � a3(R)
Gω(R)

, (58)

tFRAG D (R) � 1
31/2 ω(R)

· (59)

6.6. The Gammie criterion for fragmentation
of a circumstellar disc

A second necessary, but not sufficient, condition for the Primary
Fragmentation of a circumstellar disc is that fragments be able
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to cool radiatively on a dynamical time-scale (Gammie 2001);
this is just The Opacity Limit under a slightly different guise.
Specifically, Gammie suggests that the cooling time-scale for a
fragment, tCOOL , must satisfy tCOOL

<∼ tORBIT/2, where tORBIT is the
local orbital period. This condition has been corroborated by nu-
merical simulations (Rice et al. 2003). If a fragment cannot cool
sufficiently fast, it is likely to bounce and be sheared apart (e.g.
Cai et al. 2006).

6.7. The compressional heating rate for a fragment
in a circumstellar disc

The compressional heating rate for a fragment at radius R in a
circumstellar disc is

HD (R) � 3 mFRAG D (R) a2(R)

2 tFRAG D (R)
� 33/2 a5(R)

2 G
· (60)

6.8. The radiative cooling rate for a fragment
in a circumstellar disc

The radiative cooling rate for a fragment in a circumstellar disc is

LD (R) � 4 π r2
FRAG D

(R)σSB T (R)4[
τ̄R (T ) + τ̄ −1

P
(T )
] , (61)

and the optical depths are given by

τ̄R (T ) � τ̄P (T ) � mFRAG D (R) κ̄M(T )

π r2
FRAG D

(R)
· (62)

These are essentially the same expressions as were invoked for
Primary Fragmentation of a shock-compressed layer (Eqs. (37)
and (38)), since here too we are dealing with a disc-like fragment
which radiates mainly through its flat surfaces. See Appendix A
for a detailed justification of Eqs. (61) and (62).

6.9. The opacity limit for Primary Fragmentation of a
circumstellar disc

The requirement that LD (R) >∼ HD (R) therefore reduces to

ω2(R)
a5(R)

<∼ 22 π6 G m̄4

35/2 5 c2 h3
[
τ̄R (T ) + τ̄ −1

P
(T )
] · (63)

6.10. A specific circumstellar-disc model

To make the discussion more specific we consider a quasi-
Keplerian disc around a Sun-like star having mass M�, lumi-
nosity L�, and hence

ω(R) ∼ 10−7 s−1

[
M�
M�

]1/2 [ R
AU

]−3/2

, (64)

T (R) ∼ 300 K

[
L�
L�

]1/4 [ R
AU

]−1/2

, (65)

a(R) ∼ 1 km s−1

[
L�
L�

]1/8 [ R
AU

]−1/4

. (66)

The typical fragment at radius R then has radius, mass and opti-
cal depth

rFRAG D (R) ∼ 0.03 AU

[
M�
M�

]−1/2 [L�
L�

]1/8 [ R
AU

]5/4
, (67)

mFRAG D (R) ∼ 8 × 10−5 M�
[

M�
M�

]−1/2 [L�
L�

]3/8 [ R
AU

]3/4
, (68)

τ̄FRAG D (R) ∼ 2 × 107

[
M�
M�

]1/2 [L�
L�

]5/8 [ R
AU

]−11/4

. (69)

6.11. The minimum mass for Primary Fragmentation of a
circumstellar disc

From Eq. (69) we can assume that the fragment is optically thick,
with

[
τ̄R (T ) + τ̄ −1

P
(T )
]
� τ̄FRAG D (R). Equation (63) then reduces

to the form

R >∼ RMIN D ∼ 150 AU

[
M�
M�

]1/3
, (70)

i.e. prestellar condensations can only form in the outer parts of a
circumstellar disc, because only in the outer parts of a disc can
such condensations radiate fast enough.

Substituting from Eq. (70) in Eqs. (67), (68) and (65), there is
a minimum initial condensation radius, a minimum initial con-
densation mass, and a maximum initial condensation tempera-
ture for Primary Fragmentation of a circumstellar disc:

rMIN D ∼ 16 AU

[
M�
M�

]−1/12 [L�
L�

]1/8
, (71)

mMIN D ∼ 0.003 M�
[

M�
M�

]−1/4 [L�
L�

]3/8
, (72)

TMAX D ∼ 25 K

[
M�
M�

]−1/6 [L�
L�

]1/4
. (73)

Similar conclusions (Eqs. (70)–(73)) were reached by Rafikov
(2005) using closely related arguments.

6.12. The brown dwarf desert

Although we have considered a disc with specific surface-
density, velocity and temperature profiles, the final result is not
very sensitive to these assumptions, as evidenced by the rela-
tively small exponents in conditions (70)–(73). We can allow for
some variance in the disc parameters by relaxing these condi-
tions slightly. In particular, we adjust Condition (70) to

R >∼ 100 AU. (74)

If brown-dwarf companions to Sun-like stars are formed by
Primary Fragmentation of discs, then the constraint that this can
only occur at large radii, R >∼ 100 AU, may explain The Brown-
Dwarf Desert.

6.13. Dissipation of massive extended protostellar discs

Observational estimates of the specific angular momentum, η,
in star-forming cores (Bodenheimer 1995; his Fig. 1) give η >∼
1021 cm2 s−1. If deposited in orbit around a 1 M� star, this mate-
rial should end up at radius

R � η2

GM�
>∼ 300 AU. (75)

It is therefore noteworthy that massive circumstellar discs of this
extent are quite rare. The simplest explanation is that they are
short-lived, being converted rapidly into brown dwarfs and low-
mass H-burning stars, on a dynamical timescale (∼104 years).
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6.14. Forming exoplanets by Primary Fragmentation

Conversely, our analysis shows that Primary Fragmentation is
strongly inhibited at small radii, say R <∼ 30 AU, by the in-
ability of a proto-fragment to radiate fast enough. Therefore it
seems very unlikely that gas-giant exoplanets form frequently
by Primary Fragmentation. This conclusion is in agreement with
the analysis of Rafikov (2005), and with the simulations of Cai
et al. (2006). In contrast, Boss (e.g. 2004) has suggested – again
on the basis of numerical simulations – that gas-giant planets
are able to form by Primary Fragmentation at small radii, be-
cause they can cool convectively at these radii. We caution that
Boss’s interpretation of his numerical results is very speculative.
A proto-fragment condensing out gravitationally, on a dynami-
cal timescale, does not have sufficient time to cool its interior
by convection, because this would require the convective cells to
migrate and disperse supersonically. What Boss may be seeing
is a fragment undergoing an “adiabatic bounce” prior to being
sheared apart by differential rotation.

7. H2 dissociation and Secondary Fragmentation

7.1. The spin angular momenta of prestellar condensations

If low-mass prestellar condensations form by Primary
Fragmentation in the outer parts of massive circumstellar
discs, in the manner analysed in the preceding section, their
subsequent contraction is likely to be moderated by the rate at
which they can lose spin angular momentum. This is because, in
a marginally unstable disc, there is only a small range of unsta-
ble fragment masses. These fragments are only just big enough
for their self-gravity to overcome internal pressure, and only
just small enough for their self-gravity to overcome centrifugal
acceleration. Therefore such fragments are naturally born in
a state where spin angular momentum makes a significant
contribution to their subsequent dynamical evolution.

Moreover, as a prestellar condensation contracts, and its mo-
ments of inertia decrease, its ability to loose spin angular mo-
mentum to the surroundings by gravitational torques decreases,
and the condensation becomes progressively more isolated – dy-
namically – from the rest of the disc. Recent MHD simulations
of a protoplanet accreting from a protoplanetary disc (Machida
et al. 2006) show that the protoplanet is able to lose angular mo-
mentum by launching bipolar jets. However, this loss of angular
momentum does not occur on a dynamical timescale. Therefore
we can still presume that condensations forming in discs by
Primary Fragmentation derive significant support from rotation,
and are quite flattened.

A similar situation holds for low-mass prestellar condensa-
tions formed in other ways, for example by hierarchical Primary
Fragmentation of a 3D medium (Sect. 3), or by one-shot 2D
Primary Fragmentation of a shock-compressed layer (Sect. 5).
All that is required for a condensation to be flattened by rotation
is that its specific spin angular momentum, �, satisfy

� ∼ G1/2 m2/3
FRAG
ρ−1/6. (76)

We note that the prestellar condensation can have had a higher
�-value when it first formed, but to reach density ρ without frag-
menting, � must have been reduced to a value on the order given
by Eq. (76).

7.2. The Second Collapse

When the temperature in a prestellar condensation reaches
TDISS ∼ 2000 K and the density reaches ρDISS ∼ 10−7 g cm−3,

first the vibrational degrees of freedom of H2 start to be excited,
and then H2 starts to dissociate. As the temperature continues
to increase, more than half the self-gravitational potential en-
ergy released by contraction has to be invested in rotational and
vibrational degrees of freedom, and then in dissociation of H2,
rather than being invested in translational degrees of freedom. As
a result the pressure falls below the value required for quasistatic
contraction and the condensation collapses (Larson 1969). In the
context of isolated protostars, this is normally referred to as The
Second Collapse.

The Second Collapse is further promoted by the fact that
these temperatures and densities correspond to The Opacity Gap,
i.e. the regime where dust has sublimated and the H

−
ion is not

yet abundant, so there is only a very low residual opacity due to
molecular lines. As a result, radiative energy leaks out of the
condensation very rapidly, accelerating its collapse. However,
this is a secondary factor when compared with H2 dissociation
(see Whitworth et al. in preparation).

We note that the critical value of the specific angular mo-
mentum for H2 dissociation is

�DISS ∼ 1019 cm2 s−1

[
mFRAG

0.1 M�

]2/3
, (77)

(where we have simply substituted ρ ∼ ρDISS in Eq. (76)).
This is a rather modest specific angular momentum, compared
with observational estimates for the gas in star-forming clouds
(e.g. Bodenheimer 1995), so the expectation must be that most
prestellar condensations are flattened by rotation during their
Second Collapse.

7.3. Forming close, low-mass binaries by Secondary
Fragmentation

If, during The Second Collapse, the spin angular momentum
of a prestellar condensation is sufficient to cause it to flatten,
it is likely to fragment into two or more pieces (Tsuribe &
Inutsuka 1999a,b), and hence to form a binary system, or an
unstable higher-order multiple system. We call this Secondary
Fragmentation. The mean semi-major axis of a binary system
formed in this way is of order

a ∼ G m̄ mFRAG

3 kB TDISS

∼ 50 AU

[
mFRAG

M�

]
· (78)

Higher-order multiples are likely to evolve dynamically by eject-
ing lower-mass components, and this may ultimately lead to
somewhat closer binary systems than predicted by Eq. (78).

In discussing binary systems with brown-dwarf primaries, it
is standard practice to include also systems with very low-mass
hydrogen burning primaries m1 <∼ 0.1 M�. These systems will
therefore have semi-major axes

a <∼ 5 AU

[
(m1 + m2)

0.1 M�

]
· (79)

Here we have assumed that most of the mass of the orig-
inal prestellar condensation (the one formed by Primary
Fragmentation) goes into the two components of the binary, with
masses m1 and m2. This is a reasonable assumption, given that
the prestellar condensation is by this stage very tightly bound.
The inequality in Eq. (79) acknowledges the possibility that the
binary is hardened, by dynamical ejection of additional compo-
nents in an unstable higher-order multiple, and/or by dissipative
interactions with residual gas.
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Comparing the locus described by Eq. (78) with the obser-
vations reported in Close et al. (2003; their Fig. 15), and not-
ing the good agreement, we speculate that the genesis of close,
low-mass binaries is due to The Second Collapse. Confirmation
of this suggestion will require detailed numerical simulations,
with appropriate initial and boundary conditions, realistic ther-
modynamics, and physical transport of angular momentum. Bate
(1998) reports a simulation of Secondary Collapse, which fails
to result in Secondary Fragmentation. However, this simulation
uses a barotropic equation of state, rather than a proper treatment
of the energy equation and the associated radiation transport. It
may also be influenced by numerical transport of angular mo-
mentum. We – and others – are currently revisiting this problem
using an SPH code with radiation transport, but conclusive re-
sults are not yet available.

7.4. Forming close, low-mass binaries by Secondary
Fragmentation in circumstellar discs

Secondary Fragmentation requires that the primary fragment be
rotating, and the only Primary Fragmentation scenario in which
rotation is explicitly considered is disc fragmentation. Therefore
we now consider whether close low-mass binaries can be formed
in the outer parts of massive extended discs, and whether close
low-mass binaries formed in this location may subsequently end
up in the field.

We note that a close, low-mass binary formed in this way has
binding energy

−ΩCLOSE =
G m1 m2

2 a
(80)

>∼ 6 × 1042 erg

[
(m1 + m2)

0.1 M�

]
, (81)

where we have assumed equal-mass components (m1 = m2) and
used Eq. (79). For comparison, the binding energy of the close,
low-mass binary as a whole to the Sun-like star at the centre of
the original disc is

−ΩWIDE =
G (m1 + m2) M�

R
(82)

∼ 20 × 1042 erg

[
(m1 + m2)

0.1 M�

] [
M�
M�

] [ R
100 AU

]−1

. (83)

It may therefore be possible for tidal encounters occasionally
to detach a close, low-mass binary from a central Sun-like star,
without destroying it (i.e. to unbind the wide system without un-
binding the close one), and thereby to populate the field with
close, low-mass binaries that were originally formed in circum-
stellar discs.

To evaluate this possibility more accurately, we consider a
perturbing star of mass MPERT , travelling at speed vPERT and pass-
ing a binary system with total mass mBIN and separation sBIN , with
the distance of closest approach being DPERT . The tide of the pass-
ing star will deliver a velocity impulse to one component of the
binary, relative to the other, given by the product of the tidal ac-
celeration and the duration of the interaction,

∆v ∼ G MPERT sBIN

D3
PERT

× DPERT

vPERT

; (84)

strictly speaking, the duration of the interaction (the second term
on the righthand side of Eq. (84)) should be

MIN

⎛⎜⎜⎜⎜⎜⎜⎝DPERT

vPERT

,

⎡⎢⎢⎢⎢⎣ s3
BIN

GmBIN

⎤⎥⎥⎥⎥⎦
1/2⎞⎟⎟⎟⎟⎟⎟⎠ ,

but including this factor would only strengthen our conclusion,
so we omit it in the interests of simplicity. The velocity impulse
given by Eq. (84) will unbind the binary if it exceeds

vESC ∼
[
G mBIN

sBIN

]1/2
· (85)

Therefore disruption requires

mBIN

s3
BIN

<∼
G M2

PERT

D4
PERT
v2

PERT

· (86)

Using the parameters derived above, we estimate mBIN/s
3
BIN
>∼

0.5 × 10−7 g cm−3 for the typical close, low-mass binary formed
as a result of The Second Collapse, whereas mBIN/s

3
BIN
<∼ 0.5 ×

10−12 g cm−3 for a typical wide binary formed as a result of disc
fragmentation. Therefore there appears to be a signficiant range
of perturber parameters which allow the close, low-mass system
to survive whilst destroying the wide system.

Thus it is possible that close, low-mass binaries are formed
in the outer parts of massive circumstellar discs round Sun-
like stars, in a two-stage process: (i) the formation of a low-
mass prestellar condensation by Primary Fragmentation (facil-
itated by the fact that the condensation can radiate sufficiently
fast through thermal dust emission to keep cool); (ii) Secondary
Fragmentation of this primary fragment (during The Second
Collapse, i.e. whilst H2 is dissociating) to produce a close, low-
mass binary system. Additionally, it may sometimes be possible
to detach a close, low-mass binary formed in this way from the
Sun-like star at the centre of the natal disc, without destroying
the close, low-mass binary system – and thereby to populate the
field with close, low-mass binaries.

This scenario is attractive because it explains why Burgasser
et al. (2005) infer that brown dwarfs in wide orbits around Sun-
like stars have a higher probability of being in a close binary
system with another brown dwarf than do brown dwarfs in the
field. However, we must caution that this inference is presently
based on small-number statistics and needs to be confirmed with
a larger sample.

8. Conclusions
We have reviewed the thermodynamic processes which are pre-
sumed to determine the minimum mass for star formation –
namely (i) Primary Fragmentation and the Opacity Limit; (ii)
Secondary Fragmentation during H2 dissociation – and the con-
sequences these thermodynamic processes have for the statistics
of binary systems containing brown dwarfs.

8.1. Primary Fragmentation and the opacity limit

Here the presumption is that a prestellar condensation only
fragments if it can radiate fast enough to stay approximately
isothermal. We have treated three different generic star forma-
tion scenarios, (a) hierarchical fragmentation of a 3D medium;
(b) one-shot 2D fragmentation of a shock-compressed layer;
and (c) fragmentation of a circumstellar disc. We believe that
these three scenarios cover the different basic situations in which
minimum-mass fragments may be created (as regards geometry,
background dynamics, competing processes, etc.).

Hierarchical 3D fragmentation represents fragmentation in a
cloud undergoing overall collapse, with no preferred direction
(i.e. a statistically isotropic situation). The main processes com-
peting (successfully) against fragmentation are contraction of
the background and accretion. We re-derive the expression for
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the minimum mass obtained by Rees (1976) under the assump-
tion that the fragment is marginally optically thick (Eq. (13)),
and demonstrate that this assumption is valid in the local con-
temporary interstellar medium. We also derive a simple analytic
expression for the luminosity of a spherical fragment which is
not necessarily marginally optically thick (Eqs. (9) and (10)),
and hence we obtain expressions for the minimum mass which
can be used in circumstances other than contemporary local
star formation, when it cannot necessarily be assumed a priori
that the minimum-mass fragment is marginally optically thick
(Eqs. (14) and (15)). We also rehearse the reasons why hierar-
chical 3D fragmentation may not be a useful paradigm for con-
temporary star formation.

One-shot 2D fragmentation represents the situation where
star formation is triggered by two (or more) supersonically col-
liding streams, producing a shock-compressed layer (or fila-
ment). Therefore (a) the geometry is anisotropic; (b) ram pres-
sure is important; and (c) the fragments are initially flattened.
Here the main processes competing against fragmentation – and
thereby fixing the scale of fragmentation – are the continuing in-
flow of material into the layer, and the extra heating associated
with the resulting accretion shock. The masses of fragments de-
pend on the flux of matter in the colliding flows (Eq. (39)), and
the initial aspect ratio of a fragment is approximately equal to the
Mach Number of the accretion shock (Eq. (33)). Expressions are
derived for the time at which the accumulating layer fragments
(Eq. (29)), for the properties of the resulting fragments (Eqs. (30)
to (32)), for the luminosity of a flattened disc-shaped fragment
(Eqs. (37) and (38)), and hence for the minimum mass in situ-
ations where the fragment is optically thin, marginally optically
thick, or strongly optically thick (Eqs. (40) to (42)). We also
formulate the condition which must be satisfied for minimum-
mass fragments to be optically thin or optically thick. Hence we
show that minimum-mass fragments in the outer galaxy should
be optically thin at their inception, and conversely minimum-
mass fragments in the inner galaxy should be optically thick at
their inception.

Disc fragmentation represents the situation where the star
forming material is in orbit about an existing star and there-
fore (a) the geometry is again anisotropic; (b) centrifugal ac-
celeration is important. The main process competing with con-
densation of a proto-fragment is tidal shear, which tends to tear
proto-fragments apart, unless they can cool and condense out on
a dynamical timescale. We present a derivation of the Toomre
criterion which has the advantage both of being very simple
(Eqs. (47) and (48)), and of being applicable to non-equilibrium
discs. This is important because in real star formation events
discs may not have sufficient time to settle into equilibrium be-
fore they fragment. In a disc, the masses of fragments depend
on the local sound speed, a, and the local vorticity, w, since con-
densation of a fragment is resisted by both pressure and rota-
tion. Hence the minimum mass depends on the properties of the
central star (mass, M�, and luminosity, L�), but with reasonable
assumptions this dependence is quite weak.

The fact that, for contemporary local star formation, all three
generic scenarios predict a minimum mass in the narrow range
0.001 to 0.004 M�, is remarkable. In the different scenarios, the
expressions for the Jeans mass are completely different, the ge-
ometries are different, the competing processes are different, and
the radiation transport regimes are different. In hierarchical 3D
fragmentation, mJEANS 3 depends only on ρ and a, and the short-
est condensation time is for the largest fragment. In one-shot 2D
fragmentation of a shock-compressed layer, mJEANS 2 depends also
on v and t, fragments are initially flattened, the critical quantity

is the flux of matter flowing into the layer, and the shortest con-
densation time is for a finite-mass fragment. In a disc, mJEANS D

depends on a and Σ, hence on M�, L� and R, the critical quan-
tity is ω2/a5, and the minimum-mass fragment is optically thick
(τ̄ ∼ 100), unlike in the other two scenarios (where τ̄ ∼ 1). Yet
despite these differences, the minimum mass has a very small
range. This implies that in contemporary, local star formation,
the details of geometry and background dynamics have little in-
fluence on the minimum mass. (It might be tempting, but we
believe it would be incorrect, to assert that this result does not
need proof.)

In addition to evaluating the minimum mass, we have shown
that it is hard for discs to undergo gravitational fragmentation
at small radii, basically because the timescale on which a proto-
fragment is sheared apart is shorter than the timescale on which
it can cool and condense out. Consequently there should be a
dearth of brown dwarfs in orbit around Sun-like stars, and this
provides a possible explanation for the observationally inferred
Brown Dwarf Desert. Conversely, brown dwarfs can condense
out at large radii in massive extended discs, because here the
timescale for a proto-fragment to be sheared apart is likely to
exceed the cooling timescale. We therefore suggest that disc
fragmentation is the most likely formation mechanism for those
brown dwarfs seen in wide orbits about Sun-like stars. We also
point out that fragmentation of the outer parts of massive ex-
tended discs should occur very quickly, essentially on a dynam-
ical timescale (∼104 years), and therefore the paucity of massive
extended discs need not mean that they do not form, but simply
that they quickly self-destruct by condensing into brown dwarfs
and low-mass H-burning stars.

8.2. Secondary Fragmentation during H2 dissociation

A prestellar condensation formed by Primary Fragmentation can
fragment further during the Second Collapse, when dissociation
of H2 acts as a sink for the internal energy being delivered by
compression. If at this stage the protostellar condensation is flat-
tened by rotation, the Secondary Collapse can lead to Secondary
Fragmentation and the formation of a close low-mass binary sys-
tem. From simple thermodynamic arguments, H2 dissociation
occurs at TDISS ∼ 2000 K and ρDISS ∼ 10−7 g cm−3. Therefore the
resulting binary separations should approximate to

a ∼ 5 AU

[
MSYSTEM

0.1 M�

]
· (87)

If this is compared with the plot of Close et al. (2003, their
Fig. 15), it is seen to provide a remarkably good fit to the
observed separations of close low-mass systems, suggesting
strongly that these systems have been formed by Secondary
Fragmentation.

Since Secondary Fragmentation requires that the primary
fragment be rotating, and since the only fragmentation scenario
we have considered which explicitly takes account of the spin
of a proto-fragment is disc fragmentation, it is tempting to con-
sider the outer parts of discs as the location for forming close
low-mass binary systems. This suggestion derives support from
the observation that brown dwarfs in wide orbits about Sun-like
stars appear more likely to have brown-dwarf companions than
brown dwarfs in the field (Burgasser et al. 2005). The simplest
explanation for this would seem to be that low-mass prestellar
condensations form by Primary Fragmentation in the outer parts
of discs (as described in Sect. 6) and then undergo Secondary
Fragmentation to form close low-mass binaries, in situ.

Furthermore we show that close low-mass binaries formed
in this way can sometimes survive being impulsively separated
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from the Sun-like star, and therefore brown-dwarf binaries in the
field could also have formed by disc fragmentation.

Appendix A: Radiation transport in a one-zone
fragment

A.1. A spherical fragment

To justify both Eqs. (9) and (10), we consider a uniform-density
spherical fragment of mass m and radius r, and treat separately
the optically thin and optically thick limits.

In the optically thin limit, the term τ̄R (T ) can be neglected in
comparison with τ̄ −1

P
(T ), and so Eq. (9) reduces to

LTHIN = 4 m κ̄P(T )σSB T 4. (A.1)

This is an exact expression, in the sense that it defines the
Planck-mean opacity, κ̄P (T ).

In the optically thick limit, the term τ̄ −1
P

(T ) can be neglected
in comparison with τ̄R (T ), and so Eq. (9) now reduces to

LTHICK �
16 π r2

3 σSB T 4

3 τ̄R(T )
· (A.2)

Since τ̄R (T ) is the Rosseland-mean optical-depth between the
centre of the spherical fragment and its surface, we can define
the diffusion time,

tDIFF �
r3 τ̄R (T )

c
, (A.3)

which is just the time it takes radiation to random-walk from
the interior of the spherical fragment to its exterior. Eliminating
τ̄R (T ) in favour of tDIFF , and putting σSB = aSB c/4 (where aSB is
the radiation energy-density constant), Eq. (A.2) becomes

LTHICK �
4 π r3

3 aSB T 4 / 3

tDIFF

· (A.4)

The righthand side of Eq. (A.4) is the total radiant energy inside
the spherical fragment divided by the time this radiation takes to
escape. In the optically thick limit this is a reasonable approxi-
mation to the luminosity.

Finally we note that, when the spherical fragment is neither
optically thin, nor optically thick, and τ̄R (T ) � τ̄P (T ) � 1, the
luminosity of the fragment is given by

L
τ∼1 � 4 π r2

3 σSB T 4 × 2
3
, (A.5)

so it cools almost as well as a blackbody.

A.2. A disc-like fragment

To justify both Eqs. (37) and (38) – and Eqs. (61) and (62), with
r2 → rDISC D – we consider a uniform-density disc-like fragment
of mass m2, radius r2, and thickness 2z2 (where the assumption
is that z � r, i.e. the disc is geometrically thin). We again treat
separately the optically thin and optically thick limits.

In the optically thin limit, the term τ̄R (T ) can be neglected
in comparison with τ̄ −1

P
(T ), and so Eq. (37) reduces to the exact

form:

LTHIN = 4 m2 κ̄P (T )σSB T 4. (A.6)

In the optically thick limit, the term τ̄ −1
P

(T ) can be neglected in
comparison with τ̄R (T ), and so Eq. (37) now reduces to

LTHICK �
4 π r2

2 σSB T 4

τ̄R (T )
· (A.7)

The time for radiation to diffuse from the interior of the disc-like
fragment to its flat surfaces at ±z is

tDIFF �
2 z2 τ̄R (T )

c
, (A.8)

where the factor 2 arises because the radiation must diffuse in the
z-direction to escape. It follows that Eq. (A.7) can be rewritten
as

LTHICK �
2 π r2

2 z2 aSB T 4

tDIFF

· (A.9)

The righthand side of Eq. (A.9) is the total radiant energy inside
the disc-like fragment, divided by the time this radiation takes to
escape, which in the optically thick limit is a reasonable approx-
imation to the luminosity.

When the disc-like fragment is neither optically thin, nor op-
tically thick, and τ̄R (T ) � τ̄P (T ) � 1, its luminosity is given by

L
τ∼1 � 2 π r2

2 σSB T 4 × 1, (A.10)

so it cools exactly like a black body from its flat surfaces.
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