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Interactive Reweighting for
Mitigating Label Quality Issues

Weikai Yang, Yukai Guo, Jing Wu, Zheng Wang, Lan-Zhe Guo, Yu-Feng Li, and Shixia Liu
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Fig. 1: (a) The reweighting relationships between 3 (out of 14) validation sample clusters and 6 (out of 35) training sample

clusters. V1 and V2 contain low-quality validation samples, resulting in many inconsistent training samples in S1 and S2. (b)

After correcting the noisy labels of low-quality validation samples, increasing the weights of high-quality validation samples,

and verifying inconsistent training samples, the reweighting results are improved (S′′
1 and S′

2).

Abstract—Label quality issues, such as noisy labels and imbalanced class distributions, have negative effects on model performance.

Automatic reweighting methods identify problematic samples with label quality issues by recognizing their negative effects on validation

samples and assigning lower weights to them. However, these methods fail to achieve satisfactory performance when the validation

samples are of low quality. To tackle this, we develop Reweighter, a visual analysis tool for sample reweighting. The reweighting

relationships between validation samples and training samples are modeled as a bipartite graph. Based on this graph, a validation

sample improvement method is developed to improve the quality of validation samples. Since the automatic improvement may not

always be perfect, a co-cluster-based bipartite graph visualization is developed to illustrate the reweighting relationships and support

the interactive adjustments to validation samples and reweighting results. The adjustments are converted into the constraints of the

validation sample improvement method to further improve validation samples. We demonstrate the effectiveness of Reweighter in

improving reweighting results through quantitative evaluation and two case studies.

Index Terms—Training data quality, sample reweighting, bipartite graph visualization

✦

1 INTRODUCTION

Addressing label quality issues, such as noisy labels and imbal-

anced class distributions is critical due to their pervasive presence

in real-world applications. For example, insufficient labeled data

often compels model developers to resort to pseudo-labeling tech-

niques for easier model training [1]. However, this workaround
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comes at a steep cost by introducing label quality issues that can

significantly downgrade model performance and reliability. This

casts a shadow on its applicability in real-world scenarios. Iden-

tifying and mitigating these label quality issues becomes difficult

and even impossible in the era of deep learning. A more practical

solution is to reduce the negative effects of problematic training

samples with label quality issues on model training. Validation-

sample-based reweighting methods [2], [3] have achieved state-

of-the-art performance in reducing such negative effects. These

methods first measure the model performance on a small set

of samples, namely validation samples, which have clean labels
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and well represent training data. Then a higher/lower weight is

assigned to a training sample if it increases/decreases the model

performance on the validation samples. This forms the reweighting

relationships between validation samples and training samples.

Since the validation samples determine the reweighting results,

it is crucial to ensure their quality for the performance of these

reweighting methods [4].

High-quality validation samples should have clean labels and

well represent training data [5], [6]. In response to this need, state-

of-the-art reweighting methods automatically select training sam-

ples that are likely to have clean labels as validation samples based

on their confidence metrics [3], [7]. While this automatic selection

offers advantages in terms of speed and reduced manual interfer-

ence, it comes with two issues. First, these automatically selected

validation samples, despite being selected based on confidence

metrics, can still contain noisy labels. Second, an over-reliance on

these confidence metrics might lead to the omission of samples

that represent the diverse nature of the training data, thereby cre-

ating a skewed or biased representation. This, in turn, can degrade

the reweighting performance [4]. To ensure the cleanliness of the

validation samples, model developers need to identify the valida-

tion samples with noisy labels. To ensure their representativeness,

they need to repetitively compare the distributions of validation

and training samples to identify the less represented samples [8].

This debugging process is labor-intensive and time-consuming [9].

Upon identifying the quality issues, model developers can make

direct adjustments if they are familiar with the application domain

and data. However, in situations where the domain is unfamiliar,

collaboration with domain experts and/or crowd workers becomes

essential [10]. Such collaboration also requires a visual analysis

tool to efficiently convey the identified quality issues and guide

appropriate adjustments. The challenging nature of the debugging

process and the specific needs for the collaboration motivate us

to develop Reweighter. We model the reweighting relationships

between validation samples and training samples as a bipartite

graph. Based on this graph, a validation sample improvement

method is developed to improve the quality of validation samples.

Since the automatic improvement may not always be perfect,

a co-cluster-based bipartite graph visualization is developed to

illustrate the reweighting relationships. By offering clear insights

into how the reweighting results are derived, this visualization

facilitates more informed adjustments to the validation samples

and reweighting results. These adjustments are converted into

the constraints of the validation sample improvement method to

improve the quality of validation samples. This, in turn, leads to

better reweighting results. The aforementioned analysis process is

repeated iteratively. Upon satisfaction, the reweighting results are

utilized for model training.

The effectiveness of the validation sample improvement

method is demonstrated using three numerical experiments on four

different datasets. Two case studies are conducted to demonstrate

the usefulness of Reweighter in iteratively improving the quality

of validation samples and generating better reweighting results.

The main contributions of this work are:

• A visual analysis tool that helps generate better reweighting

results by iteratively improving validation samples.

• A method for automatically improving validation samples

based on the reweighting relationships.

• A bipartite graph visualization that illustrates the reweighting

relationships and helps make informed adjustments.

2 RELATED WORK

2.1 Sample Reweighting

Existing reweighting efforts can be classified into two cate-

gories [11]: distribution-based methods and validation-sample-

based methods.

Distribution-based methods assign weights to training samples

based on the data distribution. For example, Liu et al. [12]

first introduced the importance reweighting method into binary

classification to tackle the challenges posed by noisy labels. The

weight of a sample is set as the probability of this sample being

clean over the probability of it being noisy. They also extended this

method to multi-class classification [13]. Instead of estimating the

data distribution, later work treated the sample weights as latent

variables of a learning model, such as a Bayesian model [14]

or a deep learning model [15], and then inferred the weights of

samples by this model. However, these methods require manually

designing the reweighting function or the learning model. This

makes it difficult to fit different datasets.

To address this challenge, validation-sample-based methods

assign a weight to each training sample with the goal of optimizing

the model performance on validation samples. These methods

effectively reduce performance degradation caused by both noisy

labels and imbalanced class distributions. Ren et al. [2] calculated

the weights of the training samples using the loss gradients in the

validation samples. A negative weight is assigned to a sample if its

associated gradient is positive. Instead of calculating the weights

from gradients, Meta-Weight-Net [11] trains an extra model to

learn the weights. However, these methods require a pre-defined

set of validation samples with clean labels and balanced class

distributions. To be more flexible, Zhang et al. [3] automatically

selected training samples that are likely to have clean labels as

validation samples. Although this method saves the efforts for

pre-defining validation samples, the performance is downgraded if

the selected samples contain noisy labels and/or fail to represent

the diversity of the training data [4]. Our method seeks to ad-

dress these limitations by utilizing the reweighting relationships

between validation samples and training samples. With these

relationships and the corresponding visualization, experts can 1)

easily identify and correct the noisy labels, and 2) identify the

uncovered training samples and add some of them to increase the

representativeness of these validation samples.

2.2 Visual Quality Improvement of Training Data

Many visualization methods have been proposed to improve the

quality of training data [16], [17]. They are classified into two

groups [18], [19]: collecting more annotated data and correcting

annotation noise.

Collecting more annotated data. A variety of methods have

been proposed to improve the efficiency of the annotation process.

For example, Moehrmann et al. [20] employed a self-organizing

map to allow the selection and simultaneous annotations of multi-

ple similar images. The strategy of placing similar samples closer

together is then applied to annotate different types of data [21],

[22], [23], [24]. Active learning algorithms are also integrated to

recommend informative samples for efficient annotation [25], [26],

[27], [28], [29], [30], [31], [32]. Beyond efficiency, other methods

seek to address the issue of dataset bias, which is introduced due

to the distribution difference between training data and test data.

Chen et al. [33] developed OoDAnalyzer to visually detect Out-of-

Distribution samples that are not covered by training data. Yang et
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al. [34] used the energy distance to measure the magnitude of

change in data distribution when test data streams in. The idea of

comparing the data distributions has also been adopted by many

other visual analysis work [16], [35], [36], [37]. Different from

these methods, our work focuses on correcting annotation noise in

validation samples and making them well represent training data.

Correcting annotation noise in training data. Annotation

noise is commonly present in real-world training data [6]. Many

methods have been proposed to correct them. For training data

with crowd information, crowd annotations and worker behavior

are utilized to detect the annotation noise for correction [38], [39],

[40]. For example, LabelInspect [39] facilitates the verification

of uncertain samples and unreliable workers based on crowd

information analysis. For training data without crowd information,

the annotation noise is usually detected based on the difference

between the sample annotations and their predictions made by a

learning model [5], [17], [41], [42], [43], [44]. Among them, the

most relevant one is DataDebugger [5], which develops a label

propagation algorithm to identify and correct label noise based on

the difference between their predictions and the expert-selected

trusted items. Although this method improves the quality of

training data, it has two issues. First, it requires to provide the

exact label for each trusted item. This takes more time since it

needs the experts to examine the sample and even compare it

with similar samples. Second, it only handles the issue of label

noise and does not work well for other label quality issues, such

as imbalanced class distributions. Compared with this method,

our work only requires the experts to indicate whether the label is

clean or noisy, which demands less expertise and is more efficient.

Moreover, our work handles not only the issue of label noise, but

also the issue of imbalanced class distributions, which often occur

in real-world training data.

3 DESIGN OF REWEIGHTER

3.1 Requirement Analysis

We collaborated with four experts (E1-E4) to develop Reweighter.

E1 is a software developer with five years of experience in

improving the quality of training data. E2 and E3 are two Ph.D.

students with more than four years of experience in diagnosing

quality issues in training data and improving model performance.

E4 is a postdoc researcher with seven years of experience in few-

shot learning, which also requires high-quality training data. None

of them are the co-authors of this work. To understand how they

improve the reweighting results in their work, we interviewed each

of them for about 45-60 minutes. Based on the interviews and

literature review, we summarized the following requirements for

improving reweighting results.

R1. Examining validation samples and training samples. A

previous study has shown that the quality of validation samples

plays a critical role in the reweighting process [3]. The experts also

confirmed this and expressed the need to improve the validation

samples. E3 said that he would like to examine the quality of

the validation samples and then check whether they positively

influenced the reweighting results. In addition to examining the

quality of validation samples, the experts mentioned that exam-

ining the training samples and the reweighting results are also

useful, as they may reflect quality issues in validation samples. E1

said, “I would like to spend more time examining training samples

with incorrect weights, such as low-quality samples with positive

weights, to identify the quality issues in validation samples.”

However, examining all the samples is time-consuming. Thus, it is

desirable to provide an informative overview of validation samples

and training samples, and highlight the samples of interest.

R2. Understanding the reweighting relationships. After iden-

tifying the validation/training samples of interest, the experts

need to understand the reweighting relationships related to these

samples. Without a comprehensive understanding of such rela-

tionships, it is difficult to make proper improvements and generate

better reweighting results. For example, E3 commented that he

would be more confident in adjusting validation samples after un-

derstanding how each validation sample influences the reweighting

results. E1 added, “When I find a low-quality training sample with

a positive weight, I would like to know which validation samples

influence its weight and whether they also influence the weights

of other training samples.” However, it is difficult to examine all

the relationships. To simplify the analysis process, there is a need

for a method that clusters the relationships for an overview and

displays the details upon request.

R3. Improving the quality of validation samples. All the ex-

perts expressed the need to explicitly improve the quality of valida-

tion samples and hence generate better reweighting results through

simple interactions. For example, E2 said that he would like to

correct the labels of noisy validation samples because they would

lead to incorrect reweighting results. Meanwhile, the validation

samples that positively influence the reweighting results should be

strengthened. When the validation samples cannot well represent

training samples, he also wanted to add more representative vali-

dation samples for better coverage. Since the experts often found

some incorrect reweighting results in their analysis, they also

expressed the requirements for implicitly improving the quality

of validation samples through adjustments to reweighting results.

R4. Comparing the reweighting results before and after

adjustments. Recent studies have shown that not all adjustments

improve the quality of validation samples [2], [3]. The experts also

confirmed this. For example, E3 noted that while certain unsuitable

adjustments might benefit the reweighting results of the training

samples that he was analyzing, they could negatively impact other

training samples. Consequently, the experts highlighted the impor-

tance of comparing the reweighting results before and after the ad-

justments. For example, E4 commented, “The samples with large

changes in their weights should be examined carefully. If the ad-

justments result in a lot of unfavorable changes, I would like to re-

verse them and reanalyze the corresponding reweighting results.”

Therefore, our tool is expected to emphasize the differences before

and after the adjustments to simplify the comparison process.

3.2 System Overview

Motivated by the identified requirements, we develop Reweighter

to support the interactive improvement of the reweighting results.

As shown in Fig. 2, it contains three modules: data preparation,

validation sample improvement, and visualization.

Given a set of validation samples and a set of training samples,

the data preparation module initially extracts the reweighting

relationships using a reweighting method (R2). Theoretically, any

validation-sample-based reweighting method can be directly used

in Reweighter. For our purpose, we employ the state-of-the-art

reweighting method, Fast Sample Reweighting (FSR) [3]. The

validation sample improvement module models the extracted

reweighting relationships between validation samples and training

samples as a bipartite graph (R2). Based on the bipartite graph, the
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Fig. 2: System overview. The data preparation module extracts the reweighting relationships between validation samples and training

samples. The validation sample improvement module models the reweighting relationships as a bipartite graph and improves the quality

of validation samples. The visualization module facilitates interactive exploration and improvement on the validation samples.

weights of validation samples are automatically adjusted for gen-

erating better reweighting results (R3). Next, the visualization

module employs a co-clustering algorithm [45] to simultaneously

group similar validation samples and training samples based on

the constructed bipartite graph. The co-clusters are visualized as

a node-link diagram to simplify the exploration of the individual

samples (R1) and their reweighting relationships (R2). Using the

interactive visualization, model developers can adjust the valida-

tion samples and the reweighting results (R3). The adjustments are

then used to improve the quality of validation samples by updating

the reweighting relationships in the data preparation module and

adjusting the weights of the validation samples in the validation

sample improvement module. Furthermore, model developers can

compare the reweighting results before and after the improvement

to see if the adjustments are beneficial (R4).

4 VALIDATION SAMPLE IMPROVEMENT

Since the quality of validation samples is critical in validation-

sample-based methods, we introduce a method for improving

validation samples. Common quality issues associated with val-

idation samples include noisy labels and the lack of representative

samples. To address these issues, users usually correct the noisy

labels and add the necessary samples. The updated validation

samples are then used to reweight the training samples. During

this process, a mutual influence between validation samples and

training samples is observed. On the one hand, the quality of

validation samples influences the reweighting results of training

samples. On the other hand, the reweighting results may reflect

the quality issues of validation samples. Given this, we seek

to capture and streamline the validation sample improvement

process by modeling this influence as a bipartite graph. With

the bipartite graph, the weights of the validation samples can be

improved based on their impact on the reweighting results. This

improvement process thus unfolds in two phases: 1) constructing
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computed as the gradient of collective validation loss with regard

to the weights of training samples (right).

a bipartite graph between validation samples and training samples;

2) adjusting the weights of validation samples based on this graph.

4.1 Bipartite Graph Construction

The state-of-the-art reweighting methods [2], [3] treat the

validation samples as a whole when computing their influence on

the weight of each training sample s j. As shown in Fig. 3, the

influence is computed as the gradient of the collective validation

loss with regard to the weight of sample s j. However, mixing

all validation samples together makes it difficult to identify the

low-quality ones (Fig. 4(a)). To address this issue, the collective

influence from the validation sample set should be decomposed

into the influence of individual samples (R2). The decomposition

is achieved by building a bipartite graph between validation

samples and training samples (Fig. 4(b)).

The construction of the bipartite graph is fundamentally

grounded on two key properties: 1) the validation loss is the sum

of the loss on each validation sample; 2) the gradient operator is

linear (∇( f +g) = ∇ f +∇g). With these properties, the collective

influence of the validation sample set on training samples can

be decomposed into a set of influences {gi j|1 ≤ i ≤ m,1 ≤ j ≤
n} [46]. Here, gi j is the influence of the validation sample vi on
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the training sample s j. m and n are the numbers of validation

samples and training samples, respectively. The bipartite graph

is then constructed by computing all gi js. With this graph, each

validation sample vi is represented by a n-dimensional vector,

vi = [gi1,gi2, . . . ,gin]
⊺. Each training sample s j is represented by

a m-dimensional vector, si = [g1 j,g2 j, . . . ,gm j]
⊺.

4.2 Validation Sample Weight Adjustment

The bipartite graph models how each validation sample influences

the reweighting results. Accordingly, the reweighting results can

be improved by assigning lower/higher weights to the validation

samples that have negative/positive effects on the reweighting

results (R3). For example, in Fig. 4(b), s2 and s4 are high-quality

training samples with negative weights, and s3 is a low-quality

training sample with a positive weight. Such reweighting results

are incorrect. Examining the reweighting relationships in the

bipartite graph reveals that the validation sample v2 leads to these

incorrect results. It incorrectly assigns negative weights to the

high-quality training samples (s2,s4) and a positive weight to the

low-quality training sample (s3). By reducing its weight to zero,

the reweighting results are improved (Fig. 4(c)). From this exam-

ple, it can be seen that the key to improving the reweighting results

is to evaluate the quality of the validation samples and adjust their

weights. Next, we introduce how to evaluate the quality of valida-

tion samples by two measures: correctness and balancedness.

Correctness. A previous study has indicated that correct val-

idation samples should assign positive weights to high-quality

training samples and negative weights to low-quality training

samples [5]. However, in practice, we do not know which training

samples are of high quality and which ones are of low quality. To

solve this problem, we initially regard high-confidence samples

as high-quality and low-confidence samples as low-quality. The

confidence of a sample reflects how likely it is of high quality [3].

Then we assess the correctness by examining whether the valida-

tion samples generate correct reweighting results on high-quality

samples and low-quality samples. This can be regarded as a binary

classification problem. We thus employ the binary cross-entropy,

a commonly used loss for binary classification [47], to measure

the deviation from the correct reweighting results:

Lc(w
s
1, . . . ,w

s
n) = ∑

s j∈S+

− logφ(ws
j)+ ∑

s j∈S−

− log(1−φ(ws
j)),

(1)

where ws
j is the weight of training sample s j, S+ and S− are the

sets of high-quality and low-quality samples, respectively. φ(w) =
1/(1 + e−w) is a sigmoid function to normalize the weight to

(0,1). When minimizing the loss defined in Eq. (1), the first term

encourages positive weights on high-quality samples, while the

second term encourages negative weights on low-quality samples.

Balancedness. According to the study of He et al. [48], balanced

validation samples assign equal weights to high-quality training

samples across different classes. This indicates that the weight

distribution over classes is uniform. In our implementation, the

weight distribution is computed on high-quality samples. Here,

only high-quality samples are considered because their labels

are more reliable. Let C be the number of classes and Sc+

be the set of high-quality samples of class c (1 ≤ c ≤ C).
The weight distribution is obtained by summing the sample

weights in each class c and then dividing by the total weights:

pc = (∑s j∈Sc+
ws

j)/(∑s j∈S+ ws
j) (1 ≤ c ≤ C). Accordingly, the

balancedness is measured by the deviation of the weight distribu-

tion over all classes from the uniform distribution. It is computed

by the Shannon entropy loss [49]:

Lb(w
s
j, . . . ,w

s
j) =

C

∑
c=1

pc log pc. (2)

A smaller entropy loss reflects a more balanced distribution.

With these two quality measures, the validation sample weight

adjustment is formulated as a multi-task learning problem, which

aims to minimize the combination of the two corresponding

measures. However, it is prohibitively expensive and difficult to

manually tune the optimal weighting parameters for combining

them. To tackle this issue, we adopted multi-task learning [50] to

automatically adjust the weighting parameters. The basic idea is

to reduce the contribution of the measure with higher uncertainty.

Let σc and σb denote the uncertainty of Lc and Lb, respectively,

the optimization goal is defined as:

minimize
wv

i ,σc,σb

1

σ2
c

Lc(w
s
1, . . . ,w

s
n)+

1

σ2
b

Lb(w
s
1, . . . ,w

s
n)+ logσcσb

s.t. ws
j =

m

∑
i=1

wv
i gi j, ∀ j; wv

i ≥ 0, ∀i, (3)

where wv
i is the weight of validation sample vi. The first term and

the second term correspond to the correctness and the balanced-

ness, respectively. The last term penalizes too large settings of σc

or σb. The values of σc and σb are learned during the optimization.

To ensure the non-negative constraints (wv
i ≥ 0) in the opti-

mization process, we employ Projected Gradient Descent [51] to

solve this optimization problem. The basic idea is to compute the

gradient and project it to the subspace tangent to the constraints.

This ensures the projected gradient satisfies the constraints.

5 VISUALIZATION

Better understanding the reweighting relationships between val-

idation samples and training samples facilitates the adjustments

to the validation samples and reweighting results. To effectively

reveal a large number of such relationships, we first co-cluster the

Discretize Co-clustering

PositiveNegative PositiveNegative Neutral

3 validation sample clusters

4 training sample clusters
Co-clusterA

(a) (b)

Fig. 5: The co-clustering pipeline: (a) the influence values are discretized into positive, neutral, and negative categories; (b) validation

samples (rows) and training samples (columns) are grouped into clusters simultaneously.
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validation samples and training samples based on the constructed

bipartite graph. Then a bipartite graph visualization is developed

to visually illustrate the reweighting relationships.

5.1 Co-Clustering

The bipartite graph usually contains thousands of samples and

hundreds of thousands of reweighting relationships. Displaying

all of them will cause severe visual clutter. To facilitate the

exploration, we group similar validation samples and similar

training samples simultaneously through co-clustering. The most

widely used co-clustering algorithm is Spectral Co-clustering [17],

[52]. A drawback of this algorithm is that it involves costly matrix

decomposition whose time complexity is O((n+m)3). Here, m

and n are the numbers of validation samples and training samples,

respectively. Thus, it is intractable for a large graph. A method

to solve this problem is Fully Automatic Cross-Associations

(FACA) [53], which is an information-theory-based method. This

method can reduce the time complexity to O(nm). However, to use

this method, the influence values (gi j) need to be discrete. In our

case, although the influence values are continuous, users are more

interested in the non-zero influence values because they affect the

reweighting results mostly. Therefore, we discretize the contin-

uous values into three categories: positive, neutral, and negative

(Fig. 5(a)). To decide the threshold ε among the positive (≥ ε),

neutral (between −ε and ε), and negative categories (≤ −ε), we

have experimented with four datasets. The experimental results

show that ε = 0.05 is the best value (see supplemental material

for more details).

With the discretization, we then employ the FACA

method [53] to build the co-clusters (Fig. 5(b)). A co-cluster

consists of a pair of highly relevant validation sample cluster and

training sample cluster (Fig. 5A). The basic idea of FACA is to

greedily group samples into clusters while maintaining the high

purity of each co-cluster. The purity is defined as the fraction

of influence values belonging to the dominant influence category

within each co-cluster. Take Fig. 5 as an example, the influence

category of each co-cluster only belongs to one category (positive,

neutral, or negative), and is therefore pure. In addition, FACA

automatically determines the optimal number of clusters based on

the Minimum Description Length principle [54].

In practice, the number of validation samples is typically

small, often in the hundreds. In contrast, the number of training

samples is much larger, reaching tens of thousands or even more.

To better convey these training samples, we hierarchically cluster

them by using the hierarchical clustering method developed by

Chen et al. [17]. Specifically, we fix the validation sample clusters

and recursively apply FACA to divide each high-level training

sample cluster into sub-clusters.

5.2 Bipartite Graph Visualization

The visualization consists of two views: 1) a cluster view to

provide an overview of reweighting relationships and help select

the samples of interest; 2) a sample view to reveal the critical

training samples that are influenced by the selected validation

samples or the critical validation samples that influence the

selected training samples.

5.2.1 Cluster View

A node-link diagram is employed in the cluster view to visualize

the bipartite graph based on the co-clustering result (Fig. 6). In

the diagram, each node represents a validation sample cluster

(Fig. 6(a)) or a training sample cluster (Fig. 6(c)), and each link

represents the influence between a validation sample cluster and

a training sample cluster (Fig. 6(b)). We choose the node-link

diagram because of its intuitiveness for understanding the

reweighting relationships [55].

Validation sample cluster (R1). In each cluster, a dark gray

square represents a validation sample. The y-position of a square

encodes the weight (wv
i ) of the validation sample. A dotted line

in the middle of each cluster (Fig. 6A2) represents the average

weight of all validation samples. Squares above/below the line

are the samples with larger/smaller weights. Along the x-axis,

placing similar samples together facilitates faster identification of

related samples by examining the neighbors of a known one, thus

streamlining the exploration process. In light of this, t-SNE is

employed to project validation samples onto a one-dimensional

space because of its effectiveness in preserving the neighborhood

relationships between samples [56]. As the number of samples in

each cluster can vary widely, the perplexity in the t-SNE projection

is adaptively set as the square root of the number of samples in

the cluster, which gives satisfactory results in practice [57]. Other

hyperparameters used in t-SNE are fixed with the default values

in Scikit-learn. To better convey the trend of the weight change,

the validation samples are connected by a polyline along the x-

axis [58]. To help users quickly understand the content of each

cluster, we sample representative images and display them on the

left side of the cluster (Fig. 6A1).

Training sample cluster (R1). The training sample cluster

employs a similar design to that of the validation cluster. Here

we describe the differences. In each cluster, the dotted line in

the middle is the line of weight zero. The samples positioned

above the line have positive weights, whereas those below it bear

negative weights. To enhance the clarity of this distinction, we

have employed a double-encoding method that combines vertical

positioning with a diverging color scheme. In this scheme, green

represents positive weights, and red represents negative weights.

15

Sample with increasing weight Sample with decreasing weight

DME

DME

CNV

CNV

DME

Normal DME

15
0
1

5

2
0
4

16

21
2
0

16

A1 A2

C2

C1

C4

C3

(a) Validation sample cluster (node) (b) Influence (link) (c) Training sample cluster (node)

Fig. 6: The visual design of the cluster view.
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Moreover, the lightness of the color represents the absolute value

of the weight |w|. Darker colors indicate larger absolute values.

Each sample is represented by a circle or a triangle glyph to

indicate whether its weight is consistent with the associated con-

fidence value ( ) or not ( ). For example, an inconsistent sample

with a high-confidence value but a negative weight is denoted as

. To facilitate the examination of inconsistent training samples,

a bar chart (Fig. 6C1) is used to show the number of samples of

different types ( , , , and ). By default, the clusters with

fewer inconsistent samples are collapsed (Fig. 6C3) by stacking

the bars horizontally and removing the sample images (Fig. 6C2).

When a cluster contains too many samples, we select a subset

of representative ones, giving priority to high-quality samples

S+ and low-quality samples S− due to their importance in

evaluating the quality of validation samples. Motivated by the

outlier-biased sampling method [5], [59], we try to preserve the

sample distribution while prioritizing the sampling of training

samples in S+ and S−. Specifically, the sampling probability of a

sample x is proportional to 1/ρ(x)+1[x ∈ S+∪S−], where ρ(x)
is the density of its local region, and 1[x ∈ S+ ∪ S−] indicates

whether it is a high-quality sample or a low-quality sample.

Links (R2). A link between a validation sample cluster and a

training sample cluster is represented by a line strip. The width

of the strip encodes the sum of the influence values between the

associated validation samples and training samples. Green strips

and red strips represent positive and negative influence values,

respectively. To reduce visual clutter, we first minimize the strip

crossings by reordering the validation sample clusters and the

training sample clusters. The ordering is initialized by the widely-

used barycenter heuristic [60] and then improved by swapping

adjacent clusters to further reduce the number of crossings [61].

Next, the strips with small influence values are shown with light

gray and serve as context. They will be highlighted when hovering

over the associated clusters.

5.2.2 Sample View

After selecting the samples of interest in the cluster view, users can

examine the associated validation/training samples and their de-

tailed reweighting relationships in the sample view (R1, R2). We

adopt the adjacency-list design because it can compactly represent

the reweighting relationships between the training samples and

validation samples and their content [62]. When the exploration

starts by selecting training samples, each row corresponds to a

selected training sample. As shown in Fig. 7A, its image content is

shown at the beginning of the row, followed by the top-3 positively

contributing validation samples and the top-3 negatively contribut-

ing validation samples. For each training sample s j, its weight (ws
j)

is placed under the image. For each contributing validation sample

vi, its weighted influence value (wv
i gi j) is placed to directly reveal

how much vi contributes to ws
j. The circle/triangle glyphs repre-

senting the sample types (e.g., an inconsistent sample / ) are

displayed beside the weights/values. When the exploration starts

by selecting validation samples, each row corresponds to a se-

lected validation sample (Fig. 7B). For each validation sample vi,

its weight (wv
i ) is placed under the image content. The top-3 train-

ing samples that are positively/negatively influenced by it and their

associated influence values are displayed in the corresponding row.

5.3 Interactive Adjustment and Comparison

Reweighter allows users to improve the quality of validation

samples by interactively adjusting validation samples and training

Training Positive validation Negative validation

Knitwear

0.005

Knitwear

0.099

Knitwear

0.092

Knitwear

0.091

Sweater

-0.114

Sweater

-0.100

Hoodie

-0.098

Validation Positive training Negative training

0.098 0.042 0.041 0.039 -0.025 -0.022 -0.022

Sweater Sweater Sweater Sweater Knitwear Knitwear Knitwear

A

B

Fig. 7: The visual design of the sample view.

samples. After an adjustment, the users can also compare the

reweighting results before and after the adjustment.

Interactive adjustment (R3). Reweighter supports the adjust-

ments to both validation samples and training samples.

Adjusting the validation samples. Reweighter provides sev-

eral ways to adjust the validation samples. If the users find a

mislabeled validation sample, they can right-click the sample and

relabel ( ) it in the pop-up menu. If the users identify some

training samples that are not covered by the validation samples,

they can add ( ) them to the validation samples to improve the

coverage. The influence values in the reweighting relationships

will be updated accordingly after the two adjustments. In addition,

the users can adjust the weights of validation samples if they are

not appropriate. Since it is difficult for the users to specify the

exact weights, we allow them to simply indicate the direction of

the weight adjustment by dragging the samples up (increase) or

down (decrease). The adjustment is formulated as the inequality

constraint of the weight adjustment optimization problem defined

in Eq. (3). In our implementation, the inequality constraint is set as

wv
i ≥ (1+γ)w̃v

i when increasing the weight and as wv
i ≤ (1−γ)w̃v

i

when decreasing the weight. Here w̃v
i is the previous weight, and

γ = 0.1. The details regarding this default value can be found in

supplemental material.

Adjusting the training samples. As the quality measures of

validation samples are calculated based on the high-quality sample

set S+ and the low-quality sample set S−, users can implicitly

improve the quality of validation samples by refining S+ and

S−. To this end, users first select a set of samples of interest

by brushing them in a training sample cluster or clicking a bar

in a bar chart associated with a cluster. Then they can right-

click the selected samples and verify them as high-quality ( ) or

low-quality ( ) in the pop-up menu. In addition, they can verify

samples as high-quality by increasing their weights or as low-

quality by decreasing their weights. The user-verified high-quality

and low-quality samples are added to S+ and S−, respectively.

With the refined S+ and S−, the calculation of the correctness

(Eq. (1)) and balancedness (Eq. (2)) are updated accordingly,

which affects the optimization results in Eq. (3).

Comparison of the reweighting results (R4). After the users

finish their adjustments, the reweighting results are updated

accordingly by re-solving the optimization problem defined in

Eq. (3). To facilitate the result comparison between before and

after the adjustments, the users can switch to the “diff” mode,

which highlights significant changes. In this mode, the samples are

positioned based on their current reweighting results. For samples

with significant weight changes, each has a green or red line con-

necting its previous and current positions to highlight the change

(Fig. 6C4). The color indicates whether the weight is increased

or decreased. By default, the samples with weight changes among

the top 10% are considered to have significant changes, and the

percentage (10%) can be modified by the users. After examining
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the weight changes, they can undo the adjustments if the changes

are unsatisfactory.

6 EVALUATION

We evaluated our validation sample improvement method using

three separate experiments. These experiments were conducted

automatically, requiring no human intervention. Moreover,

through two case studies, we demonstrate how Reweighter

enables users to interactively improve validation samples, leading

to better reweighting results.

6.1 Quantitative Evaluation

This section evaluates the effectiveness of the improved validation

samples in the separate scenarios of noisy labels and imbalanced

class distributions, as well as the scenario of their combination.

Datasets. Four datasets are used in the evaluation. The first

two, CIFAR10 and CIFAR100, are commonly used benchmark

datasets for evaluating sample reweighting methods [2], [3]. CI-

FAR10 contains 60,000 samples in 10 classes, with 5,000 training

samples and 1,000 test samples per class. Similarly, CIFAR100

contains 60,000 samples in 100 classes, with 500 training samples

and 100 test samples per class. These two datasets are clean

and balanced. We thus simulated noisy labels and imbalanced

class distributions for these two datasets. The third one, Clothing

dataset [5], contains 37,497 samples in 14 different classes (T-

shirt, Shirt, Knitwear, etc.). We used 36,000 samples for training

and 1,497 samples for testing. As the sample labels are au-

tomatically extracted from the associated text descriptions, this

dataset is noisy with 38.3% of the samples being mislabeled. The

fourth one, OCT (Optical Coherence Tomograph) dataset [63],

contains 20,000 retinal OCT images (17,000 for training and

3,000 for test). The images are of four classes: Normal, Choroidal

NeoVascularization (CNV), DiabeticMacular Edema (DME), and

Drusen. This dataset is imbalanced as there are only 1,000 training

samples of DME and 1,000 of Drusen, compared to 10,000 of

Normal and 5,000 of CNV. The imbalance factor, which is the

ratio between the number of training samples in the largest class

and that in the smallest class, is 10000/1000 = 10.

Experimental settings. To evaluate the effectiveness of the

developed validation sample improvement method, we combined

it with a state-of-the-art reweighting method, FSR [3]. We fed

the improved validation samples into FSR and evaluated whether

the generated weights further improved model performance. For

comparison, we used Uniform (no reweighting) and FSR [3] as

the baseline methods. Following the settings of FSR, we utilized

WideResNet-28-10 [64] for low-resolution images (CIFAR10 and

CIFAR100) and ResNet50 [65] for high-resolution images (Cloth-

ing and OCT). The models were also trained for 255 epochs with

a cosine learning rate decay. The numbers of validation samples

are 100, 200, 140, and 80 for CIFAR10, CIFAR100, Clothing,

and OCT datasets, respectively. For evaluation in the scenario

TABLE 1: The noise ratios of the simulated noisy labels.

Dataset
# labeled samples per class

10 20 50 100

CIFAR10 0.48 0.42 0.36 0.32

CIFAR100 0.70 0.65 0.55 0.45

TABLE 2: Test set accuracy under noisy labels.

Dataset Method
# labeled samples per class

10 20 50 100

CIFAR10

Uniform 56.3% 62.0% 67.1% 70.5%

FSR 67.6% 74.7% 78.6% 81.2%

Ours 68.4% 75.4% 79.0% 81.4%

CIFAR100

Uniform 30.4% 35.9% 43.9% 50.4%

FSR 37.0% 43.5% 53.4% 58.8%

Ours 38.1% 44.2% 53.7% 59.1%

(a) Simulated noisy labels.

Dataset Noise ratio Method Accuracy

Clothing 0.383

Uniform 57.8%

FSR 70.5%

Ours 71.9%

(b) Real-world noisy labels.

of noisy labels, the Clothing dataset with real-world label noise

is used. In addition, CIFAR10 and CIFAR100 with simulated

noisy labels are used to evaluate the classification accuracy under

different noise ratios. Pseudo labeling utilizes a trained model

to generate labels for unlabeled samples and then incorporates

these newly labeled samples back into the training set to refine the

model further. This method closely simulates human-like labeling

errors [66]. Using this method, we first randomly selected and

labeled k ∈ {10,20,50,100} samples for each class in CIFAR10

and CIFAR100 and built four classification models [32]. The

pseudo labels of the remaining samples in the two datasets are

then derived using these classification models. The noise ratios

of the pseudo labels are summarized in Table 1. For evalua-

tion in the scenario of imbalanced class distributions, the OCT

dataset is used. Similarly, we used CIFAR10 and CIFAR100

with simulated imbalanced class distributions to evaluate the

accuracy under different imbalance factors. The simulation was

performed by sampling a subset of training samples following the

Pareto distribution with imbalance factors λ ∈ {5,10,20,50}. In

the combined scenario, we simulated label noise using different

numbers of labeled samples per class (k) in the OCT dataset, and

simulated imbalanced class distributions with different imbalance

factors (λ ) on the Clothing dataset. For CIFAR10 and CIFAR100,

we evaluated the accuracy under all the combinations of k and λ .

We repeated each experiment three times and reported the average

accuracy on the test set.

Results. Table 2 shows that our method achieves better perfor-

mance in the noisy label scenario. The performance gain increases

with the decreasing number of labeled samples, which demon-

strates the effectiveness of our method in handling more label

noise. We also noticed that the gain on the Clothing dataset is

larger than the gain on the CIFAR datasets. The clearer differences

between the classes of the CIFAR datasets enable FSR to easily

select high-quality validation samples. As a result, there is less

room for additional improvements. Unlike the CIFAR datasets,

the Clothing dataset exhibits more subtle differences between its

classes, making classification challenging. This type of task is

known as fine-grained classification [67]. These subtle differences

pose difficulties for the FSR method in selecting high-quality

validation samples. In comparison, our method consistently im-
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TABLE 3: Test set accuracy under imbalanced class distributions.

Dataset Method
Imbalance factor

5 10 20 50

CIFAR10

Uniform 92.2% 90.1% 87.1% 81.2%

FSR 93.4% 90.1% 87.2% 81.7%

Ours 93.6% 90.3% 87.8% 82.1%

CIFAR100

Uniform 63.8% 31.2% 32.6% 34.9%

FSR 69.8% 63.9% 56.8% 48.9%

Ours 70.2% 64.5% 57.2% 49.4%

(a) Simulated imbalanced class distributions.

Dataset Imbalance factor Method Accuracy

OCT 10

Uniform 78.1%

FSR 82.8%

Ours 83.4%

(b) Real-world imbalanced class distributions.

TABLE 4: Test set accuracy under combined noise.

Dataset # labels per class Imbal. factor Uniform FSR Ours

CIFAR10

10 5 55.1% 57.4% 58.0%

10 10 54.2% 56.3% 56.9%

20 5 62.4% 62.8% 63.2%

20 10 61.2% 62.1% 62.7%

CIFAR100

10 5 29.5% 30.4% 30.8%

10 10 28.2% 29.0% 29.7%

20 5 34.7% 35.0% 35.2%

20 10 32.9% 33.4% 33.8%

Clothing
N/A 5 55.9% 59.8% 62.1%

N/A 10 52.6% 57.4% 59.8%

OCT
10 N/A 49.5% 57.4% 59.6%

20 N/A 53.0% 63.8% 65.2%

proves the quality of validation samples and thus brings more

performance gain. In the imbalanced class distribution scenario,

our method improves the classification accuracy on both the

simulated and real-world datasets (Table 3). For the retinal OCT

images that are hard to classify correctly, our method still achieves

better performance (Table 3(b)). Table 4 shows that in scenarios

where both noisy labels and imbalanced class distributions are

present, our method achieves a larger performance gain. The

performance gain on the OCT dataset and the Clothing dataset

reached around 2%, exceeding that on the CIFAR datasets. This

further demonstrates that our method is more effective to improve

validation samples in fine-grained classification, a task frequently

encountered in real-world applications. Due to the page limit, we

only present the results with small numbers of labeled samples

per class and small imbalance factors. The full results are in

supplemental material.

6.2 Case Studies

To demonstrate how Reweighter facilitates the human-AI

collaboration in improving the reweighting results, we conducted

two case studies. They started from the output of the automatic

reweighting method. The case study results showed that users

could further improve the accuracy by interactively providing a

small amount of feedback.

6.2.1 Interactively Reweighting the Clothing Dataset

In this case study, we collaborated with E1 to interactively improve

the reweighting results of the Clothing dataset. This dataset,

sourced from real-world data, contains many noisy labels. The ini-

tial accuracy without human intervention was 71.9% (Table 2(b)).

Overview (R1). After co-clustering, there were 14 validation

sample clusters and 35 training sample clusters. Fig. 1(a) shows

three validation sample clusters and six training sample clusters

among them. E1 first looked at the validation sample clusters

and noticed that in each cluster, there was no big difference in

the y-positions of the validation samples. This is in line with

the expectation that each validation sample should favorably

contribute to the reweighting results. However, the y-positions of

the validation samples in clusters V1 and V2 are lower than the

dotted line (the average value), indicating that their contributions

are relatively low. Thus, E1 decided to examine them first.

Identifying the low-quality samples (R1, R2). E1 first selected

all the 20 validation samples in clusters V1 and V2. These valida-

tion samples and the training samples that were highly influenced

by them were displayed in the sample view. After examining the

image content, he found that some validation samples in V1 were

actually “sweater” but mislabeled as “knitwear” (Fig. 8A), while

some samples in V2 were actually “knitwear” but mislabeled

as “sweater” (Fig. 8B). Similar mislabeling issues were also

identified in their associated training samples. For example, the

samples in Fig. 8AP were “sweater” but mislabeled as “knitwear.”

To explore more training samples that were highly influenced by

the selected validation samples, E1 turned to examine the training

sample clusters. He found that clusters S1 and S2 were highly

influenced and contained the most inconsistent samples and

(Fig. 1(a)). E1 selected these inconsistent samples to examine

their content and that of their associated validation samples in

the sample view. Fig. 8C shows two inconsistent samples with

positive weights but low-confidence values in cluster S2. They

were in fact “knitwear” but mislabeled as “sweater,” so as their

most positively contributing validation samples (Fig. 8CP). The

wrong labels of these validation samples explain the positive

weights of low-quality samples in Fig. 8C. E1 concluded that the

label noise in V1 and V2 led to the inconsistencies in S1 and S2.

Training Positive validation Negative validation

0.098 0.042 0.041 0.039 -0.025 -0.022 -0.022

0.092 0.040 0.038 0.036 -0.026 -0.025 -0.023

Sweater

Sweater

Sweater

Sweater

Sweater

Sweater

Sweater

Sweater

Knitwear

Knitwear

Knitwear

Knitwear

Knitwear

Knitwear

Validation Positive training Negative training

0.004 0.162 0.148 0.146 -0.169 -0.151 -0.140
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Knitwear
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Knitwear

Knitwear

Knitwear

Knitwear
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0.005 0.075 0.073 0.071 -0.097 -0.080 -0.078

0.005 0.094 0.080 0.074 -0.098 -0.081 -0.077

Sweater

Sweater

Sweater

Sweater

Sweater

Sweater

Sweater
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Knitwear

A AP AN

B BP BN

C CP CN

Fig. 8: Analyzing low-quality validation samples in clusters V1

(A) and V2 (B) and inconsistent training samples in cluster S2 (C).
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Improving the quality of validation samples (R3, R4). From

these observations, E1 decided to 1) correct the noisy labels in

clusters V1 and V2, 2) increase the weights of the high-quality

validation samples in V1 and V2, and 3) examine the inconsistent

training samples and in clusters S1 and S2 and verify them

as high/low-quality samples. In total, he corrected the labels of 9

validation samples, increased the weights of 11 validation samples,

and verified 49 training samples. After the adjustments (Fig. 1(b)),

the inconsistency in cluster S2 was eased, and hence the cluster

was collapsed automatically (Fig. 1S′
2). However, as shown in

the bar chart on the left of Fig. 1S′
1, there were more inconsistent

samples with high-confidence values but negative weights in the

training sample cluster S′
1. To understand the reason, E1 compared

the reweighting results before and after the adjustments in the

“diff” mode. On the right of Fig. 1S′
1, he found many red lines.

This indicated that many high-confidence samples in S1 had a

large drop in their weights and thus resulted in more inconsistency.

Examining the image content of these samples, he found that

they were samples of other classes but mislabeled as “knitwear.”

These low-quality samples were not identified in the previous

step due to their incorrect positive weights coinciding with their

incorrect high-confidence values. The adjustments he made shifted

their weights to the negative side, revealing the inconsistency. E1

then verified these 12 samples as low-quality samples to reduce

their confidence values. As shown in Fig. 1S′′
1 , there are fewer

inconsistent samples . The adjustments were used to fine-tune

the model, leading to an accuracy boost from 71.9% to 72.7%.

Similar mislabeling issues were observed in “down coat,”

“jacket,” “windbreaker,” “vest,” and “dress.” E1 corrected the

labels of 13 validation samples and verified 71 training samples

as high/low-quality samples. Upon satisfaction, he obtained a set

of better-quality validation samples and a set of verification of

high/low-quality training samples, which were used to fine-tune

the model. The accuracy was boosted from 72.7% to 75.4%. In

summary, E1 further improved the model accuracy from 71.9% to

75.4% (+3.5%) by correcting the labels of 22 validation samples

and verifying 132 training samples as high/low-quality samples.

6.2.2 Interactively Reweighting the OCT Dataset

In this case study, we collaborated with E3 to improve the

reweighting results of the OCT dataset with added noisy labels

(generated from 20 labeled samples per class), which was used

in the aforementioned combined scenarios. This dataset is more

complex because it contains both noisy labels and imbalanced

class distributions. E3 has experience in developing models for

diagnosing retinal edema. We also invited D1, an ophthalmology

clinical doctor, to examine medical images and explain his judg-

ments based on medical expertise. The initial accuracy without

human intervention was 65.2% (the last row in Table 4).

Overview (R1). After co-clustering, there were 6 validation

sample clusters and 11 training sample clusters. E3 noticed that

the weights of validation samples in Fig. 9A and Fig. 9B are lower

than other validation samples in the same clusters. This indicated

that these samples did not favorably contribute to the reweighting

results. He decided to analyze them first.

Diagnosing & Improving low-weight validation samples

(R1, R2, R3). As the two validation samples in Fig. 9A (with the

label “Normal”) had the lowest weight, E3 examined them first.

By examining their image content (Fig. 9A1) and the associated

training samples, he found that these two validation samples and

two of the training samples (Fig. 9A2 and Fig. 9A3) contained

cystoid space (the dark chamber in the middle). This makes them

different from other “Normal” samples. He then consulted with

doctor D1, who confirmed that both the validation samples and the

two training samples were “DME” but mislabeled as “Normal.”

He explained that the cystoid space was a typical symptom

of “DME.” However, the green circles indicated that these

two training samples were wrongly assigned positive weights.

He corrected the labels of these two validation samples and

verified the two training samples as low-quality samples. Next, E3

analyzed the validation samples in Fig. 9B in a similar way. D1

confirmed that these two samples were “DME” but mislabeled as

“Drusen.” The hyporeflective cysts between the inner plexiform

layer and the outer plexiform layer form a triangle with white

borders (Fig. 9B1), which is the symptom of “DME.” After

examining the highly influenced training samples, he found two

inconsistent training samples with similar symptoms (Fig. 9B2,

B3) were also “DME” but mislabeled as “Drusen.” These training

samples appeared in Fig. 9B4, where he found more similar

samples that were mislabeled as “Drusen.” E3 corrected the

labels of these two low-quality validation samples and verified

seven training samples in Fig. 9B4 as low-quality samples.

After these adjustments, the inconsistency in the training sample

cluster “Drusen” was reduced, and the cluster was collapsed

automatically. The accuracy was improved from 65.2% to 66.1%.

Adding missing validation samples (R1, R2, R3). After
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adjusting the validation samples, E3 turned to examine the

training samples. He noticed that there were four inconsistent

samples with high-confidence values but negative weights in a

cluster containing both “Normal” and “CNV” samples (Fig. 9C).

He clicked the bar to examine their content and the contributing

validation samples. The image content (Fig. 9C1) showed that

they were high-quality samples of “CNV.” However, there were

no validation samples of “CNV” that positively influenced them

(Fig. 9C2). He then examined the validation samples in the

validation sample cluster “CNV” (Fig. 9D) and found that these

samples were not representative enough for the “CNV” class.

According to doctor D1, the “CNV” training samples in Fig. 9C

show serious pigment epithelial detachments adjacent to a small

area of subretinal fluid (the sharp protrusion), which is one of

the typical symptoms of “CNV.” However, none of the existing

validation samples in “CNV” have this symptom. This explained

why these training samples received negative weights. To address

this issue, E3 added two of them into the validation set and

updated the reweighting results. The other two training samples

(Fig. 9E) were then correctly assigned positive weights due to the

added validation samples. The model was fine-tuned with these

added validation samples, and the accuracy was increased from

66.1% to 68.1%. In summary, E3 further improved the model

accuracy from 65.2% to 68.1% (+2.9%) by adding two validation

samples, correcting the labels of four validation samples, and

verifying nine training samples as high/low-quality samples.

6.3 Comparison with DataDebugger

To demonstrate the effectiveness of Reweighter, we compared it

with DataDebugger [5], which is the state-of-the-art visual analy-

sis tool for interactively correcting label noise in training samples.

In DataDebugger, users need to examine samples and provide

exact labels for them. The provided labels are then propagated

to other samples with a label correction algorithm. However, since

no additional information is considered when correcting the labels,

more samples with exact labels are required to achieve acceptable

performance. In contrast, Reweighter enables users to analyze the

reweighting relationships between validation samples and training

samples. This additional relationship information facilitates the

correction of label noise in validation samples and the verifica-

tion of high/low-quality training samples. These corrections and

verification help improve the reweighting results and boost the

model performance. In this experiment, we invited E1-E4 to use

both tools and recorded their adjustments and time spent. All the

experts are familiar with both tools. To reduce the potential bias

resulting from the order in which the tools were used, E1 and

E2 were asked to use DataDebugger first, while E3 and E4 were

asked to use Reweighter first. The Clothing dataset was employed

because they are more familiar with it, and the initial accuracy

was 71.9% for both tools. Table 5 shows the results from each

expert. It can be seen that to achieve comparable performance,

Reweighter requires an average of 22.75 exact labels, which is

much fewer than 297.25 labels that DataDebugger needs. This

is because DataDebugger requires the experts to label training

samples and then propagate them to other samples. In contrast,

Reweighter only requires the experts to label validation samples,

which are much fewer than training samples (140 compared to

36,000). Although Reweighter requires additional verification of

high/low-quality training samples, the average number of verified

samples (156.25) is still less than the average number of exact

labels required by DataDebugger (297.25). Moreover, E1 pointed

out that providing verification is easier than providing exact

labels, particularly with 14 classes in the Clothing dataset. The

verification effort is further simplified because high/low-quality

samples are usually grouped together in Reweighter. As illustrated

in Fig. 1, the 18 inconsistent training samples with low weights

in cluster S1 can be collectively verified as low-quality samples

with just one click. In contrast, since their ground-truth labels are

different (“knitwear,” “sweater,” “shawl,” and “underwear”), the

experts have to re-label each sample separately, which takes more

time. On average, they spent 0.57 hours using Reweighter, which

was shorter than the 1.49 hours they spent with DataDebugger to

achieve comparable performance.

TABLE 5: The numbers of provided exact labels, verification, and

time comparison between DataDebugger and Reweighter.

Method Expert # labels # verification Time Accuracy

DataDebugger

E1 308 0 1.66h 75.0%

E2 293 0 1.50h 74.7%

E3 331 0 1.63h 75.1%

E4 257 0 1.17h 74.6%

Reweighter

E1 22 132 0.54h 75.4%

E2 26 179 0.62h 75.6%

E3 25 171 0.66h 75.4%

E4 18 143 0.47h 75.1%

7 EXPERT FEEDBACK AND DISCUSSION

After the case studies, we conducted six semi-structured inter-

views with the four experts we collaborated with (E1-E4) and

two newly invited ones (E5 and E6). For the experts who were

not involved in the case studies, we first introduced Reweighter

and then presented the case studies. Then the experts were asked

to identify low-quality validation samples and make adjustments

using the tool. Finally, we discussed with the experts about the

strengths and limitations of the tool. The entire process lasted

from 50 to 85 minutes.

The experts were generally positive about the usability of

Reweighter. A few limitations were also identified by the experts,

from which we summarized several future research directions.

7.1 Usability

Adopting simple visual design. All the experts appreciated the

simplicity of the visual design used in Reweighter. They indi-

cated that the cluster view was intuitive and easy to understand,

facilitating the identification of low-quality validation samples.

E4 commented, “The visual encoding of validation samples is

concisely explained in the legend. Guided by the explanation, I

can quickly identify the low-weight validation samples and select

them in the cluster view. Moreover, the bipartite graph provides a

clear overview of their reweighting relationships, enabling me to

conveniently trace the related training samples for more compre-

hensive examination.” The experts also emphasized the usefulness

of the sample view in identifying low-quality validation samples.

Their prior experience with list-based visual designs made this

view particularly accessible and streamlined their analysis. For

example, E5 mentioned, “During an analysis, after selecting a few

inconsistent training samples, I found that some validation samples
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appeared repeatedly in the sample view. More examination showed

that these repetitively occurring samples were of low quality and

required curation.” He added that this simple but intuitive design

made these recurring samples stand out.

Providing an efficient way to diagnose quality issues. All the

experts were able to efficiently identify low-quality validation

samples and made appropriate adjustments. They agreed that

Reweighter reduced their efforts in diagnosing quality issues of

validation samples. E2 commented, “The glyphs / are useful in

highlighting inconsistent training samples for further examination.

These samples often reflect quality issues in validation samples.”

Meanwhile, E5 highlighted the practicality of the “diff” mode,

noting, “It provides a convenient method for me to examine weight

changes and evaluate the appropriateness of my adjustments.”

Interestingly, our observations revealed a divergence in expert

strategies: a subset of experts (E1, E3, E4, E6) usually started their

analysis from low-weight validation samples, while the others (E2,

E5) preferred to start their analysis from inconsistent training

samples. This indicates that different analysis pipelines offered

by our tool meet the diverse analytical preferences of individual

experts. After examining the quantity evaluation and detailed case

studies, E1 concluded that Reweighter is effective at handling

fine-grained classification, which aims to distinguish different

classes that are closely related to each other (e.g., “knitwear” and

“sweater” in the Clothing dataset). Given the subtle differences

in fine-grained classification, validation samples often have more

label noise. Our tool helps effectively identify and correct such

label noise, and thus leads to a larger performance gain. The

experts were also satisfied with the performance gains on real-

world datasets ranging from 1.4% to 3.2%. E6 commented, “In

real-world applications, even a performance gain close to 1% is

important and highly valued. For example, a slight improvement

in accuracy can enhance short video recommendations. This, in

turn, leads to increased user engagement and extended interaction

duration on the platform.”

Being easily integrated with different reweighting methods.

Our work demonstrates how Reweighter improves the perfor-

mance of FSR [3]. Representing reweighting relationships as a bi-

partite graph offers the potential to integrate different reweighting

techniques. For example, E6 indicated that our tool can be easily

integrated with different reweighting methods by modeling the

reweighting relationships as a bipartite graph. He noted, “The tool

directly supports validation-sample-based reweighting methods

by extracting the reweighting relationships between validation

samples and training samples using the corresponding reweighting

methods.” As distribution-based methods [12], [15] do not include

validation samples in the reweighting process, they cannot directly

apply Reweighter. In these situations, there is a need to understand

their reweighting mechanism and then construct the corresponding

bipartite graph. For example, the method proposed by Liu et

al. estimates the sample weights by assessing the embedding

similarity between training samples and a set of selected trusted

samples [15]. These similarity relationships can be modeled as a

bipartite graph, which enables the utilization of Reweighter.

7.2 Limitations and Future Work

How to provide in-context recommendation. Currently, the

experts started their analysis after identifying the samples of

interest (e.g., low-quality validation samples). To save exploration

efforts, E1, E3, and E5 expressed a preference for the tool to

automatically recommend these samples to them. A straightfor-

ward solution is to recommend low-weight validation samples

and inconsistent training samples. However, E3 was not satisfied

with this solution, “I can conduct the same analysis by selecting

validation samples with low y-positions and training samples with

triangle shapes. Such recommendations do not offer me additional

benefits.”

A more favorable solution is to dynamically recommend the

samples of interest based on users’ previous adjustments. As E1

mentioned, “If Reweighter can recommend more samples with

similar quality issues after I have identified a few, it would greatly

improve efficiency. Such a method will streamline the analysis

process by maintaining a consistent context.” The challenge lies

in simultaneously considering the quality issues and context when

making recommendations, which deserves further investigation.

How to support online monitoring. After using our tool, E6

suggested that it would be more helpful if Reweighter could

analyze the reweighting relationships and results during the

model training process, “The reweighting relationships and results

will gradually change as the model is trained over epochs. If

Reweighter supports tracking these dynamic changes, I can

intervene and adjust validation samples to match current models

better.” This perspective was echoed by both E1 and E3. After a

thorough discussion, we reached a consensus that our tool could

partially support this functionality by automatically updating the

reweighting relationships during model training. However, the

analysis of these relationships and results across different epochs

still presents challenges for model developers. How to design

an informative overview that effectively summarizes the changes

over epochs deserves further exploration. Moreover, in an online

monitoring system, it is crucial to have an alert mechanism that

can promptly report potential quality issues to model developers.

How to design an alert mechanism that can accurately report the

issues and reduce false alarms requires more investigation.

How to extend to other tasks. Although our tool is evaluated

with image classification, it directly supports the classification

tasks of other types of data, including text, video, and chart [68],

[69]. This is because the extraction of reweighting relationships is

not limited to specific types of data. The experts also discussed

the potential of applying our tool to other tasks, such as object

detection and image segmentation. The bipartite graph construc-

tion method, co-clustering algorithm, and visualization can be

directly applied to other tasks because their design is inherently

task-agnostic, focusing on reweighting relationships rather than

specific task details. However, the validation sample improvement

method needs adaptation to address the complexities of object

detection and image segmentation tasks. Elaborating on this, E6

highlighted the differences between the tasks: “In classification,

I only need to verify whether the labels are clean, which can be

performed in batch mode. However, object detection and image

segmentation require additional feedback on the bounding boxes

and segmentation masks, making batch annotation adjustment

unfeasible. Developing strategies to address the unique challenges

of object detection and image segmentation in the context of

validation sample improvement remains a promising avenue for

future research.”

8 CONCLUSION

We have developed Reweighter, a visual analysis tool for gener-

ating better reweighting results of training samples. The key is to



13

model the reweighting relationships between validation samples

and training samples as a bipartite graph. Based on this graph, we

develop a validation sample improvement method and a co-cluster-

based bipartite visualization. They are tightly integrated together

to support an interactive sample reweighting process, where the

user adjustments are converted to the constraints of the validation

sample improvement method. This process interactively improves

the validation samples and hence generates better reweighting re-

sults. A quantitative evaluation and two case studies are conducted

to demonstrate the effectiveness and usefulness of Reweighter in

improving sample reweighting methods.
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