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One sentence summary: This article describes approaches to study design, resource 55 

access and data analysis in UK Biobank to facilitate health-related research  56 

 57 

Abstract 58 

Population-based prospective studies are valuable for generating and testing hypotheses 59 

about the potential causes of disease. We describe how the approach to UK Biobank’s study 60 

design, data access policy, and statistical analysis can minimise error and improve the 61 

interpretability of research findings, with implications for other studies being established 62 

worldwide. 63 

  64 
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Introduction 65 

Population health research has come a long way in the last few decades, with major advances 66 

in our understanding of the causes of disease. In particular, prospective studies that were 67 

initiated in the 1950s, such as the British Doctors Study (1) and the Framingham Heart Study 68 

(2), have been invaluable for understanding the association between lifestyle factors and 69 

disease risk as they overcome many of the biases inherent in case-control studies (most 70 

notably that exposures (i.e. risk factors for disease) are measured prior to disease onset). 71 

However, until recently, the conclusions that could be drawn from such studies were limited 72 

by small sample size, varying analytical approaches taken to define various risk factors and 73 

the relatively short duration of follow-up time to assess  health outcomes. It was not until data 74 

from these different studies were integrated into large-scale individual-level meta-analyses 75 

that associations of exposures with disease risk were identified robustly. For example, it is 76 

now well established that circulating lipids and blood pressure are causally related to vascular 77 

disease (3), adiposity with cardiovascular disease (4), menopausal hormone therapy use and 78 

alcohol consumption with breast cancer (5, 6) and oral contraceptive use with a reduced risk 79 

of ovarian cancer (7).   80 

More recently, there has been remarkable progress in research on the genetic 81 

determinants of disease. In the early 2000s, the literature was dominated by a plethora of 82 

genetic studies that focused on associations with particular conditions within specific 83 

“candidate” genes that were of a priori interest. Many of these studies involved small numbers 84 

of disease cases and yielded false-positive results that failed to replicate, often because of 85 

undue emphasis on post hoc selective reporting of the more extreme associations that were 86 

observed. Subsequently, improvements in assay technology led to genome-wide association 87 

studies (GWAS) that allowed hypothesis-free identification across the genome of variants 88 

associated with a particular phenotype. Much effort was typically spent on characterising the 89 

phenotype under investigation precisely in the belief that outcome misclassification would 90 



5 
 

have a substantial impact on the ability to detect associations. However, when meta-analyses 91 

of different studies were performed that yielded much larger numbers of individuals with the 92 

outcome of interest (albeit differently defined), small-to-moderate associations between 93 

genetic variants and outcomes began to be identified reproducibly after stringent adjustment 94 

for multiple testing (8).  95 

Even larger sample sizes – of the order of hundreds of thousands of participants – are 96 

needed to study gene-environment interactions, especially where the genetic variant or 97 

environmental exposure of interest is rare or has a small effect on disease risk (9). 98 

Consequently, there is a strategic need to establish large-scale, well-characterised, 99 

population-based prospective cohorts in which biological samples are collected and health 100 

outcomes are followed long-term to facilitate research into the determinants of disease.  101 

UK Biobank combines scale, depth, duration and accessibility 102 

UK Biobank is a population-based prospective cohort of 500,000 men and women designed 103 

to enable research into the genetic, lifestyle and environmental determinants of a wide range 104 

of diseases of middle-to-old age (www.ukbiobank.ac.uk). It was established by the UK Medical 105 

Research Council (MRC) and Wellcome, which continue to fund it along with the British Heart 106 

Foundation (BHF), Cancer Research UK (CR-UK) and National Institute for Health and Care 107 

Research (NIHR). The key design features are its easy accessibility, large-scale prospective 108 

nature, depth and range of risk factor data, and comprehensive linkage to health outcomes, 109 

which together enable academic and industry researchers worldwide to perform discovery 110 

science (Supplementary Table 1).  111 

 UK Biobank was designed to promote innovative science by maximising access to the 112 

data in an equitable and transparent manner. All approved researchers (academic or 113 

commercial) can access all of the de-identified data in order to perform any type of health-114 

related research that is in the public interest. This is the key criterion against which applications 115 

http://www.ukbiobank.ac.uk/
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to access the data are considered, with restrictions only placed on their use for potentially 116 

contentious research (for example, investigations that could lead to racial or sexual 117 

discrimination). Access to biological samples is currently largely restricted to assays that will 118 

be conducted on the whole cohort or large representative samples of the cohort.   119 

Ready access to such a large-scale, in-depth resource has encouraged researchers 120 

from many disciplines across academia and industry to collaborate to ensure that different 121 

types of complex data (e.g., whole-exome and whole-genome sequencing data, magnetic 122 

resonance imaging (MRI) scans, accelerometer wave-form data, and electronic health 123 

records) are generated and analysed appropriately. The ready accessibility of the data at low 124 

cost without requiring collaboration with, or peer review from, the UK Biobank study 125 

investigators has led to an exponential increase in research output. By the end of 2023, there 126 

were more than 30,000 registered researchers (80% from outside the UK) and about 9,000 127 

publications (attracting 270,000 citations), with the number of publications increasing 128 

exponentially each year. In particular, the release to the worldwide research community of 129 

cohort-wide genome-wide genotyping and imputation data in 2017 has been hugely influential 130 

in advancing our understanding of the genetic determinants of disease.   131 

The requirement that researchers publish their findings and make available any 132 

derived variables that have been generated as part of their research, together with the 133 

underlying code that generated the research output, enables the wider scientific community to 134 

critique, modify and build upon the work of others in a transparent manner (10). For example, 135 

research groups with expertise in signal processing have created derived variables related to 136 

the intensity and duration of physical activity from the raw accelerometer data (11, 12). 137 

Similarly, academic and commercial research groups with expertise in image analysis have 138 

made available variables derived from the MRI scans related to body fat distribution (13), fat 139 

and iron content of specific organs (14, 15) and metrics of the structure and function of the 140 

brain (16) and heart (17). In this way, complex data that might otherwise only be of use to 141 
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specialists in a narrow field of research are turned into well-curated derived variables that are 142 

integrated with other UK Biobank data and can be used extensively by non-specialists to 143 

answer a range of research questions.  144 

Easy access to such a wealth of data has led to new ways of presenting results. For example, 145 

summary statistics of all of the associations of individual genetic variants (18, 19) and 146 

polygenic risk scores (20) with a wide range of phenotypes are now available via online 147 

browsers. This move towards the publication of all summary results rather than publication of 148 

particular results in traditional scientific journals (where cherry-picking the most ‘interesting’ 149 

associations may introduce bias) is likely to accelerate scientific discovery and provide easier 150 

replication of associations across different studies. To help democratise access further, UK 151 

Biobank launched a cloud-based Research Analysis Platform in 2021 that allows streamlined 152 

access for researchers worldwide (in particular to the genome sequence data that are too 153 

large to transfer to researchers), as well as free computing and data storage for researchers 154 

from low- and middle-income countries and for early career researchers.  155 

One consequence of researchers with different expertise accessing this wealth of data is the 156 

potential for unfamiliarity with various types of biases that are inherent in prospective studies 157 

that might influence results, as well as with the complexities associated with data that are 158 

outside of their areas of expertise. All researchers accessing biomedical resources to study 159 

the determinants of disease need to be aware of small sample size (that may produce 160 

imprecise estimates due to random error), incomplete or inadequate measurement of risk 161 

factors (that may lead to systematic under-estimation of disease associations), and health 162 

outcomes (that may lead to more imprecise estimates) and their potential confounding factors 163 

(that may obscure or lead to spurious associations between exposures and outcomes). 164 

Insufficient duration of follow-up may also lead to reverse causation bias, whereby the disease 165 

process influences potential risk factors (in particular, non-genetic ones), especially for 166 

conditions with a long prodromal phase, such as Alzheimer’s disease.   167 
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UK Biobank has been set up to help minimise random and systematic error so that it 168 

can support reliable research into the determinants of disease (Supplementary Table 1), 169 

although the general principles of careful study design and appropriate data analysis apply 170 

equally to all large-scale, prospective studies. There are a number of trade-offs that need to 171 

be considered when designing a cohort study, which relate to the size and heterogeneity of 172 

the study population, and to the methods used for its recruitment, data collection and follow-173 

up. UK Biobank has aimed to generate a large-scale, prospective biomedical resource that 174 

includes a wide range of exposure and health outcome measures collected as accurately as 175 

possible, with easy accessibility to the data. However, as with all prospective studies, it is 176 

important to consider, and if possible correct for, potential biases arising from the study design 177 

and collection of data. 178 

The importance of a large-scale prospective design 179 

UK Biobank recruited 502,000 volunteers aged 40-69 years at recruitment between 180 

2006 and 2010 from across England, Wales and Scotland. This age group was selected to 181 

include individuals who were young enough that relatively few would have developed health 182 

conditions at the time of recruitment. As a prospective study, UK Biobank has many 183 

advantages for investigating the effects of genetic, lifestyle and environmental factors on 184 

disease outcomes (21). In particular, information on exposures to potential risk factors can be 185 

assessed before disease develops, which avoids bias caused by differential recall of 186 

information about past exposures depending on an individual’s outcome status (recall bias). 187 

The prospective design also allows investigation of factors that might be affected by disease 188 

processes or their treatment, or by changes in an individual’s behavior following the 189 

development of some condition (reverse causation bias). In addition, it can support studies of 190 

conditions that cannot readily be investigated retrospectively (e.g. fatal illnesses). 191 

Furthermore, by allowing a wide range of different conditions to be studied within the same 192 

study population, the full effects of a particular exposure on all aspects of health can be better 193 
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assessed (e.g. smoking on a wide range of different diseases). Likewise, the effects of many 194 

different exposures on a single disease can be determined, provided that sufficient numbers 195 

of cases have occurred to allow the separate and combined effects of exposures to be 196 

assessed reliably. 197 

Prospective studies need to be large, as only a relatively small proportion of the 198 

participants will develop any given condition during follow-up. The rationale for recruiting 199 

500,000 adults into UK Biobank was that it would enable large numbers of cases of the most 200 

common diseases to develop within a reasonable follow-up period (while also allowing detailed 201 

exposure information to be collected within funding and organisational constraints). For 202 

example, after a median follow-up of 12 years (i.e. by end-2020), linkage to electronic 203 

healthcare record data indicated that there had been at least 30,000 incident cases of 204 

diabetes, 25,000 cases of depression, 15,000 cases of myocardial infarction, and 10,000 205 

cases of breast cancer (Table 1). For the reliable detection of risk ratios of about 1.3 for the 206 

main effects of different exposures (ranging from those that are dichotomous variables to 207 

those that are continuous measures), about 5,000-10,000 incident cases of a particular 208 

disease would be required (22). The need for a large sample size is even more evident when 209 

assessing combined effects. For example, when estimating the joint effect of blood pressure 210 

and age on the risk of coronary heart disease, the standard error of the estimates (and hence 211 

the 95% confidence intervals) are, on average, three times narrower with 500,000 versus 212 

50,000 participants (23). As the UK Biobank participants age, the number of incident cases of 213 

different diseases is increasing substantially, allowing a wider range of outcomes to be 214 

investigated more completely. For example, by 2032 there will be over 50,000 cases of 215 

diabetes and chronic obstructive pulmonary disease. The sheer size of the study also means 216 

that robust research into less common conditions will also be possible. For example, between 217 

2020 and 2027, the number of cases of Alzheimer’s disease, hip fracture and Parkinson’s 218 

disease is expected to more than double to about 17,000, 13,000 and 10,000, respectively 219 

(Table 1).  220 
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Comparing cohort characteristics with that of the wider population 221 

In UK Biobank, the well-defined sampling frame means that it is possible to assess not 222 

just the overall participation rate, but also the extent to which the study population differs from 223 

the wider population from which it was drawn. Postal invitations were sent to 9.2 million 224 

individuals aged 40–69, who were registered with the UK’s National Health Service (NHS) and 225 

lived within a short travelling time (typically about 25 miles) of one of 22 dedicated assessment 226 

centers. The choice of their location was determined by population density, ease of access, 227 

and potential to reach certain types of participants (e.g. ethnic minority groups and those living 228 

in more socio-economically deprived areas). During 2006-2010, 502,000 participants were 229 

recruited (5.5% of those invited). Although the participation rate was low, and those who joined 230 

the study were somewhat healthier and wealthier than the UK population across the same age 231 

range (24), the cohort includes large numbers of individuals across a broad spectrum of risk 232 

factors (i.e. that vary from low to high exposure levels of a wide range of potential risk factors).  233 

It is this heterogeneity across different levels of exposures (e.g., genetic, lifestyle, 234 

sociodemographic and environmental exposures) - and not the relatively low overall 235 

participation rate -  that largely determines the generalisability of the findings to the broader 236 

UK population (25). For example, although individuals from more socio-economic deprived 237 

areas are under-represented in UK Biobank (16% versus 33% in the UK population), there 238 

are sufficiently large numbers of this group (82,000) to enable reliable assessment of the 239 

association of socio-economic deprivation with disease risk. By contrast, although UK Biobank 240 

is reasonably representative of the distribution for different ethnic groups, with 29,000 241 

participants recruited from Black and other ethnic minority groups (which was about the same 242 

proportion, ~5%, as the rest of the UK population at the time) (26), it is insufficient to examine 243 

reliably the differences in exposure-disease associations by ethnicity. Even though UK 244 

Biobank is currently the largest study in the world with whole-genome sequencing data on 245 
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individuals of African and South Asian ancestry (27), the numbers are still relatively small (with 246 

about 10,000 participants in each ethnic group). 247 

Researchers who wish to present simple summary statistics (for example, means or 248 

proportions) using UK Biobank data that are representative of the underlying population could 249 

consider using sampling weights that reflect the population distribution of the variables under 250 

investigation, although such techniques have not been used widely. However, one research 251 

group found that standardisation of the prevalence of lifestyle factors with those derived from 252 

national survey data did not substantially alter the magnitude or direction of the association of 253 

lifestyle factors with mortality from cardiovascular disease or cancer (28). The one notable 254 

exception was an attenuation of the apparent protective association of alcohol with 255 

cardiovascular disease, which has been shown to be likely affected by bias (29).   256 

There are circumstances where lack of representativeness may introduce bias, particularly if 257 

the risk factors of interest are related to study selection (an example of collider bias) (30). For 258 

example, UK Biobank participants are more likely to be non-smokers and to live in more 259 

affluent areas than the general population in the same age range. Given that area-level socio-260 

economic deprivation is moderately inversely correlated both with participation in UK Biobank 261 

and lung cancer, this non-representativeness may attenuate the observed association of 262 

smoking with lung cancer if the effects of smoking and socio-economic deprivation are not 263 

independent or synergistic (31). Likewise, UK Biobank participants were more likely to use 264 

supplements and to have lower incident disease rates than the general population (at least in 265 

the early years of follow-up), leading to an apparent inverse association between glucosamine 266 

supplement usage and mortality (32). Analyses involving genetic variants that cluster by place 267 

of birth also have the potential to yield biased associations if standard variables such as 268 

assessment centre and ancestry-based principal components cannot completely correct for 269 

this latent structure (33). However, for most genetic analyses where confounding from other 270 

risk factors is likely low, selection bias would typically be expected to be modest.  271 
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Consequently, in the interpretation of all research findings – whether they arise from the UK 272 

Biobank study or other prospective studies – it is important to consider the extent to which 273 

they might be affected by selective participation (i.e., selection bias). Given that traditional 274 

methods of identifying and controlling for selection bias (and other types of bias) may not be 275 

adequate, graphical tools such as directed acyclic graphs may provide a useful visual 276 

representation of the underlying assumptions about the relationships between exposures, 277 

potential confounders, mediators, and outcomes, and how they relate to study participation 278 

(34). Sensitivity analyses that include factors correlated with participation (and ongoing 279 

engagement) as covariates in the exposure-disease model can be performed; probability 280 

weighting, simulations and multiple imputation can be used to explore the potential impact of 281 

missing values related to participation on effect estimates (31, 35).  282 

The general consistency of research findings in UK Biobank with those in other studies (36-283 

38) – in particular, studies considered to be representative of the underlying population – 284 

suggest that many of the exposure-disease associations found in UK Biobank are largely 285 

generalizable to other populations. For example, the direction and magnitude of associations 286 

of genetic variants with osteoarthritis in UK Biobank are consistent with the associations 287 

observed in deCODE, which recruited more than half of Iceland’s adult population (39). 288 

Likewise, although the frequency of genetic variants may vary substantially in studies 289 

conducted in different populations (resulting in differing statistical power to detect 290 

associations), the direction and magnitude of genetic associations are typically similar across 291 

populations e.g. the association of specific GPR75 gene variants with obesity in UK, US and 292 

Mexico cohorts (40).  293 

Nonetheless, there may be circumstances in which associations between an exposure and 294 

disease risk varies across different populations. For example, polygenic risk scores developed 295 

and tested in populations of European ancestry often perform less well when applied to African 296 

and South Asian populations, owing to differences in allele frequencies and linkage 297 
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disequilibrium patterns between the ethnic groups (41). As such, other large population 298 

cohorts with biological samples are needed around the world to increase the heterogeneity of 299 

genetic and non-genetic risk factors for disease (42) (Table 2). For example, studies 300 

established in Mexico (150,000 participants) and China (500,000 participants) at about the 301 

same time as UK Biobank have enabled reliable investigation into the association between 302 

the risk of hypertension with body weight above and below the Western norm (43, 44). Large-303 

scale studies established across Europe and China have also taken advantage of the 304 

heterogeneity of dietary and other exposures across different populations (45,46). Genetic 305 

and other assays of stored samples in these studies are extending the range of genomic risk 306 

factors that can now be investigated. New large-scale prospective studies are now established 307 

in the US e.g., All of Us (47) and the Million Veterans Program (48), and are also being 308 

established in Asia and parts of Africa e.g., Non-communicable Diseases Genetic Heritage 309 

Study in Nigeria (49, 50). This  will further increase the ability to assess associations with 310 

disease risk across a broad range of genetic (and non-genetic) factors as long as there is 311 

sufficient duration of follow-up.  312 

Reliable assessment of a wide range of exposures 313 

The inclusion of participants exposed to different levels of risk factors (e.g. ranging from low 314 

to high intake of different dietary factors, smoking, sun exposure, etc.) is of value in assessing 315 

the generalisability of findings, which is enhanced further by analyses across studies 316 

established in different populations. However, all observational studies face challenges of 317 

exposure measurement error, in which risk factors and their potential confounders are 318 

measured imperfectly or incompletely, thereby introducing both random error (when 319 

measurements fluctuate randomly around their true value) and systematic error (when 320 

measurements vary in the extent to which they are higher or lower than their true value).  321 

 As a result, UK Biobank has put significant effort into collecting comprehensive, accurate and 322 

high-quality data for many different types of exposures. Repeated measures have also been 323 
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conducted in subsets of participants to address random error in exposure levels and thereby 324 

be able to correct for regression-dilution bias. However, there is real value in being able to 325 

perform cohort-wide repeat measures that would allow the relevance of individual changes in 326 

exposures over time to be assessed. 327 

Depth and breadth of exposure measurement  328 

In UK Biobank, a wide range of questionnaires and physical devices (e.g. spirometer to 329 

measure lung function, sphygmomanometer to measure blood pressure, bioimpedance device 330 

to measure body composition, dynamometer to measure hand grip strength, etc.) have been 331 

used (Fig. 1) to collect data that are reliable, valid and of high scientific value (26, 51); such 332 

data continue to be collected and extended. During recruitment, UK Biobank used touch-333 

screen and computer-assisted personal interview direct data-entry systems (instead of paper-334 

based approaches that were routinely used at the time in such studies), as well as direct data 335 

transfer from measurement devices. This strategy enhanced data accuracy and completeness 336 

by supporting automated real-time consistency checks and data quality monitoring to identify 337 

and correct errors. Participants were also asked to bring certain information (e.g. medications, 338 

operations, family history, and birth details) to reduce errors associated with memory recall. 339 

However, perhaps the greatest benefit of using a touch-screen data entry model was that it 340 

reduced the time taken to collect data and thereby enabled a greater range of potential risk 341 

factors for disease to be collected. For example, data on sociodemographic factors (income, 342 

education, occupation), ethnicity, family history, lifestyle (diet, alcohol consumption, smoking 343 

history, physical activity, sleep, sun exposure, sexual history), early life factors, psychosocial 344 

factors, medical history, cognition and environmental exposures were all collected via the 345 

touch-screen questionnaire in about fifty minutes. 346 

A wide range of physical measurements were also taken for all 500,000 participants, 347 

comprising blood pressure, anthropometry (sitting and standing height, weight, waist and hip 348 

circumference, and bioimpedance measures), hand grip strength, vision and lung function. 349 
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Blood and urine samples were also collected for long-term storage (Fig. 1). A proportion of the 350 

cohort also underwent a heel ultrasound for bone density, pulse wave velocity of arterial 351 

stiffness, a hearing test (180,000 participants), an eye examination (including refractive index), 352 

intraocular pressure measurements, a retinal photograph and optical coherence tomography 353 

(120,000 participants), a cardio-respiratory fitness test with a 4-lead electrocardiogram (ECG) 354 

(78,000 participants), and collection of a saliva sample (~85,000 participants). Since the 355 

baseline assessment, UK Biobank continues to collect additional data from large subsets of 356 

the cohort. This has included data on physical activity using a 7-day accelerometer (in 100,000 357 

participants, with 2,500 undergoing a repeat assessment), a multi-modal imaging assessment 358 

(in up to 100,000 participants, with 60,000 undergoing a repeat assessment over the next few 359 

years) and a series of web-based questionnaires that cover specific exposures in more depth 360 

(e.g. diet, cognition, occupational history).  361 

 Rigorous approaches have also been taken to sample collection, processing, retrieval and 362 

assay measurement. Prior to the start of UK Biobank, a series of pilot studies were conducted 363 

to determine the optimal method for sample collection and processing (52), followed by the 364 

development of a state-of-the-art robotic system and sample tracking software to ensure 365 

consistency of sample processing. Currently, genomic data (genome-wide genotyping and 366 

imputation, whole-exome and whole-genome sequence data, telomere length), as well as 367 

hematological and biochemical data are available for the whole cohort (Fig. 1). UK Biobank’s 368 

general policy of performing cohort-wide assays supports research into a wide number of 369 

conditions and helps to avoid measurement errors that would otherwise occur with different 370 

assay methods, reagents and equipment in different laboratories used in different subsets of 371 

the cohort at different times. To facilitate quality control, algorithms were developed to retrieve 372 

sample aliquots in a sequence that avoided clustering by recruitment location, date or time of 373 

day (53). Consequently, when assaying samples from participants in this quasi-random order, 374 

the mean biomarker concentration across batches and analysers should be constant, which 375 

allows correction for variation caused by laboratory drift. Throughout the assay process, the 376 
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data are reviewed to identify issues and either address them in real time (e.g., if specific 377 

batches require re-measurement) or make any adjustments retrospectively. For example, 378 

following assay measurements of blood biochemistry markers, these data were corrected for 379 

systematic error caused by unexpected dilution that occurred in some aliquots during sample 380 

processing (53). Moreover, the use of highly efficient assay methods minimises sample 381 

depletion (with currently less than 10% of the baseline blood sample used so far), which will 382 

allow other types of assays (e.g., epigenetics, transcriptomics amd proteomics) to be 383 

conducted on a cohort-wide basis when technological advances make this possible. 384 

The collection of different types of data that describe the same (or highly related) exposures 385 

can also contribute to accuracy. In particular, a more precise assessment performed in a 386 

subset of participants could be used to correct for any random and systematic error inherent 387 

in the less precise baseline measures conducted in the full cohort (54). For example, data 388 

from an accelerometer device worn by 100,000 UK Biobank participants was used to calibrate 389 

self-reported physical activity estimates provided by all 500,000 participants at recruitment 390 

(55). Similarly, data on body fat composition available from dual-energy x-ray absorptiometry 391 

scans (56), which are being collected in up to 100,000 participants attending an imaging 392 

assessment, can be used to calibrate the bio-impedance measures available from the full 393 

cohort. Detailed dietary data from web-based questionnaires collected in over 200,000 394 

participants can also be used to predict food and nutrient intake for the entire cohort, as 395 

demonstrated in other studies (54). 396 

The collection of data on a wide range of measures enables researchers to allow not only for 397 

more complete and accurate measurement of exposures, but also for potential confounders 398 

(extraneous factors that are associated with the exposure and outcome) and mediators 399 

(factors that are on the causal pathway between the exposure and the outcome). This is 400 

important, as random error in exposure measures can cause systematic attenuation of any 401 

true association, whereas random measurement error of confounders can result in an 402 
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apparent exposure-disease association, where none really exists. For example, the observed 403 

inverse association of fruit and vegetable intake with cardiovascular disease risk in UK 404 

Biobank is likely to be due largely to residual confounding by socio-economic factors, which 405 

are difficult to assess and therefore subject to measurement error (57). The ability of UK 406 

Biobank to obtain more detailed information in the future about socio-economic factors (such 407 

as education, occupation and income via linkage to administrative datasets or specific web-408 

based questionnaires) would enable more precise characterisation and, hence, even better 409 

adjustment for these important factors.  410 

Because all epidemiological studies suffer, to a greater or lesser extent, from imperfect 411 

measurement of exposures and their potential confounders, various analytical methods have 412 

been developed to quantify and control for this. Perhaps the simplest approach is the 413 

comparison of likelihood ratio statistics associated with the exposure of interest in the models 414 

before and after adjustment for covariates. Generally speaking, a large proportional reduction 415 

in the likelihood ratio chi-square (LRχ2) test after the addition to the model of covariates is 416 

indicative that the association likely remains affected by residual confounding, as adjustment 417 

for confounders that are perfectly measured would be expected to reduce the χ2 even further 418 

(6). An increasingly popular approach to distinguish the likely causal effect of an exposure 419 

(from that of extraneous confounders) is the use of Mendelian Randomisation – facilitated in 420 

analyses of UK Biobank by the extensive genetic information available on all of the participants 421 

– whereby specific genetic variants are used as proxies for exposures of interest or their 422 

confounders. For example, this approach has provided strong support for a causal role of body 423 

fat mass and interleukin-6 in development of cardiovascular conditions (58, 59). Conversely, 424 

Mendelian Randomisation has not provided support for a protective effect of vitamin D against 425 

COVID-19 (60),  cancer or cardiovascular outcomes (61), although it should be noted that 426 

Mendelian Randomisation analyses may also be affected by bias in some circumstances (62). 427 

When associations of genetic variants with the relevant non-genetic risk factors are weak 428 

(such that Mendelian Randomisation may not be effective), the likely impact of residual 429 
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confounding due to imprecision in measured variables included in the model can be assessed 430 

using other analytical approaches such as probabilistic or multiple-bias analysis (34, 63). The 431 

use of different analytical strategies to triangulate evidence (for example, comparing results 432 

from models that include traditional observational variables with those that use genetic 433 

instrumental variables) will enable researchers to assess different biases and their potential 434 

impact on causal inference in a more robust manner.  435 

Repeated exposure measurements  436 

Random errors in the measurement of risk factors can lead to substantial underestimation of 437 

the strength of their associations with subsequent health outcomes (regression dilution bias) 438 

(64, 65), as well as to substantial residual confounding when measurement error is present in 439 

confounders (66). These biases may be increased further through random error in risk factor 440 

measurements that occur during prolonged follow-up in prospective cohorts. For example, the 441 

true association of blood pressure and cholesterol with cardiovascular disease risk may be 442 

underestimated by about one-third in the first decade of follow-up and up to two-thirds in the 443 

third decade (64). However, despite regression dilution being one of the most important biases 444 

in exposure-disease associations, it is often overlooked in analyses of prospective studies, 445 

including UK Biobank (with some exceptions) (67-70). It is possible to correct for regression 446 

dilution bias by using repeat measures from a relatively small subset of the cohort. UK Biobank 447 

performed a repeat assessment on 20,000 participants in 2012-2013 to allow researchers to 448 

address this issue specifically. Re-measures collected during the imaging assessment of up 449 

to 100,000 UK Biobank participants during 2014-2024 and a repeat assessment of up to 450 

60,000 during 2019-2029 can be used to make appropriate time-dependent corrections for the 451 

effects of regression dilution bias.  452 

In addition to addressing error caused (largely) by random error in baseline risk factors, 453 

repeated measures would also enable correction for systematic intra-individual changes in 454 
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exposures over time, which may lead to either over-estimation or under-estimation of 455 

associations depending on the nature and magnitude of misclassification. For example, 456 

secular trends in the reduction of smoking or exposure to environmental pollutants may lead 457 

to an underestimation of their association with disease risk if solely based on baseline 458 

measures. To help address this issue, UK Biobank is exploring opportunities to collect 459 

information on longitudinal changes in environmental exposures (e.g. from existing data on 460 

changes in participants’ residential location or future data collection using smartphone GPS 461 

tracking) to enable more accurate inferences to be made about how changes in environmental 462 

exposures affect health in the long-term. It is also intended to repeat previous web-based 463 

questionnaires in order to capture longitudinal changes in specific lifestyle factors such as diet 464 

and sleep.  465 

Whereas repeated measures of the baseline assessment are being captured during the 466 

imaging assessments in a subset of the UK Biobank cohort, it would be desirable to perform 467 

a future repeat assessment of a wide range of exposures in as many of the participants as 468 

possible. This would allow investigation of how lifestyle, and physical and biochemical 469 

changes over time influence disease risk and progression, thereby helping to determine the 470 

temporality of associations and their underlying mechanisms. Data collection for as many 471 

surviving participants as possible would also reduce systematic error caused by differential 472 

participation rates that are related to the exposures and outcomes under investigation. UK 473 

Biobank generally has excellent participant engagement with an ongoing series of repeated 474 

web-based questionnaires (with response rates of ˃50%), physical activity monitoring (45% 475 

for the first assessment, of whom 63% also performed a repeat assessment), and imaging 476 

assessments (24% for the first assessment and 65% for a repeat assessment). However, 477 

researchers should be aware that participants who engage in ongoing data collection activities 478 

(including repeat assessments) might not be representative of the cohort as a whole. For 479 

example, genetic variants associated with completing UK Biobank online questionnaires and 480 

activity monitoring are correlated with several metrics of better health (31). Attrition bias has 481 
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been documented in other prospective studies (71-73), suggesting that similar factors affect 482 

ongoing participant engagement in many cohorts, regardless of their design, recruitment 483 

strategy or study population.  484 

Reliable assessment of a wide range of health outcomes 485 

To minimise bias in exposure-disease associations, it is important that health outcomes are 486 

identified in a comprehensive manner and in as much detail as possible. Linkage to routine 487 

electronic health records, supplemented with information from self-reported questionnaires 488 

and other remote methods, and in-person assessments focused on specific outcomes (such 489 

as dementia), will help to deeply characterise health outcomes that are of high priority. The 490 

ability to combine these data from disparate sources to generate ‘off-the-shelf’ outcomes that 491 

can be easily interpreted by non-specialists will further increase the usability and 492 

reproducibility of research using these data.  493 

Comprehensive ascertainment of health outcomes  494 

All cohort studies need a comprehensive and efficient way of following participants’ health 495 

over the long-term to identify a wide range of disease outcomes. Unlike many countries 496 

(including the US and most low-to-middle income countries), the UK’s National Health Service 497 

(NHS) collates and stores electronic health administrative records for clinical care. However, 498 

the data content, format and governance requirements may differ for England, Wales and 499 

Scotland. To identify a wide range of health outcomes over a prolonged period, UK Biobank 500 

has linked to these health administrative records for all participants. This has the advantage 501 

of minimising ascertainment bias and reducing loss-to-follow-up or attrition bias by providing 502 

cohort-wide follow-up information without the need for active participant re-contact, which may 503 

be incomplete. Moreover, the low rate of UK Biobank participants requesting that all of their 504 

data and samples be withdrawn from the study (0.2%; most of which occurred soon after 505 
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recruitment) also minimises systematic bias associated with loss to follow-up from non-506 

random subgroups of the cohort.  507 

To date, UK Biobank has linked NHS healthcare data from centralised national cancer and 508 

death registries and hospital inpatient admissions for all participants. In contrast, primary care 509 

data are not centralised but instead are held by commercial electronic system suppliers under 510 

the control of individual general practices, so it has been more challenging to obtain the 511 

agreements necessary to obtain these data for all participants. Primary care data are currently 512 

available for 45% of the UK Biobank cohort for general research purposes (which represents 513 

complete coverage from one primary care system supplier, up to 2016/2017) and for 80% of 514 

the cohort for COVID-19 research (complete coverage from two system suppliers in England, 515 

up to mid-2021, enabled by emergency legislation to facilitate COVID-19 research). Whereas 516 

both subsets are broadly representative of the cohort with respect to the distribution of potential 517 

exposures, researchers should be encouraged to check these underlying assumptions prior to 518 

analysis. Incorporation of primary care data for all 500,000 participants for all types of health-519 

related research would be of enormous value as it will increase substantially the number of 520 

health outcomes that can be detected (thereby increasing statistical power) and their 521 

diagnostic accuracy (thereby increasing specificity). For example, whereas addition of primary 522 

care data would increase the numbers of myocardial infarction cases identified by less than 523 

5%, the numbers of cases identified of diabetes and chronic obstructive pulmonary disease 524 

(COPD) would increase by about 40% (Fig. 2). Primary care data are also important for 525 

investigating risk factors associated with disease severity, where associations may differ 526 

between milder disease subtypes generally captured in primary care records and more severe 527 

disease captured in hospital admission data.  528 

 Whereas linkage to health records ensures comprehensive coverage, there is the 529 

possibility of “collider bias” if health outcomes are differentially ascertained based on 530 

participant characteristics (e.g., ethnicity), as reported by some researchers in the context of 531 

COVID-19 research (74). However, there are a range of analytical approaches that can be 532 
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used to investigate this type of bias (74-76) and the ascertainment of most health outcomes 533 

are not so strongly influenced by these characteristics.  534 

Specificity of health outcomes 535 

Given that the prospective nature of cohort studies facilitates research into many diseases, 536 

the challenge is not only how to identify probable cases of disease but also to increase the 537 

precision and specificity of those diagnoses. The aim is to avoid a situation where insufficient 538 

data on health outcomes leads to misclassification of cases and non-cases, thereby reducing 539 

statistical power to detect an association. As such, UK Biobank’s aim is to ascertain as many 540 

cases as possible (i.e., to achieve adequate sensitivity) while minimising the number of false-541 

positive cases (i.e., achieving a high positive predictive value). It is worth recognising that it is 542 

not necessary to identify all cases of a disease as false negatives will be diluted by the much 543 

larger number of ‘true’ controls (and so have limited impact). To help identify as many cases 544 

as possible, UK Biobank administers various web-based questionnaires, developed in close 545 

collaboration with relevant experts, to collect data on health outcomes that are incompletely 546 

recorded in health records, such as depression and anxiety (77), and neurodevelopmental 547 

and gastrointestinal conditions.  548 

It is also important to characterise disease subtypes as low biological specificity can limit 549 

interpretation of results. To address this, UK Biobank (78-80) and other open-access 550 

resources (81) have developed a number of algorithmically defined health outcomes based 551 

on inter-operable code lists from electronic healthcare records. Diagnostic codes contained in 552 

these records have also been mapped to a common standard (ICD-10) to facilitate broad-553 

brush research. Whereas these coded health outcomes may be sufficient for most research 554 

purposes, they may lack specificity to identify disease subtypes. This could lead to materially 555 

biased estimates of associations if the determinants of these apparently similar, but 556 

etiologically different, disease subtypes differ. For example, while blood pressure is strongly 557 
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positively associated with the risk of both ischaemic and haemorrhagic stroke (82), the 558 

association of cholesterol and certain genetic variants with stroke differ substantially by 559 

subtype (83, 84) providing clues to the underlying aetiology of this heterogeneous condition. 560 

To increase the specificity of health outcomes beyond the available coded data, UK Biobank 561 

intends to collect detailed data on disease sub-types over the next few years. For example, 562 

this could include disease-specific registers such as the National Diabetes Audit that collects 563 

data on diabetes subtypes, clinical scans to identify stroke sub-types, digitised histopathology 564 

slides to determine tumour morphological subtypes, and in-person assessments to 565 

characterise dementia subtypes.  566 

It is possible to identify some disease sub-types using other data already available in the UK 567 

Biobank resource. For example, biochemistry measures have been used to ascertain chronic 568 

kidney disease (85), MRI scans collected in up to 100,000 participants have been used to 569 

define dilated cardiomyopathy (86) and non-alcoholic fatty liver disease (87), and genetic data 570 

have been used to distinguish diabetes subtypes (88). However, researchers should be aware 571 

of the potential for generating misleading associations where the exposure of interest (e.g. 572 

genetic variants or biochemistry measures) has, in part, been used to define the outcome.  573 

Long duration of follow-up 574 

For any prospective study, a long duration of follow-up (i.e. decades or more) is needed for 575 

sufficiently large numbers of health outcomes to accrue for reliable investigation. It also allows 576 

for the identification of recurring events and factors associated with disease progression. While 577 

the incidence of common health outcomes during the early years of follow-up in UK Biobank 578 

was somewhat lower than in the general population due to the ‘healthy volunteer’ effect, which 579 

is typical of such studies (89), its impact is now reduced as the cohort has aged. With 580 

prolonged follow-up, large numbers of incident cases of a wide range of conditions have 581 

already occurred. Over the next five to ten years there will be thousands of incident cases of 582 
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common outcomes (Table 1), enabling reliable investigation of their genetic, lifestyle and 583 

environmental determinants. 584 

The rationale for recruiting middle-aged participants was to collect risk factor data many years 585 

before the development of any given condition, thereby minimising reverse causation bias. 586 

However, conditions that have a long prodromal phase (e.g. dementia or diabetes) or that can 587 

exist for years before a clinical diagnosis is made (such as prostate cancer) may affect the 588 

levels of risk factors measured at recruitment and create spurious associations. For example, 589 

associations observed between high insulin-like growth factor-I (IGF-I) concentrations and 590 

increased risks of cataract and diabetes were substantially attenuated after excluding the first 591 

five years of follow-up in UK Biobank (90), suggesting that baseline IGF-I concentrations may 592 

be altered as a result of early pathophysiological processes. Other large-scale longitudinal 593 

studies have also shown that apparent inverse associations between lifestyle factors and 594 

dementia risk are also likely to be due to reverse causation bias during the first 10-15 years of 595 

follow-up (91). Consequently, researchers should consider the impact of exclusion of 596 

participants with prevalent disease prior to analysis and perform sensitivity analyses to assess 597 

exposure-disease associations across different periods of follow-up to determine whether the 598 

first years of follow-up should be excluded (92).  599 

Conclusions 600 

The success of UK Biobank has been due, in large part, to the altruism of the 500,000 601 

volunteers, but also the global research community who have been – and continue to be – 602 

involved in expanding the range of exposures and outcomes available for research. Such 603 

enhancements (e.g. sample assays, linkage to specific healthcare datasets and environmental 604 

sources, etc.) help to ensure that the resource fulfils the needs of researchers and remains at 605 

the forefront of scientific discovery.   606 
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UK Biobank’s large-scale prospective design and easy access to a wealth of genetic, 607 

phenotypic and health data provides a powerful resource to help address previously 608 

unanswerable questions of the determinants of incident disease, as well as enabling research 609 

into risk prediction and identification of early biomarkers of disease. Whereas the UK Biobank 610 

study has attempted to minimise random and systematic errors in the measurement of 611 

exposures and outcomes with good study design, researchers need to use the data in ways 612 

that best answer the questions posed, and to be aware of and, where necessary, use 613 

analytical methods to take account of potential biases when interpreting research findings.  614 

Easy accessibility of UK Biobank data and research results (including the underlying analytical 615 

code) is enabling the community to directly peer review research by undertaking replication 616 

analyses, or to apply different methods to the same research question, to confirm or refute the 617 

findings of others. In particular, investigation of approaches used to identify and quantify the 618 

uncertainty of the results based on sensitivity analyses that examine systematic bias, will 619 

provide a level of transparency in the interpretation of findings that has, until now, generally 620 

been under-reported.  621 

Whereas UK Biobank is well suited to address a wide range of health-related research 622 

questions, similar studies in other populations with different ranges of exposures and 623 

outcomes are needed. Taken together, they will enable a greater range of risk factors and 624 

diseases to be analysed and allow for replication of associations, which is essential before 625 

determining the extent to which any specific research findings are generalizable to different 626 

populations. Scientific discoveries benefit from the availability of data from diverse populations 627 

that cover a wide range of the many different genetic, ancestral, ethnic, lifestyle and 628 

environmental factors that may influence risk of a broad range of diseases. 629 

 630 
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Table 1. Cumulative numbers of observed (2020) and predicted incident cases of 

various health conditions  

 

Condition Year of diagnosis 

 Observed1 Predicted 

 2020      2027   2032 

Diabetes 31,000 54,000 70,000 

Myocardial infarction 15,000 30,000 46,000 

Stroke 12,000 25,000 37,000 

COPD 25,000 47,000 65,000 

Depression 25,000 39,000 47,000 

Breast cancer 9,000 14,000 18,000 

Colorectal cancer 5,000 8,000 11,000 

Lung cancer 4,000 6,000 8,000 

Prostate cancer 10,000 16,000 20,000 

Hip fracture 5,000 13,000 22,000 

Rheumatoid arthritis 4,000 6,000 8,000 

Alzheimer’s disease 5,000 17,000 37,000 

Parkinson’s disease 4,000 10,000 14,000 

1 Observed values are based on incident events identified from linkage to records of deaths, hospitalisations, cancers, and 

primary care in the cohort to the end of 2020.
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Table 2. Sampling characteristics of selected general population prospective studies with at least 250,000 participants, containing 

genomic, behavioural and health outcome data1 

Study name  Recruitment 

dates (range) 

Location Sample 

size  

Sex; Age at 

recruitment 

Population from which the 

sample was recruited 

Participation 

rate 

23andMe (www.23andme.com) 2007 - present Global (but 

mainly 

USA) 

6.8M  MF; 13+ Customers of a personal genetics 

company 

not known 

45 and Up (93) 2006 - 2009 Australia 267,000 MF; 45+ New South Wales residents 

enrolled in Medicare, recruited 

through direct invitations 

19% 

All of Us (47) 2018 - present  USA Ongoing. 

Aim: 1M 

MF; 18+ Varied approaches, many of 

which are targeted at 

underrepresented groups via 

direct and indirect means 

not known 

Canadian Partnership for Tomorrow's 

Health (CanPath) (94) 

2008 - present Canada 330,000  MF; 30-74 Residents across Canada 

recruited into 7 regional cohorts 

using varied approaches 

not known 

http://www.23andme.com/
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China Kadoorie Biobank (46) 2004 - 2008 China 510,000 MF; 30-70 Residents of 10 geographically 

defined regions across China, 

recruited through direct invitations 

30% 

European Prospective Investigation into 

Cancer, Chronic Diseases, Nutrition and 

Lifestyle (EPIC) (45) 

1992 - 2000 10 

European 

countries 

520,000 MF; 35-70 Residents from 23 centres located 

in 10 European countries 

recruited through direct invitations 

not known 

Kaiser Permanente Research Bank (95) 2007 – 2013 USA 400,000 MF; 18+ Members of Kaiser Permanente 

health plan recruited through 

direct invitations, in-person 

communication and via website. 

20-50% of 

each areas’ 

insured 

population 

Million Veterans Program (48) 2011 - present USA Ongoing. 

Aim: 1M 

MF; 18+ Members of  the Veterans Health 

Administration System recruited 

through direct invitations and 

indirect (promotional materials) 

methods 

14%  

 

UK Biobank (26) 2006 - 2010 UK 500,000 MF: 40-69 Residents living close to 22 

assessment centres in the UK, 

recruited via direct invitations 

5.5% 

1 The IHCC (https://ihccglobal.org/) has details of other prospective studies of less than 250,000 participants 

https://ihccglobal.org/
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Figure legends 

Fig. 1. Illustration of the types of data collected in UK Biobank, which includes data 

collected at in-person assessments (e.g. lifestyle factors, medical history, blood 

pressure and other physical measures, imaging scans), data from online 

questionnaires, data generated from biological samples and data from electronic 

healthcare records over time 

Fig. 2. The proportion of incident cases (i.e. ascertained since recruitment into the 
study) identified through hospital inpatient admissions, primary care and death data 
for some common exemplar conditions (myocardial infarction, diabetes and chronic 
obstructive pulmonary disease) 
 


