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A B S T R A C T

This paper considers a joint pollution-routing with time windows and speed optimization problem (PRP-
SO) where vehicle speed, payload, and road grade influence fuel costs and CO2𝑒 emissions. We present two
advanced optimization methods (i.e., approximate and exact) for solving the PRP-SO. The approximate strategy
solves large-scale instances of the problem with a Tabu search-based metaheuristic coupled with an efficient
fixed-sequence speed optimization algorithm. The second strategy consists of a tailored branch-and-price (BP)
algorithm to manage speed optimization within the pricing problem. We test both methods on modified
Solomon benchmarks and newly constructed real-life instance sets. Our BP algorithm successfully solves the
majority of instances involving up to 50 customers and many instances with 75 and 100 customers. The
heuristic can find near-optimal solutions to all instances and requires less than one minute of computational
time per instance. Results on real-world instances suggest several managerial insights. First, fuel savings of up
to 53% can be achieved when explicitly considering arc payloads and road grades. Second, fuel savings and
emission reduction can be achieved by scheduling uphill customers later along the routes. Lastly, we show that
ignoring elevation information when planning routes leads to highly inaccurate fuel consumption estimates.
1. Introduction

Road freight transportation is vital to the functioning of the econ-
omy and the supply chain. However, significant negative impacts on
people and the environment must be considered due to excessive
energy usage and considerable greenhouse emissions. According to
the International Energy Agency (IEA, 2020), global transportation is
still responsible for 24% of direct CO2-equivalent (CO2𝑒) emissions
from fuel combustion. This is especially true in different application
contexts such as long-haul freight transportation (Rahman et al., 2013;
Koç et al., 2016a), traditional last mile logistics (Savelsbergh and
Van Woensel, 2016; Demir et al., 2022), and for large mountainous
cities (Giraldo and Huertas, 2019).

Over the past few years, these observations have led to the intro-
duction of pollution- and sustainability-related aspects into traditional
Vehicle Routing Problems (VRPs), popularly coined in the literature
as the Pollution-Routing Problem (PRP; Bektaş and Laporte, 2011).
In the literature, similar problems and definitions can be found as
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the Emissions Minimizing VRPs (EMVRPs) (Raeesi and Zografos, 2019;
Behnke et al., 2021) or Green VRPs (Erdoğan and Miller-Hooks, 2012;
Moghdani et al., 2020; Abdullahi et al., 2021). These models use the
fact that the amount of transport-related greenhouse gas (GHG) emis-
sions is directly proportional to fuel consumption (Kirby et al., 2000).
Multiple factors have already been considered, including slope (Suzuki,
2011), vehicle speed (Demir et al., 2012), the payload (Bektaş and
Laporte, 2011), traffic congestion (Franceschetti et al., 2013), driver’s
operating habits (Bandeira et al., 2013), and the fleet size and mix (Koç
et al., 2014).

The majority of PRP models describe the road angle, and thus the
network topography, as one of the parameters used to formulate the
instantaneous engine-out emission rate (Barth and Boriboonsomsin,
2009), but do not consider this further in the model, in the solution
methodology or the results and insights. More specifically, efficient so-
lution methods and extensive computational experiments that analyze
the effect of road gradient on fuel consumption and CO2𝑒 emissions are
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missing in the literature. One notable exception in the same application
domain is the paper by Brunner et al. (2021). However, this work
assumes that speed (and also the payload) is a user-defined input
parameter, which could lead to significant deviations (up to 20%)
in the optimization process of CO2𝑒 emissions (Van Woensel et al.,
2001). With regards to vehicle speed, several studies propose various
optimization procedures (Norstad et al., 2011; Demir et al., 2012;
Kramer et al., 2015a). However, there is still a need for efficient and fast
speed optimization algorithms to use in combination with exact routing
algorithms. This paper focuses on joint pollution-routing with time
windows and speed optimization problems (PRP-SO). Motivated by
down-speeding strategies commonly used in freight transportation, we
focus on optimizing the speed of vehicles for reducing CO2𝑒 emissions
and fuel consumption without violating the customers’ time windows.

Specifically, the PRP aims to build routes that minimize an objective
function, integrating the vehicle’s routing cost (e.g., fuel consumption,
pollution) and driving costs (e.g., vehicle usage, drivers’ wages, and
other direct cost aspects). This paper builds upon this literature and
considers modeling driving costs as fixed costs of vehicles, which
is commonly used in heterogeneous vehicle routing problems (see,
e.g., Koç et al., 2016b), but is often ignored and treated as duration-
dependent costs in PRPs. Moreover, considering this richer version of
the PRP leads to interesting new methodological challenges for speed
optimization.

The contributions of this paper are threefold:

• We introduce the road gradient to compute fuel consumption
utilizing terrain elevation information. Despite the inclusion of
road gradients into the original formulation of fuel consumption,
most papers assume a constant road angle for all vehicle trips.

• Several novel solution approaches are presented, including an
exact branch-and-price (BP) algorithm and a Tabu Search (TS)
metaheuristic for solving medium- and large-scale PRP-SO in-
stances. Key to the efficiency of these approaches is a novel speed
optimization algorithm.

• Based on results obtained in a broad set of instances, we derive
essential insights regarding the importance of considering road
gradients when solving the PRP-SO and the potential benefits of
employing optimized down-speeding strategies. Furthermore, we
propose a new set of real-life benchmark instances of the problem.

The remainder of this paper is organized as follows. Section 2
briefly reviews the related scientific literature. In Section 3, we describe
our PRP-SO model. Section 4 shows the proposed Tabu Search (TS)
metaheuristic with a detailed description of the fixed-sequence speed
optimization algorithm. In Section 5, we present the major components
of our BP algorithm. Section 6 discusses an extensive computational
study on several instance sets. Finally, we draw concluding remarks
and present further research directions in Section 7.

2. Literature review

The increasing amount of CO2𝑒 emissions from road freight trans-
portation has ignited worldwide concerns. Over the last ten years, this
resulted in a large body of literature on emissions-aware transportation
problems (see, e.g., Moghdani et al., 2020; Marrekchi et al., 2021).
The Pollution-Routing Problem (PRP) is an efficient and comprehensive
formulation to reduce carbon emissions. The resulting greenhouse emis-
sions from vehicle fuel consumption are the result of some influential
factors beyond the travel distance (Ericsson, 2001; Brundell-Freij and
Ericsson, 2005). According to Demir et al. (2014b), vehicle fuel con-
sumption is affected by multiple factors such as speed, road gradient,
road congestion, driver’s operating habit, size and composition (mix)
of vehicle fleet, and payload.

As summarized in Table 1, some critical factors have been less stud-
ied in previous vehicle routing research. Specifically, the interaction of
2

load, road gradient, and vehicle speed is missing. e
Road gradient. The road grade (slope) has a significant influence
on both the conventional-vehicle fuel economy (Suzuki, 2011) and
the electric-vehicle energy consumption (Goeke and Schneider, 2015).
Transiting a typical light-duty vehicle over a sloping road surface,
with a +6 percent grade, could increase fuel consumption by 15–20
ercent (Boriboonsomsin and Barth, 2009). The influence of hilly roads
s undoubtedly more significant on the fuel consumption of heavy-duty
rucks. According to Davis et al. (2009), a minor increase or decrease
n road grade (1%–4%) can reduce or increase fuel economy by more
han 50%. In the case of electric vehicles, experimental results show
he impact of hilly terrain on miles traveled, confirming that the range
f electric vehicles in mountainous landscapes is lower (Travesset-Baro
t al., 2015).

The road gradient has been mainly studied in PRPs and the so-called
lectric Vehicle Routing Problems (E-VRPs). Since the first mathe-
atical formulation of PRPs (Bektaş and Laporte, 2011), the road

ngle was one of the parameters used to define the instantaneous
ngine-out emission rate. Table 1 clearly shows that most previous PRP
ontributions included the road angle in the fuel use rate mathematical
ormulation. This table also identifies two significant gaps in the area
hat the proposed work is trying to address: (i) despite the inclusion of
oad gradient into the original formulation of fuel consumption, most
f the papers assume that the road angle remains constant throughout
ll vehicle trips, and (ii) the majority of previously generated problem
nstances have not yet considered the road gradient. It is worth men-
ioning that the present work is the first study in the area to create
nd optimally solve a set of realistic problem instances, which include
levation information for computing the road slopes along the paths.

As mentioned earlier, we found the paper by Brunner et al. (2021)
s the only contribution that studied the influence of road grade on
uel consumption. Although these authors considered the slope in their
RP formulation, they assumed a constant road grade for all arcs

hat form the directed graph. The above does not accurately reflect
he hilly topography profile of a road, which typically connects two
odes (arc) with a sequence of multiple uphill/downhill segments.
nother assumption in this contribution is related to vehicle speed.
he authors addressed a VRP without time windows, assuming that
he vehicles travel through each arc with a given constant speed (input
arameter). Last but not least, with respect to the assumptions of the
aper, in Brunner et al. (2021), the payload carried by the vehicle is
hosen from a prescribed set of values, which means that the authors
id not consider the payload as a continuous decision variable.

Few papers outside the application context of PRPs consider the
ffect of road gradients on fuel consumption. For instance, Tavares et al.
2009) utilize an exponential regression model (COPERT-III method,
ntroduced by Ntziachristos et al., 2000) to estimate the minimum
uel consumption during the waste collection process. They studied
wo realistic routing problems, showing that the optimal route does
ot necessarily correspond to the shortest distance. Their computa-
ional results demonstrated that significant fuel savings are possible
or longer routes with moderate inclination on the road. Moreover, the
ontribution of Suzuki (2011) proposed a linear regression model to
ompute the fuel consumption rate for a heavy-duty truck based on
he fuel-efficiency study of Davis et al. (2009). The author included
he road-gradient factor as one of the objective function components
distance and fuel consumption), designed to formulate a traveling
alesman problem with time windows.

Concerning the E-VRPs, Yang et al. (2014) performed a numerical
imulation. In their paper, the authors used the electric vehicle’s battery
physical model) theory to study the effects of the road’s slope on
lectricity consumption for uphill and downhill paths. They concluded
hat with the increase of the uphill tilt angle, each electric vehicle’s
lectricity consumption increases significantly. Goeke and Schneider
2015) also assumed not-flat terrain with grades in their energy con-
umption model for electric vehicles. They intensely focused on the

ffect of load distribution on the performance of commercial electric
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Table 1
Pollution-related Factors Covered by Previous Research on PRPs.

Authors Pollution-related factors(model formulation) Factors included in the
computational analysis

Type of
dataset

Solution
approach

load speed slope others

Bektaş and Laporte (2011)
√ √ √

load, speed UK CPLEX
Demir et al. (2012)

√ √ √

speed UK ALNS
Franceschetti et al. (2013)

√ √ √ √

departure time, speed,traffic congestion UK CPLEX
Demir et al. (2014a)

√ √ √

driving time, speed UK ALNS
Koç et al. (2014)

√ √ √ √

speed, fleet size and mix UK HEA
Kramer et al. (2015a)

√ √

departure time, speed Modified UK ILS
Kramer et al. (2015b)

√ √ √

departure time, speed Modified UK ILS
Fukasawa et al. (2016)

√ √

speed UK DCP
Dabia et al. (2017)

√ √ √

start-time, speed UK B&P
Rauniyar et al. (2019)

√ √

load UK NSGA-II
Raeesi and Zografos (2019)

√ √ √ √

load, fleet size and mix,road congestion New dataset CPLEX
Xiao et al. (2020)

√ √ √

travel-arrival-departure-waiting time, speed, load UK CPLEX
Brunner et al. (2021)

√ √

arc slope, fixed load New dataset Tailored
heuristic

Erdoğdu and Karabulut (2022)
√

load New dataset ALNS
Proposed work

√ √ √ √

road gradient, speed, load Noveldataset B&P, TS

Abbreviations – CPLEX: IBM Commercial Solver; ALNS: Adaptive Large Neighborhood Search; HEA: Hybrid Evolutionary Algorithm; ILS: Iterated Local Search; DCP: Disjunctive
Convex Programming; B&P: Branch and Price; NSGA-II: Non-dominated Sorting Genetic Algorithm; TS: Tabu Search.
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vehicles. Later, Liu et al. (2017) also investigated the impact of the
road gradient on the electricity consumption of electric cars. Using 12
gradient ranges and GPS tracking data with a digital elevation map,
the authors showed that, on uphill trips, energy consumption increases
almost linearly with the absolute gradient. However, the numerical
results also showed the positive effect of the regenerative braking
power acquired during downhill trips. Finally, Macrina et al. (2019)
modeled a comprehensive energy consumption function considering
road gradients. However, in their computational study, the authors set
the road angle equal to zero for conventional and electric vehicles.

Vehicle speed. Bektaş and Laporte (2011) first addressed the ve-
hicle’s speed in PRPs. In the original formulation of this problem, they
explicitly assumed that speed over each arc is chosen from a predefined
list of possible values. Koç et al. (2014) also utilized the same discrete
speed function but analyzed, for the first time, the effect of fleet size
and mix in PRPs. The discretization of vehicle speed was also adopted
by Eshtehadi et al. (2017). Here, the authors considered the demand
and travel time uncertainty, both aspects addressed by several robust
optimization techniques. Moreover, Demir et al. (2012) proposed a
specialized speed optimization algorithm (SOA), which computes op-
timal speeds on a given path to minimize fuel consumption, emissions,
and driver costs. The authors modified the original SOA, initially
designed to solve the tramp speed optimization problem (Norstad et al.,
2011). Franceschetti et al. (2013) also studied the speed and traffic
congestion, and named it as the time-dependent PRP. This research
considers two phases within the planning horizon: the free-transit phase
and the congested phase. An interesting fact of their computational
results is that they reduced the emissions cost by waiting at specific
locations (stopped vehicles) and avoiding traffic congestion. Kramer
et al. (2015a) also modified the original SOA, providing a new speed
and departure time optimization algorithm. Fukasawa et al. (2018)
consider a joint vehicle routing and speed optimization problem and
solve it with a branch-and-price algorithm. In this work, the fuel
consumption rate depends on the traveling speed and is assumed to
be strictly convex.

Finally, many solution methods have been proposed to solve PRPs.
One can find the frequent application of metaheuristics such as
ALNS (Demir et al., 2012, 2014a), evolutionary and genetic algo-
rithms (Koç et al., 2014; Rauniyar et al., 2019), and hybrid ap-
proaches (Tirkolaee et al., 2020). Table 1 shows the methods used
for solving different variants of PRPs. As can be seen, the utilization
of exact algorithms in PRPs is minimal. Existing exact methods often
approximated or discretized the vehicle speeds to reduce the complex-
ity. Fukasawa et al. (2016) resolved the issues of speed discretization
by introducing a formulation framework to directly incorporate the
3

nonlinear relationship between cost and speed into the PRP. They
employed different tools from disjunctive convex programming to find
a set of vehicle speeds over the routes, minimizing the total cost
(operational and environmental) and respecting the constraints on
time and vehicle capacities. More recently, vehicle speed has been
computed using continuous optimization on PRP. Here Xiao et al.
(2020) introduced the continuous PRP (𝜖-CPRP), where the travel time,
load flow, departing/arrival/waiting times, and driving speed were
treated as continuous decision variables. The authors developed an 𝜖-
ccurate inner polyhedral approximation method for linearizing the
riginal fuel consumption equation (Bektaş and Laporte, 2011) and
olved the PRP instances with up to 25 customers.

To our knowledge, Dabia et al. (2017) is the only previous con-
ribution that addressed a complex variant of the PRP and developed
n exact branch-and-price algorithm. To address speed optimization
ithin the pricing subproblem, the authors introduced a ready-time

unction for updating the speed-dependent routing costs within a bidi-
ectional labeling algorithm. More precisely, in Dabia et al. (2017), a
omplex ready time function has to be solved recursively to determine
he optimal speed that minimizes the routing cost of a partial path,
hich can be computationally expensive. In our proposed labeling
lgorithm, the optimal speed can be determined efficiently and without
omplete ‘‘backtracking’’ of the partial path. In addition, we have also
eveloped completion bounds that further improved the efficiency of
olving the pricing subproblem.

. Problem formulation

In Section 3.1, we formulate the carbon dioxide equivalent (CO2𝑒)
mission using the comprehensive modal emissions model (CMEM). In
ection 3.2, we introduce a mixed-integer linear programming formu-
ation for the joint Pollution Routing and Speed Optimization problem.

.1. Modeling CO2𝑒 emissions

We model CO2𝑒 emissions using the CMEM (see, e.g., Barth and
oriboonsomsin (2009), Boriboonsomsin and Barth (2009), Demir et al.
2012)). The parameters and the values for light, medium, and heavy-
uty vehicles (LDV, MDV, HDV) we used in our experiments are shown
n Table 2.

According to the CMEM model, the instantaneous fuel use rate of
vehicle 𝑘 when traveling at a constant speed 𝜈𝑘 with payload 𝑥 on a
ath with the road angle 𝜙 is given by

𝜉 (

𝐹𝑘𝑁𝑘𝑉𝑘 +
0.5𝐶𝑑𝑘𝐴𝑘𝜌𝜈

3
𝑘 + (𝑤𝑘 + 𝑥)𝜈𝑘(𝑟𝑘 + 𝑔𝑠𝑖𝑛 𝜙 + 𝑔𝐶𝑟𝑘 𝑐𝑜𝑠 𝜙)).
𝜅𝜓 1000𝜀𝜛
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Table 2
Comprehensive Modal Emissions Model (CMEM)

Symbol Description LDV MDV HDV

𝐹𝑘 Engine friction factor (kJ/rev/liter) 0.23 0.20 0.17
𝑁𝑘 Engine speed (rev/s) 35 34 33
𝑉𝑘 Engine displacement (liters) 3 7 11
𝐴𝑘 Frontal surface area of a vehicle (m2) 5 7.6 8.2
𝐶𝑑
𝑘 Aerodynamic drag coefficients 0.32 0.55 0.70

𝐶𝑟
𝑘 Rolling resistance coefficients 0.01 0.009 0.008

𝑟𝑘 Vehicle acceleration (m∕s2) 0 0 0
𝑤𝑘 Curb weight (kg) 2,300 5,500 13,000
𝜅 Heating value for diesel fuel (kJ/g) 45 45 45
𝜀 Vehicle drive train efficiency 0.4 0.4 0.4
𝜛 Efficiency parameter for diesel engines 0.9 0.9 0.9
𝜉 Fuel-to-air mass ratio 1 1 1
𝜓 Conversion factor from grams to liters 737 737 737
𝜌 Air density (kg/m3) 1.2041 1.2041 1.2041
𝑔 Gravity (m∕s2) 9.81 9.81 9.81
f

When traversing a distance of 𝑑 meters, the amount of fuel con-
sumption is therefore given by

𝜉𝐹𝑘𝑁𝑘𝑉𝑘
𝜅𝜓

𝑑
𝜈𝑘

+ 1
1000𝜀𝜛

(𝑟𝑘+𝑔 𝑠𝑖𝑛 𝜙+𝑔 𝐶𝑟𝑘 𝑐𝑜𝑠 𝜙)(𝑤𝑘+𝑥)(𝑑)+
0.5𝐶𝑑𝑘𝐴𝑘𝜌
1000𝜀𝜛

𝑑𝜈2𝑘 .

Note that a sequence of road segments is associated with each arc 𝑒,
enoted by 𝑆𝑒. Let 𝑑𝑒𝑠 denote the travel distance of segment 𝑠 ∈ 𝑆𝑒, and
𝑘𝑒 denote the payload of vehicle 𝑘when traversing arc 𝑒. For traversing
he sequence of road segments associated with arc 𝑒, the amount of fuel
onsumption of vehicle 𝑘 can then be determined by

𝑘𝑒
1
𝜈𝑘

+ 𝛽𝑘𝑒(𝑤𝑘 + 𝑥𝑘𝑒) + 𝛾𝑘𝑒𝜈2𝑘 , (1)

where

𝛼𝑘𝑒 =
𝜉𝐹𝑘𝑁𝑘𝑉𝑘

∑

𝑠∈𝑆𝑒 𝑑𝑒𝑠
𝜅𝜓

, (2)

𝛽𝑘𝑒 =
𝜉
∑

𝑠∈𝑆𝑒 𝑑𝑒𝑠(𝑟𝑘 + 𝑔 𝑠𝑖𝑛 𝜙𝑒𝑠 + 𝑔 𝐶
𝑟
𝑘 𝑐𝑜𝑠 𝜙𝑒𝑠)

1000𝜀𝜛𝜅𝜓
, (3)

𝑘𝑒 =
0.5𝜉𝐶𝑑𝑘𝐴𝑘𝜌

∑

𝑠∈𝑆𝑒 𝑑𝑒𝑠
1000𝜀𝜛𝜅𝜓

. (4)

To speed up the CO2𝑒 emission calculations, we pre-compute the
parameters 𝛼𝑘𝑒, 𝛽𝑘𝑒, and 𝛾𝑘𝑒 for all the vehicles 𝑘 and arcs 𝑒. These
parameters are used when formulating the mathematical model in
Section 3.2 and developing the solution approaches in Sections 4 and
5.

3.2. Mathematical model

Let  be the set of vehicles. Let 𝐺( ,) be the underlying directed
graph. A set of nodes  = {0, 1,… , 𝑛} contains 𝑛 customers and a depot
(represented by node 0). The set of arcs , defined as {(𝑖, 𝑗) ∈  × ∶
𝑖 ≠ 𝑗}, represents the paths between the nodes. Each node 𝑖 ∈  is
associated with a demand 𝑞𝑖 and a time window [𝑒𝑖, 𝑙𝑖]. Each vehicle
∈  is associated with a fixed cost 𝑓𝑘, a variable cost 𝑐𝑘 (including

the costs for CO2𝑒 emission and fuel consumption), a vehicle capacity
𝑘, vehicle curb weight 𝑤𝑘, and speed limits [𝑎𝑘, 𝑏𝑘]. Each arc 𝑒 ∈ 

is associated with a distance 𝑑𝑒, and the parameters 𝛼𝑘𝑒, 𝛽𝑘𝑒 and 𝛾𝑘𝑒
described in Section 3.1 for estimating fuel consumption.

For all 𝑘 ∈  and 𝑖 ∈  , let 𝑧𝑘𝑖 be a binary decision variable, with
𝑧𝑘𝑖 = 1 if and only if customer 𝑖 ∈  ⧵ {0} is served by vehicle 𝑘; and
with 𝑧𝑘0 = 1 if and only if vehicle 𝑘 is in use. For all 𝑘 ∈  and 𝑒 ∈ ,
let 𝑦𝑘𝑒 be a binary decision variable with 𝑦𝑘𝑒 = 1 if and only if vehicle
𝑘 traverses arc 𝑒, and let 𝑥𝑘𝑒 denote the corresponding payload when
vehicle 𝑘 traverses arc 𝑒. For all 𝑘 ∈  and 𝑖 ∈  , let 𝑡𝑘𝑖 denote the
time at which vehicle 𝑘 starts serving customer 𝑖 ∈  ⧵ {0}; and let
𝑡𝑘0 denote the time vehicle 𝑘 returns to the depot. For all 𝑘 ∈ , let
𝜈𝑘 denote the vehicle’s speed 𝑘. We acknowledge the broader problem
4

setting where variable speeds on different arcs within the path could be
explored, we opted for the simplicity of a constant speed assumption.
This decision was guided by both practical considerations and insights
from related studies, such as the work by Dabia et al. (2017), who
demonstrated that the potential improvement in solution quality by
optimizing vehicle speed on each arc is rather limited. Table 3 provides
the list of notations.

The objective is to minimize the total CO2𝑒 emission costs, fuel
costs, and vehicle fixed costs, subject to the following constraints: (i)
the total demand for a vehicle does not exceed the vehicle capacity;
(ii) every route starts and ends at the vehicle’s home depot; (iii)
every customer is visited precisely once by exactly one vehicle; (iv) all
vehicles should return to their home depot within a time limit; (v) every
vehicle travels at a speed within the speed limit.

The PRP-SO can now be formulated as the following nonlinear
integer programming model:

(PRP-SO) ∶

min
∑

𝑘∈
𝑓𝑘𝑧𝑘0 +

∑

𝑘∈

∑

𝑒∈
𝑐𝑘𝑦𝑘𝑒

( 𝛼𝑘𝑒
𝜈𝑘

+ 𝛽𝑘𝑒𝑤𝑘 + 𝛽𝑘𝑒𝑥𝑘𝑒 + 𝛾𝑘𝑒𝜈2𝑘
)

, (5)

s.t.
∑

𝑘∈
𝑧𝑘𝑖 = 1, ∀𝑖 ∈  ⧵ {0}, (6)

∑

𝑒∈𝛿+(𝑖)
𝑦𝑘𝑒 =

∑

𝑒∈𝛿−(𝑖)
𝑦𝑘𝑒 = 𝑧𝑘𝑖, ∀𝑘 ∈ , 𝑖 ∈  , (7)

∑

𝑒∈𝛿−(𝑖)
𝑥𝑘𝑒 −

∑

𝑒∈𝛿+(𝑖)
𝑥𝑘𝑒 = 𝑞𝑖𝑧𝑘𝑖, ∀𝑘 ∈ , 𝑖 ∈  ⧵ {0}, (8)

𝑥𝑘𝑒 ≤ (𝑄𝑘 − 𝑞𝑖)𝑦𝑘𝑒, ∀𝑘 ∈ , 𝑒 = (𝑖, 𝑗) ∈ , (9)

𝑡𝑘𝑗 − 𝑡𝑘𝑖 ≥ 𝑠𝑖 + 𝑑𝑒
𝑦𝑘𝑒
𝜈𝑘

− 𝑙0
(

1 − 𝑦𝑘𝑒
)

, ∀𝑘 ∈ , 𝑒 = (𝑖, 𝑗) ∈  ∶ 𝑗 ≠ 0,

(10)

𝑒𝑖𝑧𝑘𝑖 ≤ 𝑡𝑘𝑖 ≤ 𝑙𝑖𝑧𝑘𝑖, ∀𝑘 ∈ , 𝑖 ∈  ⧵ {0}, (11)

𝑡𝑘𝑖 + 𝑠𝑖 + 𝑑𝑒
𝑦𝑘𝑒
𝜈𝑘

≤ 𝑙0, ∀𝑘 ∈ , 𝑖 ∈  ⧵ {0}, 𝑒 = (𝑖, 0) (12)

𝑎𝑘 ≤ 𝜈𝑘 ≤ 𝑏𝑘, ∀𝑘 ∈ , (13)

𝜈𝑘 ∈ R+, ∀𝑘 ∈ , (14)

𝑡𝑘𝑖 ∈ R+, ∀𝑘 ∈ , 𝑖 ∈  , (15)

𝑥𝑘𝑒 ∈ R+, ∀𝑘 ∈ , 𝑒 ∈ , (16)

𝑦𝑘𝑒 ∈ {0, 1}, ∀𝑘 ∈ , 𝑒 ∈ , (17)

𝑧𝑘𝑖 ∈ {0, 1}, ∀𝑘 ∈ , 𝑖 ∈  . (18)

The objective function (5) minimizes the total vehicle fixed costs,
uel consumption costs, and CO2𝑒 emission costs. Constraints (6)–(7)

ensure that each customer is visited once by exactly one vehicle. Con-
straints (8) are the flow conservation constraints. Constraints (9) ensure
that the payload does not exceed vehicle capacity. Constraints (10)–
(12) ensure that customers are visited within the given time windows.
Constraints (13) ensure that vehicles travel at a speed within the limits.
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Table 3
Notation for the MINLP Model.

Symbol Description Domain

 Set of vehicles Index set
 Set of nodes representing 𝑛 customers and the depot Index set
 Set of arcs Index set
𝑞𝑖 Demand of customer 𝑖 Z+

𝑤𝑘 Curb weight of vehicle 𝑘 Z+

𝑄𝑘 Capacity of vehicle 𝑘 Z+

𝑒𝑖 Earliest start time at customer 𝑖 R+

𝑙𝑖 Latest start time at customer 𝑖 R+

𝑠𝑖 Service time at customer 𝑖 R+

𝑓𝑘 Fixed cost of vehicle 𝑘 R+

𝑐𝑘 Variable cost of vehicle 𝑘 including fuel and CO2𝑒 emission costs R+

𝑎𝑘 Lower limit of the speed of vehicle 𝑘 R+

𝑏𝑘 Upper limit of the speed of vehicle 𝑘 R+

𝑑𝑒 Distance of arc 𝑒 R+

𝛼𝑘𝑒 A constant for estimating the fuel consumption of vehicle 𝑘 on arc 𝑒 R+

𝛽𝑘𝑒 A constant for estimating the fuel consumption of vehicle 𝑘 on arc 𝑒 R+

𝛾𝑘𝑒 A constant for estimating the fuel consumption of vehicle 𝑘 on arc 𝑒 R+

𝑧𝑘𝑖 Decision variable, to allocate customers to vehicles B
𝑦𝑘𝑒 Decision variable, to allocate arcs to vehicles B
𝑥𝑘𝑒 Decision variable, payload of vehicle 𝑘 when traversing on arc 𝑒 R+

𝑡𝑘𝑖 Decision variable, time at which vehicle 𝑘 starts serving customer 𝑖 R+

𝜈𝑘 Decision variable, speed of vehicle 𝑘 R+
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4. Metaheuristic

Metaheuristic approaches require frequently evaluating solutions
with fixed vehicle routes. We present an efficient algorithm for finding
the optimal vehicle speed of a given route to compute the costs of CO2𝑒
emissions and fuel consumption efficiently. In Section 4.1, we present a
novel polynomial-time algorithm for solving the fixed-sequence speed
optimization subproblem — determining the optimal speed of a vehicle
when the customer sequence is fixed. To demonstrate the effective-
ness of the speed optimization algorithm, it is embedded into a Tabu
Search (TS) metaheuristic for our experiments. The TS algorithm was
initially proposed by Glover (1986) and has been widely used in the
literature. TS has been widely used and is effective for finding near-
optimal solutions to vehicle routing problems (see, e.g., Gendreau et al.
(1994), Toth and Vigo (2003), Lai et al. (2016)). The interested reader
is referred to Gendreau and Potvin (2019) for more details on the TS
algorithm. The major components of the proposed TS include the fixed-
sequence speed optimization subproblem in Section 4.1, the penalized
objective function in Section 4.2, the initial solutions in Section 4.3,
the neighborhood structure in Section 4.4, the intra-route improvement
procedure in Section 4.5, and the search procedure in Section 4.6.

4.1. Fixed-sequence speed optimization subproblem

The fixed-sequence speed optimization subproblem determines the
optimal speed of a vehicle for a given customer sequence. Let 𝑅 =
(𝑣1, 𝑣2,… , 𝑣𝑛) denote a fixed sequence of nodes in a vehicle route where
𝑣1 and 𝑣𝑛 represent the home depot.

Without time-window constraints, vehicles should always travel at
a speed that is most cost-efficient and within the speed limits of the
vehicle. The most cost-efficient speed of vehicle 𝑘 when there are no
time window constraints is given by

�̄�𝑘 = 3

√

𝜉𝑘𝐹𝑘𝑁𝑘𝑉𝑘1000𝜀𝑘𝜛𝑘

𝐶𝑑𝑘𝐴𝑘𝜌𝑘
. (19)

Since �̄�𝑘 is independent of the vehicle route when there are no time
indow constraints, the optimal speed of vehicle 𝑘 within speed limits
𝑎𝑘, 𝑏𝑘] can be computed by

∗
𝑘 =

⎧

⎪

⎨

⎪

�̄�𝑘, if 𝑎𝑘 ≤ �̄�𝑘 ≤ 𝑏𝑘,
𝑎𝑘, if �̄�𝑘 ≤ 𝑎𝑘, (20)
5

⎩

𝑏𝑘, if �̄�𝑘 ≥ 𝑏𝑘.
With time window constraints, a vehicle should travel at a speed
that satisfies all constraints and incurs a minimal cost. Let 𝜎(𝑅) denote
the lowest vehicle speed without violating any time windows associated
with the route nodes 𝑅. When a vehicle travels at the 𝜎(𝑅) speed in
route 𝑅, all time window constraints will be satisfied. We will show in
Proposition 1 that 𝜎(𝑅) can be computed efficiently by

𝜎(𝑅) = max
𝑖,𝑗∈{1,2,…,|𝑅|}∶𝑖<𝑗

𝛥(𝑗) − 𝛥(𝑖)
𝑙𝑣𝑗 − 𝑒𝑣𝑖 − 𝑆𝑖𝑗

, (21)

here 𝛥(𝑖) = ∑𝑖−1
𝑙=1 𝑑𝑣𝑙 ,𝑣𝑙+1 denotes the total distance from the depot to

ode 𝑖 along vehicle route 𝑅, 𝑆𝑖𝑗 =
∑𝑗−1
𝑘=𝑖 𝑠𝑣𝑘 denotes the total service

ime from node 𝑣𝑖 to node 𝑣𝑗−1 along vehicle route 𝑅, and that [𝑒𝑣, 𝑙𝑣]
s the time window associated on node 𝑣. If 𝜎(𝑅) ≤ 0, no feasible speed
xists due to conflicting time window constraints.

Since a vehicle can wait at the customer node if the vehicle arrives
arlier than the lower bound of a time window, any speed greater than
(𝑅) satisfies the time-window constraints in route 𝑅. Thus, the optimal
peed of vehicle 𝑘 when traversing on route 𝑅 is given by

ax(𝑣∗𝑘, 𝜎(𝑅)). (22)

The total cost (as defined in the objective function (5)) of a given
olution can be evaluated straightforwardly when the optimal speeds
f the vehicle routes have been found by using (21) and (22).

roposition 1. The minimum speed without violating any time window
onstraints of a vehicle route 𝑅 is given by 𝜎(𝑅) when 𝜎(𝑅) > 0 and can be
btained in 𝑂(𝑛2) time complexity where 𝑛 is the number of nodes in route
.

roof. Let 𝑅 = (𝑣1, 𝑣2,… , 𝑣𝑛) denote the sequence of nodes in a
ehicle route 𝑅 with both 𝑣1 and 𝑣𝑛 representing the home depot, and
here is at least one customer node in 𝑅 i.e. 𝑛 ≥ 3. Furthermore, we
ssume that the nodes in 𝑅 are not all located at the same location. For
= 2,… , 𝑛, let 𝛥(𝑖) = ∑𝑖−1

𝑙=1 𝑑𝑣𝑙 ,𝑣𝑙+1 denote the total distance from node
1 (the depot) to node 𝑣𝑖 along vehicle route 𝑅. Set 𝛥(1) = 0. For all
= 1, 2,… , 𝑛 and 𝑗 = 2,… , 𝑛, with 𝑖 < 𝑗, let 𝑆𝑖𝑗 =

∑𝑗−1
𝑘=𝑖 𝑠𝑣𝑘 denote the

total service time from node 𝑣𝑖 to node 𝑣𝑗−1. For every distinct pair of
nodes 𝑖, 𝑗 ∈ {1, 2,… , 𝑛}, with 𝑖 < 𝑗, the following lower bound of 𝜎(𝑅)
can be derived:

𝛥(𝑗) − 𝛥(𝑖)
. (23)
𝑙𝑣𝑗 − 𝑒𝑣𝑖 − 𝑆𝑖𝑗
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Any vehicle speed higher than the above lower bound induced from
nodes 𝑖 and 𝑗 would violate one of the time window constraints
ssociated with nodes 𝑣𝑖 and 𝑣𝑗 .

The maximum lower bounds give the minimum speed without
violating any time window constraints in 𝑅 for all distinct pairs of
nodes, and thus we have

𝜎(𝑅) = max
𝑖,𝑗∈{1,2,…,|𝑅|}∶𝑖<𝑗

𝛥(𝑗) − 𝛥(𝑖)
𝑙𝑣𝑗 − 𝑒𝑣𝑖 − 𝑆𝑖𝑗

. (24)

Since there are 𝑛(𝑛−1)
2 distinct pairs of nodes in a vehicle route of length

, 𝜎(𝑅) can be computed in 𝑂(𝑛2).
To complete the proof, we will show two conflicting time window

constraints exist in route 𝑅 if and only if 𝜎(𝑅) ≤ 0. Consider two cases:
i) 𝜎(𝑅) < 0; (ii) 𝜎(𝑅) = 0. Case i: By definition we have 𝛥(𝑗) − 𝛥(𝑖) ≥ 0

for all 𝑖, 𝑗 = 1,… , 𝑛 with 𝑖 < 𝑗. Therefore, 𝜎(𝑅) < 0 iff there exist 𝑣𝑖
nd 𝑣𝑗 with 𝑙𝑣𝑗 − 𝑒𝑣𝑖 < 𝑆𝑖𝑗 which implies a violation on one of the time
indow constraints associated on nodes 𝑣𝑖 and 𝑣𝑗 . Case ii: Suppose, on

he contrary, we consider a vehicle with a speed equal to zero and that
ll the time window constraints in 𝑅 are satisfied. Since the due date
𝑣 ≠ ∞ for all 𝑣, we have 𝜎(𝑅) = 0 iff 𝛥(𝑗) − 𝛥(𝑖) = 0 for all 𝑖, 𝑗 = 1,… , 𝑛

with 𝑖 < 𝑗. Since the nodes in 𝑅 are not all located at the same location,
there exist two distinct nodes 𝑣𝑖 and 𝑣𝑗 in 𝑅 with 𝑑𝑣𝑖 ,𝑣𝑗 > 0 and 𝑖 < 𝑗.
This implies that, there exist 𝑣𝑖 and 𝑣𝑗 in 𝑅 with 𝑖 < 𝑗 and 𝛥(𝑗)−𝛥(𝑖) > 0
which leads to a contradiction. □

4.2. Penalized objective function

We allow infeasible solutions in the search space. It is implemented
as a penalized objective function obtained by relaxing some constraints
and incorporating them into the objective function using self-adjusting
penalty parameters.

If a vehicle 𝑘 ∈  is assigned to a non-empty route 𝑅, and is
traveling at a speed of 𝜈𝑘, the travel cost 𝑐(𝑅) can be written as
𝑐(𝑅) = 𝑓𝑘 +

∑

𝑒∈(𝑅) 𝑐𝑘
( 𝛼𝑘𝑒
𝜈𝑘

+ 𝛽𝑘𝑒𝑤𝑘 + 𝛽𝑘𝑒�̄�𝑘𝑒 + 𝛾𝑘𝑒𝜈2𝑘
)

where �̄�𝑘𝑒 is the
ayload of vehicle 𝑘 on arc 𝑒 and (𝑅) denotes the arcs on route 𝑅.

The overload P(𝑅) representing the violation of the vehicle capacity
constraints is defined as P(𝑅) =

[
∑

𝑖∈ (𝑅) 𝑞𝑖−𝑄𝑘
]+ where  (𝑅) denotes

the customer nodes on route 𝑅. After incorporating the penalties for
possible violations, the penalized objective function value is computed
by 𝑧(𝑅) = 𝑐(𝑅) + 𝜌P(𝑅) where 𝜌 ∈ R+ is the penalty weight that is
self-adjusting in the search. The penalty weight 𝜌 is initialized as 1,
and updated in every 𝛿 iterations as follows. If P(𝑅) = 0 for all vehicle
routes 𝑅, then update 𝜌 to 0.5𝜌; otherwise, update 𝜌 to 2𝜌.

4.3. Initial solution

The initial solution is created by applying a stochastic insertion-
based heuristic and then improved by using the TS procedure described
in Algorithm 1 with a limited number of iterations. The number of
iterations is set to ⌈𝐼1𝑛⌉ where 𝐼1 is a user-controlled parameter and 𝑛
is the number of customers. After creating ten such initial solutions, the
best one is returned as the initial solution for the main search procedure
described in Section 4.6.

The following stochastic insertion-based heuristic is applied. It be-
gins by assigning exactly one arbitrarily selected customer to each
randomly selected 𝑙 vehicle, where 𝑙 is a randomly generated integer be-
tween 1 and the total number of vehicles available. Then, the remaining
customers are considered individually, following a randomized order.
For each customer, all possible locations in all routes are evaluated
for insertion, and the customer is subsequently inserted into a vehicle
route at the position that minimizes the insertion cost (the incremental
change in the penalized objective function value). We determine the in-
sertion costs using the algorithm described in Section 4.1 that performs
speed optimization for a fixed sequence of nodes on a route.
6

4.4. Neighborhood structure

Let  denote the set of all feasible solutions for the instance. We
define the solutions in the neighborhood of a given solution 𝑥 ∈ 
as 𝐍(𝑥). All possible move operations for all customers are evaluated
at each iteration, and the best one is subsequently performed. The
move operation involves relocating a customer from its current route
to another route at the location that minimizes the insertion cost.
The insertion cost is determined by applying the speed optimization
algorithm described in Section 4.1. The best move operation is the
one that leads to the lowest total penalized objective function value
and the following diversification penalty. For a given solution 𝑥 ∈  ,
we define the diversification penalty as 𝜙(𝑥) = 𝜆𝑐(𝑥)

√

𝑛𝜗𝑖𝑟 where 𝑛 is
the number of customers, 𝜗𝑖𝑟 counts the number of times customer 𝑖
has been moved to route 𝑟 so far in the search, and 𝜆 is a positive
parameter that controls the intensity of diversification. Readers can
refer to Soriano and Gendreau (1996) for extensive discussion on
diversification schemes.

To prevent cycling, if a customer has been moved from route 𝑟
to route 𝑠 in a given iteration, then moving the same customer back
to route 𝑟 is declared tabu which implies that this reverse operation
is forbidden for the next ⌈ℎ log10(𝑛)⌉ iterations where ℎ is a user-
controlled parameter and 𝑛 is the number of customers. To prevent the
search from stagnating, the following aspiration criterion is applied: a
Tabu move is allowed only when the resulting solution is feasible and
has an objective function value better than the current best feasible
solution found by the search.

4.5. Intra-route improvement procedure

The following procedure is applied to improve the solution by
modifying customers’ position within the same route: a customer is
randomly picked and then reinserted into the best location of the
same route until no further improvement is possible. The intra-route
improvement procedure is invoked after the selected move operation
is performed, the parameter for overload penalty is updated, or when
the best feasible solution is improved.

4.6. Search procedure

The TS routine is presented in Algorithm 1. The search procedure
consists of two phases. The first phase of the procedure starts by
constructing an initial solution as described in Section 4.3. Next, the
best solution found in the first phase is improved in the second phase
by executing 𝐼2 iterations of the TS routine.

Algorithm 1 Tabu Search
1: input: initial solution 𝑥0
2: Set 𝑥 = 𝑥0. If 𝑥 is feasible, set 𝑧∗ = 𝑐(𝑥) and 𝑥∗ = 𝑥; otherwise, set
𝑧∗ = ∞ and 𝑥∗ = 𝑥.

3: determine 𝑧(�̄�) and 𝜙(�̄�) for all �̄� ∈  (𝑥)
4: while stopping condition is not satisfied do
5: select �̄� ∈  (𝑥) that
6: - minimizes 𝑧(�̄�) + 𝜙(�̄�)
7: - �̄� is non-tabu or it satisfies the aspiration criteria
8: set the reverse move tabu for 𝜃 iterations
9: perform the intra-route improvement procedure on �̄�.

10: if �̄� is feasible and 𝑧(�̄�) < 𝑧∗ then set 𝑥∗ = �̄� and 𝑧∗ = 𝑧(�̄�).
11: set 𝑥 = �̄�, and update the penalty weight of overload for every

𝛿 iterations
12: update 𝑧(�̄�) and 𝜙(�̄�) for all �̄� ∈ N(𝑥)
13: return 𝑥∗

Algorithm 1 shows the TS procedure. In Line 2, the algorithm
starts with an initial solution 𝑥 obtained by running the TS routine
0
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with 𝐼1 iterations as described in Section 4.3. In Line 3, the penalized
objective function and diversification penalty associated with all the
move operations are updated. The loop in Lines 4–12 is invoked and
stops until after 𝐼2 iterations. In Lines 5–7, the best neighborhood
solution considers the diversification penalty, overload penalty, so-
lutions in the Tabu list, and the aspiration criteria. As described in
Section 4.4, the diversification penalty 𝜙(𝑥) depends on the intensifi-
cation parameter 𝜆. In Line 8, the reverse move is forbidden for the
subsequent ⌈ℎ log10(𝑛)⌉ iterations. As shown in Lines 9–10, the intra-
route improvement procedure described in Section 4.5 is performed
on the two routes modified in the best neighborhood solution. The
incumbent is updated if a new, best feasible solution is identified. In
Lines 11–12, the search moves to the selected neighboring solution. The
penalty weight of overload is updated in every 𝛿 iterations. Whenever
the search moves to a neighboring solution, the penalized objective
function and diversification penalty associated with each of the move
operations are again updated by using the speed optimization algorithm
described in Section 4.1 and the penalized objective function defined in
Section 4.2. The computational time is manageable since we only need
to update the move operations costs involved with the modified routes.
The values for the algorithmic parameters in the search procedure
include 𝐼1, 𝐼2, 𝜆, ℎ, and 𝛿, which are set according to the parameter
tuning experiment described in Section 6.3.

5. Branch-and-price algorithm

The branch-and-price algorithm is a successful exact method for
solving several VRP variants. It relies on reformulating the problem
as a set-partitioning (SP) problem and applying branch-and-bound
to solve the SP formulation, which provides tight linear bounds. As
the number of variables in the SP model grows exponentially with
the instance size, column generation is applied to identify profitable
variables dynamically and add them to the model. For a review of
branch-and-price algorithms used for vehicle routing, we refer to Costa
et al. (2019). This section presents the SP-based PRP-SO formulation
and describes our branch-and-price solution method, focusing on the
specialized algorithm for solving the non-linear column generation
subproblem.

5.1. Set-partitioning formulation

A route 𝑝 is feasible for vehicle 𝑘 when (i) there exists a value
𝜈 ∈ [𝑎𝑘, 𝑏𝑘] such that no time-window constraint is violated when
vehicle 𝑘 executes route 𝑝 at speed 𝜈; and (ii) the total demand of the
customers served along 𝑝 does not exceed the vehicle capacity 𝑄𝑘. Let
𝛺𝑘 be the set of feasible routes for vehicle 𝑘. Furthermore, for each
𝑝 ∈ 𝛺𝑘, let 𝑐𝑘𝑝 be the cost incurred when vehicle 𝑘 executes route 𝑝
at the optimal speed, as defined in Section 4.1. Finally, for each route
𝑝 ∈ 𝛺𝑘 and customer 𝑖 ∈  ⧵ {0}, let

𝛿𝑖𝑝 =

{

1, if route 𝑝 visits customer 𝑖,
0, otherwise.

We define binary decision variables 𝜆𝑘𝑝 for all 𝑘 ∈  and 𝑝 ∈ 𝛺𝑘,
such that 𝜆𝑘𝑝 = 1 if and only if vehicle 𝑘 executes route 𝑝 in the solution.
Then, the PRP-SO is formulated as the following SP problem:

(SP) ∶ min
∑

𝑘∈

∑

𝑝∈𝛺𝑘

𝑐𝑘𝑝𝜆
𝑘
𝑝 , (25)

s.t.
∑

𝑘∈

∑

𝑝∈𝛺𝑘

𝛿𝑖𝑝𝜆
𝑘
𝑝 = 1, ∀𝑖 ∈  ⧵ {0}, (26)

∑

𝑝∈𝛺𝑘

𝜆𝑘𝑝 ≤ 1, ∀𝑘 ∈ , (27)

𝜆𝑘𝑝 ∈ {0, 1}, ∀𝑘 ∈ ,∀𝑝 ∈ 𝛺𝑘. (28)
7

The objective function (25) minimizes the total costs. Constraints
(26) ensure that each customer is visited exactly once, and constraints
(27) enforce a maximum of one route per vehicle.

5.2. Column generation subproblem

The restricted master problem (RMP) refers to the linear relaxation
of (25)–(28) with a restricted set of vehicle routes. Let 𝜋𝑖, 𝑖 ∈  ⧵{0}, be
the dual prices associated with constraints (26) after solving the RMP.
The pricing problem for vehicle 𝑘 is defined as follows:

(PP) ∶ min 𝑓𝑘 + 𝑐𝑘
∑

𝑒∈

(𝛼𝑘𝑒
𝜈

+ 𝛽𝑘𝑒(𝑤𝑘 + 𝑥𝑒) + 𝛾𝑘𝑒𝜈2
)

𝑦𝑒 −
∑

𝑖∈⧵{0}
𝜋𝑖𝑧𝑖,

(29)

s.t.
∑

𝑒∈𝛿+(𝑖)
𝑦𝑒 =

∑

𝑒∈𝛿−(𝑖)
𝑦𝑒 = 𝑧𝑖, ∀𝑖 ∈  ⧵ {0}, (30)

∑

𝑒∈𝛿+(0)
𝑦𝑒 =

∑

𝑒∈𝛿−(0)
𝑦𝑒 = 1, (31)

∑

𝑒∈𝛿−(𝑖)
𝑥𝑒 −

∑

𝑒∈𝛿+(𝑖)
𝑥𝑒 = 𝑞𝑖𝑧𝑖, ∀𝑖 ∈  ⧵ {0}, (32)

𝑥𝑒 ≤ (𝑄𝑘 − 𝑞𝑖)𝑦𝑒, ∀𝑒 = (𝑖, 𝑗) ∈ , (33)
∑

𝑖∈⧵{0}
𝑞𝑖𝑧𝑖 ≤ 𝑄𝑘, (34)

𝑡𝑗 − 𝑡𝑖 ≥ 𝑠𝑖 + 𝑑𝑒
𝑦𝑒
𝜈

− 𝑙0
(

1 − 𝑦𝑒
)

, ∀𝑒 = (𝑖, 𝑗) ∈  ∶ 𝑗 ≠ 0,

(35)

𝑒𝑖𝑧𝑖 ≤ 𝑡𝑖 ≤ 𝑙𝑖𝑧𝑖, ∀𝑖 ∈  ⧵ {0}, (36)

𝑡𝑖 + 𝑠𝑖 + 𝑑𝑒
𝑦𝑒
𝜈

≤ 𝑙0, ∀𝑖 ∈  ⧵ {0}, 𝑒 = (𝑖, 0), (37)

𝜈 ∈ [𝑎𝑘, 𝑏𝑘], (38)

𝑡𝑖 ∈ R+, ∀𝑖 ∈  , (39)

𝑥𝑒 ∈ R+, ∀𝑒 ∈ , (40)

𝑦𝑒 ∈ {0, 1}, ∀𝑒 ∈ , (41)

𝑧𝑖 ∈ {0, 1}, ∀𝑖 ∈  ⧵ {0}. (42)

The objective function (29) minimizes the route-dependent costs
including vehicle fixed cost and CO2𝑒 emissions cost) and the dual
rices of the RMP. The flow conservation constraints are constraints
30)–(31). Constraints (32)–(33) keep track of the payload in the
ehicle along each arc traversed. Constraint (34) is the vehicle capacity
onstraint. Constraints (35)–(37) are the time window constraints.
inally, constraint (38) ensures that the vehicle travels at speed within
he prescribed limits.

.3. Pricing algorithm

The pricing algorithm identifies columns with a negative reduced
ost. It finds solutions to (29)–(42) with a negative objective value. As
tandard in branch-and-price algorithms for vehicle routing, we solve
he pricing problem with a labeling algorithm. A label represents a
artial route from the depot to a customer. Label extensions are created
y extending labels to all feasible customers. Table 4 summarizes the
ttributes of a label alongside their corresponding initialization values
nd updating rules.

A key component of our pricing algorithm is the set of label exten-
ion procedures that do not require full backtracking to determine the
ost of a route under the optimal speed. The idea is formalized with
he following definition and proposition.

efinition 2 (Cost of a path). Let 𝑄 be a path with arcs (𝑒1, 𝑒2,… , 𝑒𝐿)
nd nodes (𝑣 , 𝑣 , 𝑣 ,… , 𝑣 ) where 𝑣 = 𝑣 = 0 is the depot. The cost of
0 1 2 𝐿 0 𝐿
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Table 4
Pricing algorithm: Label attributes, initialization values, and updating rules.

Attributea Description Initializationb Updating rulec

𝑁𝑃 Set of customers {𝑖} 𝑁𝑄 = 𝑁𝑃 ∪ {𝑗}
𝑛𝑃 Last customer served 𝑖 𝑗
𝑞𝑃 Total demand 𝑞𝑖 𝑞𝑄 = 𝑞𝑃 + 𝑞𝑗
𝐷𝑃 Total distance traveled 𝑑𝑒 𝐷𝑄 = 𝐷𝑃 + 𝑑𝑒
𝜏𝑃 Earliest departure time assuming

maximum speed
max(𝑒𝑖 , 𝑑𝑒∕𝑏𝑘) + 𝑠𝑖 𝜏𝑄 = max(𝑒𝑗 , 𝜏𝑃 + 𝑑𝑒∕𝑏𝑘) + 𝑠𝑗

𝑆𝑃 Total service time before 𝑛𝑃 0 𝑆𝑄 = 𝑆𝑃 + 𝑠𝑛𝑃
𝑃 Triples of distance, total service time

and earliest service time
for calculating 𝜎𝑃

{(𝑑𝑒 , 0, 𝑒𝑖)} 𝑄 = 𝑃 ∪ {(𝐷𝑄 , 𝑆𝑄 , 𝑒𝑗 )}

𝜎𝑃 Minimum vehicle speed such that
all time windows are respected

𝑑𝑒∕𝑙𝑖 𝜎𝑄 = max
(𝑑,𝑠,𝑡)∈𝑃

𝐷𝑄−𝑑
𝑙𝑗−𝑡−(𝑆𝑄−𝑠)

𝜈𝑃 Optimal speed max(𝑣∗𝑘 , 𝑑𝑒∕𝑙𝑖) 𝜈𝑄 = max(𝑣∗𝑘 , 𝜎𝑄)
𝛼𝑃
𝛽𝑃
𝛾𝑃
𝛿𝑃

Coefficients for CO2𝑒 emissions
𝛼𝑘𝑒
𝛽𝑘𝑒
𝛾𝑘𝑒
𝛽𝑃 𝑞𝑖

𝛼𝑄 = 𝛼𝑃 + 𝛼𝑘𝑒
𝛽𝑄 = 𝛽𝑃 + 𝛽𝑘𝑒
𝛾𝑄 = 𝛾𝑃 + 𝛾𝑘𝑒
𝛿𝑄 = 𝛿𝑃 + 𝛽𝑄𝑞𝑗

a Assuming label 𝑃 .
b Assuming vehicle 𝑘 and a label representing the partial route along arc 𝑒 = (0, 𝑖).
c Assuming label 𝑄 obtained by extending 𝑃 along arc 𝑒 = (𝑖, 𝑗).
w

𝑥

c
t
O

f
c
e
e
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b
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𝜙

w
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𝛷

ath 𝑄 when traveling at a speed of 𝜈 is defined as

𝑘

(𝛼𝑄
𝜈

+ 𝛿𝑄 + 𝛽𝑄𝑤𝑘 + 𝛾𝑄𝜈2
)

− 𝜋𝑄, (43)

where 𝛼𝑄 =
∑𝐿
𝑙=1 𝛼𝑘𝑒𝑙 , 𝛽𝑄 =

∑𝐿
𝑙=1 𝛽𝑘𝑒𝑙 , 𝛾𝑄 =

∑𝐿
𝑙=1 𝛾𝑘𝑒𝑙 , 𝜋𝑄 =

∑𝐿
𝑙=1 𝜋𝑒𝑙 ,

𝛿𝑄 =
∑𝐿−1
𝑖=1 𝛽𝑃𝑖𝑞𝑖, and 𝑃𝑖 denote the path (𝑣0, 𝑣1, 𝑣2,… , 𝑣𝑖).

Proposition 3. Let 𝑃 be a complete path that ends at the depot, and let 𝑝
be the route induced by 𝑃 . Then, the cost of 𝑝 executed under the optimal
vehicle speed, given by 𝑐𝑝, is equal to 𝑃 as determined by (43) where 𝜈 = 𝜈𝑃 .

Proof. Let 𝑄 be a partial path of vehicle 𝑘 with arcs (𝑒1, 𝑒2,… , 𝑒𝐿) and
nodes (𝑣0, 𝑣1, 𝑣2,… , 𝑣𝐿) where 𝑣0 = 𝑣𝐿 = 0 is the depot with demand
𝑞0 set to 0. The travel cost of the route induced by 𝑄, according to the
objective function (29), is given by

𝑐𝑘
𝐿
∑

𝑙=1

(𝛼𝑘𝑒𝑙
𝜈

+ 𝛽𝑘𝑒𝑙 (𝑤𝑘 + 𝑥𝑒𝑙 ) + 𝛾𝑘𝑒𝑙 𝜈
2
)

−
𝐿
∑

𝑙=1
𝜋𝑣𝑙 , (44)

here 𝑥𝑒𝑙 =
∑𝐿−1
𝑚=𝑙 𝑞𝑚 is the sum of the demand of the customers in the

emaining part of the route, that is the payload of arc 𝑒𝑙. As shown
elow, the cost calculation by (44) is equivalent to (43).

The travel cost (44) can be rewritten as

𝑐𝑘
(

∑𝐿
𝑙=1 𝛼𝑘𝑒𝑙
𝜈

+
𝐿
∑

𝑙=1

𝐿
∑

𝑚=𝑙
𝛽𝑘𝑒𝑙 𝑞𝑚 +

𝐿
∑

𝑙=1
𝛽𝑘𝑒𝑙𝑤𝑘 +

𝐿
∑

𝑙=1
𝛾𝑘𝑒𝑙 𝜈

2
)

−
𝐿
∑

𝑙=1
𝜋𝑣𝑙

𝑐𝑘
(𝛼𝑄
𝜈

+
𝐿
∑

𝑙=1

𝐿
∑

𝑚=𝑙
𝛽𝑘𝑒𝑙 𝑞𝑚 + 𝛽𝑄𝑤𝑘 + 𝛾𝑄𝜈2

)

− 𝜋𝑄.

Note that ∑𝐿
𝑙=1

∑𝐿
𝑚=𝑙 𝛽𝑘𝑒𝑙 𝑞𝑚 =

∑𝐿
𝑙=1

∑𝑙
𝑚=1 𝛽𝑘𝑒𝑚𝑞𝑙 =

∑𝐿
𝑙=1 𝛽𝑃𝑙 𝑞𝑙 = 𝛿𝑄,

and hence equivalent to the routing costs defined in the objective
function (29). □

The pricing problem can be considered as a variant of the resource-
constrained shortest-path (RCSP) problem (see, e.g. Feillet et al., 2004).
Typically, one finds the RCSP with a labeling procedure where domi-
nance rules are employed to discard non-promising partial paths. In
our case, there are no existing effective dominance rules that are
applicable. More specifically, in addition to the usual resources to
handle vehicle capacity and time windows, in our case, one must also
observe dominance conditions on the allowed vehicle speed range and
each cost component individually. Therefore, in our pricing algorithm,
we decide to control the combinatorial growth of labels exclusively
with completion bounds, which are detailed next.
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5.3.1. Completion bounds
A completion bound is a lower bound on the reduced cost of

all routes generated from a label. Completion bounds accelerate the
solution of the pricing problem since partial paths with nonnegative
bounds are discarded during the labeling procedure.

Consider a partial path 𝑃 with arcs (𝑒1, 𝑒2,… , 𝑒𝐿) and nodes
(𝑣0, 𝑣1, 𝑣2,… , 𝑣𝐿). The precise cost along 𝑃 depends on the customers
visited after 𝑣𝐿, since the cost along each arc depends on the arc
payload. A lower bound on the cost along 𝑃 , however, can be computed
as follows:

𝛷𝑃 = 𝑓𝑘 + 𝑐𝑘
𝐿
∑

𝑙=1

(𝛼𝑘𝑒𝑙
𝜈

+ 𝛽𝑘𝑒𝑙 (𝑤𝑘 + �̄�𝑒𝑙 ) + 𝛾𝑘𝑒𝑙 𝜈
2
)

, (45)

here

̄𝑒𝑙 =

{

𝑞𝑃 −
∑𝑙−1
𝑚=1 𝑞𝑣𝑚 , if 𝛽𝑘𝑒𝑙 ≥ 0,

𝑄𝑘 −
∑𝑙−1
𝑚=1 𝑞𝑣𝑚 , if 𝛽𝑘𝑒𝑙 < 0.

(46)

Eq. (46) considers a best-case (i.e., cost-minimizing) scenario con-
erning the payload along each arc. If the corresponding 𝛽 is nonnega-
ive, the vehicle is assumed to travel along arc 𝑒 as lightly as possible.
therwise, the vehicle is assumed to travel as loaded as possible.

Given the lower bound (45), we propose two completion bounds
or a label 𝑃 . The first bound is based on an RCSP and explores the
apacity resource to find a lower bound on the reduced cost of any
xtension of 𝑃 . The second bound is based on a knapsack problem. It
xplores not only the capacity resource but also the ‘‘timing’’ resources,
hat is, customers cannot be visited after their time windows, and the
ehicle must return to the depot no later than instant 𝑙0.

We start with the RCSP-based completion bound, which adapts the
ound proposed by Florio et al. (2021) for solving the elementary RCSP.
irst, we associate to each arc 𝑒 = (𝑖, 𝑗) ∈  a lower bound �̄�𝑒 on the
educed cost change when partial path 𝑃 is extended along 𝑒 = (𝑖, 𝑗):

̄𝑒 =
𝛼𝑘𝑒
𝑣∗𝑘

+ 𝛽𝑘𝑒(𝑤𝑘 + 𝑥′𝑒) + 𝛾𝑘𝑒(𝑣
∗
𝑘)

2 − 𝜋𝑗 , (47)

here 𝑥′𝑒 = 0 if 𝛽𝑒 ≥ 0 and 𝑥′𝑒 = 𝑄𝑘 otherwise.
We denote by 𝑆∗

𝑖 (𝑄) the value of the RCSP from node 𝑖 ∈  ⧵ {0}
o node 0 in a graph with arc costs given by (47), in which the initial
esource limit is 𝑄 and an amount 𝑞𝑗 of resource is consumed each time
ode 𝑗 ≠ 0 is visited. Then, the RCSP-based completion bound is given
y:

𝑃 −
∑

𝜋𝑖 + 𝑆∗
𝑛𝑃
(𝑄𝑘 − 𝑞𝑃 ). (48)
𝑖∈𝑁𝑃
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Eq. (48) yields a valid bound because 𝛷𝑃−
∑

𝑖∈𝑁𝑃 𝜋𝑖 is a lower bound
on the reduced cost of partial path 𝑃 , and 𝑆∗

𝑛𝑃
(𝑄𝑘 − 𝑞𝑃 ) is a lower

bound on the reduced cost of any feasible extension to 𝑃 . To enable
evaluations of (48) in constant time for any label 𝑃 , at the beginning
of an iteration of the pricing problem we pre-compute 𝑆∗

𝑖 (𝑄) for all
𝑖 ∈  ⧵ {0} and 𝑄 ∈ {0,… , 𝑄𝑘}. The (non-elementary) RCSPs can be
solved efficiently by dynamic programming.

While the RCSP bound is computationally efficient, it does not
explore time window constraints nor the fact that we price elementary
routes. In the knapsack bound, we set up a {0, 1}-knapsack problem
with capacity of 𝑙0− 𝜏𝑃 , which corresponds to the maximum remaining
routing time after customer 𝑛𝑃 is served. Then, we define a set of
knapsack items

 = {𝑖 ∈  ⧵ ({0} ∪𝑁𝑃 ) ∶ 𝑞𝑖 + 𝑞𝑃 ≤ 𝑄𝑘 ∧ 𝜏𝑃 + 𝑑𝑛𝑃 ,𝑖∕𝑏𝑘 ≤ 𝑙𝑖}.

Each element of  is a customer that can be visited after 𝑛𝑃 ,
considering time window and vehicle capacity constraints. With each
item 𝑖 ∈  a value 𝑣(𝑖) and a weight 𝑤(𝑖) are associated:

𝑣(𝑖) = max
𝑒=(𝑗,𝑖)∈

−�̄�𝑒,

𝑤(𝑖) = min
(𝑗,𝑖)∈

𝑑𝑗𝑖∕𝑏𝑘.

The value and weight of an item 𝑖 correspond to the maximum
reduced cost decrease and minimum amount of the time resource
consumed, respectively, when customer 𝑖 is visited in an extension
of partial path 𝑃 . We let 𝐾∗

𝑃 be the optimal solution value of the
abovementioned knapsack problem. Then, the knapsack completion
bound is given by:

𝛷𝑃 −
∑

𝑖∈𝑁𝑃

𝜋𝑖 −𝐾∗
𝑃 . (49)

Each time a label 𝑃 is generated, we evaluate (49) and discard 𝑃 if
the bound is nonnegative. This evaluation requires solving the knapsack
problem to optimality, which dynamic programming can also achieve
efficiently.

5.4. Branching rules

The implemented branch-and-bound framework finds an optimal
integer solution to (25)–(28) by branching on variables 𝑦𝑒, 𝑒 ∈ , that
take fractional values. We apply a semi-strong branching rule where
each potential branching variable is evaluated under the current pool
of columns, and the variable on which branching leads to the highest
lower bound is chosen. More precisely, at a given branch-and-bound
node, we let 𝛺𝖱 be the set of all columns generated and  the set of
arc variables that assume fractional values in the solution to the RMP.
Then, we evaluate

min{RMP(𝛺𝖱, {𝑦𝑒}, {}),RMP(𝛺𝖱, {}, {𝑦𝑒})} (50)

for each 𝑦𝑒 ∈  , where RMP(𝛺,0,1) corresponds to the optimal
solution value of the RMP restricted to columns 𝛺 and enforcing
constraints 𝑦𝑒 = 0 for all 𝑦𝑒 ∈ 0 and 𝑦𝑒 = 1 for all 𝑦𝑒 ∈ 1
in addition to the branching constraints of the parent branch-and-
bound node. Finally, we branch on the variable 𝑦𝑒 ∈  such that (50)
is maximum. Note that evaluating (50) for each potential branching
variable can be implemented efficiently by loading a single linear
program and (re)solving it for each variable after adjusting the cost
vector accordingly by penalizing the cost of routes that do not comply
with the candidate branching decision.

6. Computational experiments

In this section, we will evaluate the performance of Tabu search
heuristic described in Section 4 (denoted as TS) and the branch-and-
9

price approach described in Section 5 (denoted as BP). Afterwards, we
Table 5
Vehicle information.

Original capacity Vehicle type Capacity Demand unit

200 LDV 1,200 kg 6 kg per unit
700 MDV 12,600 kg 18 kg per unit
1,000 HDV 31,000 kg 31 kg per unit

use the heuristic in an empirical study to evaluate the potential benefits
of using elevation data for optimizing vehicle routes.

We organize the remaining subsections as follows. Section 6.1 de-
scribes the test instances constructed using data from the literature,
and Section 6.2 describes the test instances constructed using real-
world data. Section 6.3 is about the parameter tuning experiment. In
Section 6.4, we evaluate the efficiency of BP and TS. In Section 6.5,
we evaluate the potential benefits of using elevation data for planning
vehicle routes.

6.1. Test instances using data from literature

Since there are no existing benchmark datasets of PRP-SO, we con-
structed test instances based on the instances of Solomon (1987), which
are initially created for VRPTW. The VRPTW instances are adapted
into PRP-SO instances by associating randomly generated elevation
information on the nodes. The units for time and demand are also
scaled to match the realistic instances.

The VRPTW instances have four sets of instances involving 25,
50, 75, and 100 customers, respectively. Instances are divided into
three classes according to the customer location distribution: clustered
distribution (C class), scattered distribution (R class), and partially
scattered and partially clustered distribution (RC class). Each class
is further subdivided into the narrower time window class and the
wider time window class. Our experiments will test on the instances
with narrower time windows. In total, 116 instances of PRP-SO are
constructed using the instances of Solomon (1987). The remaining part
of this subsection describes how the VRPTW instances are adapted into
the PRP-SO instances.

The elevation of the nodes is randomly generated with a uniform
distribution between 0 and 1000 m. The distance in kilometers between
node 𝑖 and node 𝑗 is given by

𝑖𝑗 =

√

(𝑋𝑖 −𝑋𝑗 )2 + (𝑌𝑖 − 𝑌𝑗 )2 +
(
𝑍𝑖 −𝑍𝑗
1000

)2,

rounded to the nearest meter, where (𝑋𝑖, 𝑌𝑖) and (𝑋𝑗 , 𝑌𝑗 ) are the coor-
inates, and 𝑍𝑖 and 𝑍𝑗 are the elevations of node 𝑖 and 𝑗, respectively.
ith the rounded values of distances, the road angle between two

odes is given by tan−1
(𝑍𝑖−𝑍𝑗

𝐷𝑖𝑗

)

.
The units for time and demand are also scaled to match the realistic

instances. For our experiments, service times and the time windows
have a unit of 0.02 h. For example, a due date of 1236 from Solomon’s
instances represents a due date of 24.72 h (given by 1236*0.02) after
the planning horizon starts. This implies that if vehicles always travel
at 50 km per hour, the time window constraints would remain the same
as the ones in the original VRPTW instances.

Three types of vehicles appeared in Solomon’s instances: 200, 700,
and 1000 units. We scale the demand and the vehicle capacity ac-
cordingly so that it is equivalent to the original constraints for vehicle
capacity and, at the same time, matches typical truck classifications:
LDV, MDV, and HDV for the 200, 700, and 1000 capacity units,
respectively.

Table 5 summarizes our experiments’ vehicle capacity and demand
unit. For example, the vehicles in Solomon’s instances with a capacity
of 200 units correspond to the LDV vehicles of the PRP-SO instances.
Therefore, a demand of 20 units in those instances represents a demand

of 120 kg (given by 20 × 6) in the PRP-SO instances.
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Fig. 1. Customer locations.

All the vehicles have a fixed cost of 100 EUR, a fuel cost of 1.42 EUR
per liter, and a maximum speed of 80 km per hour. Other parameters
used for the CO2𝑒 consumption calculations are summarized in Table 2.

6.2. Test instances using real-world data

Another dataset is constructed based on the distribution network
of a large international health and beauty retailer. There are 248
customers considered in our experiments, which represent the retailer’s
stores in Hong Kong. Geometric information is obtained using Google
Maps APIs, including the coordinates, elevations, and suggested paths
between the stores. Fig. 1 illustrates the geographical locations of these
stores. The landscape varies from moderately hilly to mountainous,
with steep slopes. The stores’ locations are clustered and densely popu-
lated in the central areas. We use this dataset to evaluate the potential
benefits of using elevation information in optimizing vehicle routes.

We preprocess the geographic data from the Google Maps API and
the Elevation API into the 𝛼, 𝛽, and 𝛾 values associated with the arcs
(defined in Section 3) so that the proposed solution approaches can
compute the fuel consumption and CO2𝑒 emission efficiently. To begin
with, for every distinct pair of the stores, we obtain a suggested path
by using the Google Maps API and find out the elevation for all the
coordinates along the suggested path by using Google Elevation API.
Afterward, to construct arc segments coordinates along a path are
divided into segments. With each segment, the distance is no longer
than 1000 m. An arc segment can be viewed as a slope along the
suggested path. In our experiments, there are a total of 155,333 such
slopes. Lastly, the angles and distance of all these slopes are determined
using the coordinates and elevation data, and thus we have the 𝛼, 𝛽,
and 𝛾 values of all the arcs connecting the stores.

In our experiments, nine instances are constructed. Each instance
consists of 100 customers randomly selected from the 248 stores. The
ready time, due time, demand, vehicle number, and capacity are data
from Solomon’s C class instances. The depot is located at the Kwai Tsing
Container Terminal, which is the busiest port in Hong Kong.
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6.3. Parameter tuning

The best parameters amongst the values specified in Table 6 are
chosen for each instance class.

All experiments have been conducted on an Ubuntu server with an
Intel Xeon CPU E5-2698 v3 @ 2.30 GHz, 16 cores, and 16 GB of main
memory. Linear programs were solved using IBM® CPLEX® version
12.10. Algorithms have been implemented in C++ and compiled using
GNU g++ version 10.2.0 with the -O2 flag. The algorithms run on a
single core per instance.

6.4. Efficiency of the approaches

Table 7 summarizes the computational results of BP and TS on the
instances described in Section 6.1 with 25, 50, 75, and 100 customers,
respectively. Appendix A shows individual instances’ results. Column
NI is the number of instances in the dataset class, including the ones
that no feasible solution can be found using BP within 3 h. Column NO
is the number of instances that can be solved optimally by using BP
within the time limit. Column NV is the average number of vehicle
routes, column TD is the average total travel cost, column AT is
the average CPU time (in seconds), and column AG is the average
optimality gap (in percentage). When reporting the average values, we
excluded instances where no feasible solution could be found by using
BP within 3 h. If BP is terminated due to the time limit, the best feasible
solution is used for computing the average values.

As shown in Table 7, BP can solve instances up to 100 customers,
with 61 instances (53%) solved to optimality. BP can find all the
optimal solutions of the dataset with 25 customers within a reasonable
time and the most optimal solutions with 50 customers within 3 h.
Compared to TS, BP can determine better solutions on smaller instances
but at the expense of significantly more CPU time. TS can find near-
optimal solutions for all instances within one minute and outperforms
BP (with a time limit of 3 h) on solution quality for the dataset with
100 customers.

6.5. The value of using elevation information

The real-world instances described in Section 6.2 are solved by us-
ing TS to evaluate the potential benefits of using elevation information
in optimizing vehicle routes. Table 8 summarizes the total distance
(in km), average speed (in km/h), total fixed cost (in EUR), total fuel
cost (in EUR), and the total elevation (in meters). Fig. 2 illustrates an
example vehicle route. The same dataset is solved again with elevation
information ignored (disregarding slopes). i.e. Setting 𝜙𝑒𝑠 = 0 when we
precompute the parameters using (2)–(4). The results are reported in
Table 9. This is achieved in our experiment by setting the angles of
all slopes to zero when optimizing the vehicle routes by using TS and
evaluating the solutions with the correct elevations and slopes after the
vehicle routes have been decided.

We can observe the impacts on solutions when elevation informa-
tion is used for planning the vehicle routes by comparing the results in
Tables 8 and 9. As shown in the experimental results, when elevation
information is considered in planning, fuel consumption decreased by
54% on average. In contrast, the average vehicle speed and elevation
increased slightly, and the total travel distance increased by 31%.

More considerable travel distances and lower fuel consumption are
contradictory for typical vehicle routing problems. In the PRP-SO, fuel
consumption depends on distance, slopes, payload, and vehicle speeds.
Optimal vehicle routes should save fuel costs by avoiding going uphill
at a high speed with a large payload. As a result, vehicles tend to visit
more customers first before going uphill. Although this will increase
travel distance, fuel consumption can be saved by going uphill with a
smaller payload.

For typical vehicle routing problems or when vehicle routes are

planned manually, travel distance is usually minimized in the objective
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Table 6
Parameter values.

Parameter Possible values Description

𝐼1 1, 2 Number of iterations in the first phase
𝐼2 100,000 Number of iterations in the second phase
𝜆 10−6, 5 × 10−6, 10−7, 5 × 10−7 Diversification intensity
ℎ 3, 4, 5, 6 Parameter for setting the tabu tenure
𝛿 10, 20, 30, 40 Penalty update frequency
Table 7
Computational results of the PRP-SO instances.

Class NO/NI BP TS

NV TD AT (s) AG (%) NV TD AT (s)

N25 C 9/9 3.000 24.059 215.90 0% 3.000 24.597 0.41
RC 8/8 3.250 45.314 30.28 0% 3.250 45.331 0.98
R 12/12 4.667 60.240 30.02 0% 4.750 59.306 2.49

N50 C 7/7 5.000 45.641 3608.80 0.000% 5.000 46.612 2.65
RC 4/8 6.500 94.850 6933.27 0.087% 6.500 97.514 10.26
R 9/10 7.500 107.889 2707.29 0.018% 8.000 109.131 8.17

N75 C 2/4 8.000 83.020 8314.54 0.079% 8.000 82.994 3.85
RC 1/6 9.667 154.001 9262.17 4.088% 10.333 153.598 10.03
R 5/6 11.833 152.447 3956.78 0.018% 12.500 160.035 8.23

N100 C 1/1 10.000 107.742 3255.73 0.000% 10.000 107.742 2.21
RC 1/4 12.750 210.165 8957.57 2.440% 13.000 195.959 12.93
R 2/3 16.667 194.144 4489.88 1.983% 13.500 170.702 42.31

Total: 61/78 98.8 1279.5 51 762.2 97.8 1253.5 104.5
Fig. 2. An example vehicle route.
Table 8
Results on real-world instances.

Instance Distance Speed Fixed cost Fuel cost Elevation

HK01 1638.6 62.3 1500 109.5 1816
HK02 1460.1 62.3 1400 163.6 1436
HK03 990.2 61.1 1200 196.7 1070
HK04 1153.7 63.1 1000 50.0 1440
HK05 1209.0 63.5 1400 197.5 1185
HK06 1441.9 64.9 1300 89.4 1748
HK07 1159.5 65.5 1300 185.4 1309
HK08 1384.8 64.6 1200 110.3 1359
HK09 1088.5 63.7 1100 81.5 1495

Average: 1280.7 63.5 1266.7 131.5 1428.7

function. Our experimental result reveals that this can ultimately lead
to a suboptimal solution. With the elevation information, the optimal
solution can balance the tradeoff between the energy consumption due
to longer distances and the higher payload when going uphill. To avoid
high fuel consumption when vehicles go uphill, heavier items tend to
be delivered first before going uphill. Customer time windows must be
considered so that vehicles do not need to speed up to meet the due
times, which can result in high fuel consumption. If elevation infor-
mation is ignored when planning the vehicle routes, fuel consumption
11
Table 9
Results on real-world instances when slopes are ignored.

Instance Distance Speed Fixed cost Fuel cost Elevation

HK01 1158.7 60.6 1500 405.1 1582
HK02 1015.1 60.7 1400 331.1 1152
HK03 953.0 60.9 1200 184.5 1043
HK04 765.2 60.5 1100 114.5 1443
HK05 1040.7 62.9 1400 409.8 1140
HK06 1071.8 62.8 1300 518.3 1536
HK07 1004.4 62.3 1300 278.1 1311
HK08 945.3 64.0 1300 197.7 1307
HK09 831.7 59.5 1100 138.0 1331

Average: 976.2 61.6 1288.9 286.3 1316.1

due to payload is underestimated when vehicles go uphill, leading
to poor solutions. With the significant savings we observed from the
experimental results, logistic service providers should consider using
elevation data for planning their vehicle routes in practice.

6.6. Impact of payloads and slopes

For evaluating the impact of payloads and slopes on the optimized
solutions, the real-world instances described in Section 6.2 are modified
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Table 10
Impact of payloads and slopes on routing costs.

Slope factor (𝑟2)

0 0.2 0.4 0.6 0.8 1 Average

Payload
factor
(𝑟1)

0 1516.0 1543.9 1527.4 1458.7 1456.2 1361.8 1477.3
0.2 1514.3 1519.5 1527.3 1472.0 1475.4 1374.8 1480.6
0.4 1530.7 1563.0 1540.4 1466.4 1478.4 1363.9 1490.5
0.6 1545.9 1565.5 1556.6 1475.9 1512.0 1373.8 1505.0
0.8 1553.0 1532.5 1582.0 1511.1 1494.6 1404.7 1513.0
1 1575.1 1542.8 1586.7 1516.6 1496.1 1413.3 1521.8

Average 1539.2 1544.6 1553.4 1483.5 1485.5 1382.0
Fig. 3. Impact of payloads and slopes on routing costs.
by scaling the payloads by a factor 𝑟1 ∈ {0, 0.1,… , 1} when calculating
the costs, and scaling the slopes by a factor 𝑟2 ∈ {0, 0.1,… , 1}. In
our experiments, we replace the payload 𝑥𝑘𝑒 in (1) by a factor 𝑟1𝑥𝑘𝑒
when calculating the costs and replace the slope 𝜙𝑒𝑠 in (3) by 𝑟2𝜙𝑒𝑠
when preprocessing the data. A higher value of the payload factor (𝑟1)
represents scenarios when relatively heavier items are shipped, and a
higher value of the slope factor (𝑟2) represents more hilly areas where
steep slopes commonly appear. There are 1089 instances tested in total,
and each is solved using TS with a time limit of 300 s.

Table 10 summarizes the average costs (see Appendix B for the
complete results). Fig. 3 shows the average cost with varying payloads
(𝑟1) and slopes (𝑟2), respectively.

The experimental results show that the shipping cost increases with
the payload (𝑟1) and decreases with the slope (𝑟2). It is more costly
to ship with a heavier payload (higher value of 𝑟1) with a percentage
increase in total costs up to 3.49%, on average, regardless of the slopes.
It is less costly to ship in more hilly areas (higher value of 𝑟2), saving
up to 11.71% of the total costs on average, regardless of the payloads.
The impact of slopes is significantly higher than that due to payloads,
which reveals the importance of considering slopes when optimizing
vehicle routes.

7. Conclusions

This paper formulates and proposes efficient solution methods for
a joint Pollution-Routing and Speed Optimization Problem (PRP-SO),
where the total travel cost is a function of fuel consumption and CO2𝑒
emissions and depends, simultaneously, on road grades, arc payloads,
and vehicle speed. The introduction of vehicle speed as a continuous
decision variable results in more complicated optimization subproblems
in the presence of time window constraints. For the fixed-sequence
speed optimization problem where the vehicle route is known, the
proposed approach is conceptually simple and computes the optimal
vehicle speed (with and without time windows) in quadratic time. In
the speed optimization with variable routes, we introduced a novel
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labeling algorithm, without full backtracking searching, that efficiently
determines the cost of a vehicle route that travels with optimal speed.

Based on the proposed speed optimization algorithms, we present
two general solution approaches for solving the PRP-SO. An approxi-
mate solution strategy aims to solve large instances in a short compu-
tational time. For this purpose, we integrated the fixed-sequence speed
optimization algorithm into Tabu search metaheuristic. The second
approach consists of an exact branch-and-price algorithm, in which
the variable-route speed optimization is managed within the pricing
problem.

We carried out extensive computational experiments on modified
Solomon benchmarks and newly constructed real-life instances. Numer-
ical results show that the exact solution methodology performs very
well in terms of solution quality: 61 out of 116 instances are solved to
optimality. Contrary to the computational outcomes presented by Dabia
et al. (2017), in which several instances with only 25 customers cannot
be solved, we are able to solve all small-scale problem instances (25
customers) within a reasonable time. Our BP algorithm solved most of
the problem instances with 50 customers and reached optimal solutions
for some larger benchmark instances with up to 100 customers. We
show that our metaheuristic works very effectively for all instances
solved. The heuristic consumes less than one minute to find near-
optimal solutions in all instances and improves best-known solutions
where the exact algorithm did not reach optimality.

Our computational results on real-world instances provide sufficient
evidence to suggest some essential managerial insights. First, significant
savings (53%) in fuel consumption and CO2𝑒 emissions are observed,
especially when shipping heavy items in hilly areas. Second, vehicle
routes included a larger number of customer visits (located on flatter
terrain) before going to uphill destinations, also significantly reducing
fuel consumption. Third, if elevation information is ignored when
planning vehicle routes, fuel consumption estimation is inaccurate.

Finally, it is important to highlight that further research is needed.
Specifically, addressing the challenges posed by route security in net-

works situated in hilly topography, considering the constraints imposed
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on heavy vehicles navigating steep uphill and downhill paths, proves
to be a challenging task within the domain of vehicle routing. Subse-
quent research could focus on extending the proposed methodological
approaches to a new context, where optimization of two key perfor-
mance metrics – fuel consumption and vehicle route security – takes
precedence.
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