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Telehealthcare systems are nowadays becoming a massive daily helping kit for elderly and disabled 
people. By using the Kinect sensors, remote monitoring has become easy. Also, the sensors’ data are 
useful for the further improvement of the device. In this paper, we have discussed our newly developed 
“Eldo-care” system. This system is designed for the assessment and management of diverse neurological 
illnesses. The telemedical system is developed to monitor the psycho-neurological condition. People 
with disabilities and the elderly frequently experience access issues to essential services. Researchers 
today are concentrating on rehabilitative technologies based on human-computer interfaces that are 
closer to social-emotional intelligence. The goal of the study is to help old and disabled persons with 
cognitive rehabilitation using machine learning techniques. Human brain activity is observed using 
electroencephalograms, while user movement is tracked using Kinect sensors. Chebyshev filter is used 
for feature extraction and noise reduction. Utilizing the autoencoder technique, categorization is carried 
out by a Convolutional neural network with an accuracy of 95% and higher based on transfer learning. 
A better quality of life for older and disabled persons will be attained through the application of the 
suggested system in real time. The proposed device is attached to the subject under monitoring.

© 2023 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

The number of elderly and disabled persons is rising daily in 
this period [1]. Many conditions, including amyotrophic lateral 
sclerosis, disabled, and older people, make it difficult for people 
to carry out simple daily tasks [2]. Scientists have attempted to 
solve the issue of the elderly and disabled people in their ev-
eryday routines by integrating some of the latest communication 
technologies associated with human brains as support of smart 
homes. A brain-computer interface (BCI) is a method that trans-
forms brain movement into a numeral form that may be applied 
to read a user’s thinking and carry out the intended task without 
requiring the user to move any bodily parts. Researchers are inter-
ested in the field of cognitive rehabilitation because of the rising 
population, the lack of qualified therapists, the expanding scientific 
potential, and the need for new technologies [3]. It is challenging 
for an older and disabled person to get by daily because of physical 
and mental health issues. According to a study conducted in China, 
more than 9% of the population was over 65 in 2015, and it is pre-
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dicted that this number will rise to 20% between 2017 and 2037 
[4]. According to a survey conducted in India, 8.4% of adults over 
60 had cognitive impairment in the year 2020 [5]. Cognitive reha-
bilitation is a group of interventions designed to treat disabilities 
and enable people to carry out previously learned tasks. The termi-
nology “neurorehabilitation” was first used in the modern world, 
and it is now widely utilized in clinical practice instruments for 
rehabilitation treatment [6]. This technique uses brain-computer 
interaction to deliver real-time data while monitoring brain ac-
tivity by implanting electrodes on the scalp of the subject (BCI) 
[7–9]. EEG is a simple wearable device. The face, voice, finger, iris, 
and gesture are among the characteristics that the Kinect sensor 
detects and identifies [10]. For early-stage disability detection and 
subsequent rehabilitation, Kinect sensors efficiently separate hu-
man skeletal data from gesture and posture patterns [11].

To accumulate data from the brain and gestures, the proposed 
work combines hybrid sensors based on EEG and Kinect sensors. 
A Chebyshev filter is also employed to filter out noise. The next 
step is a learning-based convolution neural network for classifica-
tion, which is followed by a feature extraction and feature selec-
tion auto-encoder. The proposed technique is especially beneficial 
for helping the elderly and disabled with their cognitive rehabili-
tation.
ess article under the CC BY-NC-ND license (http://
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1.1. Motivation

The elderly and those with disabilities were selected for the 
proposed scheme for the following reasons:

i) A neurological illness is one in which the symptoms frequently 
affect how the brain processes feelings and emotions.

ii) The therapy for the handicapped is being processed as soon as 
possible.

iii) Rehabilitation is severely constrained by the current system.

1.2. The originality of the suggested remedy and contribution

Comparing the suggested system to conventional approaches 
[12], numerous obstacles have been solved. The suggested ap-
proach will be used in the medical field. The suggested system 
offers the following benefits: The following describes the planned 
work’s innovation and the current system’s contribution:

i) To extract features from EEG and Kinect data more efficiently 
than with conventional approaches, the suggested work uses 
an autoencoder [12].

ii) Transfer learning is used to categorize disability since it im-
proves upon existing methods in terms of performance.

iii) The feature extractor and classifier that combined autoencoder 
and transfer learning outperformed the techniques described 
in the recent literature.

The suggested approach makes healthcare more accessible to peo-
ple with limited mobility, hence the proposed work will be ap-
plied to autonomous electronic healthcare. People living in smart 
cities and rural areas will benefit from the present planned system 
in other ways, such as reduced pathogen exposure, lower overall 
medical costs, and ease of use.

The other sections of the study are segment 2 for the review 
of works, segment 3 for a planned experiment, segment 4 for a 
discussion of the results, and section 5 for a conclusion and sug-
gestions for future research.

2. Literature survey

The rehabilitation workouts using Kinect expertise have re-
mained us about the health-care motivational determinants for 
elderly persons as AAL research has grown and reinforced [13]. We 
may discover similar works in the rehabilitation sector as “MIRA” 
[14], a medical therapy device that attempts to help the patient’s 
physical convalescence procedure, for example, for arm rehabili-
tation, to reduce the hazard of falls, over elder people’s exercise 
games. This function includes managing patients, physicians, and 
physical therapists, and it keeps patient files and statistical infor-
mation gleaned from rehab sessions using the 3D Kinect game. 
“GameUp” [15] for balance, flexibility, and leg strength is another 
such suggestion. This project combines seven mini-games into 
three distinct training levels that may be completed while stand-
ing, walking, and sitting, allowing affordance modifications based 
on the particular player’s balance prowess. The problem discovered 
was that using Kinect makes you tired because the game required 
you to stand on one foot and raise your arms above your head. Ad-
ditionally, 3D games are employed similarly for the rehabilitation 
of neuropsychiatric illnesses. The game is managed automatically 
by a multiagent system [16], minimizing the requirement for hu-
man participation to oversee the execution of software activities.

Another study [17] uses Kinect techniques and a low-cost in-
ertial measurement unit to analyze the motions in the upper limb 
and enhance body coordination. The literature on gesture detection 
has described a variety of methods for identifying human body 
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movements using video cameras over the years. From the psycho-
logical standpoint of how people recognize and use gestures to the 
kinesiology viewpoint of how gestures function mechanically, the 
computer graphics were focused on how to characterize high-level 
tasks and spatial interactions for human models. At this time, the 
greatest solution for improving identification is a 3D camera i.e., 
Microsoft Kinect [18]. Additionally, this sensor includes a Green, 
Red, and Blue camera, a four-microphone array, and a depth sen-
sor allowing for the processing of full-body 3D motion capture as 
well as the recognition of human faces and voices. The 25 body 
joints are calculated in 3D space by the Kinect sensor using skele-
tal tracking. Codifying all the procedures from the raw sensor data 
is required to identify a basic gesture. A collection of characteristics 
and thresholds on joint location are used in the rule-based tech-
nique to track motions [16]. Based on this framework method, it is 
feasible to design a set of rules that specify the motions to recog-
nize at a high level of abstraction. One such framework is FAAST 
[16], which enables full-body natural interaction to control arbi-
trarily programmed by adjusting gesture sensibility via threshold 
values and mapping these gestures to key and mouse events.

Another example is FUBI [19], which allows you to specify a 
set of motions by setting more specific choices in a specification 
language based on XML. Unfortunately, these frameworks don’t 
take into account variations in user heights and positions inside 
the Kinect recognition field, as well as in user movement speeds 
and skill levels. Additionally, the detection of complicated gestures 
turns into a categorization issue. In this situation, supervised ma-
chine learning algorithms are used to convey information about 
the issue by classifying or labeling a gesture. This is why every 
gesture is tagged to create a classifier that uses training sets of the 
gestures and assesses how similar a new motion is to each taught 
gesture. Therefore, utilizing the skeletal data from Kinect, various 
frameworks employed Dynamic Time Warping, Decision Trees, and 
Support Vector Machines (SVMs) for motion recognition. Addition-
ally, EasyGR [17] is a tool tested on seven gesture recognizers that 
aid in lowering the work required in the development of ges-
ture recognition and improves the performance and accuracy of 
gesture recognition. With and without EasyGR support, metrics in-
cluding code size, time spent, and the standard of the built gesture 
recognizers were compared. The outcomes demonstrated that the 
strategy was workable and decreased the effort needed to imple-
ment a gesture classifier using Kinect. Studies on the positive and 
negative impacts of playing video games on the human brain are 
only beginning. Cognitive load is a mental process used to gauge 
a person’s mental state at any given time. When brain complexity 
rises, the cognitive burden rises as well, and vice versa.

Electroencephalography, which involves applying electrodes to 
the head in a variety of settings, can be used to measure cognitive 
stress [20]. For the assessment and management of diverse neuro-
logical illnesses, a telemedical system is being developed to mon-
itor the psycho-neurological condition. People with disabilities are 
not a homogeneous group, and they deal with a variety of issues 
daily. People with disabilities and the elderly frequently experience 
access issues to essential services. Researchers today are concen-
trating on rehabilitative technologies based on a human-computer 
interface that is closer to social-emotional intelligence. The goal of 
the study is to help old and disabled persons with cognitive reha-
bilitation using machine learning techniques. Human brain activity 
is observed using electroencephalograms, while user movement is 
tracked using Kinect sensors [12]. The “ReHomation” system for 
electronic automatic control and monitoring of household charac-
teristics, activity, and applications is inexpensive, simple to use, 
energy-saving, and minimal maintenance. Within a 20-meter ra-
dius, access to the system is possible. The 433 MHz radio, the 
HT12E encoder integrated chip, the 1 M ohm resistor, the switch, 
the PCB board, the 9 V battery, the HT12D decoder integrated chip, 
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Fig. 1. Proposed method for Eldo care.

the 7805 V regulator, the 0.1uF ceramic capacitor, the 33 k ohm 
resistor, the bulb, the BC547 resistor, the 1N4007 diode, the 5 V 
relay, the 2 pins terminal block, the 220 V AC power It is simple 
for the end user to use the 433 MHz radio frequency, which is em-
ployed as both a transmitter and a receiver to capture signals [21]. 
The major goal of our chapter is to operate healthcare and home 
appliances using two types of automation: command-based using 
Telegram Bot and EEG-based brain-computer interfaces. The brain-
computer interface uses EEG to gather data, a bandpass filter to 
filter data between 12 and 100 Hz, independent component anal-
ysis to remove artifacts, the Fast Fourier theorem to extract and 
select features, and command recognition to translate the data. The 
circuit is developed using the ESP8266 Node MCU and Relay on 
the microcontroller after all processes have been optimized. An-
other method is to use the available Telegram Bot to handle the 
home automation system. This method is just for people who are 
physically fit and can use the Bot for controlling home automation 
[22]. Completely-locked-in-syndrome (CLIS) is caused due to some 
illness i.e., amyotrophic lateral sclerosis (ALS), a type of motor neu-
ron disease. This problem was addressed utilizing the EEG signals 
when a human thinks about some specific feelings and imagina-
tion. ANN was used for this work, where the dataset was split with 
5, 4, and 3 imaginations in the pre-processing step. An overall ac-
curacy of 80–100% was achieved for recognizing five imaginations 
using LVQ and FFNN classifiers [23].

The “Eldo-care” recommended study collects brain and gesture 
data while decreasing noise by combining EEG and Kinect Sensor. 
For feature extraction and selection, the Chebyshev filter, autoen-
coder, and classification, transfer learning-based convolution neural 
network is applied.

3. Proposed work

The three stages of the suggested approach are mostly used to 
identify speech disorders. First, two sensors—a Kinect sensor and 
an electroencephalogram—have been used to gather the data. The 
functionality of the system’s sensors is initially described in this 
section.

The suggested method in Fig. 1 illustrates how the EEG sensor 
and the Kinect sensor can both capture data from the scalp of the 
human brain. Noise is eliminated using a Chebyshev filter. Using an 
autoencoder, which also extracts side features from the raw Kinect 
dataset in terms of distance and angle, significant features from 
the raw EEG dataset are obtained.

The most crucial stage is classification, which comes after data 
collection, noise reduction, and feature extraction. Convolutional 
neural networks are used for categorization; mental activity, physi-
cal activity, and identifying the problematic region in the brain is a 
3

Fig. 2. Electrode placement of the standard 10–20 EEG system.

frequent deep learning strategy. Following the identification of the 
disability, therapy might be recommended to improve the patient’s 
quality of life.

3.1. Data collection using electroencephalography

In the proposed system, data will be collected from the human 
brain scalp using a non-invasive device called BrainTech Traveler, 
and brain activity will be monitored using electroencephalogra-
phy (EEG). As seen in Fig. 2, conventional 10–20 EEG systems 
gather information from various regions of the brain. After collect-
ing the information, it transmits electrical impulses to the brain 
via a brain-computer interface.

3.2. Collected dataset using the Kinect sensor

25 body joints are tracked by the Kinect sensor, including the 
Neck, Head, Shoulders, Spine, Right and Left Elbows, Right and Left 
Wrists, Right and Left Thumbs, Right and Left Hands, Right and 
Left Hand Tip, Right and Left Hand Tip, Mid Spine, Base Spine, 
Right and Left Hips, Right and Left Knees, Right and Left Ankles, 
Left and Right Left Ankles, and Left and Right Left Ankles. The 
aforementioned 25 features are visible within a 4 m range, and 
two additional features—facial appearance and audial—are similarly 
employed to monitor subject activity to identify disabilities (Fig. 3).

3.3. Preprocessing

The methods for feature extraction and preprocessing are cov-
ered in this module.

3.3.1. Filtering
Filtering, the initial step for pre-processing, is used to take the 

noise out of the EEG signals. For cleaning in this investigation, 
a Chebyshev filter is used here. Fig. 4 illustrates that the band-
pass filter for 6th order Chebyshev II filters with 30 dB band stop 
attenuation, stopband edge frequency is 100 Hz that corresponds 
to 0.6 rad per sample.

G(F0, F1) = 1√
1 + E2T 2

n (
F0 )

(1)
F1
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Fig. 3. Kinect sensor skeleton-tracker.

Fig. 4. Filtering making use of the Chebyshev filter II.

Here, E is the ripple factor, F0 and F1 are the cutoff frequencies, 
and Tn is the Chebyshev polynomial, which is of nth order, and G
is the gain. A gain in the range between −1 and 1 typically refers 
to a proportional change in the amplitude or magnitude of a signal.

since Tn alternates between − 1 and to
1√

1 + B2
.

Here B = 1√
10

s
10 − 1

(2)

In equation (2), y is the stop band attenuation and B is the band 
pass filter.

3.3.2. Feature extraction
Using Euclidean geometry and the joint angles of human bod-

ies, Kinect sensor characteristics are employed to calculate dis-
tance. EEG characteristics are measured using an autoencoder. 
Equation (3) demonstrates that the distance (D) connecting the 
two locations in the Euclidean space is equal to the “norm of the 
translation from one-point X to Y ”.

D(R, S) = ∣∣|−→R S|∣∣ (3)

the angle between R and S , two non-zero vectors, as calculated by 
the formula in equation (4).

θ =
(

R S

||R||||S||
)

(4)

Fig. 5 illustrates the five processes involved in the feature extrac-
tion process utilizing the autoencoder. Step 1 begins with input at 
4

Fig. 5. Extraction of features using an auto encoder.

Fig. 6. Utilizing transfer learning as a classification mechanism.

the input layer, followed by an encoder in step 2, a code genera-
tor in step 3, a decoder in step 4, and output in step 5, which is 
stored on output nodes.

3.4. Classification

To address related new problems, classification is a pre-trained 
deep learning technique, as shown in Fig. 6.

T = {t1, t2, t3 . . . Tn} ∈ T . (5)

Z = {
T , P (T )

}
(6)

Target domain Ct , source domain Cs , learning task Ds , and learning 
task Dt , where Cs > Ct .

Ds �= Dt

Fig. 6 demonstrates how the input attributes are gathered and 
forwarded to the origin using a source model before learning in-
formation is transferred and the source is sent to a target model. 
Equation (5) indicates that F is the feature space, while equation 
(6) demonstrates that C is indicating to the domain and P is indi-
cating to the marginal probability distribution (T ).

4. Results of experiments

The present model was created by MATLAB 2021B and stimu-
lated by it. We will concentrate on the categorization findings in 
this section.

4.1. Feature extraction

The label and attributes from the brain signals that were col-
lected using electrode placement for a typical 10–20 EEG system 
are shown in Table 1. Additionally, it shows the feature values. 
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Table 1
The features and labels of the electrodes collected from the EEG sensor.

Electrodes Mean Median Standard Deviation Entropy Power RMS

C1 31.23 51.03 35.12 80.23 74.02 0.20
C2 3.95 5.69 6.13 76.32 65 0.53
C3 7.76 9.01 8.09 65.89 93.25 0.65
P 1 79.32 91.2 21.12 90.30 62.31 0.38
CP1 61 45.36 20.04 75 68.03 0.21
CP2 32. 62 41.23 23.50 22 8 0.81
CP3 79.86 60 36 83 57.36 0.89
FT2 8.2 24 4.26 85 90 0.6
T 1 54.96 48 46.32 62 75.36 0.75
FC2 30 31 3.96 34 90 0.52

Table 2
The features and labels from the Kinect sensor.

The categories of prerequisite Number of samples Mental features and movements

Asleep 175 drained arm, behind the cheek
Upright 200 welcoming arms and vivacious
Strolling 182 Continue with purpose.
Thirsty 150 Finger with lips close by and thirsty
Chew 156 Finger with its mouth open and a hungry
excretion 192 moving my hands and urgently urinating
Pee 70 Urge to urinate quickly and head movement
Calling the Physian 200 rapid hand motion and urgency
Relax 200 Nothing
Here, the mean value is calculated using Equation (7). Whereas, 
the median value is calculated using equation (8). The standard de-
viation is computed using equation (9) and entropy calculation is 
done by equation (10). The power is computed using equation (11). 
We enumerate the root mean square value (RMS) using equation 
(12). Using cross-validation and autoencoder, all the 1600 records 
are arranged for neural training by the requirements.

Mean = Sum of all numbers of the dataset

T he numbers of elements
(7)

Median = Middle value of the dataset (8)

Standard Deviation =
√∑

(Each value f rom dataset − Mean)

T he size of the dataset

(9)

Entropy = Signal randomness (10)

Power = Signal V alue

Signal Length
(11)

RMS =
√∑

(Each value f rom dataset)2

T he numbers of the dataset
(12)

Fig. 3 displays Kinect sensor skeleton tracker structure. The com-
posed of training features from the Kinect sensor are displayed in 
Table 2. The types of needs, sample sizes, and in this regard, mo-
tions and mental traits are covered in the table.

4.2. Classification

The participant was classified as being in a sleeping condition 
for the first trial, standing for the second trial, walking for the third 
trial, drinking for the fourth trial, eating for the fifth trial, urinat-
ing for the sixth trial, calling for a doctor for the eighth trial, and 
resting for the last trial, as shown in Fig. 7.

Fig. 7 demonstrates that four non-identical algorithms deter-
mine accuracy, precision, recall, and mean error rate 20 times for 
every epoch. Accuracy, precision, recall, F1-Score, mean error rate 
are shown in equations (13), (14), (15), (16), and (17). In this case, 
5

Fig. 7. Evaluation of performance for the proposed system.

“True Positive,” is indicated as T P , “True Negative,” as T N , “False 
Positive,” as F P and “False Negative” as F N .

Accuracy = T P + T N

T P + T N + F P + F N
(13)

Precision = T P

T P + F P
(14)

Recall = T P

T P + F N
(15)

F1 Score = Precision ∗ Recall

Precision + Recall
(16)

Mean Error Rate = 1

n

n∑
t=1

(AVt − F Ct)

AVt
(17)

Fig. 8 displays the confusion matrix table for the convolution neu-
ral multiclass classifier which classifies as healthy, medium healthy, 
and not healthy. The prediction of confusion matrix shows 53.3% 
positive prediction and decreased in the false positive prediction as 
not healthy low as 40% and medium health prediction is increased 
to 46.7%, where the not healthy percentage is also increased in the 
false positive 26.7% compared to true positive 13.3%.
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Fig. 8. Confusion matrix table for Convolution Neural Multiclass Classifier.

5. Conclusion and future work

The suggested project is referred to as a telehealth care system 
for monitoring patients’ psycho-neurological conditions during the 
rehabilitation process and is used for elderly and disabled peo-
ple. This is a good outcome and would be highly beneficial in 
today’s society. In the proposed study, brain activity is monitored 
using an EEG to look for signs of mental illness, seizure disorders, 
cognitive strain, etc. The Kinect Sensor is used to record whole 
body 3D motion, recognize gestures, and faces. Transfer learning 
is a safe method that may manage numerous jobs concurrently. 
Here, Convolutional neural networks along with the transfer learn-
ing method performed classification with an accuracy of 95% and 
higher. To improve the memory and lower the stress level, the pa-
tient will benefit from an early diagnosis of cognitive disorders. 
The proposed study would result in a novel form of the cogni-
tive rehabilitation benefit for the aged and disabled, also it will 
serve as a telehealth care and monitoring system for tracking pa-
tients’ psycho-neurological conditions as they undergo rehabilita-
tion.

In the future, brain, body, and heart surveillance will combine 
Kinect sensors with ECG, EEG, EMG, and PPG sensors. We are also 
proposing some IOT sensors to record and store the sensor data in 
the cloud. This will give us the advantage of availability. For better 
outcomes, the proposed model will be tested on a wider range of 
subject populations.
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