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An effective predictor of the dynamic operation of latent heat thermal 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• The state of a TES unit is continuously 
quantified with a non-intrusive NARX 
model. 

• The NARX model trained on physics- 
based data replicates the real system’s 
response. 

• Heating zone-wise segregation of pre-
diction tasks boosts the model’s 
accuracy. 

• The NARX model is 86% faster than a 
physics-based model built for fast 
computation. 

• Limited public availability of a NARX 
model is addressed by code and data 
sharing.  
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A B S T R A C T   

Thermal networks require thermal energy storage (TES) provisions for balancing thermal energy sources with variable con-
sumer demand. Harvesting ice is an economical option for latent heat TES systems in cooling networks given the wide 
availability of the storage medium. This paper presents an artificial intelligence (AI) based model to monitor the state-of-charge 
(SoC) and the outlet temperature of the heat transfer fluid (To) of an ice tank under fluctuating operating conditions. The AI 
model is a non-linear autoregressive network with exogenous inputs (NARX) that was trained and tested with datasets ob-
tained from experimental measurements of a practical ice tank and a physics-based model of the tank. The NARX model was 
sensitised with physics-informed attributes to recognise different heating and cooling zones. The model exhibits a high ac-
curacy in predicting the operating conditions of the ice tank when benchmarked against both experimental measurements of a 
practical tank and outputs from the physics-based model. For instance, it achieves R2 values of 0.9943 and 0.9842 for SoC and 
To, with root mean square errors of 1.73% for SoC and 0.3161◦C for To. The NARX model is 86% faster than its physics-based 
counterpart and its implementation requires limited computational resources—making it suitable as a standalone estimator for 
the TES operation and the accelerated simulation of energy systems containing latent heat TES units. Furthermore, given the 
limited availability of NARX models in open-source libraries, the presented NARX model and relevant datasets have been 
made available alongside this paper to contribute to open-science in energy research and the broader AI community.  
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1. Introduction 

The global drive to incorporate renewable energy technologies to 
mitigate greenhouse gas emissions has prompted substantial de-
velopments in energy storage systems. Energy storage provision is 
suitable to overcome the intermittent availability of renewable energy 
sources (such as solar and wind) and to balance the temporal mismatch 
between energy demand and supply [1,2]. 

Heat is a major form of energy in both industrial and residential 
applications. Waste heat from industries is now increasingly recovered 
for possible co-generation purposes [3]. The use of solar thermal systems 
has also increased over recent years. These heat sources, which have 
intermittency inherently embedded into their functioning, can benefit 
from thermal energy storage (TES) devices for a better energy delivery 
and utilisation [4]. 

Sensible heat and latent heat energy storage are the main types of 
TES technologies. Latent heat TES (LHTES) systems exhibit a higher 
energy storage density when compared to sensible heat TES systems. 
This attribute helps in designing compact thermal stores for the load 
management in a thermal network when physical space is a constraint 
[5]. In an LHTES unit, a heat transfer fluid (HTF) is used to inject or 
release the thermal energy. A phase change material (PCM) acts as the 
storage medium. It releases or absorbs a large amount of thermal energy 
during a change in phase—occurring at isothermal conditions. Ice 
storage tanks operating in the water-ice phase transition regime are a 
commonly adopted latent heat-based option for cooling systems given 
their high energy density and the low cost of the storage medium [6]. 

To effectively monitor the performance of an LHTES system, its state- 
of-charge (SoC) needs to be assessed on a timely basis as the thermal 
store exchanges heat with other components within an energy system. 
The SoC of an LHTES unit represents how much of the total latent heat 
value of the storage medium has been released or absorbed. Thus, SoC 
indicates the level of availability of thermal energy at a given instant. An 
LHTES unit can be harnessed effectively for energy management if its 
charging and discharging operations are optimally scheduled, which in 
turn depend on the timely and accurate estimation of SoC [7]. 

Different approaches have been employed to model the thermal 
dynamics of LHTES units, from simple steady-state models to complex 
three-dimensional (3-D) finite element-based representations. In steady- 
state models, parameters such as heat transfer coefficients or the 

thermophysical properties of the PCM are often considered as constant 
[8,9]. Moreover, the use of algebraic equations to iteratively solve the 
model disregards the dynamic changes present during practical oper-
ating conditions [10]. Thus, accuracy of the simulation results is limited 
in general. In contrast, a highly accurate 3-D modelling approach uses 
conservation laws (energy, momentum, and mass) and the temperature- 
dependent thermophysical properties of the PCM and HTF to describe 
the internal dynamics of the system by employing partial differential 
equations. Such detailed modelling of the system behaviour requires 
high-performance computing and large simulation times to solve the 
models [11]. 

There are modelling methodologies in the middle of the aforemen-
tioned extremes where only one or two dimensions of the internal 
structure of the system are sufficient to accurately describe the thermal 
dynamics of the LHTES unit. Such methodologies represent plausible 
options to develop low-complexity models. In some cases, these ap-
proaches may still consider the temperature dependence of the ther-
mophysical properties of the PCM and the dynamic calculation of the 
heat transfer coefficients. Consequently, a reduced computation time is 
required to run simulations compared to 3-D models. 

For industrial energy storage applications, traditional methods for 
monitoring critical operating parameters have predominantly relied on 
a combination of manual inspections and sensor-based systems. Engi-
neers and technicians have historically performed periodic physical 
checks on the storage units to assess component conditions, fluid levels, 
energy levels, and overall performance. In the case of TES systems, 
thermocouples and thermometers have been widely employed to mea-
sure temperature variations. Large hot water TES tanks often utilise 
multi-spot thermometers to gauge water temperature and estimate the 
level of thermal stratification [12]. The fluid flow rates associated with 
charging and discharging of TES units are commonly measured by dif-
ferential pressure sensors [13]. To address leakages in hot water storage 
systems, detection methods range from simple visual inspections to the 
implementation of advanced leakage sensors for underground tanks 
where visual inspection is not feasible [12]. 

On the other hand, electrical batteries employ electronic sensors to 
measure current and voltage [14]. For more sophisticated monitoring, 
fibre Bragg grating sensors are utilised to estimate SoC by measuring 
temperature and strain in batteries during operation [15]. These sensors 
provide real-time data, allowing operators to identify any deviations 

Nomenclature and variables 

Abbreviation 
1-D one-dimensional 
3-D three-dimensional 
ANN artificial neural network 
HTF heat transfer fluid 
LHS Latin hypercube sampling 
LSTM long short-term memory 
LHTES latent heat thermal energy storage 
MCDM multi-criteria decision-making 
MCS Monte-Carlo sampling 
MSE mean square error 
NARX non-linear autoregressive network with exogenous inputs 
PCM phase change material 
R2 determination coefficient 
RMSE root mean square error 
RNN recurrent neural network 
SoC state-of-charge 
TES thermal energy storage 
TOPSIS technique for order preference by similarity to ideal 

solution 

Ac cross-sectional area [m2] 
Aex surface area [m2] 
Atr heat transfer area [m2] 
Aw cross-sectional area of ice [m2] 
Dt tube hydraulic diameter [mm] 
Ė rate of change of energy [W] 
Vf heat transfer fluid volume [m3] 
Vw ice volume [m3] 
cp specific heat [J/(kg◦C)] 
kt thermal conductivity of tube [W/(m◦C)] 
kw water/ice thermal conductivity [W/(m◦C)] 
ri tube internal radius [mm] 
ro tube external radius [mm] 
rw ice radius [mm] 
ṁ mass flow rate of heat transfer fluid [kg/s] 
T temperature [◦C] 
Ti inlet temperature of heat transfer fluid [◦C] 
To outlet temperature of heat transfer fluid [◦C] 
L tube length [m] 
U heat transfer coefficient [W/(m2◦C)] 
ρ density [kg/m3]  
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from expected values. 
The conventional monitoring methods for energy storage systems 

described in the previous paragraphs often present limitations in terms 
of efficiency and accuracy. For instance, manual inspections may be 
infrequent, leading to potential delays in detecting issues, while sensor- 
based systems may be expensive. For a TES tank, although low-cost 
temperature sensors may be available to effectively measure the input 
and output temperature, a good quantification of SoC requires a precise 
knowledge of the temperature gradient of the storage medium. For 
vertical sensible heat hot water tanks, the common practical approach is 
to mount temperature sensors through the tank’s height—exploiting 
thermal stratification within the unit. These sensors may not be expen-
sive and SoC calculation is achieved using the temperature measure-
ments and the specific heat capacity of water [16]. 

Nevertheless, accurately monitoring SoC within an LHTES unit re-
quires information of not only the HTF, but also the PCM throughout the 
tank. Quantifying effectively the temperature gradient of the PCM may 
be challenging as it would require reliable and precise temperature 
measurements and this would only be achieved when several sensors are 
installed [17,18]. This is because the phase change of a PCM causes its 
total volume to temporarily fractionate into liquid and solid volumes 
irregularly distributed in the tank. In addition, incorporating several 
temperature sensors within the unit’s enclosure may be disruptive as 
this would imply additional design considerations linked to the internal 
arrangement of the tubes carrying the HTF and the actual sensor 
location. 

There are other simpler solutions deployed in practice for LHTES 
units, such as using pressure sensors to indirectly determine SoC. In such 
an approach, a relation between pressure changes and the change in the 
phase fraction of a PCM is established [19]. In case of an ice tank, a 
differential pressure transducer could be employed to measure the 
change in volume when ice is formed, but this could be affected by the 
presence of ice pockets or compression effects [20]. 

To avoid the challenging implementation of internal temperature 
sensors to accurately characterise the temperature gradient of a PCM 
and facilitate an effective quantification of SoC, temperature estimation 
thus represents a suitable approach requiring a limited amount of 
external sensors. Such estimation can be done with either physics-based 
models or data-driven models based on machine learning techniques 
and artificial intelligence (AI). Autoregressive AI-based models, in 
particular, can continuously determine the SoC of LHTES units by cap-
italising on their own estimates of outlet temperature prediction. 

With the advent of AI and the development of data-driven models, 
the computation time of physics-based models for assessing the behav-
iour of an energy system can be further reduced. Such AI models have 
demonstrated the potential to replicate complex system behaviour with 
a high accuracy [21]. Feed-forward artificial neural networks (ANNs) 
offer a wide range of hyperparameters to tune AI models for accurate 
predictions. For instance, such ANNs have been used in [22] to predict, 
with a high accuracy, the heat absorbed and released by the PCM of an 
LHTES system during charging and discharging cycles when compared 
to experimentally measured values. In [23], a feed-forward back prop-
agation ANN was used to estimate the thermal energy stored in an 
LHTES system. Time was used as an independent variable in addition to 
the heat transfer area, the Reynolds number, and the inlet temperature 
of the HTF for training the ANN on time-series data. This approach, 
however, has a caveat, given that the long-duration operation of the 
thermal store would require large values of time inputs to the ANN. The 
ANN, therefore, must be trained on a large dataset that covers up to the 
maximum time duration until which the LHTES unit may function. 
However, an LHTES unit can be integrated as an element of an energy 
system that functions indefinitely—thus leading to very large values of 
the time input variable. 

Recurrent AI models such as recurrent neural networks (RNNs) can 
handle time-series data more efficiently. An RNN exploits information 
from the previous time-step by forming connections with its previous 

state of hidden neurons, thereby allowing data from previous inputs to 
influence the output for future time-steps. Underpinning the potential of 
RNNs in mapping time-series inputs and outputs, studies have been 
conducted in recent years to estimate the SoC of electrical batteries [24] 
and their state-of-health [25]. However, there has been a very limited 
number of studies deploying RNN models on TES systems. An interesting 
example related to thermal systems is available in [26], where long 
short-term memory (LSTM) cells are added to an RNN alongside internal 
gating mechanisms to predict the temperature profile of an earth-air 
heat exchanger. This LSTM-based RNN configuration enables handling 
long interval time-series data, where the gates regulate the flow of in-
formation in and out of the LSTM cell, which in turn stores information 
over several time-steps. The addition of LSTM cells also prevents the 
occurrence of vanishing gradients during the training process through 
backpropagation [27]. However, to the best of the authors’ knowledge, 
LSTM-based RNN models have not been employed to estimate the SoC of 
an LHTES unit. 

The transient variation of the SoC of a TES unit not only depends 
upon the mass flow rate and inlet temperature of the HTF, but also on the 
SoC at the previous time-step [28]. For an AI model in which SoC is an 
output, this implies a correlation between input and output variables. 
Non-linear autoregressive models with exogenous input (NARX) struc-
tures are suitable AI tools for dealing with such a correlation. While an 
RNN generally contains a feedback connection between hidden layers of 
past and present states, a NARX model instead contains a feedback 
connection from the output of the previous time-step that can be used 
along with other inputs to predict future output values. 

A NARX model can be an open-loop network where the output 
sequence is known beforehand from experiments or other numerical 
models. The known output sequence is fed into the same NARX model to 
obtain the predicted output sequence. The other version of a NARX 
structure is a closed-loop network where the output sequence is not 
known beforehand. Here the predicted output by the NARX model in the 
previous time-step is used to perform the output prediction in the sub-
sequent time-step [29]. The closed-loop network has a greater utility 
when the NARX model needs to be used as a standalone output predictor 
without any other numerical model or experimental setup incorporated 
to obtain the output. 

Feed-forward ANNs have been mostly used for LHTES systems in the 
existing literature [23,30–32]. On the other hand, the capabilities of a 
NARX model have been demonstrated in [28] to predict the time- 
varying SoC of a sorption reactor. However, research focussing on the 
development and implementation of NARX models for LHTES units is 
limited. To the best of the authors’ knowledge, a closed-loop NARX 
model that estimates SoC and the outlet temperature of the HTF of an 
LHTES unit is not available in the literature. To this end, this paper 
makes the following two major contributions:  

1. A closed-loop NARX model that predicts the time-varying SoC and 
HTF’s outlet temperature of an LHTES system is presented. This AI- 
based model can act as a standalone performance monitor of an 
LHTES unit without the need for an expensive experimental setup or 
a highly computationally demanding physics-based model to esti-
mate the operational state of the thermal store. The NARX model was 
built on practical data from a real LHTES unit where ice is used as the 
storage medium. Since an ice-based LHTES unit is an economical 
energy storage solution widely adopted in district cooling networks 
[6], the NARX model presented in the paper could be highly 
attractive in designing future cooling networks.  

2. The source code of the open-source NARX model is made freely 
available to contribute both to energy and AI research. Such a model 
is currently inexistent in popular Python libraries such as Keras 
(TensorFlow) [33] despite several queries in coding communities on 
such open-source models [34,35]. Although there have been a few 
implementations of NARX models using Python libraries, the avail-
able examples suffer from important issues. For instance, the 
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PyNeurGen’s NARX model is based on Python 2, which is not sup-
ported by the latest versions of Python 3 [36]. On the other hand, the 
fireTS’s NARX model is an open-loop network that requires the 
output sequence to be known beforehand [37]. Finally, GEKKO of-
fers a linear input-output model that does not account for non-linear 
correlations [38]. The source code accompanying this paper relieves 
all these issues. 

2. Material and methods 

2.1. Configuration and physics-based model of the TES system under 
study 

The selection of an ice tank is motivated by its widespread adoption 
in cooling systems, ranging from large district cooling systems [39] to 
food and pharmaceutical cold-chains [40]. This is also supported by the 
cost-effectiveness of the energy storage units—facilitated by the 
convenient crystallisation temperature of water as storage medium (i.e. 
the PCM) and the significant amount of latent heat which is released or 
absorbed during the transition between solid and liquid states. 

The thermal store considered in this paper is an ICEBANK 1098C 
model. This is a commercial ice tank manufactured by CALMAC. It has a 
storage capacity of 350 kWh [41] and cooling energy is stored through 
ice harvesting. Within the tank enclosure, an arrangement of 68 spi-
ralled polyethylene tubes grouped in pairs is submerged in water-
—forming thus 34 horizontal levels. A schematic of the internal 
structure of the tank is shown in Fig. 1. 

The HTF is a 34% water-glycol mixture flowing through the poly-
ethylene tubes. The release or absorption of the latent heat of water is 
triggered through the heat transferred between the HTF and water (or 
ice if in solid form). Since the HTF remains unfrozen in sub-zero tem-
peratures, it is circulated at a temperature of − 6◦C to charge the tank 
with the aid of a compressor chiller [42]. For the discharging process, 
HTF circulates through the tubes at a higher temperature to extract the 
cooling energy stored in the tank, which is transferred by the melting of 
the ice. 

Each pair of tubes is connected to four tube headers placed vertically 
as shown in Fig. 1(a). The tubes in each level are denoted as ‘a’ and ‘b’. 
The input of the HTF for tube ‘a’ is at the same end as the output of the 
HTF for tube ‘b’ (outer headers). Similarly, the end of tube ‘a’ is at the 

same side as the beginning of tube ‘b’ (inner headers). This configuration 
resembles a counter-flow heat exchanger per horizontal level of the tank 
enabling an even solidification of water and homogeneous melting of the 
ice throughout. A schematic of this is shown in Fig. 2 where charging 
and discharging processes are illustrated. 

The dimensions of the tank investigated in this paper are 2.26 m of 
width, 2.31 m of length, and 1.765 m of height [41]. The total volume of 
water in the tank is 3.71 m3, whereas the total volume of the HTF is 
0.375 m3. This tank configuration has been adopted in a number of 
references available in the literature including [42], which presents an 
accurate one-dimensional (1-D) dynamic model of the ice tank. Never-
theless, for the experiments reported in [44,45] for the same tank a 
special setup was adopted, where the top 16 levels (that is, 32 tubes) 
were blocked to allow circulation of the HTF through the bottom 18 
levels only (i.e. through 36 tubes). Thus, the volume of water was 
reduced to 1.9641 m3, leading in turn to a reduction of the energy 
storage capacity to 174.264 kWh. 

The values and dimensions of a single tube within the ice tank are 
summarised in Table 1. These parameters help defining the amount of 
water/ice wrapping the tubes in terms of cross-sectional area, external 
surface area, and volume. 

The ice tank configuration with the parameters provided in Table 1 
was modelled dynamically and verified against experimental results in 
[42]. The mathematical model is based on the energy conservation law, 
heat transfer theory, and a 1-D thermal (spatial) discretisation approach. 
The model was obtained considering that a pair of tubes is representa-
tive of the behaviour for all tubes in the tank. To achieve this, it is 
assumed that every pair of tubes has the same conditions and that 
viscous dissipation, radial fluid flow, axial heat conduction, external 
forces, and compressibility are negligible. 

The energy balance equations for a single control volume of the pair 
of tubes considered during the modelling process are given as 

Ėf ,a = ρf Vf cp,f
dTf ,a

dt
= ṁcp,f

(
Tf ,in − Tf ,a

)
+UAtr

(
Tw,a − Tf ,a

)
(1)  

Ėw,a = ρwVwcp,w
dTw,a

dt
= UAtr

(
Tf ,a − Tw,a

)
+UAex

(
Tw,b − Tw,a

)
− Ėl,a (2)  

Ėf ,b = ρf Vf cp,f
dTf ,b

dt
= ṁcp,f

(
Tf ,in − Tf ,b

)
+UAtr

(
Tw,b − Tf ,b

)
(3) 

Fig. 1. (a) Internal structure of the ice tank where two external and two internal headers are shown [43]. (b) Schematic of the flow of the HTF through the internal 
tubes [42]. 
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Ėw,b = ρwVwcp,w
dTw,b

dt
= UAtr

(
Tf ,b − Tw,b

)
+UAex

(
Tw,a − Tw,b

)
− Ėl,b (4)  

where Ė is the rate of change of energy, V is the volume, T is the tem-
perature, U is the overall heat transfer coefficient, ṁ is the mass flow 
rate, Atr is the heat transfer area between the HTF and water/ice, and Aex 
is the heat transfer area between the water/ice volumes of tubes ‘a’ and 
‘b’. Density and specific heat are defined by ρ and cp. Subscripts ‘w’, ‘f’, 
‘a’, and ‘b’ stand for water, fluid, tube ‘a’, and tube ‘b’. Ėl is an additional 
heat source to account for the water/ice that may not melt or solidify 
during discharging and charging. 

The control volume used to define Eqs. (1)–(4) considers a pair of 
tube sections which includes the HTF volume inside each tube, the 
water/ice around it, and the wall of the tube through which the heat is 
transferred. As the model is a 1-D representation, the energy balance for 
the HTF circulating within the tubes describes how the mean tempera-
ture Tf of the fluid changes with respect to the x-direction alongside the 
tube and, additionally, how the convection heat transfer is affected by 
this change. Despite the simplicity afforded by the 1-D model, the 
overall heat transfer coefficient in the energy balance equations con-
siders the temperature dependence of the thermophysical properties of 
the HTF and of water/ice—leading to a high accuracy. 

A physics-based model of the ice tank using (1)–(4) was built in 

MATLAB/Simulink, as reported in [42], to obtain the datasets profiles 
for training and testing the NARX model presented in Section 2.2. As 
mentioned before, a thermal (spatial) discretisation method was adop-
ted. Considering the configuration of the ice tank, tubes ‘a’ and ‘b’ are 
split into a defined number of nodes for discretisation and heat transfer 
occurs under similar conditions but with the HTF circulating in opposite 
directions. For a number of N nodes, the thermally discretised model 
would consist thus of 4N non-linear ordinary differential equations (i.e. 
the four equations given by (1)–(4) times the number of nodes). A 
number of 20 nodes was here adopted, leading to 80 differential 
equations. 

Although momentum and mass balances are not considered in the 
physics-based model adopted in this paper, a good accuracy was ob-
tained when the simulation results were compared with experimental 
data, with a maximum error of 1.64◦C and a mean square error (MSE) of 
0.04◦C2 for the outlet temperature of the HTF (To) [42]. This perfor-
mance was deemed sufficient for the purposes of this paper. Further 
details on the modelling considerations for the practical ice tank under 
study, simulation results, and experimental validation against real data 
available in [44,45] are provided in [42] (and references therein). To 
prevent duplication of published work, no further discussion on the 
validation of the ice tank model is here provided. Interested readers are 
instead referred to [42]. 

The physics-based model requires the discretisation of both the 
temporal and spatial domains to estimate the SoC of the TES unit and the 
outlet temperature of the HTF. The model employs an iterative solver for 
each node at every time-step, resulting in a considerable number of 
equations that must be solved across a space-time grid. This comes at the 
expense of a significant computational cost. 

Although not specific to the ice tank adopted for this paper due to its 
construction and operating conditions, disregarding mass and mo-
mentum balances may not hold in scenarios incurred in other applica-
tions where high flow rates or intricate geometries induce considerable 
turbulence or flow reversal within the system. In such instances, the 
computational complexity grows significantly as solving additional 
transport equations pertaining to mass, momentum, and turbulence 
becomes imperative to map the same inputs and outputs as those of a 
simplified 1-D model. These limitations restrict the adaptability of 
physics-based models across diverse flow regimes and geometries. They 
underscore the value of data-driven alternatives that establish connec-
tions between inputs and outputs through general matrix multiplications 
rather than relying on complex differential equations to accommodate 
distinct thermodynamic phenomena. 

Fig. 2. Top view of a pair of tubes during (a) discharging and (b) charging processes [42].  

Table 1 
Parameters for a single tube of the ice tank [42].  

Parameter Symbol Value Unit 

Tube external radius ro 7.9375 mm 
Tube internal radius ri 6.35 mm 
Tube hydraulic diameter Dt 12.7 mm 
Tube length L 32.5581 m 
Heat transfer area Atr 1.6238 m2 

Cross-sectional area Ac 1.266 ×
10− 4 

m2 

HTF volume Vf 0.0041 m3 

Thermal conductivity of the tube 
(polyethylene) 

kt 0.33 W/ 
(m◦C) 

Water/ice thermal conductivity kw 1.35 W/ 
(m◦C) 

Ice radius rw 23.9395 mm 
Cross-sectional area of ice Aw 0.0016 m2 

Surface area Aex 4.9 m2 

Ice volume Vw 0.0522 m3  
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2.2. Development of the AI model 

2.2.1. The NARX framework 
The NARX model reported in this paper consists of four ANNs in the 

core. This structure is schematically shown in Fig. 3. The ANNs recur-
sively exchange their output information with each other to predict their 
respective future outputs. Known values of the inlet temperature of the 
HTF (Ti) and its mass flow rate (ṁ) are fed as exogenous inputs to the 
four ANNs. The actual output values of SoC (SoC) and To for the future 
time-step are assumed to be unknown while making the predictions. The 
model, therefore, must rely on its previous output predictions to make 
future predictions and is thus a closed-loop NARX model. 

The general structure of the ANNs within the core of the NARX model 
is shown in Fig. 4(a), which shows how information propagates from the 
input layer to the output layer through hidden layers. Neurons in a 
particular layer are connected to neurons in the previous and the next 
layer, but not with the ones in the same layer. Fig. 4(b) shows a sche-
matic with the general structure of a closed-loop NARX model. In this 
simple form, an ANN is extended with a feedback connection from the 
output layer, from which the information of past output values can be 
used along with the present input values to predict the output for the 
next time-step. 

In general, neuron k in an ANN connects its input xj with the output 
yk through a set of weights wkj and biases bk. Mathematically, this is 
described by 

yk = φ

(
∑m

j=1
xj ×wkj + bk

)

(5)  

where φ is an activation function which introduces non-linearity be-
tween the input and the output [26]. 

From fundamental principles of heat transfer and thermodynamics, 
the SoC of a latent heat thermal store is defined in terms of the specific 
latent heat Δhl, which stands for the amount of energy required per unit 
of mass to produce a phase transition in a PCM [48]. This energy can be 
determined from the relationship between specific heat of the PCM as a 
function of temperature, which is normally provided by PCM manu-
facturers as a curve, and considering the temperature boundaries of the 
transition zone where the phase change occurs. For clarity, these tem-
peratures are denoted as Tempty and Tfull. From [7], integrating this 
graphic relationship of specific heat against temperature from Tfull (i.e. 
when all PCM would be crystallised as ice) to the actual temperature Tw 
of the PCM divided by Δhl yields the remaining latent heat stored by the 
PCM. When the melting temperature Tempty of the PCM has been 
exceeded, this implies the thermal store has been fully discharged. 
Mathematically, for each node in the tank, and considering the notation 
in (1)–(4), SoC is thus expressed as 

SoCT(T) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0,when Tw > Tempty

1 −

[∫ Tw
Tfull

cp,w(T)dT
Δhl

]

,whenTfull ≤ Tw ≤ Tempty

1,when Tw < Tfull

(6) 

For the ice tank model presented in Section 2.1, Δhl is restricted by 
Tfull = − 5.7◦C and Tempty = 0◦C. If (6) is used for all N PCM node tem-
peratures, the SoC of the total PCM volume within the ice tank is 

Fig. 3. Structure of the NARX model developed in this paper. The blue lines represent data flow, the black lines process flow, and the red lines data flow with delay. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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calculated as [49]. 

SoC =

∑N
i=1SoCTw,i

N
(7)  

where Tw,i is the temperature at node i. Interested readers are referred to 
[7] for further details on the SoC calculation method. 

The change in SoC (ΔSoC) of the LHTES unit at each time-step is 
associated with the mass flow rate of the HTF, its change in temperature 
(which in turn depends on the HTF’s inlet and outlet temperatures), and 
SoC at the previous time-step. This is mathematically expressed as 

ΔSoC(t) = f1{ṁ(t − 1) , Ti(t − 1) , To(t − 1) , SoC(t − 1) } (8)  

where function f1 is approximated through ANN-1 as shown in Fig. 3. 
SoC for the subsequent time-step is then calculated with 

SoC(t) = SoC(t − 1)+ΔSoC(t) (9) 

While updating SoC using (9), a physical constraint is imposed on the 

maximum and minimum possible values of SoC(t). This is done through 
a conditional ‘if’ statement. This is mathematically expressed as 

SoC(t) =
{

0, if SoC(t) ≤ 0
1, if SoC(t) ≥ 1 (10) 

In this paper, to denote a fully charged TES tank (i.e. with SoC of 
100%), SoC = 1 is adopted, while SoC = 0 implies that the tank is fully 
discharged (i.e. with SoC of 0%). Thus, a partially charged tank will have 
a value of SoC between 0 and 1. In addition, the rate of change of To will 
vary depending upon whether the LHTES unit operates in latent heat 
mode (when 0 < SoC(t) < 1) or sensible heat mode (when SoC = 0 or 
SoC = 1). In the latent heat mode, for any heat absorbed by the TES unit 
or released from it, the temperature of the storage medium changes at a 
marginal rate. This means that if ṁ and Ti do not vary considerably in a 
certain time interval, To will not change significantly. In contrast, if the 
TES unit is in a sensible heat mode, even for negligibly changing values 
of Ti and ṁ over time, To can change significantly as the heated water or 
cooled ice will undergo a change in temperature as a result of heat 

Fig. 4. (a) General architecture of an ANN [46]. (b) General architecture of a closed-loop NARX model [47].  
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absorption or release. This, in turn, can change the temperature gradient 
between the HTF and PCM. 

Based on the previous discussion, the task of predicting To is divided 
according to three physical states of the TES tank: solid, liquid, and 
phase transition. These physical states are mathematically described by 

To(t) = f2{Ti(t − 1) , To(t − 1) , ṁ(t − 1) ,Ti(t) , ṁ(t) },when SoC(t) = 1
(11)  

To(t) = f3{Ti(t − 1) , To(t − 1) , ṁ(t − 1) ,Ti(t) , ṁ(t) },when SoC(t) = 0
(12)  

To(t) = f4{ṁ(t) , Ti(t) , SoC(t) },when 0 < SoC(t) < 1 (13) 

Functions f2, f3, and f4 in (11)–(13) are the non-linear functions 
represented through ANN-2, ANN-3, and ANN-4 within the NARX model 
shown in Fig. 3. In (11) and (12), the values of Ti, To, and ṁ from the 
previous time-step are used as an indicator of how hot the sensibly 
heated water is (or how cold the sensibly cooled ice is) when the TES 
tank operates in the sensible heat mode. As the temperature of the 
storage medium changes marginally when the TES tank is in the latent 
heat mode, the values of Ti, To, and ṁ from previous time-steps are not 
used as additional inputs. They are however replaced by the present 
value of SoC to capture the marginal variations in To with changes in 
SoC. 

The output of ANN-1 (ΔSoC) is first updated with (9) to obtain the 
updated value of SoC, which in turn is fed as an input to ANN-2, ANN-3 
or ANN-4 to predict To. After this, the output To from either ANN-2, 
ANN-3 or ANN-4 is fed as an input to ANN-1 for predicting ΔSoC for 
the next time-step. For its initialisation, the NARX model requires the 
initial values of SoC and To only. Due to its autoregressive properties, it 

will then be able to independently make future predictions indefinitely 
as long as ṁ and Ti are known. 

2.2.2. Dataset for training and testing the NARX model 
The holistic overview of the process for developing the NARX-based 

SoC predictor is illustrated in Fig. 5. The initial dataset required to train 
the ANNs within the NARX model consists of four variables: ṁ, Ti, SoC, 
and To. To obtain suitable values of SoC and To for the training process, 
the physics-based model described in Section 2.1 was simulated using 
diverse profiles for ṁ and Ti. Accordingly, 8 random profiles were 
generated for ṁ and Ti. Each profile has a 24-h duration with a resolution 
of 1 s. Out of the 8 total profiles, profiles 1–4 were used for training 
ANN-1 and ANN-4, where SoC varies between 0 and 1. This enables 
dedicated training during the phase transition zone. Profiles 5–6 were 
used for training ANN-3, where SoC = 0 almost throughout the cycle 
duration. This enables training when the storage medium is in liquid 
state and the thermal store is completely discharged. Similarly, profiles 
7–8 were used for training ANN-2, where SoC = 1. This facilitates 
training when the thermal store is completely charged and the storage 
medium is fully solidified. Such a profile spread allocation enables 
dedicated training of the ANNs constituting the NARX model. 

The resulting profiles for SoC and To following simulation of the 
physics-based model with the input profiles are shown in Fig. 7. The 
output variables shown were then consolidated with the corresponding 
input variables to create the dataset for training the NARX model. 

Profiles 9–19 were adopted to test the NARX model on unseen data. 
These profiles are shown in Figs. 8 and 9. Out of these, profiles 9–14 for 
ṁ and Ti were randomly generated and then simulated with the physics- 
based model to obtain the profiles for SoC and To. These output profiles 
were used then as targets to benchmark the predictions of the trained 

Fig. 5. Process flowchart for developing the AI-based predictor for SoC and To.  
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NARX model when profiles 9–14, not seen by the NARX model during 
training, were fed as inputs to make predictions. 

In parallel, profiles 15–19 in Fig. 9 were obtained from experimental 
measurements of the practical TES unit and were only used for testing 
the performance of the NARX model (but not for training). This exper-
imental dataset consists of 4 different profiles for discharging the tank 
(profiles 15–18) and 1 profile for charging it (profile 19). The respective 
experimental profiles for SoC and To were used for assessing the pre-
diction performance of the NARX model on experimental data. It is to be 
noted that the durations of the experimental profiles were not the same 
as the simulated datasets. These variations in duration are useful as they 
help determining whether the trained NARX model can handle real data 
with different sequence lengths. 

The profiles of SoC and To corresponding to the input profiles 9–19 
are presented in detail in Section 3 along with the predicted values by 
the NARX model. The training and testing datasets are provided as 
supplementary material accompanying this paper to help the interested 
readers build their own models. Further guidance on how to use the 
supplementary content is provided in Appendix B. 

The ANNs inside the NARX model were developed using the 

MLPRegressor class of the scikit-learn library [50]. In turn, the NARX 
model was developed based on these ANNs in a Python 3 programming 
environment, the details of which are provided in the supplementary 
material. For further information on the Python library dependencies 
adopted for the development of the NARX model and how to use it, the 
reader is referred to Appendix B. 

2.2.3. Prediction performance indicators of the NARX model 
To evaluate the prediction performance of the NARX model, the 

determination coefficient R2 and the root mean squared error (RMSE) 
have been adopted as accuracy indicators. These are commonly 
employed in the existing literature to assess the performance of AI 
models [26]. The mathematical expressions for these performance in-
dicators are given as 

R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − yi)

2
(14)  

Fig. 6. Training profiles for (a) the mass flow rate of the HTF and (b) the inlet temperature of the HTF.  
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Meansquareerror : MSE =
1
n
×
∑n

i=1
(yi − ŷi)

2 (15)  

RMSE =
̅̅̅̅̅̅̅̅̅̅
MSE

√
(16)  

where yi, ŷi and yi represent the ith actual value, ith predicted value, and 
mean of the n actual values. 

2.2.4. Hyperparameter tuning of the NARX model 
With the experience derived from previous work on ANN develop-

ment for space cooling systems [51] and considering the high non- 
linearity between the input and output variables of the investigated 
LHTES system, a two-hidden layer architecture was initially selected for 
ANN-1 and ANN-4. In addition, a maximum limit of 15 neurons in each 
hidden layer was adopted. For the solver and activation function, three 
widely employed options were considered for each hyperparameter. 
This information is summarised in Table 2. 

A large number of combinations are possible for the hyperparameters 
shown in Table 2. Thus, investigating each possible NARX architecture 
in detail would be impractical. Therefore, the Latin hypercube sampling 
(LHS) method along with Monte-Carlo sampling (MCS) method were 
employed to select random combinations of the hyperparameters. The 
LHS method requires a smaller number of samples than its MCS 

counterpart to represent a multi-dimensional parameter space. This is 
because of the subdivision of each parameter range into smaller in-
tervals in the LHS method. The subsequent drawing of random samples 
from each of these smaller subdivisions ensures a good distribution of 
the samples across the entire parameter range [52]. In Table 2, the 
available options for neurons in each hidden layer and the random state 
for initialising weights and biases are considerably larger than the 
available options for the other hyperparameters. Therefore, the LHS 
method was applied to draw samples for the hidden neurons and random 
state. As for the other hyperparameters with fewer alternatives, the MCS 
method was used to draw samples. 

For ANN-2 and ANN-3, which are used to predict To in the occasional 
instances of sensible cooling and sensible heating occurring in the 
LHTES unit, a two-hidden layer structure with 5 neurons in each hidden 
layer was adopted following a few heuristic trials. The ‘adam’ solver and 
the ‘relu’ activation function were considered. A large hyperparameter 
search was not conducted for these two ANNs as the NARX model was 
chiefly targeted for the latent heat and latent cooling modes of opera-
tion. However, these ANNs could be further tuned by the interested users 
by trying different hyperparameter combinations in the source code of 
the NARX model provided as supplementary material accompanying 
this paper. 

The NARX model was trained with the profiles shown in Fig. 6 for 

Fig. 7. Training profiles for (a) the SoC of the TES unit and (b) the outlet temperature of the HTF.  
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different hyperparameters of ANN-1 and ANN-4. The selection of the 
most suitable network architecture is discussed in Section 3.1. 

2.3. Multi-criteria decision-making for selecting the best NARX 
configuration 

As discussed in the previous section, different settings of the hyper-
parameters shown in Table 2 lead to a large number of possible NARX 
configurations. These configurations may likely exhibit a diverse per-
formance with respect to different criteria of assessment (namely R2 and 
RMSE in this paper). In such a scenario, it is possible that no particular 
configuration achieves the best performance in all the performance 
metrics when compared against other possible configurations. A suitable 

multi-criteria decision-making algorithm is therefore required to select 
the most suitable NARX architecture. 

The technique for order preference by similarity to ideal solution 
(TOPSIS) is a widely adopted method in the literature used to select 
suitable models from several alternatives when no single model per-
forms the best in all the assessment criteria [53]. The entropy-based 
weight assignment in TOPSIS ensures no human-introduced bias is 
involved in the selection of the most suitable model [54]. For a detailed 
explanation of this method and the significance of the steps involved in 
the decision-making process, interested readers are referred to [55]. For 
completeness, the equations of the entropy-based TOPSIS method are 
included next in the order of their evaluation for selecting the most 
suitable NARX configuration. 

Fig. 8. Input profiles used for testing predictions: (a) mass flow rate of the HTF, (b) inlet temperature of the HTF. The respective profiles of SoC and To were obtained 
by simulating these input profiles with the physics-based model. 
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Fig. 9. Experimental profiles for (a) mass flow rate of the HTF and (b) inlet temperature of the HTF. The respective profiles of SoC and To were also obtained from 
experimental measurements. 
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where D is the matrix that contains scores (xij) of m different design 
alternatives under n different performance assessment criteria. 

Standardised matrix : rij =
xij
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑m

i=1x2
ij

√ ; i = 1, 2, .…,m; j = 1, 2, .…, n (18)  

where rij is the standardised score for the element xij in D. 

Proportion matrix : pij =
xij
∑m

i=1
xij

; i = 1, 2, .…,m; j = 1, 2, .…, n (19)  

where pij is the proportion for the score xij in D. 

Entropy computation for jth criterion : ej = −
1

ln m
∑m

i=1
pij × ln pij (20)  

where ej denotes the entropy for the criterion j. 

Entropy weight computation for jth criterion : wj =

(
1 − ej

)

∑n

j=1

(
1 − ej

) (21)  

where wj is the weight for jth criterion determined by entropy method. 

Weighted matrix computation : vij = wjrij; i = 1, 2, .…,m; j = 1, 2, .…, n
(22)  

where vij represents the weighted score. 

Ideal solution : A+ =
{(

maxixij|j ∈ J1
)
,
(
minivij|j ∈ J2

)⃒
⃒i = 1, 2,…,m

}

= v+1 , v
+
2 ,…v+.

n

(23) 

where A+ is the ideal solution that consists of the best values for each 
criterion (v+1 ,v+2 ,…v+n ). 

Anti − ideal solution : A−

=
{(

minixij|j ∈ J1
)
,
(
maxivij|j ∈ J2

)⃒
⃒i = 1, 2,…,m

}

= v−1 , v
−
2 ,…v−n

(24)  

where A− is the anti-ideal solution that consists of the worst values for 
each criterion (v−1 , v−2 ,…, v−n ). 

In (23) and (24), J1 represents the most suitable value of criterion j 
when it is profitable in nature and J2 when it is unprofitable in nature. 

Euclidian distance from ideal solution
(
S+

i

)
: S+

i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
vij − v+j

)2
√

; i

= 1, 2, ..,m
(25)  

Euclidian distance from anti − ideal solution
(
S−

i

)
: S−

i

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
vij − v−j

)2
√

; i = 1, 2, ..,m (26)  

Closeness degree evaluation
(
C+

i

)
: C+

i =
S−

i

S+
i + S−

i
; i = 1, 2, .…,m (27) 

A larger value of C+
i indicates a better suitability of the respective 

design (and vice versa). Therefore, the best design is chosen as the one 
that results in the largest value of C+

i . 

3. Results and discussion 

3.1. Selecting a high-accuracy NARX configuration 

From the options considered in Table 2, 300 random combinations of 
the hyperparameters were initially taken and the performance of the 
NARX model was recorded for each such configuration. These 300 
configurations were then filtered by the prediction performance condi-
tions R2

SoC ≥ 0.95 and R2
To

≥ 0.95 for each of the testing profiles obtained 
from the physics-based model and experiments. The configurations 
predominantly with ‘tanh’ as the activation function for ANN-4 and 
‘adam’ as the solver for both ANN-1 and ANN-4 exhibited high values of 
R2. Hence, these parameters were fixed in the next step and the 
remaining hyperparameters were randomly sampled again to perform a 
more detailed hyperparameter search. This way, 300 additional con-
figurations were created and assessed with the testing profiles sourced 
from the physics-based model and experiments. Following this, the 
performance filter R2

SoC ≥ 0.95 and R2
To

≥ 0.95 was applied again to the 
new 300 configurations. The 23 candidate configurations that passed 
through this filter are presented in Table A1 of Appendix A. 

To determine the relative suitability of the 23 selected candidates 
and to select the best configuration, the average values of R2 and RMSE 
for SoC and To on the testing profiles were considered as the judging 
criteria. The entropy-based TOPSIS method described in Section 2.3 was 
used to rank the candidates according to these criteria, with results 
shown in Table A2 of Appendix A. In the table, the relative rankings of 
the 23 filtered configurations are included. The configuration for Case 
82 is the most suitable—exhibiting average values of R2

SoC = 0.9943 and 
R2

To
= 0.9842 and average values of RMSE of 1.73% for SoC and 

0.3161◦C for To over all the testing profiles sourced from the physics- 
based model and experiments. The average prediction time for all the 
testing profiles by all the configurations assessed during hyperparameter 
tuning ranged between 12 s to 16 s. The prediction time slightly changed 
within this given range for the same configuration under different runs 
depending upon the overall CPU usage in the computer where the NARX 
model was executed. 

Scoring matrix : D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x 11

.

.

.

.

..…x 1j

.

.

.

.

……x 1n

.

.

.

.

x i1

.

.

.

.

..…x ij

.

.

.

.

……x in

.

.

.

.

xm1..…xmj……x mn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(17)   

Table 2 
Hyperparameter range considered for tuning the NARX model.  

Hyperparameter Range considered 

Number of hidden layers in ANN-1 and ANN-4 2 
Neurons in each hidden layer of ANN-1 and ANN-4 3 to 15 
Random state for initialising weights and biases of ANNs 1 to 250 
Activation function logistic, tanh, relu [50] 
Solver adam, lbfgs, sgd [50]  
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Fig. 10. Predictions of the NARX model on unseen test profiles sourced from the physics-based model. Profiles 9 to 11: (a) SoC, (b) outlet temperature of the HTF. 
Profiles 12 to 14: (c) SoC, (d) outlet temperature of the HTF. 
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3.2. Predictions on unseen profile data 

The predictions made on the testing profiles by the best NARX 
configuration (Case 82 in Table A2 in Appendix A) are presented in this 

section. Fig. 10 presents a comparison between the output profiles 
predicted by the NARX model (provided with dashed traces) and those 
obtained with the physics-based model (solid traces) for the same input 
profiles. To demonstrate the performance of the NARX model to 

Fig. 11. Predictions of the NARX model on unseen test profiles sourced from discharging experiments of the practical TES unit: (a) Experiment 1 (with profile 15); 
(b) Experiment 2 (with profile 16); (c) Experiment 3 (with profile 17); (d) Experiment 4 (with profile 18). SoC predictions are shown to the left and To predictions to 
the right. 
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accurately predict output profiles irrespective of variations in the initial 
conditions, four out of the six text profiles consider initial values of SoC 
amenable to a partially charged thermal store—see profile 10 in Fig. 10 
(a) with an initial SoC = 0.45, and profiles 12, 13 and 14 in Fig. 10(c) 
with initial values for SoC of 0.98, 0.31 and 0.87. 

From simple observation of the results shown in Fig. 10, it is evident 
that the NARX model achieves a prediction of SoC and To in very close 
proximity to the physics-based model. This is quantitatively supported 
by the high values of R2 (0.9979 for SoC and 0.9898 for To) and low 
values of RMSE (0.72% for SoC and 0.1771◦C for To) achieved by the 
NARX model when compared with the testing profiles obtained from the 
physics-based model. Furthermore, the time required for the NARX 
model to predict the output profiles for the operation of an entire diurnal 
cycle of the TES tank was about 16 s. To estimate the same output 
profiles, the physics-based model took instead about 119 s, which rep-
resents an increase by 86% compared to the NARX model. Such a 
reduction in the estimation time of the operational state of the TES tank 
achieved by the NARX model could be highly useful to perform transient 
simulations for large energy networks involving several systems for 
storage, production, and consumption of energy. 

To further evaluate the performance of the NARX model, its pre-
diction values were compared against the results of practical experi-
ments obtained from [44,45]. To this end, the recorded measurements of 
To and SoC from the real ice tank (as presented in Section 2.1) were used 
for benchmarking the predictions of the NARX model for the same 
output parameters. The experimentally measured ṁ and Ti in each dis-
charging process were fed as an input to the NARX model. 

Fig. 11 shows the comparison of the 4 different discharging experi-
ments. The output profiles predicted by the NARX model are in good 
agreement with the experimental results for the discharging processes. 
The prediction time was about 6 s as these profiles are shorter than a 
complete diurnal cycle. 

For charging of the TES tank, only one set of experimental results was 
available in [44,45]. Fig. 12 compares the prediction of the NARX model 
against experimental results for the charging process. As with the 
comparison conducted for discharging processes, the experimentally 
measured values of ṁ and Ti were used as inputs. The NARX model 
captures the variations in the output profiles with a high accuracy. In 
this case, the prediction time for the charging profile was about 18 s as 
the charging cycle is longer than a diurnal cycle. 

A quantitative analysis was conducted to further assess the predic-
tion performance of the NARX model to complement the results shown 
in Figs. 11 and 12. The NARX model achieves average values of R2

SoC =

0.99 and R2
To

= 0.9774 and RMSE values of 2.95% and 0.4829◦C for SoC 
and To when compared with the experimental datasets for charging and 
discharging. The maximum RMSEs were observed with the experimental 

charging profile 19, with values of 3.65% for SoC and 0.5818◦C for To. 
Conversely, the minimum RMSEs were 2.36% for SoC (in the experi-
mental discharging profile 18) and 0.3338◦C for To (in the experimental 
discharging profile 17). The NARX model thus maintains a consistent 
accuracy in prediction with an arguably marginal gap between the 
maximum and minimum errors. 

3.3. Comparison of NARX model with a non-linear observer 

To provide further confidence on the capabilities of the NARX model 
to predict the dynamic behaviour of an ice tank, a comparison was 
conducted against the performance afforded by the non-linear observer 
reported in [7]. This comparison enables assessing the potential of 
employing the NARX model for the continuous monitoring of the dy-
namic operation of a thermal store with respect to an estimation 
methodology based on modern control theory available in the literature. 
A brief overview of the non-linear observer and its structure is provided 
next. 

A state observer, or state estimator, is a computer-implemented dy-
namic system employed to estimate the internal state of the system 
under study from measurements of its inputs and outputs [56]. For an 
LHTES unit, a state observer may be used to provide an estimation of the 
temperature gradient of a PCM by employing the input and output 
temperature and mass flow rate of the HTF which circulates within the 
unit. For the ice tank, given the high non-linearities arising from the 
temperature dependence of the thermophysical properties of the PCM 
and the HTF, a non-linear structure must be adopted. 

The physics-based model of the ice tank is described in state-space 
form as 

d
dt

x = f (x, u),

y = j(x)
(28)  

where u, x, and y denote the input, state, and output vectors and the top 
equation represents the set of non-linear ODEs of the dynamic model 
described by (1)–(4) in Section 2.1. In the bottom equation, j(x) is a 
scalar output, which is the HTF output temperature. For an ice tank 
spatially discretised into 20 nodes, the model is described by a set of 80 
non-linear ODEs, with a state vector given as 

x =
[
Tf ,1,a Tw,1,a Tf ,1,b Tw,1,b⋯Tf ,20,a Tw,20,a Tf ,20,b Tw,20,b

]
(29) 

The input vector is defined as 

u =
[
ṁ Tf ,in

]
(30)  

where Tf ,in is the input temperature of the HTF and ṁ is the total mass 

Fig. 12. Predictions of the NARX model on unseen test profiles sourced from a charging experiment (profile 19). SoC predictions are shown to the left and To 

predictions to the right. 
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flow rate entering the ice tank divided by the total number of tubes. 
Because of the internal configuration of the tank, shown in Fig. 1, there 
are two system outputs, which in a practical tank would merge through 
system headers to form a unique output [42]. These are the tempera-
tures of the HTF at the opposite ends of the tubes and the observer must 
consider both. Since the inlet of tube ‘a’ and the output of tube ‘b’ are 
located in the first node, and given the outlet of tube ‘a’ and the inlet of 
tube ‘b’ are located in the final node 20, the output vector is defined as 

y =
[
Tf ,1,b Tf ,20,a

]
(31) 

The observer structure for (28) is defined as [56] 

d
dt

x̂ = f (x̂,u)+ J(y − j(x̂) ) (32) 

In (32), x̂ represents the estimated state vector, while J denotes a 
diagonal matrix with constant coefficients. In general, the design of J 
must be conducted so that the estimation error for all states converges to 
zero, that is, e = x − x̂ = 0. The observer is also defined using the same 
differential equations of the system model given by (28). As discussed in 
[7], the diagonal entries of J were obtained heuristically and set to a 
value of 0.5. 

A schematic of the non-linear observer for the ice tank is provided in 
Fig. 13. For further information on the observer derivation, imple-
mentation, and design, the interested readers are referred to [7]. The 
same reference provides a comprehensive verification of the non-linear 
observer performance against data available in the literature. To prevent 
duplication of published work, no further discussion on the observer 
validation is further provided in this paper. 

To conduct the comparative exercise between the NARX model and 
the non-linear state observer, the test profiles 9 and 10 were adopted. 
The values of Ti and ṁ for these profiles (shown in Fig. 8) were used as 
inputs for the NARX model as well as for the non-linear state observer. 
The results for the non-linear observer were obtained with an AMD 
Ryzen 7 7730 U CPU @ 2.0Ghz with 16 GB of RAM, whereas those for 
the NARX model were obtained with an Intel i7 11700 CPU @ 2.50Ghz 
with 16 GB of RAM. 

The estimated output profiles of SoC and To predicted by both the 
NARX model and the non-linear state observer are shown in Fig. 14. The 
non-linear observer exhibited smaller prediction errors, with an RMSE of 
0.08% in SoC prediction of profile 9 and 0.16% for the profile 10. For To, 
these errors were 3.21 × 10− 6◦C and 0.0015◦C. In contrast, the NARX 
model exhibited RMSEs of 1.18% and 0.66% for SoC while for To these 
errors were 0.3685◦C and 0.1165◦C. While both models demonstrated 
reasonably small prediction errors, the non-linear state observer out-
performed the NARX model in terms of accuracy. This result was ex-
pected, as a well-designed observer guarantees an estimation error (in 
this case of temperatures) asymptotically converging to zero. 

However, the NARX model demonstrated advantages in computa-
tional efficiency. While the non-linear state observer took ~54 s to 

predict profile 9 and ~35 s to predict profile 10, the NARX model took 
~16 s to predict each profile. These results demonstrate that the NARX 
model is capable of reducing the computation time by up to 70.4% (for 
profile 9) compared to the solution based on modern control theory. 
Despite a marginal compromise in accuracy, the NARX model offers 
significant computational speed gains in predictions. 

3.4. On the integration of physics-informed attributes into the NARX 
model 

The NARX model investigated so far divides the prediction task 
among different ANNs based on whether the TES tank is in a phase 
transition, sensible cooling, or sensible heat state of operation. To un-
derstand how these physics-informed attributes help in improving the 
overall prediction accuracy, a comparison was carried out between two 
versions of the NARX model with varying complexity. The first version 
of the model is the one already shown in Fig. 3, which has 4 ANNs in the 
core. 

Fig. 15 shows the second version of the NARX model. Compared to 
the first model, ANN-2 and ANN-3 previously used for predicting To in 
the sensible cooling and sensible heat conditions have been removed. To 
make this alternative model operational, the sensible cooling and sen-
sible heat training profiles shown in Fig. 6 (profiles 5–8) were merged 
with the latent heat/latent cooling training profiles (profiles 1–4). ANN- 
4 was subsequently trained on the merged dataset to make predictions of 
To over all the latent and sensible heat-cooling conditions of the TES 
unit. 

To compensate for the loss of trainable parameters in the alternative 
NARX model shown in Fig. 15, the size of ANN-4 was increased to allow 
three times the maximum number of neurons per hidden layer (i.e. with 
a maximum of 45 neurons per hidden layer). Another hyperparameter 
search was conducted for ANN-1 and ANN-4 as explained in Section 3.1 
by setting the solver to ‘adam’ for both the ANNs and the activation 
function to ‘tanh’ for ANN-4. In this case, 300 such candidate configu-
rations were tested accordingly including a scenario where the hyper-
parameter settings were kept exactly the same for ANN-1 and ANN-4 as 
in the previous best configuration (Case 82 in Table A2). 

Although several of the candidate configurations achieved an 
average R2

SoC ≥ 0.95 over the testing profiles, none was able to achieve 
R2

To
≥ 0.95. Table A3 in Appendix A lists the accuracy metrics of the 

configurations that could attain average R2
SoC ≥ 0.95 and a reduced 

R2
To

≥ 0.7 along with the case with hyperparameters similar to Case 82 in 
Table A2. TOPSIS was used to rank these selected configurations, with 
Case 152 being selected as the most suitable. This was adopted for a 
more detailed comparison with the first version of the NARX model. In 
addition, another configuration (Case 176), ranked 2nd by TOPSIS, was 
also used for examining the predictions of the alternative version of the 
NARX model. This is because ANN-4 in this case contains a significantly 

Fig. 13. Non-linear state observer for an ice tank [7].  
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larger number of hidden neurons due to the relaxation in the maximum 
hidden layer size. 

Fig. 16 shows the predicted profiles of SoC and To for Case 152 in 
Table A3 of the alternative version of the NARX model for one experi-
mental discharging cycle and for one charging cycle. For discharging, the 
input profile 18 in Fig. 9 was used, while for charging the input profile 19 
was employed instead. Fig. 17 shows a similar comparison exercise for 
Case 176. Although the NARX model with 2 ANNs correctly estimates the 
SoC of the TES tank, it is only capable of correctly predicting To in the 
phase transition zone. In both Figs. 16 and 17, the phase transition occurs 
in the time interval of the 0th hour to approximately the 5th hour for the 
discharging profile 18, which is indicated by a continuous reduction in 
the value of SoC during this interval. The predictions of To by the second 
NARX model fairly match the experimental values. However, beyond the 
5th hour, as the TES tank enters the sensible heat mode (indicated by 
SoC = 0), the predictions of To deviate significantly from the experi-
mental values. A similar behaviour can be noticed for the charging profile 
19, where sensible cooling occurs in the interval of the 0th hour to 
approximately the 5th hour, after which solidification of the water 
starts—with a corresponding continuous increase in the values of SoC. 
The predicted values of To deviate significantly from the experimental 
values in this sensible cooling period. 

The first version of the NARX model, with results shown in Figs. 11 
and 12, achieves a better performance in comparison to the alternative 
version of the model presented in this section. The physics-based divi-
sion of the prediction task for different heating and cooling regimes 
afforded by the first model enables to outperform the alternative model 
where an enlarged ANN-4 accounts for both sensible and latent heat- 
cooling phenomena. The addition of two ANNs with only 5 neurons in 
each of the 2 hidden layers allows the first version of the model to 
achieve a higher accuracy with fewer overall trainable parameters 
because of the significant size reduction of ANN-4 compared to the other 
version of the model. 

The results presented in this section illustrate how more accurate AI 
models could be built with less computational resource requirement 
than end-to-end fully surrogate models by embedding simple physics- 
informed principles. 

3.5. On the limitations and scope of the NARX model 

The NARX model presented in this paper was developed from 
physics-based and experimental data pertaining to the operation of a 
practical water-ice TES tank of 350 kWh capacity. In this system, the rate 
of phase transition is dependent on the mass of ice and water present in 

Fig. 14. Comparison of the prediction of (a) SoC and (b) To by the NARX model and the non-linear state observer reported in [7].  
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the tank to absorb heat from the incoming HTF or release heat into it. 
The same values of ṁ and Ti would melt or solidify a smaller fraction of 
ice if the overall tank size and the PCM mass contained within are 
increased (and vice versa). Therefore, the prediction of the AI model will 
be different from the actual outputs if a TES unit of a different size were 
to be used. 

As the NARX model was trained on simulation data from a physics- 
based model of the ice tank, it will inherit inaccuracies present in the 
model of the thermal store. For example, when compared with the 
experimental results, the physics-based model achieved an RMSE of 
0.2◦C whereas this value increased to 0.483◦C for the NARX model. 
Although both RMSE values are small in magnitude, thus indicating 
good accuracy for both models, the increased RMSE of the NARX model 
illustrates an error propagation from the source of the training data to 
the trained model. It is therefore important to ensure the accuracy of a 
physics-based model through robust experimental validation to ascer-
tain the effectiveness of a prospective NARX-based estimator. 

The NARX model is also constrained to the specific type of PCM used 
in the LHTES application, which for this paper is water. Other types of 
PCM may exhibit a hysteresis phenomenon. Under hysteresis, there may 
be different rates of change for temperature rise or fall for the same 
amount of heat exchange depending upon whether heat is being added 
or extracted from the PCM. This may lead to different specific heat- 
temperature curves for charging and discharging processes, which 
would affect the performance of the current NARX model. Thus, addi-
tional information on the temporal derivative of temperature may be 

Fig. 15. Alternative NARX model with 2 ANNs. Blue lines represent general 
data flow and red lines represent data flow with delay. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 16. SoC and To predictions by the NARX model with 2 ANNs (Case 152 in Table A3).  

Fig. 17. SoC and To predictions by the NARX model with 2 ANNs (Case 176 in Table A3).  
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required to accurately predict the thermodynamics of phase trans-
formation. Larger datasets may be also required to train the NARX model 
to a high accuracy. 

Although the NARX model presented in this paper was developed for 
an ice tank, the methodology could be extended to predict the operation 
of other types of energy storage systems. However, modelling an LHTES 
unit for heating applications will require changes in the training and 
testing data containing the SoC values. For instance, the definition of 
SoC will be different from that discussed in Section 2. In a heating sys-
tem, an SoC value of 0 will refer to a completely solidified PCM (rep-
resenting a fully discharged TES unit), whereas a value of 1 will indicate 
a completely melted PCM (i.e. a fully charged TES unit). Additionally, 
suitable ranges of the HTF conditions (particularly the mass flow rate 
and input temperature) must be adopted. All these considerations may 
require modifications in the physics-informed connections among the 
ANNs within the NARX model for segregating different heating-cooling 
zones based on the modified SoC definition. 

The previous limitations have been tackled by open-sourcing the 
developed NARX code so that users can re-develop new models with 
training data pertaining to any other energy storage capacity or for 
thermal stores used in heating applications. This will also enable users to 
create NARX models for LHTES units with other PCMs apart from a 
mixture of water-ice. For further information on how to use the NARX 
model and the type of problems it can help solving following suitable 
modifications of the code, the reader is referred to Appendix B. This may 
help the interested user to adapt the provided supplementary material 
accompanying this paper to their own applications. 

For large-scale cooling networks that may require large capacity 
water-ice TES systems, multiple units of the TES tank investigated in this 
paper can be deployed for a parallel operation. In such a scenario, the 
presented NARX model may be implemented to monitor the operation of 
each such parallel TES unit. 

The investigated NARX model is able to estimate values of SoC and To 
with a good accuracy in the occasional intervals of sensible heat and 
sensible cooling in the test profiles. Such a performance is sufficient for 
an ice tank. However, a greater emphasis must be placed on the physics- 
based and subsequent data-driven modelling aspects if the TES unit to be 
assessed is to be operated majorly in the sensible heat-cooling mode 
rather than in the phase transition mode. An example of such a TES 
system is a hot water tank employed for hot water provision and space 
heating. In this case, phenomena such as thermal stratification and 
convective currents may become significant as the mode of operation 
shifts majorly to sensible heat. It is thus recommended to use the pre-
sented model for estimating the output parameters of the LHTES unit 
operating in the phase-transition mode for which the practical storage 
unit and the computational models were originally designed and 
developed. 

Similarly, the presented NARX architecture could be extended for 
predicting the operation of other types of energy storage systems such as 
large electric battery packs. This would require to identify the operating 
conditions and key variables affecting the performance of the battery. In 
addition to SoC, the state-of-health of each electric battery may be a 
relevant parameter affecting performance that must be monitored, 
which would add further complexity to the NARX model. While prom-
ising and of arguably a high research and industrial value, extending the 
work presented in this paper to other types of energy storage systems 
requires further comprehensive analysis which falls beyond the scope of 
this paper. These are nonetheless interesting avenues for continued 
research. 

The methodology and tool based on a NARX architecture presented 
in this paper have the potential for practical deployment. For instance, 
other AI mechanisms for estimating SoC and state-of-health of electrical 
batteries have already been tested and deployed commercially [57,58]. 
This demonstrates industrial interest on the tools and provides sup-
porting evidence of their viability for adoption in a practical thermal 
system. 

4. Conclusions 

LHTES units are important components supporting the operation of 
thermal systems such as district heating and district cooling networks. 
Managing the state of the thermal store is only possible if the SoC of the 
unit is known, although this may lead to high instrumentation costs and 
demanding technical specifications. To overcome these issues, this 
paper presented an AI model with a NARX architecture for predicting 
the operating conditions of a water-ice LHTES unit for cooling systems. 
The presented NARX model is 86% faster than a physics-based model 
and conducive to minimising experimental interventions for estimating 
the SoC and the outlet temperature of the HTF (To) of the LHTES unit. 
This characteristic makes the NARX model ideal for deployment in 
scenarios where retrieving output information is either computationally 
intensive or requires expensive instrumentation. 

Upon being trained with data obtained from the simulations of a 
physics-based model, the NARX model accurately estimates unseen test 
data obtained from both the physics-based model and the real TES tank. 
The NARX model achieves average values of R2

SoC = 0.9943 and R2
To

=

0.9842, with RMSE values of 1.73% for SoC and 0.3161◦C for To over 
testing profiles obtained from the physics-based model and experi-
mental data. In particular, the AI model results in average R2

SoC = 0.99 
and R2

To
= 0.9774 and values of RMSE of 2.95% for SoC and 0.4829◦C for 

To with unseen experimental datasets, even when the NARX model was 
trained on data from the physics-based model. These results demon-
strate the efficacy of the NARX model for possible deployment in the 
monitoring and controlling of a real-time operation of a TES unit. 

The overall accuracy of the NARX model was improved by segregating 
the predictive tasks among different ANNs within the model according to 
the highly non-linear phenomena characterising the LHTES unit. This 
enabled the model to generate accurate SoC prediction profiles from 
different initial states of the storage medium (i.e. considering initial SoC 
values ranging between 0 and 1 inclusive). This demonstrates how 
embedding simple physics-based principles into the data-driven model 
could lead to more efficient data utilisation than end-to-end fully surro-
gate modelling. This further shows that not only the quantity of data for 
AI models is important, but also the way such data is utilised when 
developing the model matters greatly. For the LHTES unit under inves-
tigation, sensible heat and latent heat data, which have distinguishing 
underlying physics, act as noise to each other in the combined dataset. 
Thus, mixing these data profiles affects the prediction accuracy. 

The NARX model and the numerical and experimental training- 
testing datasets have been open-sourced to support the scientific com-
munity given the limited availability of such models. Users can utilise 
the provided open-source NARX model to develop their own LHTES 
models with different capacities and storage media or create their own 
predictive models beyond the periphery of LHTES units and energy 
systems. This way, the methodology presented in this paper could be 
extended to latent heat thermal stores for heating applications, sensible 
heat units such as hot water tanks, and for monitoring the state of 
electrical energy storage systems such as large battery packs. These 
systems may have diverse underlying physics, which may influence the 
selection of parameters that need to be considered as input and output of 
prediction models. 
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Appendix A. TOPSIS analysis and results for determining relative suitability of different configurations of the NARX model  

Table A1 
Performance data of selected NARX configurations.  

Case 
no. 

Design parameters Initial data from NARX model 

ANN-1 neurons ANN-4 neurons Random 
state 

ANN-1 ANN-4 Criteria 1 
(RMSESoC) 

Criteria 2 
(RMSETo) 
◦C 

Criteria 
3 (R2

SoC) 
Criteria 
4 (R2

To) Hidden 
layer 1 

Hidden 
layer 2 

Hidden 
layer 1 

Hidden 
layer 2 

Activation 
function 

Solver Activation 
function 

Solver 

32 4 14 6 15 73 logistic adam tanh adam 0.01851 0.36315 0.99406 0.98020 
41 3 13 8 5 244 logistic adam tanh adam 0.02000 0.35667 0.99307 0.98137 
55 3 8 9 14 220 tanh adam tanh adam 0.01811 0.34989 0.99438 0.98158 
56 4 6 10 14 70 logistic adam tanh adam 0.01849 0.36420 0.99419 0.98130 
69 11 7 15 14 52 logistic adam tanh adam 0.02027 0.36602 0.99307 0.98108 
73 4 12 6 8 228 logistic adam tanh adam 0.01941 0.35012 0.99338 0.98254 
82 11 4 9 9 141 tanh adam tanh adam 0.01732 0.31609 0.99430 0.98416 
101 12 7 14 6 66 tanh adam tanh adam 0.02181 0.34702 0.99070 0.98135 
110 5 4 12 4 250 logistic adam tanh adam 0.02003 0.37137 0.99341 0.98060 
130 3 15 6 8 213 tanh adam tanh adam 0.01833 0.34758 0.99408 0.98185 
160 14 10 13 12 6 relu adam tanh adam 0.02512 0.37607 0.98830 0.98048 
167 15 3 15 8 113 logistic adam tanh adam 0.02282 0.37587 0.99115 0.98049 
195 15 11 14 5 171 logistic adam tanh adam 0.01910 0.35843 0.99339 0.98096 
201 6 6 11 11 129 tanh adam tanh adam 0.02025 0.35310 0.99282 0.98088 
212 9 12 7 5 3 logistic adam tanh adam 0.01938 0.37633 0.99361 0.98014 
218 3 4 9 12 117 tanh adam tanh adam 0.01954 0.32760 0.99285 0.98379 
226 4 10 11 9 52 logistic adam tanh adam 0.02077 0.36301 0.99279 0.98143 
230 4 14 13 4 184 logistic adam tanh adam 0.01854 0.34465 0.99421 0.98290 
231 13 12 3 15 249 logistic adam tanh adam 0.02023 0.36655 0.99247 0.98049 
252 15 13 15 12 20 logistic adam tanh adam 0.02232 0.37763 0.99164 0.98001 
255 11 13 8 5 106 logistic adam tanh adam 0.01998 0.37568 0.99316 0.98059 
289 11 4 6 14 103 logistic adam tanh adam 0.02064 0.34899 0.99185 0.98199 
293 5 7 11 9 38 tanh adam tanh adam 0.01838 0.33406 0.99323 0.98335   

Table A2 
Results of TOPSIS for determining the relative suitability of the filtered NARX configurations.  

Case no. Weight normalised data matrix TOPSIS output 

Criteria 1 
(RMSESoC) ◦C 

Criteria 2 
(RMSETo) ◦C 

Criteria 3 
(R2

SoC) 
Criteria 4 
(R2

To) 
Euclidian distance from 
ideal solution (S+) 

Euclidian distance from 
anti-ideal solution (S-) 

Performance scores (S-) 
/[(S+) + (S-)] 

Rank 

32 0.15003 0.04674 4.3190E-05 3.0771E-05 1.1430E-02 5.3590E-02 0.82421 7 
41 0.16212 0.04591 4.3147E-05 3.0808E-05 2.2401E-02 4.1554E-02 0.64974 12 
55 0.14678 0.04503 4.3204E-05 3.0815E-05 7.7773E-03 5.6916E-02 0.87978 2 
56 0.14982 0.04688 4.3196E-05 3.0806E-05 1.1330E-02 5.3791E-02 0.82602 6 
69 0.16423 0.04711 4.3148E-05 3.0799E-05 2.4747E-02 3.9381E-02 0.61410 17 
73 0.15729 0.04506 4.3161E-05 3.0845E-05 1.7513E-02 4.6429E-02 0.72611 9 
82 0.14033 0.04068 4.3201E-05 3.0896E-05 3.6193E-09 6.3745E-02 1.00000 1 
101 0.17676 0.04466 4.3044E-05 3.0807E-05 3.6646E-02 2.7109E-02 0.42520 20 
110 0.16230 0.04780 4.3162E-05 3.0784E-05 2.3085E-02 4.1297E-02 0.64144 14 
130 0.14851 0.04474 4.3191E-05 3.0823E-05 9.1247E-03 5.5211E-02 0.85817 4 
160 0.20358 0.04840 4.2940E-05 3.0780E-05 6.3720E-02 2.0093E-04 0.00314 23 
167 0.18494 0.04838 4.3064E-05 3.0780E-05 4.5265E-02 1.8646E-02 0.29175 22 
195 0.15476 0.04613 4.3161E-05 3.0795E-05 1.5424E-02 4.8884E-02 0.76016 8 
201 0.16411 0.04545 4.3137E-05 3.0792E-05 2.4246E-02 3.9604E-02 0.62027 15 
212 0.15706 0.04844 4.3171E-05 3.0769E-05 1.8436E-02 4.6524E-02 0.71619 11 
218 0.15834 0.04216 4.3138E-05 3.0884E-05 1.8068E-02 4.5699E-02 0.71666 10 
226 0.16830 0.04672 4.3135E-05 3.0810E-05 2.8611E-02 3.5335E-02 0.55257 19 
230 0.15027 0.04436 4.3197E-05 3.0856E-05 1.0590E-02 5.3488E-02 0.83473 5 

(continued on next page) 
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Table A2 (continued ) 

Case no. Weight normalised data matrix TOPSIS output 

Criteria 1 
(RMSESoC) ◦C 

Criteria 2 
(RMSETo) ◦C 

Criteria 3 
(R2

SoC) 
Criteria 4 
(R2

To) 
Euclidian distance from 
ideal solution (S+) 

Euclidian distance from 
anti-ideal solution (S-) 

Performance scores (S-) 
/[(S+) + (S-)] 

Rank 

231 0.16398 0.04718 4.3121E-05 3.0780E-05 2.4520E-02 3.9632E-02 0.61778 16 
252 0.18084 0.04860 4.3085E-05 3.0765E-05 4.1277E-02 2.2741E-02 0.35523 21 
255 0.16192 0.04835 4.3151E-05 3.0784E-05 2.2907E-02 4.1666E-02 0.64525 13 
289 0.16724 0.04492 4.3094E-05 3.0828E-05 2.7240E-02 3.6528E-02 0.57283 18 
293 0.14896 0.04300 4.3154E-05 3.0870E-05 8.9311E-03 5.4911E-02 0.86011 3 
Ideal 

soln.: 
0.14033 0.04068 4.3204E-05 3.0896E-05     

Anti-ideal 
soln: 

0.20358 0.04860 4.2940E-05 3.0765E-05       

Table A3 
Selected best performing configurations for NARX with 2 ANNs.  

Case 
no. 

NARX Design parameters Performance metrics Rank 
from 
TOPSIS ANN-1 neurons ANN-4 neurons Random 

state 
ANN-1 ANN-4 RMSESoC RMSETo 

(◦C) 
R2

SoC R2
To 

Hidden 
layer 1 

Hidden 
layer 2 

Hidden 
layer 1 

Hidden 
layer 2 

Activation 
function 

Solver Activation 
function 

Solver 

21 13 15 17 4 142 relu adam tanh adam 0.02740 1.31728 0.98568 0.73813 5 
23 7 13 5 41 120 relu adam tanh adam 0.03106 1.33254 0.98385 0.73062 9 
25 13 13 38 5 24 tanh adam tanh adam 0.02883 1.36255 0.98311 0.71869 7 
42 12 11 12 5 26 tanh adam tanh adam 0.02080 1.29332 0.98864 0.74101 4 
52 4 3 5 6 196 tanh adam tanh adam 0.04566 1.39038 0.95151 0.72122 12 
128 3 13 7 18 131 tanh adam tanh adam 0.03383 1.35223 0.97766 0.72391 10 
152 6 9 7 4 106 tanh adam tanh adam 0.01669 1.41203 0.99279 0.70143 1 
153 5 10 37 3 105 tanh adam tanh adam 0.02811 1.41278 0.98488 0.70996 6 
176 13 7 45 34 218 relu adam tanh adam 0.01936 1.40913 0.98985 0.70531 2 
200 11 11 30 10 86 relu adam tanh adam 0.01990 1.38731 0.99041 0.70991 3 
292 5 7 4 14 39 tanh adam tanh adam 0.02931 1.28739 0.97683 0.75229 8 
294 10 7 28 3 114 logistic adam tanh adam 0.03594 1.37299 0.97677 0.70461 11 
300 11 4 9 9 141 tanh adam tanh adam 0.05948 1.94108 0.85985 0.26583 13  

Appendix B. Further considerations on the open-source tool 

This appendix provides additional information to guide the interested readers in incorporating the NARX-based AI tool to their own systems. It also 
gives some further insight on the specific application it addresses in its present form and how to customise it to consider other attributes in a TES tank. 

B.1. Development environment of the NARX model 

The development environment of the model was Python (version 3.10.11) in Jupyter Notebook IDE (version 6.4.10). The Python library de-
pendencies briefly discussed below are considered.  

1. math: used for calculating the square root of numbers.  
2. numpy: used for creating arrays and performing array operations.  
3. matplotlib: used for plotting the profiles of actual and predicted SoC and outlet temperature of the HTF.  
4. pandas: used for reading and writing input/output data files.  
5. sklearn: used for pre-processing input datasets, creating ANN models, and computing the RMSE.  
6. time: used for assessing the time required to make predictions by the AI model.  
7. tensorflow_addons: used for calculating R2 values of predictions.  
8. random: used for fixing a random seed to facilitate reproducibility of results. 

B.2. Guidance on using the NARX model 

The following steps provide a high-level guidance to use the NARX model:  

1. Defining the predict function.  
a. The predict function takes as input a dataset and 4 ANNs (mdl, mdl2, mdl3, mdl4). Specific information on the ANNs was provided in Section 3.1. 

The ANN denoted as mdl is used to predict a change in SoC (represented as dSoC in the source code) during a phase transition of the PCM, 
whereas mdl2, mdl3, and mdl4 are used for the prediction of the outlet temperature of the HTF (represented as OT in the source code) during a 
phase transition, sensible heating-cooling of pure water, and sensible heating-cooling of pure ice.  

b. Pre-processing of the dataset including data sorting, scaling, and selection takes place inside the predict function. Therefore, there is no need to 
pre-process datasets before making any predictions. 
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c. The predict function returns the R2 and RMSE values of the predictions along with the final predicted values of SoC and OT.  
d. To activate the feedback mechanism for checking the accuracy of the model in long-term operations, set the “feedback_mechanism” variable to 

‘True’. Then, define the interval (in seconds) at which the feedback operation should be triggered to verify the prediction outputs against actual 
values. The actual values of SoC and OT for the same time-step should be available in the file “feedback.csv” (stored in the same folder as the 
NARX source code) for computing the absolute errors.  

2. Training the model.  
a. The training dataset is created by stacking up (i.e. vertically sequencing) different profiles of the ice tank operations. Once the training dataset is 

loaded, the sorting, scaling, and selection operations are done on the training dataset. For further information, the reader is referred to the 
commented lines below the heading “training dataset input-output split” in the source code to see which data is used to train the different 
models for predictions of dSoC and OT.  

b. The 4 different ANNs (1 for dSoC and 3 for OT in different heating-cooling regimes) are then trained on the pre-processed training dataset.  
3. Making predictions.  

a. Load a testing dataset from a CSV file. Follow the template of the test profiles provided along with the source code.  
b. Pass the loaded test dataset along with the 4 trained ANNs onto the predict function defined earlier to obtain the predicted profiles for SoC and 

OT. 

In addition to the high-level descriptions mentioned in the steps above, a detailed explanation of each code block is provided through commented 
lines within the source code itself. 

B.3. Guidance on customising the NARX model to consider different PCMs and sizes of TES units 

As discussed in Section 3.5, the NARX model needs to be customised to make predictions for different types of PCM and sizes of TES tanks. These 
variations may likely require different profiles for inputs (i.e. mass flow rates and inlet temperatures of the HTF) and outputs (SoC and outlet tem-
perature of the HTF) than those considered in this paper. 

Users can create their own training and testing datasets for a different LHTES unit. While doing so, the same template of the CSV files for training 
(Training_dataset.csv) and testing (Test_profile_**.csv, where ** should be replaced with the test profile number) provided along this paper with the 
source code must be followed. In these files, the units of time, mdot, and OT are s, kg/s, and ◦C. SoC and dSoC have no units. The range of SoC is 0 to 1 
where for a cooling application 0 represents a fully melted PCM (i.e. denoting a fully discharged tank) and 1 represents a fully solidified PCM (i.e. 
denoting a fully charged tank). 
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