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Monitoring Water Clarity Using Landsat 8 Imagery in

Jiaozhou Bay, China, From 2013 to 2022
Dingfeng Yu , Member, IEEE, Tengda Qi , Lei Yang , Yan Zhou , Chunyan Zhao , and Shunqi Pan

Abstract—Secchi disk depth (SDD) is a crucial indicator for
assessing changes in the water environment. Coastal water trans-
parency varies due to weather, climate, and human activities.
Systematic observations are crucial for assessing water quality
and ecosystem health. This study used Landsat 8 imagery to in-
vestigate the transparency of Jiaozhou Bay (JZB) from 2013 to
2022 and to explore the primary factors influencing transparency
changes. Among natural factors, precipitation plays a dominant
role in transparency changes. After 2019, there was an increase
in rainfall in JZB, which usually leads to reduced transparency.
However, the significant improvement in transparency, attributed
to a sharp reduction in human activities due to the coronavirus
disease 2019, highlights the substantial impact of human activities
on JZBs transparency.

Index Terms—Jiaozhou Bay (JZB), Landsat, offshore waters,
remote sensing, Secchi disk depth (SDD).

I. INTRODUCTION

C
OASTAL waters are vital ecosystems for marine life. They

play a crucial role in safeguarding marine biodiversity

and stability, facilitating transportation and human mobility,
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and supporting regional economic development. However, over

the past few decades, economic development in coastal cities

has placed significant pressure on the water quality of coastal

areas due to human activities, such as industrial operations and

large-scale discharge of urban sewage. Within this ecosystem,

hazardous algal blooms and other dangerous events have become

increasingly frequent, leading to a decline in both the variety and

population of marine species. This has had a profound impact

on the local coastal communities, resulting in economic losses

and ecological disruption. Therefore, thorough, accurate, and

continuous monitoring of such water bodies is of paramount

importance [1].

Transparency is a crucial parameter for assessing water qual-

ity, eutrophication level, and describing the optical properties

of water bodies [2]. It is also closely related to environmen-

tal parameters, such as chlorophyll-a concentration, total sus-

pended solids concentration, colored dissolved organic matter

concentration, sea surface salinity, and sea surface temperature.

Therefore, transparency is a commonly used indicator for the

assessment of marine environmental quality [3], [4].

The traditional method for measuring transparency is the Sec-

chi disk method. However, this method is limited by the measure-

ment range and time costs, which often results in discrete and

sparse measurement data. In contrast, remote sensing techniques

can rapidly and effectively cover large areas to measure the water

transparency. This overcomes the limitations of traditional mea-

surement methods and has become one of the important research

tools for monitoring water transparency [5], [6]. In recent years,

there has been an increasing trend of applying remote sens-

ing methods to study water transparency. For instance, Suffian

et al. [7] utilized moderate-resolution imaging spectroradiome-

ter (MODIS) satellite data to retrieve water clarity on the Eastern

coast of the Malaysian Peninsula and the Malacca Strait and

analyzed the seasonal and interannual variations in water clarity

within this region. Daniel et al. [8] developed a semianalyti-

cal algorithm based on moderate-resolution medium-resolution

imaging spectrometer (MERIS) satellite data and assessed its

performance by utilizing MERIS images obtained over Kasum-

igaura Lake in Japan. Yousef et al. [9] utilized sea-viewing wide

field-of-view sensor (SeaWiFS) and MODIS data to assess water

clarity in Lake Superior, Lake Michigan, and Lake Huron, and

analyzed the interannual variations in water clarity from 1998

to 2012. Zhou et al. [10] conducted a remote sensing retrieval of

water clarity in JZB based on geostationary ocean color imager

(GOCI) data and investigated its diurnal variations. Zhang and

Zeng [11] established a remote sensing retrieval model for water

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/
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clarity in the Taiwan Strait using MODIS satellite data, analyzing

the distribution patterns and variability in water clarity. JZB

is relatively compact in size, but satellites with low spatial

resolution, such as MODIS, MERIS, SeaWiFS, and GOCI, are

incapable of detecting minor variations in water transparency so

that this study is to use the Landsat 8 satellite data with a spatial

resolution of 30 m to examine spatiotemporal fluctuations in

water transparency and their contributing factors in the JZB area,

which is located in the western coast of Bohai Sea.

In general, remote sensing inversion of water transparency

used in these studies adopts the empirical methods [12]. How-

ever, the empirical methods are only applicable to water bodies

with similar optical variable compositions because the algorithm

coefficients depend on the dataset used during algorithm de-

velopment. To overcome the limitations of empirically derived

Secchi disk depth (SDD) inversion, a mechanism algorithm

based on ocean color measurements has been developed. Lee

et al. [13] re-evaluated the classical theoretical explanation

of SDD and introduced a novel underwater visibility model,

which was validated through field measurements in bays, lakes,

and other water body types, demonstrating a strong alignment

between the in situ SDD and the derived SDD. Subsequently,

Lee et al. [14] parameterized the SDD model using Landsat 8

imagery and applied it to the Jiulong River in Fujian Province,

China. The resulting spatial distribution of SDD derived from

the field measurements agreed well with the visual observations.

Therefore, further to the work of Lee et al. [13], a semianalytical

algorithm is developed to extract water transparency data from

Landsat 8 remote sensing imagery of JZB in the period from

2013 to 2022.

II. MATERIALS AND DATA

A. Study Area

Jiaozhou Bay is located on the southern side of the

Shandong Peninsula, with coordinates between 35°38′N to

36°18′N latitude and 120°04′E to 120°23′E longitude. It

is a semienclosed, fan-shaped bay bordered by Tuandao-

tou (36°02′36′′N, 120°16′49′′E) and Xuejiadao Jiaozishi

(36°00′53′′N, 120°17′30′′E) [15]. JZB covers an area of ap-

proximately 390 km2, with an average depth ranging from 6

to 7 m. Most areas within the bay have depths of less than 5 m

[16]. The vicinity of JZB hosts a diverse wetland ecosystem

comprising mangroves, grasslands, and marshes, offering am-

ple habitats for a variety of flora and fauna. In addition, the

bay shelters a wide array of marine biodiversity, encompass-

ing diverse fish, crustaceans, and avian species. As depicted

in Fig. 1(a), the aquatic environment in JZB is affected by

inflowing rivers from the mainland, such as the Licun River,

Yang River, Dagu River, and among others. Meanwhile, human

activities in the vicinity, including industrial emissions, urban

sewage, and overfishing, have exerted a discernible impact on

the ecological equilibrium of the Bay region. To safeguard and

preserve the ecological integrity of JZB, pertinent authorities

have instituted a range of measures, encompassing wetland

conservation, water management, and ecological restoration,

with the aim of ensuring the sustainable development of the

Fig. 1. (a) Locations of JZB and the sampling stations. (b) Water depth in JZB.

bay region. The construction of the JZB cross-sea bridge, which

commenced in 2007, also altered the original hydrodynamic

environment to some extent. JZB, a typical coastal ecosystem in

China, stands out as an excellent research area for monitoring

coastal ecosystem health. Conducting comprehensive research

on the transparency of JZB plays a crucial role in understanding

and assessing the environmental health and ecological dynamics

of the region. A thorough understanding of JZBs transparency

not only reveals the potential impacts of human activities on

the region’s ecological balance but also forms a scientific basis

for developing comprehensive conservation plans. By guiding

the implementation of measures, such as ecological restoration,

water quality management, and wetland conservation in the bay

area, we can better ensure the sustainable development of JZBs

aquatic resources and promote the long-term ecological health of

the region. Therefore, a comprehensive understanding of water

clarity holds undeniable scientific value for maintaining the

ecological balance of JZB and promoting its long-term health.

Moreover, the distribution characteristics of water clarity in JZB

offer valuable insights for marine resource management, port de-

velopment, navigation, aquaculture, environmental protection,

and regional development planning [17].

B. In Situ Data

The in situ SDD data for JZB used in this study were primarily

sourced from shipborne field scientific experiments and fixed

observation stations, as depicted in Fig. 1(a). Shipborne field

scientific experiments were conducted on clear days during
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TABLE I
DETAILS OF SDD MEASURED IN JZB

three voyages: May 16, 2017, October 28, 2022, and November

1, 2022. The Secchi disk method was employed for in situ

transparency measurements. In situ SDD data from fixed obser-

vation stations were obtained from the Shandong JZB Marine

Ecosystem National Field Scientific Observation and Research

Station.1 Eight fixed observation stations contributed to a total of

44 measured transparency data points. Most of the transparency

measurements were conducted in March, June, September, and

December of 2018. Table I presents the temporal distribution of

in situ SDD data.

C. Satellite Data

The Landsat 8 satellite operates on a revisit period of 16

days. The temporal misalignment between effective satellite

image acquisition and in situ data sampling is a notable con-

cern. Nonetheless, He et al. [18] assert that employing in situ

data collected within a seven-day window around the time of

satellite image acquisition is a viable practice. Olmanson et al.

[19] contend that the increase in the time gap between field

data sampling and satellite imagery has a minimal impact on

the correlation between the inversion results and in situ data.

Consequently, to ensure both the effectiveness and accuracy of

the algorithm model, we opted for a dataset with seven days

interval for assessing its performance. Considering the field data

collection dates, as listed in Table I, alongside the acquisition

times of Landsat 8 satellite images, it was determined that 33

observation stations met the criteria on May 16, 2017, March 9,

2018, June 13, 2018, and October 28, 2022. After excluding

observation points beyond the study area, 22 datasets were

chosen for the analysis of the algorithm’s performance.

The Landsat satellite series has consistently monitored Earth

for over half a century, capturing millions of invaluable images

with the instruments onboard. These resources are instrumental

for global change research and find applications in diverse fields,

such as agriculture, cartography, forestry, regional planning,

1[Online]. Available: http://jzb.cern.ac.cn/

TABLE II
LIST OF LANDSAT 8 IMAGES ANALYZED

surveillance, and education [20]. The Landsat 8 data used

in this study were sourced from the official USGS website

(http://www.usgs.gov/), with all images encompassing the JZB

from 2013 to 2022 being downloaded. Images with a cloud cover

exceeding 80% were excluded, leaving 91 images for subsequent

spatiotemporal change analysis (see Table II). The primary pre-

processing steps for Landsat data include radiometric calibration

and atmospheric correction. In this study, atmospheric correction

was executed using the fast line-of-sight atmospheric analysis of

the spectral hypercubes radiative transfer model, which is based

on MODTRAN5.

D. Meteorological and Hydrological Data

Meteorological and hydrological data for this study were

obtained from the Jiaozhou Bay National Marine Ecosystem

Research Station2, including monthly precipitation, average 10-

min wind speed, and air temperature. Runoff data, covering

the annual average rainfall from 2013 to 2022 for the Nancun

Hydrological Station in the Dagu River, were acquired from the

Qingdao Hydrological Bureau.3 Water depth data were extracted

from 15 arc-sec resolution DEM data (ETOP 2022) provided by

the U.S. National Center for Environmental Information4, which

offered the bathymetry of JZB and the water depth in JZB is

shown in Fig. 1(b).

III. METHODOLOGY

A. SDD Inversion Algorithm

In 2015, Lee et al. [13] refined the classical underwater

visibility theory and introduced a novel theoretical model for

inversely estimating transparency. This model solely relies on

the minimum diffuse attenuation coefficient (Kd) within the

visible light wavelength range and has been validated using

datasets from bays, lakes, and other aquatic environments. The

results exhibit a close correlation with field-measured data, with

a determination coefficient (R2) of 0.96. The model is expressed

2[Online]. Available: http://jzb.cern.ac.cn/
3[Online]. Available: http://qdswj.sdwr.org.cn/
4[Online]. Available: https://www.ncei.noaa.gov/
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as follows:

ZSD =
1

2.5Min(Ktr

d
)
ln

(

|0.14− Rtr
rs |

0.013

)

. (1)

In (1), Ktr

d
represents the minimum diffuse attenuation co-

efficient of the water within the visible light spectrum (400–

700 nm), and R
tr
rs denotes the corresponding remote sensing

reflectance in this wavelength range. The formula yields an R2

value of 0.803, a mean relative error of 13.2%, and a root-

mean-square error of 0.209 m. The Landsat 8 satellite utilizes

wavelengths at 443, 481, 554, and 656 nm. Lee et al. estimated

the diffuse attenuation coefficient at 530 nm using an empirical

algorithm to bridge the broad spectral gap between 481 and

554 nm.

B. Trend Analysis

This study employed the Mann–Kendall (MK) and Sen’s slope

(Sen) methods to assess the spatial distribution and temporal

changes in transparency. These methods are commonly used in

long-term time-series analysis in hydrometeorological studies.

MK, a nonparametric statistical test, is well suited for analyzing

trends in hydrological characteristics. Sen, on the other hand, is

a statistical method used to estimate trends in datasets. It can

mitigate the impact of data deletion and outliers on statistical

results by constructing order sequences based on varying sample

lengths, thus enabling the identification of trends and degrees of

change in time series. Sen and MK were leveraged in this study

to examine annual variations in transparency, providing corre-

sponding transparency trend analysis results for the respective

time periods.

C. Empirical Orthogonal Function (EOF) Decomposition

Lorenz introduced the EOF to meteorological and climatic

research, which has since found extensive applications in various

disciplines, including geoscience and environmental science

[21], [22].

In this study, the covariance matrix method was used to

conduct EOF decomposition on monthly mean SDD from JZB.

To address the challenge posed by an abundance of pixel data

in Landsat 8 images of JZB, a spatiotemporal transformation

technique was implemented. This technique prevented an undue

escalation of the covariance matrix order. Finally, the North test

was utilized to evaluate the physical meaningfulness of the EOF

analysis outcomes.

IV. RESULTS

A. Validation

After preprocessing Landsat 8 imagery, the Lee_2015 model

[14] was used to estimate SDD values. As shown in Table III,

the statistics and comparison of in situ data and inversion data

were conducted. Statistical analysis (p-value < 0.01, R2 = 0.78)

in Fig. 2 revealed a significant correlation between the estimated

SDD values and the measured data. The inversion results ob-

tained with the Lee_2015 model for Landsat 8 were linearly

corrected using the measured data, yielding a slope of 0.715,

TABLE III
COMPARISON OF STATISTICAL INFORMATION BETWEEN IN SITU DATA AND

INVERSION DATA

Fig. 2. Contrast results between the measured values and in situ values for
SDD.

Fig. 3. Annual mean SDD distribution from 2013 to 2022.

intercept of 0.29, and RMSE of 0.305 m. These results demon-

strate the model’s high precision, making it suitable for SDD

retrieval in the study area.

B. SDD Interannual Distribution

Fig. 3 shows a trend of higher transparency in the south-

east JZB and lower transparency in the northwest JZB. This

trend corresponds with the depth distribution of the water [see

Fig. 1(b)], which gradually increases from the northwest to the

southeast and southern parts. The transparency in JZB is directly
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Fig. 4. Annual mean SDD changes from 2013 to 2022.

Fig. 5. Change of SDD from 2013 to 2022. (a) Sen. (b) MKZ.

proportional to water depth. In the northwest part of JZB, the

seawater is relatively shallow and influenced significantly by

rivers, such as Dagu River and Yang River, as well as tides,

resulting in lower transparency. Using the JZB bridge as a

dividing line, the transparency in the northern area generally

does not exceed 2 m, while in the southern area, it is often greater

than 2 m. This spatial distribution is consistent with the findings

of Yin et al. [23].

Fig. 4 displays the trend in annual mean SDD in JZB from

2013 to 2022. Over the course of ten years, there is a clear

upward trend in SDD, with annual mean values ranging from

1.59 to 1.99 m. In 2013, the annual mean SDD was the lowest at

1.59 m, and in 2021, it reached the highest at 1.99 m. The years

2019 and 2020 are clearly seen the largest variation in annual

mean SDD, with an increase of 0.2 m.

C. Interannual Trends in SDD

To assess the spatiotemporal trends in SDD in JZB, Sen’s

slope was employed to calculate the slope of the data series,

representing the degree of variation in transparency values over

time. Simultaneously, the MK test was used to assess temporal

changes and the significance of the trend. Fig. 5 presents the

Fig. 6. Monthly mean SDD distribution from 2013 to 2022.

analysis of Sen’s slope estimates for SDD in JZB from 2013

to 2022, along with MK test results. The results indicate that,

except for areas near Dagu River and Baisha River, which

show a decreasing trend, changes are not significant. Some

areas along the northwest coast exhibit a slight increasing trend,

possibly due to tidal influences. In other regions, there has

been a mild upward trend over the past decade. Notably, the

most pronounced increase in transparency is observed in the

southwest area (Qingdao Qianwan Bonded Port Zone). This

could be attributed to the establishment of the Qingdao Qianwan

Bonded Port Zone, approved by the State Council on September

7, 2008. In early 2013, the Qingdao Municipal Party Committee

and Municipal Government expanded the planned development

area of the Bonded Port Zone to 65.73 km2. Initially, extensive

shoreline reclamation during construction led to changes in sea

area, sedimentation, and siltation. However, as construction was

completed, there was a noticeable improvement in transparency

in the corresponding area.

D. SDD Intermonth Distribution

Statistical analysis of multiyear monthly mean SDD changes,

as shown in Figs. 6 and 7, indicates that the lowest monthly

mean SDD occurs in June at 1.39 m, while the highest is

observed in September at 2.3 m, while in September, it peaks at

2.3 m. Transparency consistently exhibits higher values in the

southeast and lower values in the northwest, irrespective of the

month. The transparency of JZB exhibits significant seasonal

variations. Fig. 8 depicts the seasonal mean variations in SDD

in JZB from 2013 to 2022. SDD reaches its lowest point during

summer, with an average of only 1.49 m. In spring, there is a

significant increase in water transparency, reaching a mean of

1.88 m. Winter exhibits the highest water transparency among

all seasons, with an average of 2.2 m, while autumn’s water

transparency averages 1.9 m, generally lower than that of winter.

E. EOF Analysis of Intermonth Changes in SDD

Table IV presents the contribution rates of the first two char-

acteristic vectors obtained from EOF decomposition and their
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Fig. 7. Seasonal mean SDD distribution from 2013 to 2022.

Fig. 8. Monthly mean SDD changes from 2013 to 2022.

TABLE IV
COEFFICIENT OF TIME AND ITS CORRELATION WITH INFLUENCING FACTORS

correlation coefficients with natural factors. Principal modes

are derived through EOF decomposition, and further analysis

is conducted on the spatial distribution, time-series amplitude,

and major influencing factors of each principal mode. Each

mode reflects variations in the original variable field, and the

importance of a mode is determined by the size of its eigenvalue.

The larger the eigenvalue, the more important the corresponding

mode, indicating a higher contribution to total variance. The

spatial distribution and temporal amplitude of each mode jointly

Fig. 9. Spatial distribution of EOF modes.

Fig. 10. Interannual changes of EOF modes.

determine the increase or decrease in pixel values. One influenc-

ing factor can appear in several major modes, and one mode may

be related to multiple factors.

Fig. 9 displays the spatial distribution of the first two modes

obtained from EOF decomposition, while Fig. 10 displays their

corresponding time-series amplitude plots. The first mode, con-

tributing 72.01% of the total variance, significantly influences

overall transparency changes in JZB. Most regions exhibit

positive spatial coefficients, indicating consistent transparency

changes across JZB. The spatial coefficients gradually increase

from the coastal areas to the JZB bridge area and then decrease

toward the bay’s mouth region. Except for the entrance area of

the Dagu River, the JZB bridge area exhibits the greatest varia-

tion, indicating the highest variability in transparency values in

this region, while other regions show relatively less change. The

corresponding time amplitudes exhibit distinct seasonal cyclic

characteristics: amplitudes are negative from April to August,

suggesting that during this period, transparency in most areas is

lower than the monthly average. Conversely, for other months,
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time amplitudes are positive, indicating higher transparency than

the monthly average. Given that water’s optical components

and temperature show seasonal cyclic characteristics, it can be

inferred that they strongly correlate with this mode.

The second mode accounts for 10.14% of the total variance.

Spatially, the northern part of JZB exhibits positive spatial

coefficients, while the southern part shows negative coefficients,

indicating a north–south difference in transparency. When trans-

parency increases in the north, it decreases in the south, and

vice-versa. Temporally, the coefficients show significant sea-

sonal variations, with positive amplitudes in summer and winter,

and negative amplitudes in spring and autumn. This suggests

that transparency values increase in summer and winter, while

they decrease in spring and autumn. Summer contributes most

to this spatial pattern, with other seasons contributing less. The

seasonal amplitude differences may be due to the influence of

runoff and wind speed in the northern part of JZB, leading to

suspended sediment. In contrast, in the southern part, water mass

exchange at the mouth of JZB and the construction of the JZB

bridge significantly impact areas near the bridge’s north and

south sides. However, most areas in the southern part of JZB are

less affected, resulting in north–south differences [24].

V. DISCUSSION

A. Natural Factors

The Dagu River, one of the major rivers flowing into JZB,

boasts the largest basin coverage, making up 82% of the total

basin area of all rivers entering the bay [25]. Its primary water

source is precipitation, making it a typical rainfall-fed river.

Research indicates a negative correlation between SDD and the

river water’s flow and velocity. This correlation primarily stems

from the fact that a greater flow enhances the erosive capabilities

of the water flow, leading to increased sediment transportation

and higher suspended particle content within the basin, thereby

reducing transparency [26]. The runoff data utilized in this

study comprise monthly data from the Nancun Hydrological

Station spanning from 2013 to 2022. The distribution of annual

water discharge in the Dagu River’s main stream is notably

uneven throughout the year. Water discharge at the Nancun

Hydrological Station is predominantly concentrated during the

flood season (June to September), accounting for approximately

94.8% of the annual water discharge. In contrast, water discharge

from October to December is relatively minimal, making up

about 3.2% of the annual water discharge; from January to

May, it is at its lowest, accounting for approximately 2.0% of

the annual water discharge. As can be inferred from Fig. 11,

there exists a negative correlation between precipitation and

transparency.

From 2013 to 2022, transparency data for JZB, along with

monthly precipitation, wind speed, and temperature data, were

monthly averaged and subjected to comparative analysis for each

of the 12 months. As depicted in Fig. 12, JZB experiences the

highest rainfall and temperature during the summer season. This

leads to increased runoff from inflowing rivers, such as Dagu

River, Baisha River, Yang River, and Licun River, which carry

sediment into JZB. This leads to increased suspended particles

Fig. 11. Correlation between the annual mean SDD in JZB and the annual
mean precipitation values at the Nancun hydrological station from 2013 to 2022.

Fig. 12. Correlation between the monthly mean SDD and the monthly mean
values of precipitation, wind speed, and temperature in JZB from 2013 to 2022.

in the water and a subsequent decrease in transparency. Stronger

winds lead to a higher concentration of suspended sediment

in the water, particularly in shallow areas, resulting in reduced

transparency.

To identify the primary environmental factors influencing

monthly SDD variation, Table IV displays correlation coeffi-

cients between the time coefficients in the first and second modes

and environmental factors. The first mode shows a significant

negative correlation with wind speed, precipitation, and tem-

perature. The highest correlation coefficient is observed with

precipitation (r = −0.653), while temperature (r = −0.528)

and wind speed (r=−0.413) show relatively smaller correlation

coefficients. This suggests that SDD is primarily influenced by

precipitation, while temperature and wind speed act as covari-

ates. The time coefficient in the second mode shows the highest

correlation with wind speed, albeit weaker.

Vegetation plays a crucial role in the conservation of water

resources, maintenance of soil integrity, reduction of river sedi-

ment content, and moderation of runoff variability. These factors

indirectly influence the SDD in JZB. This study utilizes the

kernel normalized difference vegetation index to estimate frac-

tional vegetation cover (FVC) within the JZB basin [27]. FVC

distribution within JZB was analyzed based on the classification

of FVC [28], revealing a low level of vegetation coverage in the



YU et al.: MONITORING WATER CLARITY USING LANDSAT 8 IMAGERY IN JIAOZHOU BAY, CHINA, FROM 2013 TO 2022 1945

Fig. 13. Distribution of FVC in the areas adjacent to JZB in 2019.

JZB basin. Fig. 13 shows the distribution of FVC in the areas

adjacent to JZB in 2019. To eliminate the impact of COVID-19

on SDD, we conducted an analysis comparing the annual average

vegetation coverage percentage in the JZB basin from 2013 to

2019. The highest correlation (r = −0.94 and p = 0.0012) was

observed between SDD and the sum of low and relatively low

vegetation coverage.

B. Human Factors

Human activities in JZB primarily consist of aquaculture,

marine transportation, port facility construction, and coastal

development. The COVID-19 imposed restrictions on many hu-

man activities, providing the ocean with a period of respite. It has

had a significant impact on not only maritime industries, tourism,

and fisheries but also the marine ecological environment. Some

of these impacts have been positive. Research indicates that

during the initial outbreak of the pandemic, the reduction in

shipping and fisheries activities, as well as the decline in coastal

tourism, improved the marine ecological environment to some

extent. Human activities along the coast of JZB and within

the bay itself have also decreased sharply, directly affecting its

ecological environment. While the reduction in human activities

has greatly enhanced the marine ecological environment, there

are also some harmful and irreversible impacts.

Fig. 14(a) illustrates that the COVID-19 has led to the usage of

billions of masks worldwide each year, a substantial amount of

plastic pollutants are discharged into the ocean, inflicting dam-

age on the marine environment, particularly coastal ecosystems

[29]. Statistics reveal that Asia and Europe collectively use ap-

proximately 350 billion masks annually, resulting in over 25 000

tons of plastic waste, including medical waste and personal

protective equipment, being discharged into the ocean. This has

emerged as a significant source of microplastic pollution. These

pollutants, along with potential pharmaceutical residues, pose a

considerable threat to nearshore ecosystems [30]. Fig. 11 shows

that the annual mean transparency in JZB experienced its most

Fig. 14. (a) Medical waste in JZB. (b) Enteromorpha in JZB. (c) Oil spill from
a cargo ship in JZB.

Fig. 15. (a) SDD distribution of JZB on July 2, 2016. (b) False-color satellite
image of JZB on July 2, 2016.

significant increase from 2019 to 2020. However, over time, the

rate of transparency growth decreased, and by 2022, the annual

mean transparency in JZB began to exhibit a declining trend.

This trend could be attributed to the gradual stabilization of

the pandemic, leading to regional policy changes that resulted

in increased human activities. In addition, in 2022, the annual

rainfall was relatively high compared to previous years, and

another contributing factor could be the discharge of medical

waste. The combined effects of these factors have significantly

affected SDD.

COVID-19 caused the overall changes in the transparency

of Jiaozhou Bay, while the outbreak of enteromorpha prolifera

and ship transportation led to local changes in transparency. The

outbreak of enteromorpha prolifera along the coast of northern

Jiangsu drifted to JZB under the influence of the southeast mon-

soon and the current from south to north, leading to the outbreak

of enteromorpha prolifera in JZB in summer [see Fig. 14(b)], and

the SDD decreased linearly and areally in a short period [31].

Fig. 15 presents a false-color remote sensing image alongside

the results of transparency inversion for JZB on July 2, 2016.

It is apparent that the presence of drifting algae has led to a
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Fig. 16. Qingdao municipal government policy timeline from 2013 to 2022.

systematic and localized reduction in transparency. Fig. 14(c)

shows that pollutants, such as ship fuel, were emitted during

ship navigation, raising suspended substances, such as sediments

in the water, thereby affecting changes in SDD [32]. Ships in

JZB mainly include fishing boats and cargo ships. However, the

cargo throughput of Qingdao Port was minimally affected by

COVID-19 and showed a growing trend year-by-year. Therefore,

marine transportation had a small impact on the annual mean

transparency change in JZB.

Moreover, the Qingdao Municipal Government has managed

JZB through the implementation of various policies. As depicted

in Fig. 16, the “Comprehensive Treatment Plan for the Pollution

in the JZB Basin for 2013–2015,” formulated by the Qingdao

Municipal Government in 2013 and the “JZB Protection Control

Line of Qingdao” approved by the 15th People’s Congress

Standing Committee of Qingdao have contributed to improving

JZBs SDD. The enforcement of the “Regulations on the Protec-

tion of JZB of Qingdao” in 2014 and the “Notice on the Cleaning

and Rectification of Fisheries and Aquaculture Facilities in JZB

Sea Area” in 2015 further enhanced this transparency. However,

with the 40th anniversary of reform and opening-up in 2016, and

following the State Council’s approval of the “Overall Urban

Planning of Qingdao,” improvements in urban infrastructure,

development of marine economy and emerging industries, and

construction of the West Coast New Area have somewhat re-

duced JZBs transparency. In 2018, comprehensive treatment

projects for rivers, such as Licun River, Yang River, and Yuejin

River, were initiated by the Qingdao Municipal Government,

leading to an improvement in transparency. In June 2019, the

“Work Plan for Winning the Battle of Pollution Prevention

and Control in JZB and Its Coastal Waters” was issued by the

Qingdao Municipal Government. Coupled with the outbreak

of the COVID-19 at the end of 2019, there was a significant

improvement in transparency. From 2020 onward, epidemic

prevention and control became a top priority for the government

while strictly enforcing the “Regulations on the Protection of

JZB of Qingdao,” effectively strengthening JZBs protection and

restoration along with its inflowing rivers.

VI. CONCLUSION

Landsat 8 imagery from 2013 to 2022 was utilized to examine

the spatiotemporal distribution characteristics of SDD in JZB

over the past decade. The transparency dynamics within the

study area were investigated using the Sen, MK, and EOF

methods, and the impact of FVC and policies in the JZB basin

on transparency was explored for the first time.

The quasi-analysis algorithm was utilized to achieve Land-

sat 8 satellite remote sensing monitoring of the SDD in JZB.

The results indicated that the remotely sensed SDD is in good

agreement with the measured SDD, with an MRE of 16% and

an RMSE of 0.305 m. The spectral band configuration of the

Landsat 8 satellite allowed for a relatively accurate estimation

of JZBs transparency.

The spatial distribution pattern of transparency in JZB showed

a characteristic of higher transparency in the southeast and lower

transparency in the northwest. The distribution of transparency

in the shallower waters of the western and northern areas formed

a textured pattern influenced by tides. Overall, the distribution

trend remained stable. Simultaneously, with the completion of

the JZB bridge, there was a significant impact on water exchange

in the northern part of the bay, leading to north–south differences

in transparency.

The temporal distribution pattern of transparency in JZB

exhibited fluctuations between 2013 and 2019, with minimal

changes. Transparency showed an initial increase followed by

a decrease from 2019 to 2022. In 2013, the mean transparency

was at its lowest at 1.59 m, while in 2021, it reached its highest

at 1.99 m. The period from 2019 to 2021 saw the greatest annual

variation in transparency, with an increase of 0.32 m. Seasonal

changes in transparency showed a pattern of initial decrease,

followed by an increase, with summer having the lowest values,

spring higher than summer, winter being the highest, and autumn

following.

Natural factors, such as temperature, precipitation, and wind

speed, significantly influenced the monthly variation in trans-

parency in JZB, exhibiting a notable negative correlation. The

combined effect of low and relatively low vegetation coverage

has the greatest influence on the annual transparency of JZB.

COVID-19 significantly reduced human activities, leading to

the highest increase in transparency from 2019 to 2020. As the

epidemic gradually stabilized from 2021 to 2022 and human ac-

tivities resumed—including the disposal of medical waste—the

rate of increase in transparency decreased. In 2022, transparency

began to decrease, and the increase in annual rainfall more

fully reflected the significant impact of human activities on the

annual variation in JZB’s transparency. Over the past decade,

various policies enacted by the Qingdao Municipal Government

have partially mitigated ecological damage and enhanced water

transparency in JZB.
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