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A B S T R A C T

This study uses the Multiplicative Error Model (MEM) to explore asymmetric volatility spillovers between crude
oil and other major asset markets. We have extended the MEM of Engle et al. (2012) to include asymmetric
volatility spillovers and developed the spillover balance as well as asymmetric spillover indexes. We have then
allowed these indexes to vary over time. Our results reveal that the stock market is the dominant contributor
to volatility spillover, while the crude oil is mostly the volatility spillover recipient. The asymmetric spillover
effects are predominantly negative in the stock and crude oil markets and positive in the bond market. We
further show that the spillover indexes are dynamic and influenced by specific events, such as the global
financial crisis and the COVID-19 pandemic, as well as varying economic conditions.
1. Introduction

Stocks, bonds, gold, and crude oil represent the main investment
vehicles in the world markets. Understanding the interactions and
interdependences among these assets is of significant interest to in-
vestors and policymakers alike. Comprehending the spillover of risks
among these assets can provide investors with useful trading signals
and greater hedging opportunities (Asadi et al., 2022). It can also help
policymakers decide when and how to intervene in response to adverse
shocks to achieve greater economic stability.

The spillover of risks, which is commonly known as the volatility
spillover effects, characterize how shocks and risks propagate and
spread among different asset markets (Diebold and Yilmaz, 2012;
Diebold and Yılmaz, 2015). To analyze these effects, it is important
to understand the characteristics of the volatility itself. For instance,
several studies document asymmetries in volatility, which imply that
past returns are negatively correlated with present volatility (Bekaert
and Wu, 2000). Such asymmetries may also be important when in-
vestigating the volatility transmission across markets (Segal et al.,
2015). Thus, because of their relevance for risk valuation and portfolio
diversification strategies (Garcia and Tsafack, 2011), both volatility and
its spillover asymmetries need to be properly quantified.

The realm of volatility spillover effects in financial markets has
been thoroughly charted, with seminal works, like (Gallo and Otranto,
2008; Diebold and Yilmaz, 2012; Diebold and Yılmaz, 2015; Engle
et al., 2012), leading the way. Typically, these studies are anchored in
the Vector Auto-regression (VAR) models or the multivariate GARCH
model, often integrating the volatility spillover index as highlighted
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by Diebold and Yilmaz (2009). However, the domain of asymmetries in
volatility spillovers remains less traversed. While there are studies that
focus on asymmetric spillovers in the U.S. stocks (Baruník et al., 2016),
foreign exchange markets (Baruník et al., 2016), Australian electricity
markets (Chanatásig-Niza et al., 2022), and between the crude oil and
stock markets (Wang and Wu, 2018; Xu et al., 2019), a comprehensive
exploration in this direction is sparse.

This study furthers the literature by providing new evidence on the
asymmetric volatility spillover dynamics among major global invest-
ment vehicles. Our main contribution to the literature stems from the
use of a novel approach for analyzing the asymmetric spillover effects.
Specifically, we employ a modified version of the Multiplicative Error
Model (MEM) of Engle et al. (2012) to incorporate the dynamic nature
of the spillover asymmetry. As highlighted by Engle et al. (2012), the
MEM is favored for its ability to overcome the shortcomings of the
widely used VAR model (i.e, Diebold and Yilmaz (2009), Baruník et al.
(2016, 2017)), especially in resolving issues of zero and non-negative
predictions of volatility. The MEM is also shown to be better suited for
spillover modeling than the multivariate GARCH model (i.e., Bauwens
et al. (2006), Wang and Li (2021)), which imposes restrictions on
the number of asset markets that can be investigated. Our proposed
approach allows the MEM to incorporate the asymmetric volatility
spillovers. This development has given rise to a new spillover balance
index and asymmetric spillover indexes, which enable us to effectively
analyze the spillovers of both negative and positive news. We have also
evolved the spillover and asymmetric indexes from their static versions
to time-varying forms, marking a significant stride in examining the
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dynamic links and spillover effects over time. This contribution is
significant, especially considering the scarce literature on the intricate
subject of time-varying analysis, a fact supported by Apergis et al.
(2017).

The closest work to ours is that of Wang and Wu (2018) and Xu et al.
(2019), who investigated asymmetric spillovers between oil and stock
markets, focusing primarily on the Chinese and U.S markets. These
studies have used VAR and Multivariate GARCH models and found that
the negative spillovers are stronger than their positive counterparts.
In a similar vein, Wang and Li (2021) examined asymmetric volatility
spillovers between the crude oil and other financial markets in China.
Other pertinent works in this context include those by Arouri et al.
(2012), Li et al. (2016), Siddiqui et al. (2020), Reboredo et al. (2014),
Turhan et al. (2013) and Zhang and Wang (2014). Departing from
these studies, our research explores the global interplay between crude
oil, stock, bond, and gold markets, broadening the scope beyond the
common context of the Chinese financial markets. More importantly,
we advance the literature by introducing a novel approach, which
incorporates the time-varying nature of asymmetric spillovers in the
modeling of both the dynamic links and spillover effects of positive and
negative news in the global asset markets.

Our dataset comprises S&P 500 futures (ES: CME GROUP), Treasury
bond futures (US: CCBOT/CME GROUP), gold futures (GC: COMEX/
CME GROUP), and crude oil futures (CL: NYMEX/CME GROUP), span-
ning from July 1, 2003 to August 5, 2022. We use futures rather than
spot prices for two reasons. Firstly, futures contracts are traded for
23 h during the sample periods, offering a near whole-day variance,
thereby enhancing the precision of the realized variances and semi-
variances. Secondly, the fact that all four futures are traded on the
same exchange negates the necessity for time zone adjustments. In
accordance with (Barndorff-Nielsen et al., 2010; Baruník et al., 2016,
2017; Chanatásig-Niza et al., 2022), we compute the realized variance
and semi-variance from five-minute intraday returns, capturing the
closing times from day 𝑡 − 1 to day 𝑡. These realized semi-variances
are then used to estimate the asymmetric volatility spillover indexes.

Our empirical analysis yields several interesting results. First, we
document strong evidence that the bad volatility in the stock market
spillover into other markets. We also show that the stock market is the
main provider, whereas the oil market is the primary recipient of the
volatility spillover. This finding is, economically, reasonable due to the
considerable size of the stock market, which leads to the propagation
of its crashes and the potential dissemination of information to other
asset markets. Second, we uncover evidence that the total asymmet-
ric volatility spillover effects across different asset markets tend to
be negative and significant. Specifically, we find negative spillover
asymmetries in the stock, gold, and oil markets, but their magnitudes
are larger in the stock market. This finding is consistent with prior
studies, which show that negative spillovers are more prevalent than
their positive counterparts (Baruník et al., 2016, 2017; Xu et al., 2019).
It also lends support to loss aversion and the disposition effect, which
predicts that investors tend to hold on to losers and sell winners (Frazz-
ini, 2006). Third, unlike other markets, bonds exhibit significantly
positive asymmetric spillover effects, implying that positive news from
the bond market engenders more substantial spillover to other markets
than negative news. This highlights the bond market’s quintessential
role as a safe-haven during bad times. Such behavior underscores the
efficacy of bonds in dampening spillover effects and their utility as
valuable hedging vehicles during turbulent market conditions. Finally,
we uncover evidence that volatility spillover effects across different
asset markets vary considerably over time, implying that the degree
and direction of spillovers are influenced by major events and economic
conditions that vary across time. Finally, we show that the 2009 Global
Financial Crisis has had a more significant and enduring influence
on the volatility spillovers than the COVID-19 pandemic, presumably
because the Covid-19 is a health pandemic that did not originate from
2

the financial markets. 𝜇
The remainder of the study proceeds as follows. Section 2 introduces
the concept of realized semi-variance and the multiplicative error
model for their dynamics. Section 3 proposes the volatility spillover
balance and asymmetric volatility spillovers index. Section 4 presents
the dataset. Section 5 discusses the empirical results and Section 6
concludes.

2. The methodology framework

Andersen et al. (2001) introduced a natural estimator for the
quadratic variation of a process, known as the realized variance (𝑅𝑉 ),
efined as the sum of frequently sampled squared returns. To simplify,
et us assume that prices 𝑝0,… , 𝑝𝑛 are observed at 𝑛+1 intervals, evenly

distributed over the interval [0, 𝑡]. Using these returns, the 𝑛-sample
realized variance, 𝑅𝑉 , can be defined as follows:

𝑉 =
𝑛
∑

𝑗=1
𝑟2𝑗 (1)

where 𝑟𝑗 = 𝑝𝑗 − 𝑝𝑗−1 is the realized variance (𝑅𝑉 ), which converges
n probability to the quadratic variation of log prices as the number of
ntraday observations increases, i.e., as 𝑛 → ∞. Barndorff-Nielsen et al.
2010) and Patton and Sheppard (2015) further introduce a measure
hat decomposes 𝑅𝑉 into components that are due to positive and those
hat are attributable to negative returns, terming this measure ‘‘realized
emi-variance’’ (𝑅𝑆). These estimators are defined as follows:

𝑆+ =
𝑛
∑

𝑗=1
𝑟2𝑗 𝐼

{

𝑟𝑗 > 0
}

,

𝑆− =
𝑛
∑

𝑗=1
𝑟2𝑗 𝐼

{

𝑟𝑗 < 0
}

.

(2)

here 𝐼{} is the indicator function that returns a value of 1 if the con-
ition in {} is met. These estimators provide a complete decomposition
f 𝑅𝑉 , in that 𝑅𝑉 = 𝑅𝑆+ +𝑅𝑆−. This decomposition holds exactly for
ny 𝑛, as well as in the limit.

.1. Multiplicative error models

Since the RV is non-negatively valued and highly persistent over
ime, we follow the work of Engle and Gallo (2006), Shephard and
heppard (2010), Engle et al. (2012), and Xu et al. (2018) and use the
EM to model the dynamics of RV. The MEM was initially proposed

y Engle (2002) and has been widely used for modeling the dynamics
f non-negative, highly persistent financial time series, such as abso-
ute return, daily range, realized volatility, trading duration, trading
olume, and bid–ask spread. Instead of modeling the RV directly, we
xtend the MEM to incorporate 𝑅𝑆+ and 𝑅𝑆− in its modeling process.

Given the information set 𝐼𝑡−1, the realized semi-variance in market
, denoted as 𝑅𝑆+

𝑖,𝑡 and 𝑅𝑆−
𝑖,𝑡, is modeled as follows:

𝑆+
𝑖,𝑡|𝐼𝑡−1 = 𝜇+

𝑖,𝑡𝜖
+
𝑖,𝑡,

𝑆−
𝑖,𝑡|𝐼𝑡−1 = 𝜇−

𝑖,𝑡𝜖
−
𝑖,𝑡. (3)

here 𝑖 = 1, 2,… , 𝑘, the innovation term 𝜖+𝑖,𝑡 and 𝜖−𝑖,𝑡 is a unit mean ran-
om variables, such that 𝜖+𝑖,𝑡|𝐼𝑡−1 ∼ i.i.d(1, 𝜎+𝑖 ) and 𝜖−𝑖,𝑡|𝐼𝑡−1 ∼ i.i.d(1, 𝜎−𝑖 ).
he conditional expectation 𝜇+

𝑖,𝑡 and 𝜇−
𝑖,𝑡, can be specified as a base

EM(1,1):
+
𝑖,𝑡 = 𝜔+

𝑖 + 𝛼+𝑖𝑖𝑅𝑆
+
𝑖,𝑡−1 + 𝛽+𝑖 𝜇

+
𝑖,𝑡−1, (4)

−
𝑖,𝑡 = 𝜔−

𝑖 + 𝛼−𝑖𝑖𝑅𝑆
−
𝑖,𝑡−1 + 𝛽−𝑖 𝜇

−
𝑖,𝑡−1. (5)

Furthermore, the heterogeneous autoregressive (HAR) model of
orsi (2009) has emerged as a simple and powerful way to include the

ong-memory feature of realized volatilities. Adding HAR terms to the
ealized semi-variance equations, results in richer dynamic equations:
+ + + + + + 𝑤+ 𝑤+ 𝑚+ 𝑚+

𝑖,𝑡 = 𝜔𝑖 + 𝛼𝑖𝑖𝑅𝑆𝑖,𝑡−1 + 𝛽𝑖 𝜇𝑖,𝑡−1 + 𝛼𝑖𝑖 𝑅𝑆𝑖,𝑡−1 + 𝛼𝑖𝑖 𝑅𝑆𝑖,𝑡−1, (6)
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𝜇−
𝑖,𝑡 = 𝜔−

𝑖 + 𝛼−𝑖𝑖𝑅𝑆
−
𝑖,𝑡−1 + 𝛽−𝑖 𝜇

−
𝑖,𝑡−1 + 𝛼𝑤−

𝑖𝑖 𝑅𝑆𝑤−
𝑖,𝑡−1 + 𝛼𝑚−𝑖𝑖 𝑅𝑆𝑚−

𝑖,𝑡−1 (7)

where 𝑅𝑆𝑤+
𝑖,𝑡 = 1

5
∑5

𝑙=1 𝑅𝑆
+
𝑖,𝑡−𝑙, 𝑅𝑆𝑚+

𝑖,𝑡 = 1
22

∑22
𝑙=1 𝑅𝑆

+
𝑖,𝑡−𝑙, 𝑅𝑆𝑤−

𝑖,𝑡 =
1
5
∑5

𝑙=1 𝑅𝑆
−
𝑖,𝑡−𝑙, 𝑅𝑆𝑚−

𝑖,𝑡 = 1
22

∑22
𝑙=1 𝑅𝑆

−
𝑖,𝑡−𝑙. In the HAR model, 𝑅𝑆𝑤+

𝑖,𝑡
and 𝑅𝑆𝑤−

𝑖,𝑡 represents the medium-term weekly realized semi-variance,
whereas 𝑅𝑆𝑚+

𝑖,𝑡 and 𝑅𝑆𝑚−
𝑖,𝑡 denote the long-term monthly realized semi-

variance.
To study the semi-variance spillover effects, we incorporate the

lagged daily semi-variance observed in other markets into the speci-
fication and allow for the interactions between positive/negative semi-
variance spillover effects among different markets. This yields the
following general semi-variance volatility spillover model:

𝜇+
𝑖,𝑡 = 𝜔+

𝑖 + 𝛼+𝑖𝑖𝑅𝑆
+
𝑖,𝑡−1 + 𝛽+𝑖 𝜇

+
𝑖,𝑡−1 +

∑

𝑗≠𝑖
𝛼+𝑖𝑗𝑅𝑆

+
𝑗,𝑡−1 (8)

+
∑

𝑖,𝑗
𝛼−𝑖𝑗𝑅𝑆

−
𝑗,𝑡−1 + 𝛼𝑤+

𝑖𝑖 𝑅𝑆𝑤+
𝑖,𝑡−1 + 𝛼𝑚+𝑖𝑖 𝑅𝑆𝑚+

𝑖,𝑡−1,

𝜇−
𝑖,𝑡 = 𝜔−

𝑖 + 𝛼−𝑖𝑖𝑅𝑆
−
𝑖,𝑡−1 + 𝛽−𝑖 𝜇

−
𝑖,𝑡−1 +

∑

𝑗≠𝑖
𝛼−𝑖𝑗𝑅𝑆

−
𝑗,𝑡−1 (9)

+
∑

𝑖,𝑗
𝛼+𝑖𝑗𝑅𝑆

+
𝑗,𝑡−1 + 𝛼𝑤−

𝑖𝑖 𝑅𝑆𝑤−
𝑖,𝑡−1 + 𝛼𝑚−𝑖𝑖 𝑅𝑆𝑚−

𝑖,𝑡−1.

Following Engle et al. (2012) and Xu et al. (2018), the semi-variance
models in (8) and (9) can be estimated using quasi-maximum likelihood
estimation. This is under the assumption that the innovation terms
𝜖+𝑖,𝑡|𝐼𝑡−1 and 𝜖−𝑖,𝑡|𝐼𝑡−1 follow exponential distributions.

3. Spillover analysis

Engle et al. (2012) and Xu et al. (2018) propose a quantitative mea-
sure for the volatility spillover effects across multiple markets, premised
on the measure of spillovers as responses to shocks. Following their
methodology, we derive analogous measures for our semi-variance
models.

Let 𝑅𝑆+
𝑡 = (𝑅𝑆+

1,𝑡, 𝑅𝑆
+
2,𝑡,⋯ , 𝑅𝑆+

𝑘,𝑡)
′, 𝜇+

𝑡 = (𝜇+
1,𝑡, 𝜇

+
2,𝑡,⋯ , 𝜇+

𝑘,𝑡)
′, 𝑅𝑆𝑤+

𝑡 =
(𝑅𝑆𝑤+

1,𝑡 , 𝑅𝑆
𝑤+
2,𝑡 ,⋯ , 𝑅𝑆𝑤+

𝑘,𝑡 )
′, 𝑅𝑆𝑚+

𝑡 = (𝑅𝑆𝑚+
1,𝑡 , 𝑅𝑆

𝑚+
2,𝑡 ,⋯ , 𝑅𝑆𝑚+

𝑘,𝑡 )
′ and 𝜖+𝑡 =

(𝜖+1,𝑡, 𝜖
+
2,𝑡,⋯ , 𝜖+𝑘,𝑡)

′. Let 𝑅𝑆−
𝑡 = (𝑅𝑆−

1,𝑡, 𝑅𝑆
−
2,𝑡,⋯ , 𝑅𝑆−

𝑘,𝑡)
′,

𝜇−
𝑡 = (𝜇−

1,𝑡, 𝜇
−
2,𝑡,⋯ , 𝜇−

𝑘,𝑡)
′, 𝑅𝑆𝑤−

𝑡 = (𝑅𝑆𝑤−
1,𝑡 , 𝑅𝑆

𝑤−
2,𝑡 ,⋯ , 𝑅𝑆𝑤−

𝑘,𝑡 )
′, 𝑅𝑆𝑚−

𝑡 =
(𝑅𝑆𝑚−

1,𝑡 , 𝑅𝑆
𝑚−
2,𝑡 ,⋯ , 𝑅𝑆𝑚−

𝑘,𝑡 )
′ and 𝜖−𝑡 = (𝜖−1,𝑡, 𝜖

−
2,𝑡,⋯ , 𝜖−𝑘,𝑡)

′. Conditional on the
information available at time 𝑡, (8) and (9) can be stacked in a compact
matrix form as
(

𝜇+
𝑡

𝜇−
𝑡

)

=
(

𝜔+

𝜔−

)

+
(

𝐴+ 𝐴+−

𝐴−+ 𝐴−

)(

𝑅𝑆+
𝑡−1

𝑅𝑆−
𝑡−1

)

+
(

𝐵+

𝐵−

)(

𝜇+
𝑡−1

𝜇−
𝑡−1

)

+
(

𝐴𝑤+

𝐴𝑤−

)(

𝑅𝑆𝑤+
𝑡−1

𝑅𝑆𝑤−
𝑡−1

)

+
(

𝐴𝑚+

𝐴𝑚−

)(

𝑅𝑆𝑚+
𝑡−1

𝑅𝑆𝑚−
𝑡−1

)

(10)

If further assuming 𝐱𝑡 = (𝑅𝑆+
𝑡
′, 𝑅𝑆−

𝑡
′)′, 𝝁𝑡 = (𝜇+′

𝑡 , 𝜇−′
𝑡 )′, 𝐱𝑤𝑡 =

(𝑅𝑆𝑤+
𝑡

′, 𝑅𝑆𝑤−
𝑡

′)′, 𝐱𝑚𝑡 = (𝑅𝑆𝑚+
𝑡

′, 𝑅𝑆𝑚−
𝑡

′)′ and 𝝐𝑡 = (𝜖+′
𝑡 , 𝜖−′

𝑡 )′, (3) and
(10) can be expressed as:

𝐱𝑡 = 𝝁𝑡 ⊙ 𝝐𝑡, 𝝐𝑡 ∼ D(𝟏,𝜮),

𝝁𝑡 = 𝝎 + 𝐀𝐱𝑡−1 + 𝐁𝝁𝑡−1 + 𝐀𝑤𝐱𝑤𝑡−1 + 𝐀𝑚𝐱𝑚𝑡−1. (11)

where ⊙ denotes the Hadmard (element by element) product. The
innovation vector 𝝐𝑡 has support over [0,+∞), with a unit mean vector 𝟏
and general variance–covariance matrix 𝜮. The first two moment con-
ditions of the vector MEM are given by E(𝐱𝑡|𝛺𝑡) = 𝝁𝑡 and var(𝐱𝑡|𝛺𝑡) =
𝝁𝑡𝝁′

𝑡⊙𝜮, with the latter being a positive definite matrix by construction.
By defining appropriate error term, the above process (i.e., Eq. (11))

can be written as VARMA(1,1). Given this representation, the covari-
ance stationarity condition requires that the largest eigenvalue of 𝐀 +
𝐁+𝐀𝑤+𝐀𝑚 to be less than unity. Consequently, the unconditional first
moment can be obtained as 𝐸(𝐱𝐭 ) = (𝐼2𝑘 − 𝐀 + 𝐁 + 𝐀𝑤 + 𝐀𝑚)−1 𝝎.

Next, we derive a multiple-step ahead forecasting 𝐱𝑡+𝜏 (where 𝜏 >
3

0). The forecast is computed at date 𝑡, but since it is not known, it needs
to be substituted with its corresponding conditional expectation 𝝁𝑡+𝜏|𝑡.
Hence:

𝝁𝑡+1|𝑡 = 𝝎 + 𝐀𝐱𝑡 + 𝐁𝝁𝑡 + 𝐀𝑤𝐱𝑤𝑡 + 𝐀𝑚𝐱𝑚𝑡 , (12)

and for 2 ≤ 𝜏 < 22,

𝝁𝑡+𝜏|𝑡 = 𝝎 + (𝐀 + 𝐁)𝝁𝑡+𝜏−1 + 𝐀𝑤𝐱𝑤𝑡+𝜏−1 + 𝐀𝑚𝐱𝑚𝑡+𝜏−1, (13)

where 𝑥𝑤𝑡+𝜏−1|𝑡 =
1
5
∑5

𝑙=1 𝑥𝑡+𝜏−𝑙|𝑡, 𝑥
𝑚
𝑡+𝜏−1|𝑡 =

1
22

∑22
𝑙=1 𝑥𝑡+𝜏−𝑙|𝑡 and 𝑥𝑡+𝜏−𝑙|𝑡 =

𝑡+𝜏−𝑙|𝑡 if 𝜏 > 𝑙. And then, for any 𝜏 ≥ 22,

𝑡+𝜏|𝑡 = 𝝎 + (𝐀 + 𝐁 + 𝐀𝑤 + 𝐀𝑚)𝝁𝑡+𝜏−1, (14)

hich can be solved recursively for any horizon 𝜏.
The terms 𝜇+

𝑡+𝜏 and 𝜇−
𝑡+𝜏 can then be extracted from 𝝁𝑡+𝜏|𝑡. Once 𝜇+

𝑡+𝜏
nd 𝜇−

𝑡+𝜏 are obtained, the multiple-step ahead forecasts of 𝑅𝑉𝑡+𝜏|𝑡 can
e directly derived as follows:

(𝑅𝑉𝑡+𝜏|𝑡) = 𝜇+
𝑡+𝜏|𝑡 + 𝜇−

𝑡+𝜏|𝑡, (15)

here 𝑅𝑉𝑡 = (𝑅𝑉1,𝑡, 𝑅𝑉2,𝑡,⋯ , 𝑅𝑉𝑘,𝑡)′.
Next, we derive a spillover balance index and spillover asymmetry

easure. Let us recall that the MEM in a system,

𝑡 = 𝝁𝑡 ⊙ 𝝐𝑡, 𝝐𝑡 ∼ D(𝟏,𝜮). (16)

he innovation vector 𝝐𝑡 has a mean vector 𝟏 with all components unity
nd general variance–covariance matrix 𝜮. We can interpret 𝝁𝑡+𝜏 =
(𝐱𝑡+𝜏 |𝐼𝑡, 𝝐𝑡) = 𝟏, that is, the expectation of 𝐱𝑡+𝜏 conditional on 𝝐𝑡 being
qual to the unit vector 𝟏: this is the basis for the dynamic forecast
btained before. Let us now derive a different dynamic solution, 𝝁(𝑖)

𝑡+𝜏 =
(𝐱𝑡+𝜏 |𝐼𝑡, 𝝐𝑡 = 𝟏+𝐬(𝑖)), for a generic 𝑖th element 𝐬(𝑖), where 𝑖 = 1, 2,… , 2𝑘.
he 𝑖th element equal to the unconditional standard deviation of 𝜖𝑖,𝑡 and
he other terms 𝑗 ≠ 𝑖 equal to the linear projection𝐸(𝜖𝑗,𝑡|𝜖𝑖,𝑡 = 1 + 𝜎𝑖) =
+ 𝜎𝑖

𝜎𝑖,𝑗
𝜎2𝑖

. The element-by-element division (⊘) of the two vectors,

𝜌(𝑖)𝑡,𝜏 = 𝝁(𝑖)
𝑡+𝜏 ⊘ 𝝁𝑡+𝜏 − 1. (17)

Given the multiplicative nature of the model, 𝜌(𝑖)𝑡,𝜏 gives us the set of
responses (relative changes) in the forecast profile starting at time 𝑡
or a horizon 𝜏 brought about a 1 standard deviation shock in the 𝑖th
arket. The cumulated impact of the shock from market 𝑖 to market 𝑗

s:

𝑗,𝑖
𝑡 =

𝐾
∑

𝜏=1
𝜌(𝑖)𝑡,𝜏 . (18)

he total spillover effect (TSI) as:

𝑆𝐼 =
∑

𝑖≠𝑗

𝑇
∑

𝑡=1
𝛷𝑗,𝑖

𝑡 (19)

hich measures the overall contribution of volatility spillover shocks
cross markets.

This is also a way to assess the total change induced by the shock
f different markets. Following Engle et al. (2012), we express the
pillover balance as the ratio of the average responses ‘‘to’’ to the
verage response ‘‘from’’ (excluding one’s own):

𝑎𝑙𝑎𝑛𝑐𝑒𝑖 =
∑

𝑗≠𝑖
∑𝑇

𝑡=1 𝛷
𝑗,𝑖
𝑡

∑

𝑗≠𝑖
∑𝑇

𝑡=1 𝛷
𝑖,𝑗
𝑡

. (20)

A value bigger than unity signals that the market is a net creator of
volatility spillover.

The use of semi-variances in the model estimation allows us to
distinguish between the spillovers from positive and those from neg-
ative returns. This, in turn, enables us to quantify the asymmetries
in the volatility spillovers over time. Following Baruník et al. (2015),
we define directional spillover from an asset 𝑖 to (ST) all other assets
(excluding one’s own) as:

𝑆𝑇 −
𝑖 =

∑

𝑇
∑

𝛷𝑗,𝑖
𝑡 (21)
𝑗≠𝑖 𝑡=1
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Fig. 1. Realized volatility, bad volatility and good volatility for all markets.
for 𝑖 = 1, 2,… , 𝑘 and for 𝑗 = 1, 2,… , 2𝑘, and

𝑆𝑇 +
𝑖 =

∑

𝑗≠𝑖

𝑇
∑

𝑡=1
𝛷𝑗,𝑖

𝑡 (22)

for 𝑖 = 𝑘 + 1, 𝑘 + 2,… , 2𝑘 and for 𝑗 = 1, 2,… , 2𝑘.
We compute the spillover asymmetry measure (ASM) index as

𝐴𝑆𝑀𝑖 = 𝑆𝑇 +
𝑖 − 𝑆𝑇 −

𝑖 , 𝑖 = 1, 2,… , 𝑘 (23)

A positive ASM indicates that spillovers from positive realized semi-
variances are larger than those from negative realized semi-variances,
and the opposite is true for a negative ASM. By contrast, if ASM takes a
value of zero, the volatility spillover measures are symmetric. The total
asymmetric spillover effect (TASM) is computed as:

𝑇𝐴𝑆𝑀 =
∑

𝑖
𝐴𝑆𝑀𝑖 (24)

To test the significance of 𝐴𝑆𝑀𝑖 and 𝑇𝐴𝑆𝑀 , we use the boot-
strapped standard error (see Appendix A)

4. Dataset

Our data comprises four futures contracts: S&P 500 futures (ES:
CME GROUP), Treasury bond futures (US: CCBOT/CME GROUP), gold
futures (GC: COMEX/CME GROUP), and crude oil futures (CL: NYMEX/
CME GROUP). The first three contracts were studied by Fleming et al.
(2001, 2003). Our sample period spans from July 1, 2003 to August 5,
2022, over a total of 4,864 trading days. The data are obtained from
TickData, Inc. We selected July 1, 2003, as our starting date because it
encompasses both daytime and evening, ensuring that our estimated
realized variance represents a reasonable proxy for the whole-day
variance.

There are two benefits to using futures rather than spot prices in
our analysis. First, the futures contracts are traded for 23 h during the
sample periods, which closely approximates the whole-day variance,
enhancing the accuracy of the realized variance estimates. Second, the
four futures contracts used in our analysis are traded on the same
exchange, eliminating the need for time zone adjustments. Thus, the use
of futures contracts does not only simplifies the analysis, but also allows
us to make more accurate comparisons across the different markets.

Our portfolios are rebalanced at specific times each day during
different periods, i.e., at 13:30 each day between 07/01/2003 and
4

Table 1
Data description for different assets.

Futures contracts Close time Date range

Gold futures 13:30 07/01/2003 – 12/03/2006
17:00 12/04/2006 – 08/05/2022

Bond futures 16:00 07/01/2003 – 08/05/2022
Stock futures 15:15 07/01/2003 – 11/17/2012

16:00 11/18/2012 – 08/05/2022
Crude oil futures 15:15 07/01/2003 – 01/31/2007

13:30 02/01/2007 – 08/05/2022

Notes: This table reports the close time and date range for the four different types of
futures contract.

01/31/2007, at 15:15 each day between 02/01/2007 and 11/17/2012,
and at 16:00 each day between 11/18/2012 and 08/05/2022. We
calculate the realized variance and semi-variance using all intraday
returns between day 𝑡 and 𝑡−1 and use the last transaction prices before
the chosen close times as the close prices. This procedure is consistent
with Fleming et al. (2001, 2003). Table 1 presents the trading close
times and date ranges for the four assets.

Table 2 summarizes the descriptive statistics for the realized vari-
ance and semi-variances. Crude oil displays the highest volatility, while
bonds exhibit the lowest mean of realized variance and semi-variance.
This implies that crude oil is riskier than the other markets, possibly
due to its lower liquidity, susceptibility to natural disasters, and sen-
sitivity to geopolitical risks. This finding is consistent with Xu et al.
(2019), who reported a risk ratio of oil to stock that is notably similar
to ours. The negative semi-variance contributes slightly more than its
positive counterpart to the total realized variances of the asset markets.
The Ljung Box statistic shows strong serial autocorrelations in both
the realized variance and semi-variance. The overdispersion, which is
the ratio of standard deviation to mean, ranges from 1.1 to 2.1. This
large overdispersion requires a high value of 𝛼 (ARCH coefficient) in
GARCH/MEM models. Additionally, the positive skewedness and high
leptokurtic together with overdispersion, indicates that a more flexible
distribution is required for modeling the realized variance.

Fig. 1 shows that asset volatility increases considerably during
global financial crisis. Subsequently, the realized variance declines
significantly and jumps occasionally. At the start of the COVID-19
pandemic, there was a sharp increase in volatility, but this was not
as persistent as in the case of global financial crisis. The graph also
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Table 2
Summary statistics.

Mean Std Min Max Skewness Kurtosis LB(12)

Panel A: Realized volatilities
Stock 1.298 2.623 0.031 39.409 7.016 69.668 34 164
Bond 0.450 0.487 0.002 10.262 8.191 123.104 14 195
Gold 1.285 1.575 0.054 23.827 5.536 52.738 17 833
Oil 4.743 5.230 0.100 56.532 3.940 25.414 38 341

Panel B: Realized Negative semi-variance 𝑅𝑆−

Stock 0.657 1.362 0.009 21.746 7.367 78.635 32 211
Bond 0.231 0.266 0.002 5.749 0.215 109.360 11 097
Gold 0.651 0.850 0.023 13.561 5.654 55.834 15 097
Oil 2.398 2.697 0.057 27.729 3.837 24.197 35 996

Panel C: Realized Positive semi-variance 𝑅𝑆+

Stock 0.641 1.299 0.013 20.219 6.963 68.269 32 197
Bond 0.219 0.245 0.001 5.478 8.018 117.477 12 572
Gold 0.634 0.772 0.031 11.846 5.453 51.249 17 448
Oil 2.345 2.636 0.043 29.651 4.068 27.433 35 112

Notes: This table reports summary statistics of realized volatilities and semi-variances. LB(12) is the Ljung–Box statistics for
the serial correlation of order 12.
Table 3
Estimated results.

Negative semi-variance Positive semi-variance

Stock Bond Gold Oil Stock Bond Gold Oil

𝑤 0.040 0.030 0.021 0.053 0.029 0.011 0.028 0.027
𝛼 0.546 0.114 0.224 0.258 0.016 0.105 0.087 0.059
𝛽 0.164 0.041 0.440 0.257 0.196 0.587 0.328 0.403
𝛼𝑤 0.189 0.257 0.000 0.171 0.156 0.000 0.100 0.083
𝛼𝑤 0.080 0.272 0.139 0.178 0.052 0.072 0.180 0.102

𝑅𝑆−
𝑗,𝑡−1 Stock 0.024 0.060 0.340 0.572 0.020 0.072 0.210

Bond −0.021 0.157
Gold 0.071 0.239
Oil 0.323

𝑅𝑆+
𝑗,𝑡−1 Stock −0.53 −0.267 −0.014 −0.060 −0.168

Bond −0.092 0.122 −0.120
Gold 0.165 −0.092
Oil −0.002 0.105

LL −167.36 2962 −1537 −7769 37.95 3210 −1475 −7623
BIC 394.12 −5864 3151 15 624 −16.50 −6361 3019 15 314
LB(12) 10.93 9.37 15.91 7.41 23.84 19.58 14.13 23.12

LL denotes the values of the log-likelihood. BIC is Bayesian Information Criteria. LB(12) denotes the Ljung Box statistics up
to order 12.
hows that the realized variance and semi-variance are highly persistent
ver time, suggesting that the effects of the information transmitted by
ositive and negative returns cannot be eradicated completely over a
hort period of time. These features, along with the Ljung Box statistics
n Table 2, suggest that MEM-type models are well-suited for modeling
he dynamics of the realized semi-variances. Additionally, the semi-
ariances associated with two of the four assets in our sample tend
o move in tandem with their corresponding realized variances. No-
ably, the common volatility spikes across the various markets occurred
uring the 2008 Global Financial Crisis and the 2019 Coronavirus
utbreak.

. Empirical results

Based on the equation-by-equation estimation results, we proceed
o select a more parsimonious specification, based on the significance
f the zero restrictions. The large number of coefficients in the general
pecification of Eqs. (8) and (9) yields inefficient parameter estimates
nd, therefore, less precise spillover forecasts analysis (Engle et al.,
012). We report only the coefficients estimates that are significant
t 5 percent level or better in Table 3. The model diagnostics are
ummarized in the lower panel of Table 3. where the values of the log-
ikelihood functions, Bayesian Information Criteria (BIC) and Ljung box
5

LB) statistics for residuals are reported. S
We find significant interactions between good and bad volatility
within each of the four markets included in the analysis. For example,
bad volatility of bonds has significantly positive effect on the good
volatility of bonds, and vice versa. Similar patterns are observed in the
cases of gold and crude oil. However, the stock market appears to be
an exception, with only bad volatility exerting a significantly positive
influence on the good volatility. Across the four markets, we also show
that the magnitude of the effect of bad volatility on good volatility is
larger than that of good volatility on bad volatility1, indicating that the
bad volatility dominates the semi-variance dynamics. We also notice
that the bad volatility of the stock market exerts significant influences
on both the good and bad volatility of the other three markets (see
the row of 𝑅𝑆−1

𝑗,𝑡−1). Finally, the two HAR parameters, 𝛼𝑤 and 𝛼𝑚, are
significant in all cases, implying a high level of persistence in the
semi-variances. The LB statistics are small and insignificant, suggesting
that our model successfully captures the dynamics of the semi-variance
processes.

1 Similar patterns have been shown by earlier studies (see, e.g., Patton and
heppard (2015).
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Table 4
Bad and good volatility spillovers.

From bad volatility From good volatility

Stock Bond Gold Oil Stock Bond Gold Oil Total from

To bad volatility
Stock 15.96 2.66 4.30 2.95 9.07 3.93 4.24 1.84 19.91
Bond 7.87 3.62 2.87 1.63 5.10 3.58 2.76 1.20 21.43
Gold 9.71 4.96 12.48 2.35 6.67 5.10 9.79 1.82 30.62
Oil 16.06 3.95 7.23 13.02 9.67 6.01 5.89 7.61 48.81
To good volatility
Stock 16.36 2.75 4.43 3.03 9.47 4.04 4.37 1.90 20.52
Bond 8.71 4.13 3.27 1.88 5.78 5.09 3.34 1.41 24.40
Gold 9.67 4.70 11.60 2.42 6.61 5.06 9.66 1.90 30.36
Oil 16.31 4.13 7.41 13.14 9.90 6.20 6.16 8.07 50.11
Total To 68.34 23.16 29.50 14.27 43.72 30.34 26.75 10.07
Balance 3.43 1.08 0.96 0.29 2.13 1.24 0.88 0.20
ASM −24.62** 7.18** −2.75 −4.20 𝐓𝐀𝐒𝐌 −24.39**

The table presents spillovers for the full sample with a forecast horizon of 𝜏 = 200 days. We use bootstrapped standard errors with 1,000
resamplings to test the significance of ASM and TASM.
** The symbol denotes significance at the 5% level.
5.1. Volatility spillover effects

In this section, we quantify the volatility spillover effect with the
aim to answer the following questions: (1) Which markets, if any, serve
as the primary net provider or receiver of spillovers? (2) How is good
and bad volatility transmitted within each market? And (3) are volatil-
ity spillovers symmetric or asymmetric? To explore these questions, we
employ the spillover balance index and asymmetric spillover measure
derived in Section 3. A value of a spillover balance index that is greater
(smaller) than unity indicates that the asset is a net provider (receiver)
of spillover. A significantly negative asymmetric measure implies that
the spillovers from negative news cause more shocks to other markets
than their counterparts from positive news, and vice versa. The results
are presented in Table 4.

For the ease of exposition, hereafter we refer to spillovers from bad
and good volatility as negative and positive spillovers, respectively.
Firstly, the spillover balance indexes in the second-to-last of Table 4
indicate that stock volatility is the primary provider of spillovers, with
spillover balances of 3.43 and 2.13 from bad and good volatility,
respectively. Gold and oil, on the other hand, are spillover recipients,
as their spillover balance indexes are less than unity. The observed im-
balance is largely attributed to the significant transmission of negative
shocks from the stock market, impacting both the good and bad volatil-
ity in the oil market. This observation aligns with the findings presented
in Table 3, suggesting that the stock market is the primary conduit of
volatility spillovers. The bond market seems to be more balanced, with
spillover balances from the bad and good volatility being 1.08 and 1.24,
respectively. The prevalent influence of the stock market is presumably
rooted in its extensive size and renown for dispersing risks (Yang and
Zhou, 2017), coupled with the oil market’s illiquidity, which is often
susceptible to natural disasters and geopolitical uncertainties, making
it a ‘‘recipient’’ of risks. Intriguingly, this conclusion contrasts with the
results of Wang and Li (2021), who found that crude oil instigates
volatility in the Shanghai stock index. A plausible explanation for
this divergence lies in the contextual differences. Specifically, unlike
our study, which focuses on the global context, Wang and Li (2021)
examined the inter-play between WTI crude oil and the Chinese stock
market. Since the Chinese stock market is relatively local and less
accessible to international investors, its ability to induce volatility in
the crude oil market is potentially limited.

The last row of Table 4 reports the asymmetric measures of the
volatility spillover. The TASM of the four assets is negative and signifi-
cant (−24.39), indicating the presence of asymmetric volatility spillover
among these assets. The stock market has the largest significantly
negative asymmetry index (ASM = −24.62), suggesting that the stock
market creates more negative than positive shocks for other mar-
kets. For the gold and oil markets, the asymmetry index is negative
6

and insignificant, suggesting no asymmetric volatility spillover effects
between these two assets. Interestingly, the bond market has the signif-
icantly positive asymmetry index (ASM = 7.18), implying that the bond
market creates more positive than negative shocks to other market.
The unfavorable news in the stock and crude oil markets can have
a beneficial impact on the bond market, as investors tend to seek
refuge in safe-haven assets during stock market crashes to mitigate risk.
Further support for the negative relationship between stocks and bonds
can be found in Chiang et al. (2015), while evidence of the negative
relationship between oil and bond markets is provided by Ciner et al.
(2013). This elucidated the crucial role bonds as safe haven instruments
during bad times. In other words, this evidence indicates that bonds
can effectively mitigate spillover effects and offer valuable hedging
opportunities for investors.

Overall, we document a complex interconnectedness among the
four asset markets, with the stock market playing a central role in
transmitting volatility spillovers. The oil market appears to be the
primary recipient of these spillovers, while contributing minimally to
the volatility in other markets. Furthermore, we find evidence of asym-
metric spillover effects, particularly in the stock and bond markets.
In the bond market, the spillover balance of good volatility is larger
than of bad volatility, and the ASM index is significantly greater than
zero. This suggests that spillover of shocks from good news are more
prevalent than that from bad news. This direction of asymmetry differs
significantly from those in other markets.

5.2. Dynamics analysis

To better understand the time series evolution of volatility spillovers,
we estimate Eqs. (8) and (9) using a rolling window of 500 days to
allow for the spillovers to change over time. This approach enables
us to derive time-varying spillover balance indexes and asymmetric
spillovers. This dynamic analysis also enables us to investigate the
impact other events, such as the global financial crisis, Eurozone debt
crisis, and the recent COVID-19 pandemic, on spillovers across markets.

5.2.1. Dynamics of total spillovers
The plot in Fig. 2 indicates that the volatility spillover effects

increase sharply during the global financial crisis (i.e., between 2008
and 2009). The timing of the spikes identified in the total volatility
spillovers during the year 2009 and at the end of 2010 in the stock
market are remarkably similar those reported in Fengler and Gisler
(2015). After the financial crisis, the total volatility spillover remained
stable and low until 2014, followed by several jumps between 2015 and
2016. These timings correspond to the stock market selloff, in which
the Dow Jones Industrial Average fell by 530.94 (3.1%) on August
21, 2015. The total spillover effects in 2015/16 may have possibly
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Fig. 2. Total volatility spillovers.
Fig. 3. Total asymmetric spillovers (𝑇𝐴𝑆𝑀).
originated from the big selloffs and two flash crashes in the stock
market. There were also some increments of volatility spillover effects
during the recent COVID-19 pandemic, i.e., between 2020 and 2022.
However, the fluctuations of total volatility spillover effects were not as
significant as those observed during the global financial crisis, plausibly
because the Covid-19 is a health pandemic that did not originate from
the financial market. Overall, the cyclical behavior observed in our
Fig. 2 aligns closely with findings in Wang and Li (2021) and Xu et al.
(2019).2

Fig. 3 presents the time-varying TASM index. The total asymmet-
ric index is negative for most of the sample periods, indicating that
volatility spillovers caused by negative news are greater than those
resulted from the positive news. However, during a few periods, such
as the period preceding the subprime mortgage (i.e.,2006–2007), the
asymmetry approaches zero or even becomes positive. These periods
suggest that the negative and positive return shocks led to similar sizes
of volatility spillovers across asset markets. The period between 2007

2 See Figures 3 and 9 in Wang and Li (2021) and Figure 1 in Xu et al.
2019)
7

and 2009 had the largest asymmetry, with the spillover index bottom-
ing out around February 2009. This is expected, as the spillovers were
widespread during the global financial crisis. The COVID-19 pandemic
period also displays a clear negative asymmetry in volatility spillovers,
although the magnitude of the asymmetry is not quite as substantial as
that of the global financial crisis. The volatility spillovers were more
significant during the financial crisis and exacerbated by the European
Sovereign Debt crisis. These negative spillovers lasted over seven years
and then began to diminish gradually. This indicates the effect of global
financial crisis is long lasting. Xu et al. (2019) reported similar results
for the total asymmetric spillover of volatility between the oil and stock
markets. They also observed dips around the years 2009, 2010, and
2015 and corroborate the prevalence of negative volatility.

5.2.2. Dynamics of spillover balance index
Figs. 4 and 5 present the dynamics of the spillover balance index

for each asset market. Fig. 4 shows that the spillover balance of the
stock market’s bad volatility of stocks is greater than unity for most
of the sample period, indicating that this market is a net provider
of bad volatility spillover. Similarly, in Fig. 5, the spillover balance
indexes of the good volatility associated with each of the four asset
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Fig. 4. Spillover balance index - bad volatility.

Fig. 5. Spillover balance index - good volatility.
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markets are mostly greater than unity, albeit their magnitudes are
much smaller than spillover indexes of the bad volatility. These findings
are consistent with Fig. 4, which indicates the dominance of negative
asymmetric spillovers. Interestingly, during the period 2009–2013, the
bad volatility spillover index of the stock market is close to unity,
suggesting that the volatility spillover has been dissipated to other
markets. Overall, we find that the stock market is a net provider of
spillover, especially during significant events, such as the 2008 Global
Financial Crisis, massive stock market selloffs, and the two major flash
crashes in 2015.

Our results also show that the bond market is generally a provider of
bad volatility spillover, especially during the period 2015–2017 as well
as during and after the Covid-19 pandemic. However, the good news
from the bond market has also provided large spillover effects during
the period from 2006 to 2008, i.e., before the global financial crisis.
This may be due to investors flocking to safety and buying bonds during
the financial crisis, signaling the spillover of good news. It is difficult
to conclude whether the bond market is a net spillover provider or a
net spillover receiver, as its spillover balance index remains above and
below unity for almost equal proportions of time. The bond market was
relatively a spillover provider for good volatility during the 2008 global
financial crisis and the massive stock market selloff of 2015, while it
was relatively a spillover provider of bad volatility during the period
from 2014 to 2015, when a massive stock market selloff and flash crash
took place.

The gold market behaved rather differently, as it is neither a net
spillover provider nor a net spillover receiver of news. Both its good
and bad spillover balance indexes are above unity during the period
2009–2017, reaching their peaks between 2014 and 2015. This timing
coincides with the massive stock market selloffs and flash crashes.
The results also indicate that the gold market was dissipating positive
and negative risks between 2009 and 2017. At the end of the sample
window, i.e., around 2022, there have been steep increases in good and
bad volatility spillovers transmitted from the bond to the other markets.

Since around mid-2007, the crude oil market mostly served as a
spillover receiver, with spillover balance indexes fluctuating evenly
between zero and two. Combined with the results in Table 3, the bad
volatility spillover to the oil market is transmitted from both the stock
market and within the crude oil market itself. Interestingly, the bad
volatility of the oil market exhibited mild cyclical behavior around the
cutoff point, with a spillover balance index of one, peaks during the
years 2007, 2012, 2018, and 2022, and troughs in 2006 as well as over
the period 2014–2017. However, the good volatility of the oil market
was transmitted to other markets only in 2005–2007, which could be
the calm prelude before the crash in the stock market. Subsequently, the
crude oil began to receive spillovers from the other markets, except for
the years 2014 and 2022, where there was a brief temporary balance
between the spillover balance indexes.

5.2.3. Dynamics of asymmetric spillover index
Fig. 6 displays the dynamics of the ASM spillover index of each asset

market. For the stock market, the ASM index is mostly negative, with
a large negative asymmetric effect reported during and after the global
financial crisis (i.e., the period 2008–2011). The negative spillovers
intensified following the collapse of Lehman Brothers in September
2008 and were further exacerbated during the Eurozone crisis. How-
ever, the net spillover effect of the stock market was dampened during
subsequent events, such as the debt ceiling debate in 2011, fiscal
cliff in 2012, government shutdown in 2013, and the stock market
selloff in 2015. The net spillover effect dipped more during the Global
Financial Crisis than other periods. Asadi et al. (2022) suggest that
stock market crashes significantly impact profitability, overhead cost,
and competitiveness in raw material markets, which may explain how
shocks of bad volatility of the stock market contributed to spreading the
spillover effects to other markets. Ghosh et al. (2021) also argue that
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technological inefficiency and a weak outlook may affect other markets,
supporting the argument that the negative spillover effect caused by
the flash crash in 2015 was transmitted to other markets. Overall, this
implies that the stock market is the main driver of bad volatility, which
spreads negative shocks to other markets.

Interestingly, the ASM index in the bond market is positive most of
the time, suggesting that the positive news from the bond market exerts
more influence on other markets than negative news. As bonds provide
investors with relatively stable incomes during crises, they are regarded
as useful hedging instruments during periods of market turmoil. This,
in turn, explains why economic downturns may bring good news to the
bond market, which is then transmitted to other markets. However, the
period near 2015–2016 experienced a negative spillover shock for a few
months, indicating a shift in negative shocks from the stock to the bond
market. But shortly after, investors fled to safety and, consequently,
causing the bond market to spillover the good volatility. Near the end
of 2018, a drop in the ASM to zero corresponded to rising tariffs and
trade policy tensions, particularly between the US and China, and the
impact of the Covid-19 health pandemic on the global economy.

As for gold, the first half of the sample was positively asymmetric,
while the second half exhibited a negative asymmetry. Interestingly,
we observe several similarities in the movement of the net volatility
spillover between the bond and gold markets. This may be due to the
hedging benefits of these two instruments, as gold and bond markets
are typically considered safe haven assets (see, e.g., Agyei-Ampomah
et al. (2014)). However, the range of the gold market’s ASM fluctua-
tions are not as wide as those of the bond market, indicating a relatively
more stable volatility spillover effect of the gold market.

The negative returns in the crude oil caused spillover shocks in all
markets, with the ASM index being negative most of the time. The
dominance of negative asymmetries is also reported by Xu et al. (2019),
who investigated the asymmetric volatility transmission between the
crude oil and stock market, and by Pham et al. (2022) in the context of
cryptocurrency and thermal coal futures. The volatility spillover effect
of the crude oil market displays similar behavior patterns to that of the
stock market, but with a narrower range of fluctuations, possibly due
to relative size difference between the two markets. The asymmetric
measure in the oil market moves in the same direction as its counterpart
in the stock market, except for the period around 2015, when a spike
in the positive volatility was observed in the crude oil, but not in the
stock market.

5.3. Robustness check

We have also conducted several checks to verify the sensitivity of
our results to the choice of forecasting horizons and rolling windows.
The results from these tests are largely consistent with our primary
analysis and our conclusions remain largely unchanged. Details of these
additional tests and their associated results are provided in Appendix B.

5.4. Discussion and policy implications

Overall, our TASM results indicate that the negative volatility
spillovers are more prevalent than positive volatility spillovers at the
aggregate level. This is consistent with the theory of loss aversion
in behavioral finance, where investors are emotionally attached to
negative news than positive news. Our finding that the TASM is mostly
negative and takes a long time to become positive is also in line with the
disposition effect of Frazzini (2006), which suggests that investors tend
to hold on to losers and sell winners. Furthermore, our evidence that
the spillover from bad to good volatility is stronger than that from good
to bad volatility is supported by Bollen and Whaley (2004)’s view that
the buying pressure from investors tends to increase during episodes of
high volatility.

Another interesting finding is that the stock market is the main
provider, whereas the oil market is the main receiver, of volatility

spillover and that the oil market has a limited spillover effect on other
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Fig. 6. Asymmetric spillovers (𝐴𝑆𝑀).
markets. This may be attributed to the stock market’s considerable
size, causing its crashes to spread to other markets. In addition, due
to potential information transmission across asset markets (related
to market efficiency), negative shocks in the stock market may be
immediately transmitted to the oil market. The bond and gold markets
behave differently, as they are generally viewed as safe haven (Bredin
et al., 2015), where investors seek safety during times of market stress.

Finally, we find that for the bond market, the overall spillover
balance of good volatility is greater than that of bad volatility. This
may be because investors, who seek safety from bonds, interpret stock
market crashes as buying signals in the bond market.

In terms of policy implications, researchers have been consistently
calling for more efforts on the part of regulator authorities to better
measure and monitor the risks and uncertainties in different asset
markets (Fengler and Gisler, 2015; Chiang et al., 2015). Our method-
ological innovation should serve as a useful tool for policymakers, who
are interested in understanding and monitoring volatility transmission
among different markets. The finding that stock market is the main
transmitter of negative shocks also supports the need for the stock
market to be more heavily regulated (Ghosh et al., 2021). Regulatory
policies, such as the circuit breaker, can prevent asset bubbles (Turhan
et al., 2013), restrict the volatility spillovers within the stock market,
and minimize the spread of negative volatility from the stock market
to the other markets (Li et al., 2016). Furthermore, this study shows
that the bond market spills over good volatility during the financial
crisis. Policies need to be implemented to keep a moderate amount
of good volatility in the bond market. In addition, as there is signif-
icant awareness of the speculative fluctuations in the cryptocurrency
market (Pham et al., 2022), policies can be made to minimize the
impact of cryptocurrency on other markets. When policies are an-
nounced, policymakers need to assess their full impact (Ciner et al.,
2013) and ability to mitigate financial distresses (Jiang et al., 2019).
Furthermore, considering the potential amplification of the volatility
caused by the releases of negative news, regulators should work with
10
media to ensure responsible reporting. A more accurate and balanced
information dissemination can mitigate panic and overreaction in the
markets. Moreover, as suggested by Baruník et al. (2015) in the context
of petroleum markets, introduction of regulations for institutions can
similarly be made across the four markets to reduce spillover effects.
As a preventive measure, macroeconomic policies can also be designed
to control the impact of global crude oil industry and encourage the
development of alternative sustainable energy resources (Jiang et al.,
2019), Finally, given the susceptibility of oil markets to geopolitical and
other global events, diversifying the energy portfolio and increasing
investments in sustainable energy can mitigate the risks associated with
oil market volatility.

6. Conclusion

This study uses a Multiplicative Error Model (MEM) to investi-
gate the asymmetric volatility spillovers across four major global asset
markets, namely stocks, bonds, gold, and crude oil. This approach over-
comes some important shortcomings of other popular models, includ-
ing VAR and multivariate GARCH models. The asymmetric volatility
spillover index derived from the MEM enables us to capture more accu-
rately the impact of positive and negative news on different markets as
well as the interdependence of the volatility transmission across these
markets. We have also expanded the scope of the volatility spillover
balance and asymmetric spillover indexes to reflect their time-varying
features.

Our novel empirical model offers new insights into volatility
spillovers between different asset markets. Firstly, we find that the
volatility spillovers are time varying, and both the degree and the
direction of the spillovers are influenced by changes in economic con-
ditions. Secondly, we identify the net providers and the net receivers
of volatility spillovers. Specifically, we find that the stock market is
the provider, the bond and gold markets are largely balanced, while

the crude oil market mostly serves as a receiver of volatility spillovers.
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Table 5
Bad and good volatility spillovers.

From bad volatility From good volatility

Stock Bond Gold Oil Stock Bond Gold Oil Total from

To bad volatility
Stock 11.00 1.84 3.02 2.05 6.31 2.77 2.98 1.29 13.95
Bond 5.33 3.44 2.20 1.16 3.66 3.11 2.10 0.91 15.36
Gold 6.64 3.74 9.20 2.08 4.65 3.79 7.11 1.54 22.45
Crude Oil 7.64 2.43 4.17 7.81 4.73 3.42 3.25 4.53 25.64
To good volatility
Stock 11.27 1.92 3.12 2.11 6.64 2.84 3.08 1.34 14.42
Bond 6.00 3.91 2.55 1.38 4.24 4.56 2.63 1.11 17.91
Gold 6.57 3.52 8.44 2.09 4.58 3.76 7.08 1.58 22.10
Crude Oil 7.70 2.56 4.26 7.78 4.85 3.54 3.44 4.91 26.35
Total To 39.89 16.01 19.33 10.87 26.71 20.12 17.47 7.78
Balance 2.86 1.04 0.86 0.42 1.85 1.12 0.79 0.30
Asym −13.18** 4.11** −1.86 −3.09 TASM −14.02**

The table presents spillovers for the full sample with a forecast horizon of 𝜏 = 10 days. We use bootstrapped standard errors
with 1000 resamplings to test the significance of ASM and TASM.
** The symbol denotes significance at the 5% level.
a

a

s

hirdly, we show that the asymmetric spillover effects are mostly
egative in the cases of the stock and crude oil markets and positive in
he bond market. Fourthly, we investigate the impact of the variation
n economic conditions, such as the global financial crisis, the Eurozone
risis, and the COVID-19 pandemic, on volatility spillovers among
sset markets. We provide evidence that such events exert a significant
nfluence on both the magnitude and direction of spillovers and that the
pillover effects are amplified during times of economic stress. Finally,
e shed light on the role of safe-haven assets, namely gold and bonds,

n times of market volatility. We find that these assets help mitigate
pillover effects and provide hedging opportunities for investors.
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Appendix A. Bootstrap standard error

The definitions of 𝑇𝐴𝑆𝑀 and 𝐴𝑆𝑀𝑖 aid in testing our initial
hypotheses concerning the symmetry of spillovers. When utilizing these
spillover asymmetry measures, the two hypotheses are redefined as
follows:

1
0 ∶ 𝑇𝐴𝑆𝑀 = 0 against 1

𝐴 ∶ 𝑇𝐴𝑆𝑀 ≠ 0

2
0 ∶ 𝐴𝑆𝑀𝑖 = 0 against 2

𝐴 ∶ 𝐴𝑆𝑀𝑖 ≠ 0, for 𝑖 = 1, 2,… , 𝑘.

(25)

To test the hypotheses about the symmetry of volatility spillovers,
we opt to bootstrap the measures. It is crucial to ensure that the
empirical results are not attributable to estimation errors from the MEM
or discretization errors from realized semi-variances. The latter, in par-
ticular, could be significant due to the limited number of observations
during the day in the real data used for the computation of realized
semi-variance.

We bootstrap the two realized semicovariance data directly from
(11). The LB statistics, as shown in the last column of Table 3, suggest
that the estimated residuals do not exhibit autocorrelation, thus we can
bootstrap the data from these residuals. The bootstrap procedure is as
follows:

• After estimation, acquire the fitted residual �̂�𝑡.
• Bootstrap new residuals from �̂�𝑡, denoted as 𝝐𝑏𝑡 , where 𝑏 =
1, 2,… , 1000. The residuals are bootstrapped 1000 times.
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• Then, the realized semi-variance data 𝑋𝑖 can be simulated from
the vector MEM model as follows:

𝐱𝑏𝑡 = 𝝁𝑏
𝑡 ⊙ 𝝐𝑏𝑡 ,

𝝁𝑏
𝑡 = �̂� + �̂�𝐱𝑏𝑡−1 + �̂�𝝁𝑏

𝑡−1 + �̂�𝑤𝐱𝑤,𝑏
𝑡−1 + �̂�𝑚𝐱𝑚,𝑏𝑡−1. (26)

where 𝐱𝑤,𝑏
𝑡−1 = 1

5
∑5

𝑙=1 𝐱
𝑏
𝑡−𝑙, 𝐱

𝑚,𝑏
𝑡−1 =

1
22

∑22
𝑙=1 𝐱

𝑏
𝑡−𝑙,

• For each set of simulated data, we estimate the model and calcu-
late 𝑇𝐴𝑆𝑀 and 𝐴𝑆𝑀𝑖.

Using 1,000 bootstrapped processes, we obtain the bootstrapped
standard errors of 𝑇𝐴𝑆𝑀 and 𝐴𝑆𝑀𝑖. We then test the significance of
the two null hypotheses.

Appendix B. Robustness checks

To assess robustness, we first re-evaluate the volatility spillover
effects in Table 4 using different forecast horizons of 𝜏 = 100, 𝜏 = 30,
and 𝜏 = 10. Secondly, we present both the spillover index and the
symmetric spillover index using a shorter 200-day rolling window.

Table 5 displays the bad and good volatility spillover effects when
forecasting horizon of 𝜏 = 10 is employed3. From Table 5, the

spillover effects, including the spillover balance and TASM results,
are qualitatively consistent with Table 4. Stocks exhibit the largest
negative volatility spillover, while the TASM spillover is both negative
and significant. The only difference is that the values in Table 4 are
larger than those in Table 5. This is expected, as our volatility spillover
is calculated as the sum of shock effects across all future forecasting
horizons.

Figs. 7 and 8 present the dynamics of total volatility and asym-
metric spillovers using a 200-day rolling window4. Our core findings
remain consistent. The global financial crisis greatly affected market
interconnectedness. While the COVID-19 pandemic increased volatility
spillovers, its impact was less pronounced than the financial crisis.
The asymmetric spillover index was mostly negative. The most sig-
nificant asymmetry occurred during 2007–2009, with the COVID-19
period showing lesser negative asymmetry. The difference observed
from Figs. 7 and 8 is that 2015/16 exhibited pronounced high total
volatility spillover effects and larger negative asymmetric effects. This
might be attributed to our use of a shorter rolling window. The 2015/16
stock market sell-off had a significant but relatively short-lived impact
on volatility. When a shorter rolling window is employed, this effect
appears more pronounced.

3 The forecast horizons of 𝜏 = 100 and 𝜏 = 200 days yield results very
imilar to the 𝜏 = 10 case. These are not shown to save space but are available

upon request.
4 Details on individual asset market asymmetries are available upon request
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Fig. 7. Total volatility spillovers.
Fig. 8. Total asymmetric spillovers (𝑇𝐴𝑆𝑀).
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