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A B S T R A C T   

Aging leads to response slowing but the underpinning cognitive and neural mechanisms remain 
elusive. We modelled older and younger adults’ response times (RT) from a flanker task with a 
diffusion drift model (DDM) and employed diffusion-weighted magnetic resonance imaging and 
spectroscopy to study neurobiological predictors of DDM components (drift-rate, boundary sep-
aration, non-decision time). Microstructural indices were derived from white matter pathways 
involved in visuo-perceptual and attention processing [optic radiation, inferior and superior 
longitudinal fasciculi (ILF, SLF), fornix]. Estimates of metabolite concentrations [N-acetyl 
aspartate (NAA), glutamate (Glx), and γ-aminobutyric acid (GABA), creatine (Cr), choline 
(Cho), myoinositol (mI)] were measured from occipital (OCC), anterior cingulate (ACC) and 
posterior parietal cortices (PPC). Age-related increases in RT, boundary separation, and non- 
decision time were observed with response conservatism acounting for RT slowing. Aging was 
associated with reductions in white matter microstructure (lower fractional anisotropy and 
restricted signal fraction, larger diffusivities) and in metabolites (NAA in ACC and PPC, Glx in 
ACC). Regression analyses identified brain regions involved in top-down (fornix, SLF, ACC, PPC) 
and bottom-up (ILF, optic radiation OCC) processing as predictors for DDM parameters and RT. 
Fornix FA was the strongest predictor for increases in boundary separation (beta = − 0.8) and 
mediated the effects of age on RT. These findings demonstrate that response slowing in visual 
discrimination is driven by the adoption of a more conservative response strategy. Age-related 
fornix decline may result in noisier communication of contextual information from the hippo-
campus to anterior decision-making regions and thus contribute to the conservative response 
strategy shift.   

Introduction 

One of the best-established findings in aging research concerns the slowing of response speed [79] that can be observed in a wide 
range of tasks involving simple decision-making to more complex executive functioning with spatial-perceptual discrimination being 
disproportionally affected [72,94]. 

Age-related slowing is often accompanied by a lengthening of the speed accuracy trade-off (SAT) which refers to the trade-off that 
occurs between responding as timely and as accurately as possible when completing a time-pressured cognitive task. Greater SATs are 
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thought to occur due to older adults adopting a more cautious response strategy that favours response accuracy over speed [86]. In 
contrast, younger adults typically make faster responses which may be at greater risk of errors [17]. It is commonly thought that the 
change to a more cautious response strategy at the cost of slower reaction times (RT) arises due to an age-related decline in senso-
rimotor functions leading to a distrust in being able to provide a correct response. 

Impairments in sensorimotor functions may affect both bottom-up sensory and top-down decision-making and motor execution 
processes. According to the sensory degradation hypothesis [35,102], age-related deterioration in sensory functions results in noisier 
sensory input and hence longer perceptual processing time for effectively interpreting a stimulus. This in turn increases overall RTs or 
the likelihood of an incorrect response if RT is not lengthened [4]. Indeed, age-related perceptual decline has been observed at some of 
the lowest levels of visual processing such as visual contrast, even in those with intact visual acuity and an absence of visual 
impairment [22,29]. 

In addition, the “slowed motor response” hypothesis proposes that age-related increases in RTs emerge from a slowing of top-down 
decision-making and motor generation and execution processes [5,24]. This view is backed up by evidence from electroencephalogram 
studies suggesting that older people are most compromised at the interface of translating a stimulus input into a response output 
[5,38]. 

It is plausible that both sensory degradation and motor noise contribute to a slowing of decision-making processes in aging. 
However, the analysis of overall RTs or SATs alone, does not allow for a separation of the distinct cognitive components that may 
contribute to age-related slowing. 

Sequential-sampling models, such as Ratcliff’s drift diffusion model (DDM) [70–72], can be applied to RT data from choice RT tasks 
to estimate parameters that map distinct cognitive components involved in decision making. The DDM approach has been employed by 
several studies to clarify the cognitive underpinnings of older adults’ slowed RTs and SATs (see for review Theissen et al., 2021). 

According to the DDM, sensory input provides information that accumulates over time. This information fluctuates randomly 
between two thresholds: a lower threshold representing an incorrect response choice and an upper threshold representing the correct 
response choice (Fig. 1). When the accumulated information, after some time, crosses one of these thresholds, it triggers the corre-
sponding response. The main components of the DDM, that control the time it takes to reach one of these thresholds include the speed 
of information uptake (drift rate) (Fig. 1 blue), the distance between the thresholds, that reflects the degree of conservatism regarding 
the response criterion (boundary separation) (Fig. 1 green), and the time required for non-decisional processes including sensory- 
perceptual encoding and motor response execution (non-decision time) (Fig. 1 red). If boundary separation decreases (while keep-
ing drift rate non-decision time constant), the response time becomes shorter, but the likelihood of making an error increases. 
Conversely, if boundary separation increases (again with drift rate and non-decision time held constant), the response times lengthens, 
but the likelihood of making an error decreases. Thus, according to Ratcliff’s DDM model, the distance between the thresholds, i.e., the 
boundary separation value, determines the length of the SAT. 

Fig. 1. The drift diffusion model (DDM) of response time. Upper and lower lines ‘Response A’ (correct) and ‘Response B’ (incorrect) denote the 
different responses in a 2-choice task (for example, left or right key press). Reaction times (RT) are fit to the DDM to return an estimate of non- 
decision time (t) (red) reflecting perceptual and motor processing time, boundary separation value (a) (green), reflecting the distance between 
the two response criterion thresholds for A or B that reflects the amount of information that needs to be accumulated to trigger a response, and drift 
rate (v) (blue) reflecting the efficiency of the drift process. Information is thereby assumed to accumulate in a random walk-like diffusion process 
(gray wiggly line) that commences at the starting point toward one of the two response boundaries. Adapted from [39]. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Indeed, in the literature higher boundary separation values and longer non-decision times have been reported consistently in older 
compared with younger individuals while differences in drift rates were found to be moderated by task type (e.g. episodic versus 
semantic memory) and difficulty [88,68]. 

To date only a few studies have investigated the neurobiological underpinnings of age-related differences in DDM parameters, 
[26,39,48,56,101]. Magnetic resonance imaging (MRI) studies have found age-related increases in boundary separation to be asso-
ciated with reduced striatal activity [as measured with the blood oxygen level dependent (BOLD) signal] [39] and with reduction in 
fractional anisotropy (a diffusion tensor imaging (DTI) based measurement of fiber directionality/coherence) in white matter con-
nections between the striatum and the pre-Supplementary Motor Area (preSMA) [26]. Other studies have linked age-related increases 
in non-decision time [47,48] and in drift rate [51] to differences in the BOLD signal in fronto-parietal regions. These findings are 
consistent with evidence suggesting that reductions in fronto-parietal activity may underpin age-related slowing in simple and choice 
RT tasks and SAT [8,36,45,56]. They also accord with well-documented evidence of structural and functional changes in fronto- 
parietal and striatal networks with age [10,59,73] that are thought to be important for attention control and decision making 
[44,50]. In summary, the findings from DDM based studies suggest that age-related increases in RTs and SAT may be driven by non- 
decision related sensorimotor decline (non-decision time) and by longer processing times required before a decision threshold can be 
reached (boundary separation). They further suggest that age-related neural decline in fronto-parietal and striatal decision-making 
networks contribute to the differences in DDM components in aging. However, the nature of the contribution of age-related 
changes in visual-attention networks to increases in DDM parameters and response slowing remain elusive. 

The aim of the present study was to further elucidate the cognitive and neurobiological substrates of age-related slowing in visual- 
perceptual discrimination using an Eriksen 2-choice flanker test [23]. The Eriksen flanker task is a well-established response conflict 
paradigm that allows the modelling of RTs with DDM and has been shown to rely on prefrontal cortex and striatal decision-making 
regions [87]. The task involves the presentation of a target arrow flanked by distractor arrows, which are either congruent with 
the directional response to the target, i.e., a left or right key press, incongruent (pointing into the opposite direction), or neutral. 
Younger (n = 25, age range = 18–29 years) and older participants’ (n = 25, age range = 62–80 years) RT data from the flanker task 
were modelled to derive SAT and DDM parameters. Correlation coefficients between RTs, SAT, and DDM-derived parameters were 
calculated and mediation analysis [33] was used to identify those DDM component(s) that accounted for the shared variation in RTs 
and SAT across both groups. Gray matter metabolic and white matter microstructural measurements were derived from key regions of 
interest (ROIs) within visual-perceptual and decision-making networks and hierarchical regression analyses were conducted to 
identify neurobiological brain predictors of cognitive components. 

For this purpose, we employed multi-shell high angular resolution diffusion imaging (msHARDI) [19] to quantify white matter 
microstructural properties and magnetic resonance spectroscopy (MRS) to measure gray matter metabolite concentrations. These 
modalities were chosen because it is well established that microstructural properties of white matter brain connections, that allow the 
efficient communication within and between brain networks, deteriorate with advancing age and contribute significantly to cognitive 
decline including response slowing in aging [40]. Most studies that have investigated age effects on white matter microstructure 
employed diffusion tensor imaging (DTI) and have consistently found reduced fractional anisotropy (FA) and increased mean diffu-
sivity (MD), axial diffusivity (AD) and radial diffusivity (RD) in older relative to younger participants [9,14]. These age-related dif-
ferences in white matter microstructure occur across the whole brain but are particularly apparent in fronto-parietal and limbic regions 
[11] and correlate with age-related differences in processing speed, episodic memory, and executive functions [37,40]. 

Here we studied the microstructure of the following white matter pathways that connect visual and attention network regions and 
are known to be involved in top-down and/or bottom-up visual perceptual processing and attentional functioning: the optic radiation, 
that connects the lateral geniculate nucleus with the primary visual cortex in the occipital lobe and is important for bottom-up visual 
sensory processing [81]; the inferior longitudinal fasciculus (ILF), that connects occipital and anterior temporal cortices and is 
involved in bottom-up visual-perceptual object, face, and place processing; the fornix, the main output tract of the hippocampus to 
other limbic and cortical regions, that mediates mnemonic and complex visual discrimination functions [41]; and the superior lon-
gitudinal fasciculus (SLF), that connects parietal with prefrontal cortices, notably the right SLF being the crucial white matter pathway 
of the top-down right-lateralized attention-executive network [89]. White matter microstructural properties of these tracts were not 
only characterised with DTI metrics (FA, MD, RD, AD) but also with the restricted signal fraction FR, a proxy index for axonal density, 
from the Composite Hindered and Restricted Model of Diffusion (CHARMED) [2]. FR is thought to be a valuable metric to quantify in 
this context, as it has been shown to be more sensitive than DTI indices and has been suggested as a potential biomarker for axonal 
microstructure changes [16] which are well-established in aging. 

Furthermore, aging is also known to be associated with changes in concentrations of metabolites that are important for healthy 
neuronal functioning. More specifically, older compared with younger adults show reduced concentrations of N-acetyl aspartate (NAA) 
[43], an estimate of neuronal density and function, and of glutamate/glutamine (Glx) and γ- aminobutyric acid (GABA), the major 
excitatory and inhibitory neurotransmitters in the brain [69,85]. In addition, aging has been found to be associated with increased 
concentrations of creatine (Cr), choline (Cho) and myoinositol (mI), that have been linked to inflammation, demyelination, and glia 
cell proliferation [28,103]. Such age-related differences in metabolites have been observed in many brain regions including the oc-
cipital, frontal, and anterior and posterior cingulate cortices [12,31,32,27,49,64,66,82]. Here we measured concentrations of NAA, 
Glx, GABA, creatine, choline and mI in the following three cortical ROIs: the occipital cortex (OCC), the anterior cingulate cortex (ACC) 
and the posterior parietal cortex (PPC). These ROIs were selected as they form key regions of visual perception and attention networks 
that mediate bottom-up and top-down processing streams with OCC being involved in primary visual processing [64], PPC mediating 
sensory-perceptual integration [12] and ACC playing a key-role in decision-making by means of error signalling and event rewarding 
[98]. 

L. Revie and C. Metzler-Baddeley                                                                                                                                                                                  



Neurobiology of Aging Science 5 (2024) 100106

4

In this way we were able to characterise age-related metabolic and microstructural differences in key structures of the visual and 
attentional networks and assess whether these brain differences were predictive of differences in RT, SAT, and DDM parameters. Based 
on above summarized findings, we hypothesized that aging would be associated with increases in RT, SAT, boundary separation, and 
non-decision time as well as with reductions in NAA, GABA, Glx, FA and FR and increases in choline, myoinositol, glutamate, MD, RD 
and AD in all gray matter ROIs and white matter pathways. We further hypothesized, that age-related metabolic and microstructural 
differences in both bottom-up sensory processing areas (OCC, optic radiation, ILF) and top-down motor execution areas (SLF, fornix, 
ACC, PPC) would account for differences in overall RTs, and in non-decision time, as the latter reflects both sensory and motor 
execution processes. In contrast, only regions involved in top-down decision-making (SLF, fornix, ACC, PPC) were expected to predict 
differences in SAT and boundary separation. No specific hypotheses regarding drift rate were generated given the ambiguity of findings 
in the literature. 

Methods 

Participants 

Participants were recruited from the School of Psychology community participant panel at Cardiff University and consisted of 
younger (aged 18–29) and older (aged 62–80) adults. Twenty-five participants were recruited into each group, all of whom provided 
informed written consent prior to taking part in the study in accordance with the Declaration of Helsinki (Cardiff University School of 
Psychology Ethics committee reference 18.06.12.5313). All participants were cognitively healthy, i.e., had a Montreal Cognitive 
Assessment (MOCA) score ≥ 26. Participants also completed MRI screening prior to the study, excluding any participants with MRI 
contraindications such as metallic or electronic bodily implants, some dental work and some tattoos, subject to radiographer 
assessment. Individuals with visual impairments, such as visual field loss or glaucoma were also excluded from the study. Table 1 
summarises participants’ demographic information as well as their mean performance on cognitive and visual screening tasks. Both 
groups were comparable with regards to sex, handedness, years of education, and visual acuity. All participants had normal or cor-
rected normal visual acuity with Snellen Fractions ≥ 1. The older group performed slightly better on the Test of Premorbid Functioning 
UK version (TOPF-UK) [99], which involves reading out a list of irregular words, and provides an estimate of verbal intelligence. 

Materials & procedure 

Cognitive and visual testing 
Testing was conducted at Cardiff University Brain Research Imaging Centre (CUBRIC), during one visit lasting approximately two 

hours. Participants completed a visual acuity task and flanker task on a computer which is described in detail below. The task was 
presented on a 15 inch screen (1440 x 900 native resolution) and responses were recorded using a wireless keypad. The flanker task 
was written by LR using PsychoPy psychophysics software [63]) for Python (v1.85.6) following the original methodology of the 
Attention Network Task (ANT) [25] unless otherwise stated. Visual acuity was assessed using the Freiburg Visual Acuity and Contrast 
Test (FRACT); [3]. Participants viewed the screen from a distance of 2 m (as recommended by test manufacturers) and responded to 
circular stimuli, where the target was a ‘gap’ in the circle. Stimuli was reduced in size for each correct trial to achieve a Snellen fraction 
measure of visual acuity. 

Reaction times (RTs) were recorded using a modified Attention Network Test (ANT) flanker task [25], and speed accuracy trade-off 
and DDM parameters were calculated using these RTs. The modified ANT stimuli consisted of five horizontal arrows presented on the 
screen in which participants were instructed to attend to the central arrow as the target. Central arrows were flanked by horizontal 
lines (neutral condition), arrows facing in different directions to the target (incongruent condition), or arrows facing in the same 
direction as the target (congruent condition). During this version of the ANT, stimuli were presented in the same central position on the 
screen following the presentation of a fixation cross. Participants viewed the screen from a seated position, 400 mm from the computer 
screen. Participants were instructed to maintain focus on the central fixation point of the screen and respond as quickly and accurately 
as possible. In accordance with the original study [25], these stimuli subtended 3.08◦ of visual angle. Fixations were presented for a 
random variable length of time between 400 and 1600 ms and target stimuli were presented for a maximum of 1700 ms. Participants 
completed 96 trials (32 trials per condition) in each block, for a duration of 5 blocks. Between blocks, participants were instructed to 

Table 1 
Demographic and baseline cognitive scores for younger and older adults. Mean and standard deviation (SD) for younger and older adults’ perfor-
mance. MOCA = MOntreal Cognitive Assessment, TOPF-UK = Test Of Premorbid Functioning, UK-edition.   

Younger Mean (SD) Older Mean (SD) t(49)-value 
(p-value) 

Age 21.56 (2.76) 68.36 (6.1) 34.8 (<0.001) 
Sex Male (8) Female (17) Male (12) Female (13) – 
Handedness Left (1) Right (24) Left (4) Right (21) – 
Years of education 16.08 (2.3) 15.64 (4.3) 0.45 (0.66) 
MOCA score 28.84 (1.25) 29.04 (1.1) 0.58 (0.56) 
Visual acuity (Snellen fraction) 1.91 (0.18) 1.77 (0.3) 1.8 (0.08) 
TOPF-UK score 60 (6.43) 64.72 (4.5) 3.0 (0.004)  
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rest for 30 seconds, before being given a 5 seconds count-down into the following block. The entire task totalled 480 trials and took 
approximately 12–15 minutes to complete. 

Speed accuracy trade-off (SAT) calculation 
Speed accuracy trade-off (SAT) was calculated from RTs using the linear integrated speed accuracy score (LISAS) [93] method, 

which combines RT and proportion of error in a linear manner, according to the formula (Equation (1). 

SAT = RTj+
SRT
SPE

xPEj (1)  

where RTj is the mean RT, PEj is the proportion of errors, SRT is the participants’ overall RT standard deviation, and SPE is the 
participants’ overall standard deviation for the proportion of errors 

To assess correlations between RT, SAT, and DDM indices, Spearman’s Rho correlation coefficients were calculated between these 
measurements. Linear mediation analysis was then used to test for the indirect effects of DDM mediator variables on the direct effects 
of SAT on mean RT. The significance of indirect and direct effects was assessed with a 95% confidence interval based on bootstrapping 
with 5000 replacements. 

Drift diffusion modelling (DDM) 
DDM parameters were calculated using the EZ DDM model [96] which was incorporated into an in-house R based custom script. 

Raw RT and accuracy data for each participant for congruent, neutral and incongruent trial conditions were input into the script in R 
Studio (v 1.1.463). The script first calculated means and variances of correct RTs. Incorrect trials were not included in the remainder of 
the analysis (average retained trials = 469). Following this, the script calculated DDM parameters using the equation provided in 
Wagenmakers et al., [96] under the assumption that trial-to-trial variability was zero and the starting point of each decision process 
was equidistant from the response boundaries [80]. This resulted in average estimates for non-decision, boundary separation and drift 
rate for each participant. Details of the mathematical basis for the EZ model can be found in Wagenmakers, Van der Maas & Grasman 
[96]. 

Magnetic resonance imaging (MR) imaging and spectroscopy 

MR data acquisition. All MR data were acquired on a Siemens 3 Tesla (T) Magnetom Prisma MR system (Siemens Healthcare GmbH, 
Erlangen) fitted with a 32-channel receiver head coil at CUBRIC. A 3D, T1-weighted magnetization prepared rapid gradient-echo (MP- 
RAGE) structural scan was acquired for each participant (TE/TR = 3.06/2250 ms, TI = 850 ms, flip angle = 9 deg, FOV = 256 mm, 1 ×
1 × 1 mm resolution, acquisition time = ~6min). The MPRAGE was used as anatomical reference for the placement of magnetic 
resonance spectroscopy (MRS) region of interest voxels. 

MRS was used to acquire frequency spectra to quantify metabolites of Glx, GABA, NAA, choline, creatine and myoinositol. Single 

Fig. 2. White matter tracts, microstructural maps and location of spectroscopy voxels for measurements of interest. ACC = anterior 
cingulate cortex, ILF = inferior longitudinal fasciculus, PPC = posterior parietal cortex, OCC = occipital cortex, SLF = superior longitudi-
nal fasciculus. 
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voxel proton spectra were obtained from voxels of interest placed in the occipital cortex (OCC, voxel measuring 30 × 30 × 30 mm3), 
the posterior parietal cortex (PPC, voxel measuring 30 × 30 × 30 mm3) and the anterior cingulate cortex (ACC, voxel measuring 27 ×
30 × 45 mm). The OCC voxel was placed above the tentorium cerebelli, avoiding scalp tissue in order to prevent lipid contamination to 
the spectra. The PPC voxel was placed with the posterior edge against the parieto-occipital sulcus, and the ventral edge of the voxel 
above and parallel to the splenium. Finally, the ACC was placed directly dorsal and parallel to the genu of the corpus callosum. In each 
voxel, a spectral editing acquisition (MEGA-PRESS, [54]) was performed, involving applying an additional pulse symmetrically about 
water resonance, providing ‘on’ and ‘off’ editing pulses which allow for the subtraction of peaks which may mask GABA in the spectra 
(TE/TR = 68/2000 ms, 168 averages, acquisition time = ~12 min per voxel). Manual shimming was performed before all MRS scans to 
ensure water-line width of 20 Hz or lower, in order to obtain accurate peaks in the spectra (Fig. 2). 

A multi-shell diffusion MRI sequence was also conducted using a high angular resolution diffusion (HARDI) weighted echo-planar 
imaging (EPI) sequence (TE/TR = 73/ 4100 ms, FOV = 220×220 mm, isotropic voxel size 2 mm3, 66 slices, slice thickness 2 mm, 
acquisition time ~15 min, 2 × 2 × 2 mm resolution). Five diffusion weightings were applied along gradient directions: b = 200 s/mm2 

(20 directions), b = 500 s/mm2 (20 directions) b = 1200 s/mm2 (30 directions), b = 2400 s/mm2 (61 directions), b = 4000 s/mm2 (61 
directions). 12 unweighted (b0) volumes were acquired, interspersed throughout diffusion-weighted scans. In addition, a diffusion 
reference sequence was acquired for later blip-up blip-down analysis to correct for EPI distortion [104] in which a diffusion weighting 
of b = 1200 s/mm2, and 12 unweighted (b0) images were acquired interspersed throughout the sequence (Fig. 1). Multi-shell diffusion 
weighted imaging data were acquired to fit the diffusion tensor and the Composite Hindered and Restricted Model of diffusion 
(CHARMED) [2] to gain microstructural maps of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial 
diffusivity (AD), and restricted signal fraction (FR). 

MR analysis. MRS data were analysed using Totally Automatic Robust Quantification in NMR (TARQUIN) version 4.3.11 [77] in order 
to determine estimated concentrations of other metabolites of interest (Choline, NAA, Glx, Creatine, Myoinositol). To ensure data 
quality, metabolites were excluded if the Cramer Rao Lower Bound (CRLB) was above 20 % as recommended [85]. MEGA-PRESS data 
were analysed using GANNET (GABA-MRS Analysis Tool) version 3.0 [21]. Estimated metabolite values were corrected to account for 
cerebrospinal fluid (CSF) voxel fraction, and water reference signal was corrected to account for differing water content of CSF, gray 
matter and white matter. All metabolites were quantified using water as a concentration reference and were expressed as concentration 
in millimoles per unit (mM) (quality metrics and spectra for MRS raw and fitted data are provided in Supplementary Figure 1). 

Multi-shell HARDI data were split by b-value and were corrected for distortions and artifacts using a custom in-house pipeline in 
MATLAB and Explore DTI [42]. Correction for echo planar imaging distortions was carried out by using interleaved blip-up, blip-down 
images. Tensor fitting was conducted on the b = 1200 s/mm2 data, and the two compartment ‘free water elimination’ (FWE) procedure 
was applied to improve reconstruction of white matter tracts close to ventricles [62] and to account for partial volume contamination 
due to cerebrospinal fluid (CSF) which is particularly apparent in older age [53]. Data were fit to the CHARMED model [2] which 
involved the correction of motion and distortion artefacts with the extrapolation method of Ben-Amitay et al., [6]. The number of 
distinct fibre populations in each voxel (1, 2 or 3) was determined using a model selection approach [15] and FR maps [2] were then 
extracted by fitting the CHARMED model to the DWI data, with an in-house script. This resulted in FA, MD, RD, AD and FR maps. 

Whole brain tractography was then performed with the dampened Richardson-Lucy (dRL) spherical deconvolution method [18]. 
Tractography was performed on the b = 2400 s/mm2 data to provide better estimation of fibre orientation [95]. The dRL algorithm 
extracted peaks in the fibre orientation density function (fODF) in each voxel using a step size of 0.5 mm. Streamlines were terminated 
if directionality of the path changed by more than 45 degrees using standardised in-house processing pipeline at CUBRIC. Manual fibre 
reconstructions were performed in ExploreDTI v4.8.3 [42]. Tracts of interest were manually drawn on direction encoded colour FA 
maps in native space. ILF reconstruction was obtained according to protocols by Hodgetts et al. [34] and Wakana et al. [97]. The SLF 
was subdivided into three subdivisions, the SLF1, 2 and 3 which were delineated according to protocol by Thiebaut de Schotten et al., 
[89]. The SLF was subdivided based on the distinct contributions of each tract to different functions of attention and executive pro-
cessing; the SLF 1 being associated with spatial functions and goal-directed attention [89,61], the SLF2 being associated with orienting 
attention and integration of dorsal and ventral attention networks [57], and the SLF 3 being associated with reorienting of spatial 
attention [89,57]. The fornix was reconstructed by locating the body of the fornix bundle according to Metzler-Baddeley et al. [52], 
and the optic radiation was delineated by placing a seed region on the white matter of the optic radiation lateral to the lateral 
geniculate nucleus in the axial plane [90](Fig. 2). 

Statistical analysis 
Statistical analyses were conducted in R-studio (v 1.1.463), SPSS version 27 (IBM) and the PROCESS computational tool for 

mediation analysis version 4.3 [33]. Data were assessed for normality with the Kolmogorov-Smirnov test and were either analyzed 
with non-parametric tests or were rank-transformed before conducting parametric testing if they did not fulfill normality. Multiple 
comparisons were corrected for False Discovery Rate (FDR) to mitigate the likelihood of Type 1 error by employing the Benjamini- 
Hochberg procedure at 5 % [7]. All reported p-values were two-tailed. 

Group differences in rank-transformed DDM parameters, SAT, accuracy, RT, and variance were assessed using independent t-tests. 
Tractography outcome measures (FA, MD, RD, AD, FR) and metabolite outcome measures (GABA, NAA, Glx, Myoinositol, Choline, 
Creatine) were compared between older and younger control groups by conducting non-parametric Mann Whitney U tests. 

Hierarchical linear regression models were carried out for RT, SAT, and each EZ DDM parameter as dependent variables. Age and 
TOPF-UK score, the two variables that differed between the groups, were entered into the model first, followed by all metabolic and 
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microstructural measurements in a stepwise fashion. Regression analyses were conducted on rank-ordered variables to account for 
non-normality of the data. 

Following this, Pearson correlations on rank-transformed data were conducted between age, brain predictors and DDM parameters 
and the directionality of these relationships were explored with mediation analyses [33]. More specifically, linear mediation analysis 
was used to test for the indirect effect of a mediator variable X (e.g. boundary separation) on the direct effect of variable Y (e.g. RT) on 
variable Z (e.g. SAT) and vice versa. The significance of indirect and direct effect sizes (ES) was assessed with a 95 % confidence interval 
based on bootstrapping with 5000 replacements [33]. 

Results 

Group differences in visual acuity 

No significant differences were found in visual acuity between older and younger age groups (F(1,49) = 1.239, p =.276) (Fig. 3). 

Group differences in RT, SAT, and DDM parameters 

Independent t-tests on rank-transformed data revealed that older compared to younger adults showed larger RT (t(48) = 4.2, 
pFDRcor = 0.0007) (Fig. 4C), non-decision time (t(48) = 2.9, pFDRcor = 0.016) (Fig. 4D) and boundary separation values (t(48) = 2.9, 
pFDRcor = 0.016) (Fig. 4E). 

No group differences were observed for accuracy (t(48) = 1.6, p = 0.12) (Fig. 4A), SAT (t(48) = 0.18, p = 0.87) (Fig. 4B) or drift 
rate (t(48) = 0.16, p = 0.87) (Fig. 4F). 

MRI results 

Metabolic differences between older and younger adults 
Group comparisons between older and younger participants showed no significant differences in GABA levels in the ACC, OCC or 

the PPC. Older participants had significantly lower Glx (U = 189, p =.004) and NAA (U = 109, p <.001) in the ACC than younger adults 
(Fig. 5a). A trend towards significantly lower myoinositol in older adults in comparison to younger adults in the ACC was also observed 
(U = 234, p =.058). In the PPC, older adults showed significantly lower NAA (U = 190, p =.011), and a trend towards lower Glx (U =
231, p =.054) than younger adults (Fig. 5a). 

Fig. 3. Violin plot with overlaid boxplot for group comparisons between older (orange) and younger (gray) adults’ visual acuity (Snellen Fraction). 
The boxplot displays the median and the interquartile range and the violin plot the kernel probability density, i.e., the width of the violin area 
represents the proportion of the data located there. There was no significant difference in visual acuity between younger and older adults. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Diffusion weighted MRI differences between younger and older adults 
Significantly lower restricted fraction FR was shown in the older group in the fornix (U = 75, p <.001), right optic radiation (U =

154, p =.001), left SLF1 (U = 152, p =.001), left SLF2 (U = 170, p =.002) and right SLF3 (U = 169, p =.002) (Fig. 5b). 
Significantly higher FA in the fornix (U = 22, p <.001), right optic radiation (U = 207, p =.027), left ILF (U = 203, p =.014), right 

ILF (U = 157, p =.001), left SLF1 (U = 131.5, p <.001), left SLF2 (U = 195, p =.009), and right SLF2 (U = 218, p =.029), and right SLF3 
(U = 163, p =.001) was found in younger adults in comparison to older adults. Significantly higher MD in the older group in com-
parison to the younger group was found in the fornix (U = 84, p <.001), left optic radiation (U = 78, p <.001), right optic radiation (U 
= 131, p <.001), right ILF (U = 203, p =.014), right SLF1 (U = 175, p =.003), right SLF3 (U = 175, p =.003). Radial diffusivity was 
significantly higher in the older relative to the younger group in all but two (right SLF1, left SLF2) tracts of interest: fornix (U = 39, p 
<.001), left optic radiation (U = 145, p =.001), right optic radiation (U = 139, p <.001), left ILF (U = 189, p =.007), right ILF (U =
143, p <.001), left SLF1 (U = 130, p <.001), right SLF2 (U = 178, p =.003), left SLF3 (U = 197.5, p =.010), right SLF3 (U = 135.5, 
<0.001) (Fig. 6). Significantly greater axial diffusivity in older adults was found in the fornix (U = 529, p < 0.001), and significantly 
lower axial diffusivity in older adults was found in the SLF1 left (U = 178, p = 0.005). 

Correlations between response latency, SAT, and DDM parameters 

Significant positive correlations were observed between mean RT and boundary separation (Rho = 0.74, pFWEcor < 0.00000001), 
between SAT and boundary separation (Rho = 0.49, pFWEcor = 0.002), and between mean RT and SAT (Rho = 0.4, pFWEcor = 0.013). 
Drift rate and boundary separation were negatively correlated (Rho = -0.4, pFWEcor = 0.013) (Fig. 7). Non-decision time did not 
correlate with any of the other cognitive variables (Fig. 7). 

Mediation analysis revealed that boundary separation had a significant indirect effect (indirect ES of boundary separation = 0.31, 
SE = 0.28, 95 % CI 0.0005–0.985) and removed the direct effect of mean RT on SAT (remaining ES of mean RT on SAT = 0.09, SE =
0.18, 95 % CI − 0.289 – 0.471) (Fig. 8). In contrast the inclusion of mean RT or SAT as mediator variables did not have any indirect 
effects on the direct effect of boundary separation on SAT (indirect ES of mean RT = 0.07, SE = 0.24, 95 % CI − 0.51–0.35; direct ES of 
mean boundary separation on SAT = 0.42, SE = 0.18, 95 % CI 0.043 – 0.8) or on mean RT (indirect ES of SAT = 0.027, SE = 0.11, 95 % 
CI − 0.22–0.19; direct ES of mean boundary separation on mean RT = 0.71, SE = 0.11, 95 % CI 0.49 – 0.94). This pattern of results 

Fig. 4. Violin plots with overlaid boxplots for group comparisons between older (orange) and younger (gray) adults’ rank-transformed accuracy, 
response time (RT), speed accuracy trade-off (SAT) performance and diffusion drift model (DDM) parameters. The boxplots display the median and 
the interquartile range and the violin plots the kernel probability density, i.e., the width of the violin area represents the proportion of the data 
located there. Older participants showed increased RT (mean rank-transformed RTold = 33, SD = 14.1; mean rank-transformed RTyoung = 18, SD =
10.9), boundary separation values (mean rank-transformed boundary separationold = 31, SD = 14.8; mean rank-transformed boundary separa-
tionyoung = 20, SD = 12.3) and non-decision time (perceptual and motor processing) (mean rank-transformed non-decision timeold = 30.9, SD = 15; 
mean rank-transformed non-decision timeyoung = 20.1, SD = 12.2). *** pFDRcor < 0.001, * pFDRcor < 0.05. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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demonstrates that differences in boundary separation accounted for the shared variance in mean RT and SAT. 

Neurobiological predictors of response latencies, SAT, and DDM parameters 

Hierarchical linear regression analyses testing for the effects of age, TOPF-UK score, and all microstructural and metabolic brain 
measurements on mean RT, SAT, and DDM indices were conducted separately for each outcome measure. All models entered age and 
TOPF-UK score as first predictors followed by the stepwise inclusion of the brain measurements (Supplementary Table 1). 

Response latencies (RTs) and SAT 
Variation in RTs were not accounted for by age and TOPF-UK score alone (adj R2 = 0.01, F(2,37) = 1.2, p = 0.31) but the inclusion 

of the following microstructural and metabolic brain measurements improved the fit of the model significantly: fornix FA (delta R2 =
0.24, F(1,36) = 12.5, p = 0.001), AD in left optic radiation (delta R2 = 0.14, F(1,35) = 8.9, p = 0.005), RD in right SLF1 (delta R2 =
0.11, F(1,34) = 8.7, p = 0.006), myoinositol in OCC (delta R2 = 0.05, F(1,33) = 4.2, p = 0.048), and AD in right SLF1 (delta R2 = 0.06, 
F(1,32) = 5.2, p = 0.029). The final model explained 66 % of the variation in RTs (adj R2 = 0.59, F(7,32) = 9.01, p < 0.001) and 
included the following predictors: fornix FA (beta = -0.9, pFDRcor < 0.0000001), RD in right SLF1 (beta = -0.33, pFDRcor = 0.019), 
myoinositol in OCC (beta = 0.38, pFDRcor = 0.019), TOPF-UK score (beta = 0.32, pFDRcor = 0.025), AD in right SLF1 (beta = 0.35, 
pFDRcor = 0.034) and AD in left optic radiation (beta = -0.26, pFDRcor = 0.034). 

Age and TOPF-UK score alone did not predict variability in SAT (adj R2 = -0.025, F(2,37) = 0.53, p = 0.6). The inclusion of the 
following metabolic and microstructural measurements improved the fit of the model significantly (adj R2 = 0.42, F(5,34) = 4.9, p =
0.002): NAA in the ACC (delta R2 = 0.21, F(1,36) = 10.12, p = 0.003), RD in right SLF1 (delta R2 = 0. 1, F(1,35) = 5.3, p = 0.03) and 
FA in right SLF1 (delta R2 = 0.08, F(1,34) = 4.5, p = 0.04). In the final model SAT was significantly predicted by NAA in the ACC (beta 
= 0.5, pFDRcor = 0.015) and RD in the right SLF1 (beta = -0.9, pFDRcor = 0.015) (Fig. 9). 

DDM parameters 
Variation in boundary separation was not explained by age and TOPF-UK score (adj R2 = 0.029, F(2,37) = 1.6, p = 0.22) but the 

inclusion of fornix FA (delta R2 = 0.20, F(1,36) = 10.12, p = 0.003) and FR in the right ILF (delta R2 = 0.08, F(1,35) = 4.6, p = 0.04) 
improved the fit of the model significantly (adj R2 = 0.29, F(4,35) = 5.01, p = 0.003). In the final model fornix FA (beta = -0.8, pFDRcor 
= 0.002) was the only significant predictor for variation in boundary separation. 

Similarly, variation in non-decision time was not explained by age and TOPF-UK score alone (adj R2 = -0.02, F(2,37), p = 0.5). The 
inclusion of the following metabolic and microstructural measurements improved the model fit significantly (adj R2 = 0.47, F(6,33) =

Fig. 5. Metabolic and microstructural differences between younger and older adults. (A) Significant group comparisons for metabolites in voxels of 
interest between older and younger adults (B) Significant group comparisons for FR in tracts of interest between older and younger adults. FR was 
significantly lower in the fornix, optic radiation, SLF1, 2 and 3 in older adults (orange) in comparison to younger (gray) adults. **p <.001, *p 
<.0.05. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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6.7, p < 0.001): NAA in the ACC (delta R2 = 0.23, F(1,36) = 11.5, p = 0.002), AD in the right ILF (delta R2 = 0.15, F(1,35) = 8.9, p =
0.005), creatine in the OCC (delta R2 = 0.07, F(1,34) = 4.3, p = 0.045) and GLx in PPC (delta R2 = 0.07, F(1,33) = 4.9, p = 0.034). In 
the final model NAA in the ACC (beta = -0.45, pFDRcor = 0.015), AD in the right ILF (beta = 0.38, pFDRcor = 0.015), and creatine in the 
OCC (beta = 0.32, pFDRcor = 0.03) predicted non-decision time significantly. 

Finally, age and TOPF-UK score did not account for variation in drift rate (adj R2 = 0.01, F(2,37), p = 0.32) and the inclusion of 
brain measurements did not improve the model fit significantly (adj R2 = 0.12, F(3,36) = 2.6, p = 0.07) (Fig. 10). 

Regression analyses controlling for age and TOPF score separately 
As the variables age and TOPF-UK were positively correlated (rho = 0.4, p = 0.003) we explored any biases in the regression 

modelling by repeating the analyses controlling for age and TOPF-UK separately. Accounting for TOPF-UK but not age led to the same 
pattern of results for all cognitive variables as described above. Accounting for age but not TOPF-UK led to the same results for non- 
decision time and SAT but changed the following results: The final model for boundary separation (adj R2 = 0.42, F(5,34) = 6.07, p <
0.001) included predictors of fornix FA (beta = -0.8, pFDRcor = 0.0001), choline in PPC (beta = -0.36, pFDRcor = 0.02), RD in right SLF1 
(beta = -0.3, pFDRcor = 0.04) and myoinositol in OCC (beta = -0.3, pFDRcor = 0.04). Drift rate variation was significantly explained by a 
model (adj R2 = 0.12, F(2,37) = 3.7, p = 0.035) with predictors of age (beta = 0.4, pFDRcor = 0.03) and FA in right ILF (beta = 0.4, 
pFDRcor = 0.03). Finally, variation in RT (adj R2 = 0.49, F(4,35) = 10.2, p < 0.001) were accounted for by fornix FA (beta = -0.63, 
pFDRcor = 0.002), AD in left optic radiation (beta = -0.37, pFDRcor = 0.01) and RD in right SLF1 (beta = -0.35, pFDRcor = 0.01). Age alone 
did not predict any of the cognitive variables. 

Correlation analyses between age, fornix FA, and RT 
Spearman correlation coefficients were calculated between age, fornix FA, RT and boundary separation to explore the direction-

ality of these relationships. Fornix FA correlated negatively with age (Rho = -0.75, pFWEcor < 0.00000001), boundary separation (Rho 
= -0.48, pFWEcor = 0.007), and RT (Rho = -0.53, pFWEcor = 0.002). A significant positive correlation was present between age and RT 
(Rho = 0.35, pFWEcor = 0.016) and a trend for a positive correlation between age and boundary separation (Rho = 0.26, p = 0.06). 

Mediation analysis demonstrated that fornix FA had a significant indirect effect (ES = 0.45, SE = 0.13, 95 % CI 0.21–0.7) and 
removed the direct effect of age on mean RT (remaining ES = -0.09, SE = 0.18, 95 % CI − 0.47 – 0.27). In contrast the inclusion of age as 
mediator variable did not have an indirect effect (ES = 0.07, SE = 0.13, 95 % CI − 0.2–0.3) on the direct effect of fornix FA on RT (ES =
-0.6, SE = 0.18, 95 % CI − 0.97 – − 0.22). This pattern of results suggests that age-related response slowing is mediated by the age- 
related decline in fornix microstructure but not vice versa (Fig. 11). 

Fig. 6. Diffusion tensor imaging (DTI) differences between younger and older adults. Significant group comparisons (p <.0.05) for tract fractional 
anisotropy (A), mean diffusivity (B), radial diffusivity (C) and axial diffusivity (D) between older and younger adults. * pFWEcor < 0.05, ** pFWEcor <

0.01, pFWEcor < 0.001. 
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Discussion 

The aim of this study was to investigate the cognitive and neurobiological substrates of age-related response slowing in visuo- 
perceptual decision making. For this purpose, we modelled older and younger adults’ RT data from the ANT flanker task with the 
EZ DDM to derive three cognitive components thought to contribute to response slowing in aging. These were the non-decision time, 
that reflects the time needed for bottom-up sensory and top-down motor execution processes, the boundary separation value, that 
reflects the degree of conservatism regarding a response decision criterion, and the drift-rate, the speed with which information was 
accumulated to reach a response threshold. Furthermore, we employed advanced multi-shell diffusion-weighted MRI and MRS 
techniques to acquire estimates of microstructural and metabolic properties of gray matter ROIs and white matter connections in 
visual-perceptual and attention networks. We then tested which of these brain measurements were predictive of differences in 
cognitive parameters for the purpose of elucidating the neurobiological basis of any age-related differences in visuo-perceptual de-
cision making. 

Age effects on response times, SAT, and DDM parameters 

Consistent with the literature [72,68,88] we found age-related increases in RTs, boundary separation, and non-decision time. These 
differences were observed in participants without visual acuity impairments as measured with the Snellen Fraction, thus were not due 
to reduced eyesight in older participants. Contrary to our hypotheses, older adults did not show increased SAT, as measured with 
LISAS, and did not differ in accuracy or diffusion drift rates from younger adults. 

Slowed response times while maintaining accuracy is a characteristic pattern observed in aging and is generally thought to reflect a 
shift to a more conservative decision criterion [68,79,83,86]. Consistent with this view mediation analysis revealed that differences in 
boundary separation accounted for the shared variance between SAT and RTs but not vice versa, suggesting that the shift to a more 

Fig. 7. Correlation matrix between Speed Accuracy Trade-off (SAT), mean Reaction Time (RT), and diffusion drift model (DDM) parameters. Mean 
RT and boundary separation (p <.001), SAT and boundary separation (p <.001) and mean RT and SAT (p <.05) were positively correlated (blue 
shades). Drift rate and boundary separation were negatively correlated (p <.05) (red shade). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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conservative response strategy was the main contributor to response slowing in aging. Drift rate was negatively correlated with 
boundary separation as the more conservative the response strategy the longer it took to reach a response threshold criterion. While 
age-related increases in non-decision time were observed and accord with accounts of low-level sensory degradation and slowing of 
motor execution, these processes did not contribute to overall response slowing or to the increases in boundary separation. 

Age effects on microstructural and metabolic brain measurements 

The main aim of our study was to investigate the neurobiological basis of differences in cognitive components thought to underpin 
age-related response slowing. For this purpose, we acquired microstructural and metabolic measurements with advanced diffusion- 
weighted MRI and MRS from key regions within visual perceptual and attention-executive networks. Regions involved in bottom- 
up visuo-sensory and perceptual processing comprised the OCC as well as the optic radiation and ILF while areas hypothesized to 
mediate top-down decision-making processes were the ACC, PPC, SLF and fornix. 

In accord with the literature [55,78,100], we observed age-related reductions in FA and increases in MD, RD, and AD in all 
pathways, providing further evidence of the detrimental effects of age on white matter microstructure. The nature of these age-related 
white matter differences is difficult to infer from DTI indices alone because they are sensitive to biological (e.g. myelin, axon density) 
and geometrical properties (e.g. crossing/kissing fibers) of fibers [15]. The restricted signal fraction FR from CHARMED provides a 
complementary index that can be interpreted as an estimate of axon density [2]. Age-related reductions of FR were present in the optic 
radiation, fornix, and SLF fibers, suggesting a decrease in the density of axons due to a loss of myelin and/or axons secondary to 
Wallerian degeneration in aging [15]. 

With regards to brain metabolites and consistent with previous studies ([46]; see for review [32]), older relative to younger adults 
showed reduced levels of NAA and Glx in the ACC and lower levels of NAA in the PPC. NAA and Glx are both markers of neuronal 
metabolism [58] and are considered to play a key role in energy metabolism in neural mitochondria [43]. These findings are consistent 
with accumulating evidence of energy depletion as a key component of biological aging [74]. With normal aging, the accumulation of 
biological ‘imperfections’ such as protein aggregation are thought to impair mitochondrial function and cause low-level inflammation, 
resulting in reduced glucose uptake, synaptic deterioration, and gliosis, and in turn to further energy reduction [13]. The pattern of our 
results suggest that aging affects neuronal metabolism in frontal and parietal attention regions more than in the OCC, consistent with 
evidence suggesting that aging is particularly associated with a reduction in mitochondrial energy metabolism in frontal brain regions 
[75,76,101]. 

Neurobiological basis of age-related differences in cognitive variables 

To study the neurobiological underpinnings of age-related response slowing, hierarchical regression analyses testing for the effects 
of microstructural and metabolic brain measurements on RT, SAT, and DDM parameters while controlling for age and TOPF-UK 

Fig. 8. Mediation analyses between Speed Accuracy Trade-off (SAT), boundary separation and mean Reaction Time (RT). Boundary separation had 
a significant indirect effect on SAT, removing the direct effect of mean RT on SAT. No other direct or indirect effects were significant. ES = Ef-
fect size. 
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(together and separately) were conducted. 
The observed patterns of brain-cognition relationships were broadly consistent with our hypotheses. Differences in overall RTs 

were predicted by microstructural and metabolic estimates from a network of top-down (fornix FA, right SLF1 AD and RD) and bottom- 
up brain regions (OCC myoinositol, left optic radiation AD) together with verbal IQ (TOPF-UK), reflecting that overall response la-
tencies were a function of all processes involved in visuo-perceptual decision-making. Furthermore, we observed that differences in 
brain indices in top-down regions involved in decision making predicted boundary separation (fornix FA, PPC choline, right SLF1 RD) 
and SAT (ACC NAA, right SLF1) while a combination of measurements from bottom-up sensory (OCC creatine, right ILF AD) and top- 
down motor execution (ACC NAA) regions predicted non-decision time that captured low level sensory function and motor execution. 
Due to the ambiguities in the literature, we did not generate a specific hypothesis for drift rate but found that age and FA in the right ILF 
predicted drift rate when TOPF-IQ was removed from the analysis. Importantly, age alone did not predict any of the cognitive vari-
ables, including those (RT, boundary separation, non-decision time) that were found significantly increased in older relative to 
younger adults. This suggests that age-related response slowing and increases in DDM parameters were not driven by age per se but by 

Fig. 9. Slopes of the regression lines for the brain predictors in the final model for rank of mean reaction time (RT) (A) and mean Speed Accuracy 
Trade-off (SAT) (B). Significant predictors (p <.05) of rank mean RT and rank mean SAT included in final hierarchical models. 
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the neurobiological changes that accompany aging. 
This interpretation is further substantiated by the finding that fornix FA was the strongest predictor of overall RT (beta = -0.9, 

pFDRcor < 0.00001) and boundary separation (beta = -0.8, pFDRcor = 0.002), demonstrating that lower fornix FA values were associated 
with slower response times (Rho = -0.5) and higher boundary separation values (Rho = -0.48). In addition, fornix FA was highly 
inversely correlated with age (Rho = -0.75), in accord with well-established findings of age-related decline in fornix microstructure (e. 
g. [20,52,53,84]). Additional mediation analyses revealed that differences in fornix FA removed the effects of age on RT but not vice 
versa, i.e., the inclusion of age did not remove the effects of fornix FA on RT. Thus, age-related response slowing was mediated by the 
age-related decline in fornix microstructure. 

The fornix is the main white matter pathway that connects the hippocampal formation with cortical and subcortical sites beyond 
the temporal lobe [65]. The precommissural branch of the fornix principally innervates brain regions known to be important for 
executive function and decision-making notably the prefrontal cortex, ACC, and the basal forebrain, while postcommissural fibers 
innervate anterior thalamus and mamillary bodies [65]. The role of the hippocampus and the fornix in contextual learning [92] and 
episodic memory [1], [91] and in the age-related decline of these functions is well-established [20,52]. In addition, evidence from 
neuroimaging and lesion studies of the involvement of the hippocampus and the fornix in complex visual discrimination tasks [41,67] 
suggests that medial temporal lobe structures are not only involved in the processing of mnemonic but also visuo-perceptual repre-
sentations [30,41]. Relevant to decision-making performance, it has been proposed that hippocampal-prefrontal cortex interactions 
allow contextual cues to override predominant conditioned responses if the context is inconsistent (for instance in the discongruent 
flanker condition) to aid the selection of previously learned context-appropriate responses (for example the selection of responses 
congruent with the direction indicated by the target but not by the flanker arrows) [92]. Precommissural fornix fibers that connect the 
hippocampus with the prefrontal cortex allow efficient interaction between these regions. 

In our study, fornix FA was the largest predictor for boundary separation together with choline in PPC, RD in right SLF1 and 
myoinositol in OCC (when TOPF score was removed from the analysis). Following Turner and Becker’s contextual cuing account 
(2008), we propose that the hippocampus via the fornix provides prefrontal and parietal structures of the right-lateralized executive 
network [89] with contextual information to facilitate appropriate response selection. Thus, the fornix may play an important role in 
the accumulation of contextual information required by executive regions to reach a response decision threshold criterion. If fornix 

Fig. 10. Slopes of the regression lines for the brain predictors in the final model for rank of mean non-decision time (A) and mean boundary 
separation (B). Significant predictors (p <.05) of rank mean non-decision time and rank mean boundary separation included in final hierarchi-
cal models. 
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microstructure is compromised by aging, this process will become noisier, and more information needs to be accumulated before a 
decision can be reached. In this way, the fornix as part of an extended hippocampal-prefrontal decision-making network may 
contribute to the adoption of a more conservative response strategy that underpins age-related slowing in visual discrimination. 

We also observed an increase of non-decision time with age, which was predicted by a reduction of NAA in the ACC and increases of 
creatine in the OCC and AD in the right ILF. This suggest that neuronal decline in visual sensory-perceptual networks and regions 
involved in motor action control (ACC), due to reduced energy metabolism and neural activity, myelin damage and/or axonal loss, 
contribute to the loss of sensory and motor functions in older age. However, inconsistent with the view that age-related sensory 
degradation and/or increases in motor noise, contribute to response slowing and the adoption of a more conservative response 
strategy, differences in non-decision time were unrelated to differences in boundary separation and overall RT. Finally, drift–diffusion 
was predicted by age and right ILF FA, suggesting that the speed with which visual information is accumulated depends on the integrity 
of association fibers, that connect the occipital with temporal cortices. 

Limitations of the study 

The sample size of 25 participants per age group in this study was relatively small and it would be advantageous to replicate the 
here observed findings in a larger cohort. However, it is noteworthy that our study successfully replicated well-established age effects, 
including the increase of overall RTs, non-decision time, and boundary separation, and the widespread decline of white matter 
microstructure, notably in the fornix, and of ACC and Glx in older age. Our main findings were based on moderate to large effect sizes, 
suggesting that despite the modest sample size, the study was appropriately powered to identify some cognitive and neurobiological 
correlates of age-related slowing in visuo-perception. 

The present study adopted the two-choice Eriksen flanker task as a well-established visuo-perceptual response conflict paradigm 
that allows the modelling of RTs with DDM and has been shown to rely on prefrontal cortex and striatal decision-making regions [87]. 
The findings and inferences reported here are based on this experimental paradigm and may not transfer to human decision-making 
behaviours in other paradigms, such as lexical or gambling-related decision-making. 

Our results suggest that under the specific task conditions employed here boundary separation may provide a more sensitive 
measurement of SAT than LISAS for which no age effect was present. Our instructions for the flanker task did not seek to experi-
mentally manipulate accuracy-speed trade-offs by emphasising speed over accuracy or vice versa. It could therefore be that opposing 
between-subject trade-offs may have masked any SAT differences between the age groups. In other words, the increased speed by one 
participant may have been compensated by the increased accuracy by another. LISAS is a linear measure of SAT that has been shown to 
be insensitive to SAT, if the SAT effects are linearly balanced across participants [93]. Thus, LISAS may have been a suboptimal choice 
to estimate SAT in the present study. 

Fig. 11. Correlation matrix and mediation analyses investigating the relationship between age, fractional anisotropy (FA) in the fornix, mean 
reaction time (RT) and boundary separation value. Correlation matrix (left) shows significant negative correlations (red shade) (p <.05) between 
fornix FA, age, mean RT and boundary separation. A significant positive correlation (blue shade) was present between age and RT. Mediation 
analyses (right) shows a significant indirect effect of fornix FA on mean RT, which removed the direct effect of age on mean RT. Age as an indirect 
predictor did not remove the effect of fornix FA on mean RT. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Finally, the neurobiological interpretation of the differences in white matter microstructural indices needs to be done with caution. 
While we observed age-related reductions in FR from CHARMED in the fornix, optic radiation and SLF, suggesting a decline in axon 
density and/or axonal myelination in these pathways, the FR index did not significantly predict any cognitive components. In contrast, 
the DTI measurements of FA, AD and RD were identified as significant brain predictors of cognition in the regression analyses. This 
pattern of results suggests that DTI indices that capture a variety of age-related differences in white matter microstructure due to 
differences in biological properties, such as loss of myelin and axons and increased inflammation, and differences in the geometry and 
complexity of fibers are more sensitive brain predictors of cognitive change than the FR index that is thought to be more sensitive to 
specific biological properties of white matter (axon density). DTI and FR measures were corrected for partial volume effects with the 
Free Water Elimination Method [62], but this method cannot completely rule out that atrophy-induced free water contamination may 
have biased these indices. This may have particularly affected the DTI indices in regions susceptible to partial volume contamination 
notably the fornix [53,60] and may have made these indices more sensitive to age-related tissue atrophy. 

Conclusions 

This study provides new insights into the cognitive and neurobiological underpinnings of age-related response slowing. Our 
findings are consistent with the view that age-related slowing in visual discrimination is primarily driven by the adoption of a more 
conservative response strategy. They suggest that this response shift was driven by the effects of aging on neural structures that 
contribute to decision-making processes rather than by age per se. The fornix as the principal connection between the hippocampal 
formation and anterior decision-making structures was identified as a key predictor of age-related response slowing and the adoption 
of a conservative response strategy. We propose that age-related fornix decline may result in noisier communication of contextual 
information to anterior decision-making regions and hence to a more conservative response strategy. 
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