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Sample-efficient model-based reinforcement learning for quantum control
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We propose a model-based reinforcement learning (RL) approach for noisy time-dependent gate optimization
with reduced sample complexity over model-free RL. Sample complexity is defined as the number of controller
interactions with the physical system. Leveraging an inductive bias, inspired by recent advances in neural ordi-
nary differential equations (ODEs), we use an autodifferentiable ODE, parametrized by a learnable Hamiltonian
ansatz, to represent the model approximating the environment, whose time-dependent part, including the control,
is fully known. Control alongside Hamiltonian learning of continuous time-independent parameters is addressed
through interactions with the system. We demonstrate an order of magnitude advantage in sample complexity of
our method over standard model-free RL in preparing some standard unitary gates with closed and open system
dynamics, in realistic computational experiments incorporating single-shot measurements, arbitrary Hilbert
space truncations, and uncertainty in Hamiltonian parameters. Also, the learned Hamiltonian can be leveraged by
existing control methods like GRAPE (gradient ascent pulse engineering) for further gradient-based optimization
with the controllers found by RL as initializations. Our algorithm, which we apply to nitrogen vacancy (NV)
centers and transmons, is well suited for controlling partially characterized one- and two-qubit systems.
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I. INTRODUCTION

Control of quantum devices for practical applications re-
quires us to overcome a unique set of challenges [1]. One is
to find robust controls for noisy systems, where typical noise
sources include control and feedback noise, system param-
eter mischaracterization, measurement and state preparation
errors, decoherence, and cross-talk [2]. To achieve scalable,
fault-tolerant quantum devices [3–5], control algorithms must
produce controls resilient to such noise. Reinforcement learn-
ing (RL) approaches appear more likely to find robust controls
for certain applications [6] at the cost of requiring a large num-
ber of measurements from the quantum device (samples). We
propose a model-based RL approach to address this problem.

Typically, a quantum control problem is formulated as
an open-loop optimization problem based on a model [1,7–
9], which may be constructed ab initio or obtained via a
process tomography approach. During optimization there is

*khalidmi@cardiff.ac.uk
†c.weidner@bristol.ac.uk
‡jonckhee@usc.edu
§lw1660@gmail.com
‖frank@langbein.org

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

no interaction between the physical system to be controlled
and the control algorithm. The underlying assumption is that
the model represents the system sufficiently accurately. This
class of control algorithms has low sample complexity (high
sample efficiency) represented by the number of optimization
function calls until successful termination. The reason for this
is generally that an analytical model, in particular gradient
information, can be leveraged. This is a strong assumption,
at least in the noisy intermediate scale quantum era, where
noise impedes perfect characterization of quantum devices.
However, the approach has merit, since significant thought
goes into modeling and engineering quantum devices [10].

Alternatively, RL seeks an optimal control via interaction
with the physical system, building models to various de-
grees. It successfully addresses challenging, noisy quantum
control problems with the promise of inherent robustness
[6,11–15]. There are also gradient-free approaches [16] and
methods that estimate gradients using variations of automatic
differentiation [10,17–20].

RL approaches utilizing only measurements without prior
information do not suffer from model bias. Moreover, they
usually optimize an average controller performance over the
noise in the system, yielding inherently robust controllers
[12]. However, this means the number of optimization func-
tion calls becomes prohibitively large, and RL’s high sample
complexity is a core problem limiting its practical appli-
cability [21]. This is not surprising, as without a prior
model, little or no information is available to the optimiza-
tion algorithm, and all information must be obtained via
measurements.
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Despite this inherent restriction, RL has been deployed
recently on real quantum devices for parametrized pulse-
level gate optimization [22], improving the performance of
quantum error-correcting codes [23] and fluxonium gate pa-
rameter optimization [24]. In line with forthcoming analysis,
the sample complexity of these RL experiments is estimated
to be around 104, 103, and 104, respectively, excluding
the cost of estimating observables using single-shot mea-
surements. These costs are smaller than direct or ab initio
applications of RL, which consume around 106 samples [21],
as the aforementioned works, to differing extents, exploit
specific knowledge of the quantum system to frame the
problem to be easier to optimize for the RL agent. More
specifically, these works use custom RL adaptations for each
problem, e.g., fine-tuning solutions already found by other
optimization algorithms as the final step during control prepa-
ration in Ref. [24], or exploiting some experimental structure
that simplifies finding optimal controls in Ref. [22]. In the
present paper, we remain generic in our ignorance of the
system Hamiltonian during acquisition of optimal controls to
demonstrate the general utility of our approach without induc-
ing constraining (and potentially incorrect if not confidently
known) biases on the learning problem. We note, however,
that there is significant scope for sample-efficiency reductions.
For example, the use of our model-based RL algorithm would
make RL, in general, extensible to a wider class of quantum
control experiments.

In classical RL, high sample complexity is typically ad-
dressed using model-based methods, which construct a model
from scratch using information obtained from measurements.
Such methods result in reduced sample complexity for bench-
mark problems [25]. They are successful if the model and
the measurements (samples) obtained during training possess
some generalizability [26,27] that is captured by a function
approximator (usually a neural network). However, methods
involving universal function approximation of dynamic trajec-
tories are unstable. This is because learning can be hindered
by the very large space of trajectories, and interpolating from
insufficient sample trajectories can be shallow or incorrect
[28]. More importantly, for quantum data it is known that
a time-independent Hamiltonian can generate many unitary
propagators, so estimating the model may imply learning the
entire Hilbert space of propagators for a particular control
problem, which is often intractable. This motivates learning
the dynamical generator, i.e., the Hamiltonian, instead of the
propagators.

In this paper, we propose a model-based RL method for
time-dependent, noisy gate preparation where the model is
given by an ordinary differential equation (ODE), differen-
tiable with respect to model parameters [29]. ODE trajectories
do not intersect [30–32], which constrains the space of poten-
tial models for learning and makes learning robust to noise.
We parametrize the Hamiltonian by known time-dependent
controls and unknown time-independent (system) parameters,
which, in addition, makes the model interpretable.

We show that combining the inductive bias from this
ODE model with partially correct knowledge (assuming the
controls are known but not the time-independent system
Hamiltonian) reduces the sample complexity compared to
model-free RL by at least an order of magnitude.

It has recently been shown that inductive biases, i.e., en-
coding the symmetries of the problem into the architecture
of the model space, such as the translation equivariance of
images in the convolution operation [33], leads to stronger
out-of-distribution generalization by the learned model. This
is because inductive biases impose strong priors on the space
of models such that training involves exploring a smaller
subset of the space to find an approximately correct model.

We demonstrate improvement over the sample-efficient
soft-actor critic (SAC) model-free RL algorithm [34] for per-
forming noisy gate control in leading quantum computing
architectures: nitrogen vacancy (NV) centers (one and two
qubits) [35], and transmons (two qubits) [36], subject to dis-
sipation and single-shot measurement noise. We also show
that the learned Hamiltonian can be leveraged to optimize the
controllers found by our RL method further using gradient
ascent pulse engineering (GRAPE) [7,9].

Our approach is similar in spirit to Ref. [37], where a
novel Hamiltonian learning protocol via quantum process to-
mography is proposed for the purpose of model-predictive
control. The complete Hamiltonian (including the control and
system parts) is identified term by term via a zero-order hold
(ZOH) method, where only one term is turned on at a time,
e.g., by setting the control parameters to zero, and learned
individually using optimization over the Stiefel manifold. As
a side remark, a sample complexity advantage to learning the
Hamiltonian with quantum control rather than without it has
recently been shown [38]. The learned Hamiltonian is then
used to obtain a viable control sequence for a variety of state
and gate preparation problems for closed (unitary) systems
under the influence of initial state preparation errors. While it
is possible for our Hamiltonian learning protocol to also learn
the full Hamiltonian using the ZOH method, we focus on the
problem of improving the sample complexity of RL in this
paper through the incorporation of a partially known physics-
inspired model. Furthermore, our focus is also directed on the
interplay of concurrently learning the model and controlling
the system in noisy closed and open system settings.

This paper is organized as follows: In Sec. II we define
the open and closed system control problems including our
setup to simulate single-shot measurements and the RL con-
trol framework, Sec. III describes the model-based version
of the RL control framework, and Sec. IV presents numer-
ical studies for some realistic example control problems on
the system architectures described above in noisy and ideal
settings and how to leverage the learned system Hamiltonian
using GRAPE. In the Appendixes, we present additional de-
tails and proofs for the results in the main text.

II. THE QUANTUM CONTROL PROBLEM

We briefly introduce the quantum control problem for open
and closed quantum systems, and we describe how we esti-
mate the propagators from measurements needed for our RL
approach.

A. Closed system dynamics

Consider a quantum system that is represented by an ef-
fective Hamiltonian H (t ) in the space of complex Hermitian
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n × n matrices,

H (u(t ), t ) = H0 + Hc(u(t ), t ), (1)

where H0 is the time-independent system Hamiltonian and Hc

is the control Hamiltonian parametrized by time-dependent
controls u(t ). Its closed-system dynamics are governed by the
Schrödinger equation,

dU (u(t ), t )
dt

= − i

h̄
H (u(t ), t )U (u(t ), t ), U (t = 0) = 1,

(2)
where U (u(t ), t ) is the unitary propagator representing the
state evolution. Its fidelity to realize a target gate Utarget is

F (Utarget,U (u(t ), t )) = 1

n2
|Tr[U †

targetU (u(t ), t )]|2. (3)

The control problem to implement Utarget is

u∗(t∗) = arg max
u(t ), t�T

F (Utarget,U (u(t ), t )), (4)

where u∗(t∗) are the optimized control parameters for an
optimized final time t∗ � T .

B. Open system dynamics

For open system dynamics, consider an arbitrary state with
density matrix ρ for logd n qudits evolving according to the
master equation [39,40]

dρ(t )

dt
= − i

h̄
[H (u(t ), t ), ρ] + L(ρ(t )), (5)

where L(t ) describes the Markovian decoherence and dephas-
ing dynamics (i.e., the environment),

L(ρ(t )) =
∑

d

γd

(
ldρl†

d − 1

2
{l†

d ld , ρ}
)

, (6)

and ld is a decoherence operator that can be nonunitary.
To characterize the gate implemented by u(t ), we need

to consider the evolution of a complete orthonormal basis of
states, {ρk}n2

k=1. For this we introduce the Liouville superop-
erator matrix X that acts on an arbitrary vectorized state ρ

(e.g., obtained by stacking the matrix columns) to produce the
evolution

ρ(t ) = X(t )ρ(t = 0). (7)

This is equivalent to the tensor-matrix evolution [41]

ρ(t )mn =
∑
μ,ν

Xnm,νμ(t )ρμν (t = 0). (8)

Xnm,νμ(t ) is a fourth order tensor (used to refer to multidimen-
sional arrays in this context) form of X(t ) that encodes the
evolution of the state element ρμν .

Thus, similar to Eq. (2), we define a superoperator
X (u(t ), t ) which encodes the evolution of {ρk}n2

k=1 and follows
the linear ODE:

dX(u(t ), t )
dt

= − i

h̄
(L0 + iL1)X(u(t ), t ), X(t = 0) = 1

(9)
where L0, L1 represent the superoperator version of the com-
mutator map [H (u(t ), t ), ·], and L(·) denotes the Markovian
decoherence and dephasing dynamics.

We factorize out an imaginary prefactor i to the left in
Eq. (9) to unify the ODE for open and closed system dy-
namics. For L ≡ 0, the above reduces to the closed system
dynamics of Eq. (2). For open dynamics, to be faithful to ex-
perimental limitations, we implement single-shot noise when
estimating the gate, i.e., process tomography. We transform
the superoperator Xnm,νμ to the Choi matrix �/Tr[�] that
is given by index reshuffling or partial transpose (and more
formally a contravariant-covariant change of coordinates)
[41,42],

�nm,μν = Xνm,μn. (10)

In Sec. IV, we use this for open and closed dynam-
ics. Estimating � is possible using ancilla-assisted quantum
process tomography (AAPT) and the Choi-Jamiolkowski iso-
morphism [43–45] for 2 logd n-qudit states and logd n-qudit
gates. Analogously to the above, � has a matrix version �.
In this paper, we decompose � over a generalized su(n2)’s
algebra basis {Pk}n4−1

k=1 , e.g., Gell-Mann matrices [46],

�

Tr[�]
= 1

n2
+

n4−1∑
k=2

qkPk (11)

whose coefficients are

qk = Tr[Pk�]

Tr[�]
∈ [−1, 1]. (12)

qk can be modeled as a binomial random variable Bin(M, pk )
with probability pk = 1

2 (1 + qk ), where M is the number of
single-shot (Bernoulli) measurements [47]. The Gell-Mann
matrices are a generalization of the Pauli matrices, and the
corresponding physical measurement operations are akin to
measuring qudit energy levels in an informationally complete
basis.

We measure the faithfulness of the implemented gate
�(u(t ), t ) with respect to the target gate (as another Choi
state) �target using the generalized state-fidelity [48],

F (�(u(t ), t ),�target ) = Tr[�(u(t ), t )�target]

Tr[�(u(t ), t )]Tr[�target]

= 1

n4
+

n4−1∑
k=2

qtarget
k qk . (13)

Analogously to the closed case, the open control problem is to
find an optimal control u∗(t∗) for an optimal final time t∗ � T
(with T being the fixed upper bound), such that

u∗(t∗) = arg max
u(t ), t�T

F (�(u(t ), t ),�target ). (14)

C. Discretization

The exact solution of the time-dependent general dynamics
discussed in Eq. (14) is given by the time-ordered operator

E(t∗, u∗(t∗)) = T exp

(∫ t∗

0
dt ′ − i

h̄
G(t ′, u∗(t ′))

)

for a unitary or Lindbladian generator G. In practice, we solve
for a piecewise constant version of the dynamics represented
by N fixed steps of �t = T/N of the final time T . Thus,
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E(u(t ), t ) is discretized, which amounts to fixing u(t ) = um

to be constant for each time step such that um ∈ Cm×C is a
finite-dimensional array where C is the number of controls
per time step in the vector ul parametrizing Hc(ul , tl ) and m is
the number of total time steps in the pulse, with m � N for a
maximum number of pulse segments N . The propagator is

E(t, u(t )) := E(um) =
m∏

l=1

exp

(
− i

h̄
�tG(tl , u(tl ))

)
. (15)

The control problems in Eqs. (4) and (14) are equivalent to

u∗
m = arg max

um=[u1,...,um]∈X,m�N
F (�(E(um)),�(Etarget )) (16)

for a fidelity F and the time. um is constrained to some max-
imum and minimum values given by X = {um : ∀c, l umin �
ucl � umax ∈ C}. The constraints are applied separately to the
real and imaginary parts of the components of um.

III. MODEL-BASED REINFORCEMENT
LEARNING CONTROL

We give a brief overview of RL, followed by explaining
our model-based RL approach. An excellent introduction can
be found in Ref. [21].

A. Reinforcement learning for quantum control

The RL problem is usually treated as a sequential Markov
decision problem (MDP) on the space of states, actions, tran-
sition probabilities, and rewards: (S,A,P,R). This describes
an environment for consecutive one-step transitions, indexed
by k = 1, 2, . . . , from current state sk ∈ S to next state sk+1 ∈
S if an RL agent executes action ak ∈ A, yielding immediate
scalar reward rk ∈ R. The environment is generally proba-
bilistic, so P (sk+1|sk, ak ) is the probability that the agent is in
state sk+1 after executing ak in state sk . An RL agent follows a
policy function that is represented by a conditional probability
distribution π (ak|sk ): the probability of taking action ak after
observing the state sk .

The quantum control problem can be represented as an RL
problem by sequentially constructing the control amplitudes
as actions, using the unitary propagator that the control im-
plements as the state with the reward as the fidelity:

ak = uk, (17a)

sk =
k∏

l=1

exp

(
− i

h̄
�tG(tl , ul )

)
, (17b)

rk = F (�(E(uk )),�(Etarget )). (17c)

As this is deterministic, the probabilities P are trivial, and
we have a simple environment function E : S × A → S × R,
mapping the current state and action (s, a) to the next state
and reward (s′, r). In model-free RL (see Algorithm 1), a
discounted sum of expected rewards, called the returns,

η(π ) := Eat ∼π

[ ∞∑
k=0

γ krk

]
, (18)

is maximized, where Ex∼P[·] = ∫
X dx P(x)[·] is the expecta-

tion operator and 0 � γ � 1 is a discount factor.

Algorithm 1. Reinforcement learning loop.

1 Initialize empty data set D, parametrized random policy
πθ , k ← 0

2 Observe initial state s0

3 While k < T/�t do
4 Execute ak ← πθ (·|sk )
5 Observe sk+1, rk ← E (sk, ak )
6 Store D ← D ∪ {(sk, sk+1, ak, rk )}
7 k ← k + 1

// if require update: perform model-free update of

parameters (e.g., policy πθ )

However, Refs. [34,49] observe that adding an entropy
maximizing term for the policy π (ak|sk ) to the optimization
objective encourages exploration of the state space S , im-
proves the learning rate of the agent, and reduces the relative
number of samples needed, compared to other standard RL
algorithms. The maximum entropy objective or the entropy-
regularized cumulative reward function J for N steps is

J (π ) =
N∑

k=0

γ kE(sk ,rk )∼Eπ
[rk + αJ1(sk )], (19)

where Eπ represents the environment’s state-action probabil-
ity distribution induced by the policy π , α is an optimizable
temperature parameter (signifying the importance of explo-
ration in the objective), and J1(sk ) is the entropy of the policy
function π (·|sk ) conditional on the kth state sk ,

J1(sk ) = −Ex∼π (·|sk )[log (π (x|sk ))]. (20)

Thus, the RL control problem becomes a problem of finding
the optimal control policy π∗ given by

π∗ = arg max
π

J (π ). (21)

This is exactly solvable for tabular MDPs using dynamic
programming and heuristically with neural network function
approximation for continuous MDPs.

B. Model-based reinforcement learning

In this paper, we use the soft actor-critic (SAC) algorithm
[34] as our base (model-free) RL algorithm. For brevity, we
only highlight parts of SAC relevant to us. A detailed descrip-
tion can be found in the original paper [34]. We use a neural
network policy function πθ (ak|sk ), with the optimizable pa-
rameters θ , as the actor and the state-action value function
Qφ (sk, ak ) = E(sk ,ak )∼Eπ

[
∑∞

k=0 γ k[r(sk, ak ) + αJ1(sk )]] as the
neural network critic with parameters φ. Both π and Q are
simple multilayer perceptrons. In essence, the critic is used
to reduce the high variance in the reward function due to
the nonstationary nature of the MDP. It is trained by having
its predictions match the estimated Q̂ values obtained for
some data {sk, sk+1, ak, rk}b

k=1 obtained from a b-length roll-
out (number of interactions) with E . The actor is trained by
minimizing the loss function

J ′(πθ ) = E(sk ,ak )∼Eπθ
[α log πθ (ak|sk ) − Qφ (sk, ak )], (22)
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FIG. 1. A schematic of model-based RL is given in (a). The arrowhead implies the direction of affect of the edge between a source
and a sink node. The agent or policy function πθ interacts with the RL environment modeled as MDP to collect data {sk, sk+1, ak, rk}. This
encompasses model-free RL. The data are then used to train the model Mζ (sk, ak ). The model is trained until some quality measure such as
the validation prediction error on some untrained-upon data from the environment plateaus, indicating that the training is complete. Then, it is
used to generate synthetic data through a b-step rollout in which the policy interacts with the model b times. The policy parameters θ (and the
state-action value function parameters φ) are optimized using the real and model generated data. In (b), we visualize the policy inputs as the
gate-characterizing observables (unitary or Lindblad) about the Choi matrix � given by Eq. (12), and the tunable outputs are the parameters
of a multivariate Gaussian distribution, i.e., the mean μ and covariance �. The controls ui are drawn from N (μ,�).

which is equivalent to maximizing J in Eq. (19). For SAC, this
policy optimization is carried out heuristically using neural
networks to approximate the policy function πθ . We define
the number of agent-environment interactions needed to find
an approximately optimal policy π∗ as the sample complex-
ity. Moreover, the policy outputs parametrize the mean and
covariance μ,� of a multivariate Gaussian N (μ,�) from
which the control vector u is drawn. For the quantum control
problem in Eq. (16), we are usually just concerned with find-
ing an optimal action sequence u∗ producing the maximum
intermediate reward rk rather than the optimal policy function
π∗ which can be produced by a suboptimal policy, too.

SAC can be augmented to incorporate a model Mζ (sk, ak )
that approximates the dynamics of E (sk, ak ) using the policy’s
interaction data D [27] where ζ are the model’s learnable
parameters. The model acts as a proxy for the environment
and allows the policy to do MDP rollouts (steps) to augment
the interaction data. For this to work, the dynamics obtained
from interacting with Mζ must be close enough to the true
dynamics of E to allow the policy to maximize J . By improv-
ing the returns η̂(π ) on the model Mζ by at least a tolerance
factor that depends on this dynamical modeling error, the
policy’s true returns η(π ) on the environment are guaranteed
to improve ([27], see Appendix C for a detailed mathematical
discussion). See Fig. 1 for an illustration of model-based RL.
A good choice of the model function class, therefore, can im-
pose strong and beneficial constraints on the space of possible
predicted dynamics and thus lead to a smaller modeling error
and returns’ tolerance factor or allow the model to reduce
the tolerance factor greatly after consuming an appropriate
amount of training data.

Our choice of the model’s functional form is motivated by
the two ideas presented in the Introduction: (a) incorporating
correct partial knowledge about the physical system in the

model ansatz parameters; (b) encoding the problem’s symme-
tries and structure into model predictions as function space
constraints. For the system in Eq. (1), we assume that the
controls are partially characterized to address (a). Specifically,
its time-dependent control structure Hc is known. We achieve
(b) by parametrizing the system Hamiltonian H (L)

0 (ζ) with
learnable parameters ζ, where L is the number of qubits. We
make the model Mζ a differentiable ODE whose generator is
interpretable and has the form

Hζ (u(t ), t ) = H (L)
0 (ζ) + Hc(u(t ), t )

=
n2∑

l=1

ζlPl + Hc(u(t ), t ), (23)

where ζl = Tr[PlH0(t )] ∈ [−1, 1] are real. Generally, like
the Choi state, H0/Tr[H0] admits an arbitrary decomposi-
tion in terms of a basis {Pl}n2−1

l=1 of the SUn’s Lie algebra.
Analogously, for an open system, we parametrize the time-
independent part of any dissipation dynamics in addition to
the system Hamiltonian using an SU(n2) algebra parametriza-
tion: G(L)

0 (ζdiss) = ∑
l ζdiss

l Pl in the full generator Gζ .
The model is trained by minimizing the regression loss

for single time-step predictions using data uniformly sampled,
D ∼ D, where D represents the entire data set,

Lmodel(D) =
∑

D

[Mζ (sk, ak ) − sk+1]2. (24)

To understand why a differentiable ODE ansatz is a good
choice for the model, we need to define an ODE path that is

given by φt : E(0)
Hζ−→ E(T ) generated by Hζ for some time

t ∈ [0, T ] and propagator E. The ansatz is a good choice
because of the following two properties of ODE paths: (a) they
do not intersect, and (b) if paths φ

(A)
0 , φ(B)

0 start close compared
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Algorithm 2. Learnable Hamiltonian model-based soft actor critic (LH-MBSAC).

Input :

Hc control Hamiltonian [time-dependent part of H (t ) in Eq. (1)]
T, �t, M max time, time-step size, number of single-shot measurements [if open system to estimate � using Eq. (12)]
Etarget target gate
W,C, b, tol Epochs, time steps, rollout length, validation loss tolerance (which is a problem-specific hyperparameter)
Output:

u∗ Approximately optimal 2D array of controls that solves Eq. (16)
θ, φ, ζ Optimized parameters of the policy, critic, and learned model

1 Initialize empty environment data set DE , model data set DMζ
, random policy πθ

// collect random model training data

2 Populate DE using uniform random policy πθ with Algorithm 1 � randomly explore the environment E state space

without updates
3 for W epochs do

// Train model

4 Sample a batch of training and validation data Dtrain, Dval ∼ DE and minimize Lmodel(Dtrain ) in Eq. (24)
5 for C time steps do

// agent-environment interaction

6 Execute ak ← πθ (·|sk ), observe sk+1, rk ← E (sk, ak ), and store data DE ∪ {(sk, sk+1, ak, rk )}
7 if Lmodel(Dval ) < tol then

// agent-model interaction

8 Sample uniformly a batch of initial states {sk} ∼ DE , k ← 0
9 for k′ in {1, . . . , b} do
10 Execute ak′ ← πθ (·|sk′ ) and observe sk′+1, rk′ ← Mζ (sk′ , ak′ ) � b-length model rollout

11 Store DMζ
← DMζ

∪ {(sk′ , sk′+1, ak′ , rk′ )}
12 k′ ← k′ + 1,
13 Train policy by minimizing J ′(πθ ) in Eq. (22) using DMζ

∪ DE

to path φ
(C)
0 , then paths φ

(A)
t , φ

(B)
t remain close compared to

path φ
(C)
t .

Both properties are well known [50,51] for ODEs and be-
come very useful when we try to predict the trajectories from
noisy quantum data by imposing strong priors on the space
of learnable Hamiltonians. Property (b) is a consequence of
Gronwall’s inequality [51] and essentially can be interpreted
as follows: ODE flows that start off closer (with respect to
the initial condition) stay closer (with respect to the final
condition). Both (a) and (b) essentially imply a sort of intrinsic
robustness of the ODE flow φt (z0) to perturbations on z0 [32].
They constrain the trajectories predicted by the model Mζ to
be intrinsically robust (over a finite time interval) to small
noise in the states sk and inaccuracies in the learned system
Hamiltonian H (L)

0 (ζ).
We call the SAC equipped with this differentiable ODE

model the learnable Hamiltonian model-based SAC (LH-
MBSAC) as listed in Algorithm 2. Crucially, LH-MBSAC
generalizes the SAC by allowing the policy to interact with the
ODE model and the physical system. LH-MBSAC gracefully
falls back to the model-free SAC in the absence of a model
with low prediction error that is measured from the perfor-
mance of the model’s predictions on an unseen validation set
of interaction data. The threshold or tolerance level for switch-
ing to the agent-model interaction part of the algorithm is
likely problem-dependent and thus needs to be selected along
with other hyperparameters in RL. However, this allows us to
improve the sample complexity of model-free reinforcement
learning, when possible, by leveraging knowledge about the
controllable quantum system, yet we are still able to control
the system in a model-free manner if this is not possible.

IV. EXPERIMENTS

We demonstrate the performance of LH-MBSAC on three
quantum systems of current interest in open and closed set-
tings with shot noise. Measurements in this section are made
using Pauli instead of the generalized Gell-Mann operators
mentioned in Sec. II B, and the simulated systems are all qubit
systems.

To warm up, the first system H̃ (1)
NV is a single-qubit NV

center with microwave pulse control [52],

H (1)
NV(t )

h̄
= 2π�σz + 2π[u1(t )σx + u2(t )σy]︸ ︷︷ ︸

Hc (t )

, (25)

where � = 1 MHz is the microwave frequency detuning,  =
1.4 MHz is the Rabi frequency, and the control field parame-
ters are u j (t ) in the range X(1)

NV = {−1 � u j � 1}. In this and
subsequent examples, terms not covered by Hc(t ) are learned,
parametrized by the learnable model parameters ζ. The gate
operation time is 20 µs.

The second system H (2)
NV is a two-qubit NV center system

[35], driven by microwave pulses of approximately 0.5 MHz,
modeled as follows:

H (2)
NV(t )

h̄
= |1〉〈1| ⊗ [−(νz + azz )σz − azxσx]

+ |0〉〈0| ⊗ νzσz +
∑
l=x,y

2∑
k=1

σ
(l )
k ulk (t )

︸ ︷︷ ︸
Hc (t )

, (26)
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where νz = 0.158 MHz, azz = −0.152 MHz, and azx =
−0.11 MHz, σ

(l )
k is the lth Pauli operator on qubit k, and

ulk (t ) is a time-dependent control field. The range of control
is X(2)

NV = {−1 MHz � ulk � 1 MHz} and the final gate time
is T = 2 µs.

The third system H̃ (L)
tra is an effective Hamiltonian model

for cavity quantum electrodynamics (cQED) [36] for two
transmons or qubits as a proxy for the IBM quantum circuits
[53],

H (2)
tra (t )

h̄
=

2∑
l=1

ωl b̂
†
l b̂l + ηl

2
b̂†

l b̂l (b̂
†
l b̂l − 1)

+ J
2∑

l=1

(b̂†
l b̂l+1 + b̂l b̂

†
l+1) +

2∑
l=1

ul (t )(b̂l + b̂†
l )

︸ ︷︷ ︸
Hc (t )

.

(27)

This model consists of Duffing oscillators with frequency
ωl = 5 GHz representing the qubits with an anharmonicity
ηl = 0.2 GHz, qubit coupling J , and a control field ul per
qubit. This is a special case of the Bose-Hubbard model [54],
with b̂l representing the boson annihilation operator on the jth
qubit. The control field ul (t ) is real by construction in addition
to extra constraints imposed on the space of possible controls
X. The range of control is given by X(2)

tra = {−0.2 GHz � ul �
0.2 GHz} and the final gate time is T = 20 µs.

For the two-qubit system the target gate is CNOT, and
for the one-qubit system it is the Hadamard gate. Pulses
are discretized in accordance with the scheme introduced
in Sec. II C for the number of time steps, N = 20. We fol-
low the parameter restrictions for all systems introduced in
Refs. [10,35,36,52]. Moreover, due to limited support in our
autodifferentiation library [55], we simulate the complex dy-
namics by mapping the complex ODE to two real coupled
ODEs [20] (see Appendix A for more details on our ODE
solver).

The following sections are organized as follows. In
Sec. IV A, we demonstrate a sample complexity improvement
for the different control problems discussed above in a noisy
closed setting. For the subsequent sections, we study the two-
qubit transmon control problem in more detail. The results
were similar for other systems that we studied. In Sec. IV B,
we study the effect of increasing the estimated Hamiltonian
error from its true value on the sample complexity of con-
trol. Section IV C discusses how the learned Hamiltonian in
LH-MBSAC can be further utilized for model-based control
using gradient-based methods like GRAPE. Section IV D ex-
tends results from the closed setting to the noisy open system
setting. Finally, in Sec. IV E, we highlight some limitations
and silver linings of the LH-MBSAC and the RL-for-control
approach for our specific MDP [Eq. (17)] in this paper and
provide promising ideas to circumvent some of the issues.

A. Sample efficiency for closed system control

In this section, we only consider closed or unitary system
control with and without single-shot measurements defined in
Sec. II A. From here on, we refer to single-shot measurements
as just “shots.”

Unitary control (with closed system dynamics) is imple-
mented for shots as a special case of open system control
where the dissipation operator L is 0. The Choi operator �

corresponding to the gate realized by the controls is obtained
by sampling from the binomial distribution in Eq. (12) with
M = 106 shots per measurement operator. By Hoeffding’s in-
equality [56], we know that with probability 1 − 0.01 the error
in the estimator of ql is 10−3. Or generally, with probability
1 − δ, for ε error, we require O(log 1

δ
/ε2) measurements. The

AAPT method [45] (see Sec. II B) uses M × 3L shots in total
for 3L possible measurement operators for an L-qubit system,
which is quite expensive.

Further sparsity restrictions on the structure of � imposed
by a k-local Hamiltonian, where qubit interactions up to only
the nearest k � L qubits are assumed, can allow the shot
cost to go down to O(4k (log M )/ε2) for M observables due
to a reduction in the number of observables that need to be
measured or tracked, which is asymptotically optimal in the
number of measurements [57]. However, since the goal of this
paper is gate control, these costs are generally unavoidable to
completely verify gate performance. In practice, such gates
are only limited to a few qubits, and operations on many
qubits are achieved in the circuit formalism through gate
composition [53,58].

We randomly initialize the learnable system Hamilto-
nian using the Pauli basis parametrization in Eq. (23)
with coefficients ζi ∼ Uniform(−1, 1). The environment’s
data buffer DE that stores the model’s training data, i.e.,
the initial exploration data set (see Algorithm 2), con-
sists of 1, 20, and 100 pulse sequences for the one-qubit
NV, two-qubit NV, and two-qubit transmon systems, re-
spectively. A more detailed discussion of the amount of
training data needed for Hamiltonian learning is presented
in Appendix D. These data are collected using random uni-
form policy actions during the first run of the LH-MBSAC
algorithm.

The exploration data set is then used to learn the system
Hamiltonians H (1)

0NV
, H (2)F

0NV
, H (2)

0tra
via supervised learning of

Mζ using the dynamics prediction loss function [Eq. (24)]
until a validation loss of around 10−3 × 22q × batch_size
is reached, where batch_size is the number of samples used
for a single training policy update. Here q is the number of
qubits and q = 2 for the theoretical unitary and q = 4 for
the Choi state (due to the Choi-Jamiolkowski isomorphism in
AAPT).

After this, we switch to the model Mζ to generate synthetic
samples to train the policy π . While concurrently maintain-
ing policy interactions and attempting control of the system
via the policy π , the model is successively trained in peri-
ods with fresh data to reduce the model error even further.
Once the policy starts producing pulses with nearly optimal
fidelities of around 0.98, we terminate the algorithm and use
the learned Hamiltonian to further optimize the pulses using
gradient-based methods like GRAPE to (a) reduce sample
complexity costs and (b) improve runtime of LH-MBSAC,
since the model simulations are computationally expensive.
We found that terminating around 0.98 ensures that the ap-
plication of further gradient-based methods does not cause
the control parameters to diverge too much from their initial
values, thereby retaining, at least partially, their favorable
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FIG. 2. The closed system fidelity F of the Hadamard gate for (a) H (1)
NV, and of the CNOT gate for (b) H (2)

NV and (c) H (2)
tra as a function of

the number of environment E calls. The mean fidelity over 100 controllers is plotted as a solid line with the shading indicating two standard
deviations, and the maximum fidelity is indicated by the dashed line. LH-MBSAC or model-free SAC with the unitary tag indicates the
shot-noise-free closed system problem in Eq. (4), and single-shot measurements are likewise indicated. We terminate the algorithm early at
F > 0.98 for LH-MBSAC with and without single-shot measurements since the model simulations are expensive and the learned model at
this point can be used to further optimize the moderately high fidelity RL pulses further, as shown in Sec. IV C. The sample complexity
of LH-MBSAC is significantly improved for the two-qubit transmon and the NV center over model-free SAC for the closed system control
problem and with single-shot measurements (of size M = 106), using AAPT. We average these results over three seeds of each algorithm run
where a seed refers to a single algorithm run from scratch with a fresh set of randomly initialized parameters.

robustness properties [12]. Step (b) is discussed in detail in
Sec. IV C.

The results for LH-MBSAC and model-free SAC for the
one- and two-qubit control problems are shown in Fig. 2. We
consider LH-MBSAC’s performance with shots by estimating
the gate using its corresponding estimated Choi state � using
AAPT with 106 shots per observable. The sample complexity
of LH-MBSAC to achieve a maximum fidelity significantly
improves, by at least an order of magnitude, upon the model-
free baseline in both cases, although it is more significant for
the two-qubit transmon.

B. Sample complexity as a function of Hamiltonian error

Continuing with the closed system control problem, in
this section we study the relationship between sample com-
plexity and error in the estimated model Hamiltonian H0(ζ)
compared to the true system Hamiltonian H0 as the error is
increased. This relationship is highly nonlinear or irregular
and is discussed in detail later in the section. On a high
level, the purpose of this section is to understand the interplay
between control and model learning especially if the model
is inaccurate. Can we still learn a near-optimal control policy
even if the model is incorrect? To an extent, yes: we show
that when the model error is small, LH-MBSAC is able to
successfully find a near-optimal control pulse, even with an
incorrect model.

We define the model error δ as in Ref. [59]:

δ = ‖H0(ζ) − H0‖, (28)

where ‖ · ‖ is the spectral norm (the largest singular value)
of H0(ζ) − H0. For this study, we compare two settings for
some value of δ in each experimental run: (i) learning the
system Hamiltonian, i.e., δ is decreased from its initial value;
(ii) not learning the system Hamiltonian, i.e., δ remains fixed

throughout the experiment. Case (ii) effectively corresponds
to Algorithm 2 without any model training, i.e., we do not
attempt to minimize Lmodel(Dtrain) to update the model and
instead set the model to have a fixed constant Hamiltonian
error δ. The range of Hamiltonians corresponding to different
δ values is chosen by randomly sampling the true Hamiltonian
with rejection using Gaussian perturbations. The nonlinear
dependence on the sample complexity of LH-MBSAC as
a function of δ for the two-qubit transmon control prob-
lem for both cases is shown in Figs. 3(a)–3(e) for δ =∈
{0.01, 0.02, 0.05, 0.1, 0.2}.

For the two-qubit transmon problem, the δ =
0.02, 0.05, 0.1 results show worse performance compared to
the δ = 0.2 results for the theoretical unitary control problem
(without measurement noise). This indicates that some
model system Hamiltonians H0(ζ) with a larger δ predict
dynamics more consistent with the true system Hamiltonian
H0 dynamics than H0(ζ) with a smaller δ. However, learning
H (2)

0tra
for all shown cases restores performance for both the

noiseless unitary and shots-based closed system control
problems.

To explain these empirical results and make them more
intuitive, we now make use of the integration by parts lemma
of Ref. [59] that bounds δ by the unitary prediction error of the
ODE model with respect to the environment for the unitary
control problem Eq. (4).

Proposition 1. The following bound holds for the differ-
ence between the unitary model’s predicted state UMζ

and the
environment’s unitary state UE ,∥∥UE − UMζ

∥∥
∞,t � t2δ

(
1

t
+ 2

t
‖Hc‖1,t + ‖Hζ‖ + ‖HE‖

)
,

(29)
where ‖ · ‖ is the spectral norm, and for some linear op-
erator A we have ‖A‖∞,t = sups∈[0,t] ‖A(s)‖ and ‖A‖1,t =∫ t

0 ds‖A(s)‖.
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FIG. 3. Sample complexity or E calls of LH-MBSAC for the two-qubit transmon control problem as a function of spectral norm
error δ, quantifying the closeness of the learned system Hamiltonian H0(ζ) and the true system Hamiltonian H0. The cases for δ =
0.01, 0.02, 0.05, 0.1, 0.2 are plotted in (a)–(e). The mean fidelity over 100 controllers is plotted as a solid line, with the shading indicating two
standard deviations, and the maximum fidelity is indicated by the dashed line. The “noiseless unitary” is the no shot noise setting where the
exact unitary is seen by the algorithm while alternatively the unitary is estimated using AAPT with M = 106 shots per observable characterizing
the Choi state. The “no model train” line indicates the setting where no learning of H0(ζ) occurs and δ is fixed while the “model train” lines
denote the setting where δ is reduced through model training. In general, we see that there are some instances where the RL agent is able to
optimize the objectively wrong model δ = 0.2, 0.01, and there is a nonlinear dependence of E calls on δ, i.e., a large δ can produce better
model-predictive trajectories with a smaller unitary prediction error. This points us to considering the idea of learning Hamiltonians that are
only “locally consistent.” Once learning H0(ζ) is enabled, algorithmic performance is restored in both the noiseless (with no shot noise) and
shot-noise unitary settings. The number of measurements is M = 106 per observable.

Proof. See the proof of Proposition 2 in Appendix B. �
Proposition 1 hints at the intuition for why the Hamilto-

nian error is generally not linearly related to the propagator
error.

Although there are some works with better relational
bounds on the Hamiltonian error in terms of the observable
error, these hinge on the ability to maintain a privileged ba-
sis and/or access to special probe states such as the Gibbs
state basis [60,61]. These bounds crucially do not include the
propagator error, thanks to previous assumptions, which is a
more general approach to bounding the quantum dynamical
evolution error. Of course, there is always a price to be paid
for generality, and in this case it is that the error bounds are
less constrained and the link between the Hamiltonian and the
unitary error becomes nonlinear for the general case of the
bound.

From Proposition 1, we infer that the unitary model
prediction error or the supervised learning regression loss
Lmodel(Dtrain) in Eq. (24) being small does not imply
closeness between learned and true system Hamiltonian,
i.e., δ → 0. However, in the converse case, δ being
very small necessarily implies small propagator error.
This is illustrated for the two-qubit transmon Hamilto-
nian in Fig. 4(a). The Hamiltonians are again sampled
using Gaussian perturbations to the transmon Hamilto-
nian. There is also significant variation in the unitary
model prediction error, even for the same value of δ

for different repetitions of the random Hamiltonian. How-
ever, we see that with decreasing δ, the variation de-
creases, which is also explained by the above bound.
Finally, the same pattern can also be observed if we take
δ to be the mean-squared difference between the Pauli

coefficients of the true and learned Hamiltonian. Thus,
this behavior is general and not limited to the choice
of δ.

The main takeaway of this section, that will be addressed
further in the next section, is that for the control problems
considered here, it is only necessary to learn models that are
“locally consistent” in terms of the unitary trajectories they
generate, and small unitary prediction errors can be achieved
by models with non-negligibly small δ.

C. Leveraging the learned Hamiltonian with GRAPE

Proposition 1 paves the way for learning system Hamil-
tonians that are locally consistent with the unitary trajectories
they generate. By local, we mean that the learned Hamiltonian
is consistent with the true Hamiltonian on only a subset of
all possible generatable trajectories relevant to the control
problem. In this section, we delve deeper into the learned
model errors and also show that these local models can be
leveraged to further optimize the fidelities of LH-MBSAC’s
controllers using gradient-based methods like GRAPE [7,9].

During the model’s Mζ training phase, H0(ζ) is made
consistent with trajectories uniform randomly drawn from the
data buffer DE by minimizing the regression loss Lmodel(DE ).
This allows us to learn a model of the environment that can
predict locally consistent unitary trajectories (i.e., at the scale
of the control problem). In other words, the learned system
Hamiltonian H0(ζ) does not have to coincide with the true sys-
tem Hamiltonian H0 for it to be useful for the optimal control
task. Indeed, we take the Hamiltonian learned for the two-
qubit transmon in Fig. 2(c) and find that it has δ = 0.915 09.
Diving deeper, the matrix difference between the true H0 and
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FIG. 4. (a) An illustration of the nonlinear relationship between the unitary model prediction error ‖UE − UMζ
‖ and the Hamiltonian

spectral norm (solid) error or mean-squared Pauli basis difference (dashed) error as δ for the two-qubit transmon control problem. For the same
1000 random control pulses, we evaluate the average unitary prediction error of Mζ with increasing δ for three different uniform randomly
sampled two-qubit Hamiltonians H0(ζ) to illustrate the variation in response to the unitary error. (b) Local and global unitary trajectories: F as
a function of a random control pulse with either the learned system Hamiltonian H0(ζ) or the true system Hamiltonian H0. The learned H0(ζ)
trajectories do not coincide with the global trajectory with δ = 0.915 09, with the majority contribution coming from a global phase factor
such that Tr[H − H0(ζ)] ≈ 0.9. Both trajectories start off extremely close and start diverging as time increases due to accumulation of small
errors in the predicted dynamics. (c) The learned H0(ζ) can be leveraged using GRAPE to further optimize the fidelities of LH-MBSAC’s
controllers. We plot a histogram of 100 LH-MBSAC controller infidelities 1 − F before and after applying GRAPE on these controllers
using the learned Hamiltonian and a random Hamiltonian. The LH-MBSAC fidelities are significantly improved after applying GRAPE. The
appropriate baseline or benchmark representing our ignorance of H0 is a random H0(ζ) (with uniform random Pauli parameters), which, when
plugged into GRAPE, yields extremely low fidelities near 0 towards the extreme right-hand side of the plot.

learned Hamiltonian H0(ζ) is

H − H0(ζ) =

⎡
⎢⎢⎣

−0.912 0.001 −0.001 0.001
0.001 −0.914 0.001 − 0.001i 0.001 + 0.001i

−0.001 0.001 + 0.001i −0.913 −0.001
0.001 −0.001 − 0.001i −0.001 −0.914

⎤
⎥⎥⎦.

Notably, we can see that most of the error is actually in Tr[H −
H0(ζ)] with the true Hamiltonian being learned up to a scale
factor of around 0.9 with the rest of the parameter error being
small. This is precisely the global phase error that cannot be
learned [62].

Despite this discrepancy between the true and learned
system Hamiltonians, we find mostly good local agreement
between the two random trajectories that they induce thanks
to the supervised training phase of the model. We show in
Fig. 4(b) the local and global trajectories corresponding to
H0(ζ) and H0 for the two-qubit transmon, which shows that
the two unitary trajectories with respect to the CNOT fidelity
are not always coinciding. More specifically, we can see a high
overlap in the fidelities induced by random pulses for times
from 0 µs to around 100 µs. Moreover, the small differences
in the generator only start manifesting as the timescales get
longer, and this can be explained by accruing small errors
in predicted dynamics. This confirms that the unitary model
prediction error grows as a function of time. This makes in-
tuitive sense since predictions far into the future, compared to
their timewise preceding counterparts, must necessarily have
more built-up error. Furthermore, this learned “local” H0(ζ)
and the controllers found by LH-MBSAC can be used in
conjunction with the model-based GRAPE control algorithm
[7,9] to optimize the SAC controller fidelities much more
quickly than via just RL alone using accelerated second-order

gradient descent. The LH-MBSAC controllers act as seeds, so
GRAPE does not move too far away in pulse parameter space
compared to where it started. Although not done here, this
can also be imposed as an explicit constraint. Note that the
question of exactly when to switch over to GRAPE beyond
heuristics remains unanswered.

The fidelities after applying GRAPE are evaluated with re-
spect to the true system Hamiltonian H0. Usually LH-MBSAC
controllers have moderately high fidelities around F > 0.98
which are improved to F > 0.999. In Fig. 4(c), we show
the RL controllers being optimized further using the learned
H0(ζ) with GRAPE. Experiments in this section for the two-
qubit NV center system yield similar results and can be found
in Appendix E.

D. Open system control with single-shot measurements

Due to the interpretable nature of our ODE model’s ansatz
in Eq. (23), it is pertinent to ask if two competing but linear
terms in the model Mζ can be learned simultaneously. In
this section, we find that for our model learning setting, the
answer to this question is no. However, this is not general to
all problem settings and could potentially be pursued in future
work.

In the previous sections, we only learn one term repre-
sented by H0(ζ). Utilizing the open system formulation of
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FIG. 5. Diamond norm fidelity F� for the two-qubit transmon
control problem in low and high Lindblad dissipation regimes for
LH-MBSAC. The results are averaged over two seeds with the mean
F� over 100 controllers shown by solid lines and the maximum F�
by dashed lines. Shading denotes two standard deviations from the
mean. Here, the “learn” label signifies that dissipation operators are
being learned in addition to the system Hamiltonian.

the control problem in Sec. II B, we consider Lindblad dis-
sipation along with shot noise for the two-qubit transmon
control problem in Eq. (14). Specifically, we consider the de-

coherence operator L(l )
diss =

√
2

R∗
l
bl b

†
l , acting on the lth qubit,

and the decay operator L
(l )
decay =

√
2
Rl

bl for l = 1, 2. R∗
l and

Rl are the decoherence and decay rates. Both operators are
time-independent

Alternatively, we can also represent these operators using
the adjoint representation, but we note that in the context of
this learning problem that representation will not make much
difference as our algorithm is able to effectively learn the
Hamiltonian up to the addition of a scalar matrix. However,
practically speaking, one can obtain the energy differences
of the Hamiltonian via spectroscopy [63], which can then be
encoded in the eigenvalues of the adjoint representation. It is
also possible to learn these eigenvalues using measurements
of canonical (Gibbs) states [60].

We perform experiments for high and low dissipation cor-
responding to the gate times R∗hi

l = Rhi
l = 4 µs and R∗lo

l =
Rlo

l = 20 µs. Comprising both of these time-independent oper-
ators, the Lindblad term L1 is learned concomitantly with the
system Hamiltonian. The results are shown in Fig. 5, where
the “learn” label signifies that L1 is being learned in addition
to the system Hamiltonian H0(ζ).

We use the diamond norm fidelity [64] F�,

F�(�(u(t ), t ),�target ) = 1 − ‖�(u(t ), t ) − �target‖�, (30)

instead of the generalized state fidelity since the latter lacks
the sensitivity to detect the low dissipation regime (see Ap-
pendix G). We find that attempting to learn L1 while learning
H0(ζ) confers little to no advantage in both the high and
low dissipation regimes for this control task. Further inves-
tigation shows that the estimate of the system Hamiltonian
H0(ζ) compensates for the observed discrepancy in observed

dynamics due to dissipation as much as it is unitarily possible.
Moreover, the learning processes for L1 and H0(ζ) become
entangled/mixed, so learning multiple independent terms in
Mζ may not be suitable for LH-MBSAC.

E. Limitations and silver linings

There are two major limitations of LH-MBSAC. The first
is that only the system or time-independent part of the Hamil-
tonian can be learned with the algorithm, while the more
difficult problem of learning the time-dependent part of the
Hamiltonian [62] is left as future work.

Moreover, we found that LH-MBSAC was not able to
tackle a three-qubit transmon control problem to obtain a
Toffoli gate on an extension of the transmon system. The
limitation applied mostly to the RL agent; a viable Hamilto-
nian is learned that can be leveraged with GRAPE as before.
Specific computational details are discussed in Appendix F.
Essentially, our findings indicate this is an optimization land-
scape problem and an issue specific to the meta RL strategy
of finding optimal pulses instead of a hyperparameter prob-
lem. There are two major reasons behind this assessment.
First, the values and the gradients for policy and value func-
tions saturate with large training times, i.e., both are stuck
in suboptimal extrema, which ultimately culminate with a
prematurely optimized reward function. Secondly, since the
model Hamiltonian is known beforehand (or also learned),
GRAPE equipped with this Hamiltonian and initialized with
the highest fidelity LH-MBSAC controllers also gets stuck.

However, the LH-MBSAC strategy is not limited to SAC
and can augment different RL algorithms for which the three-
qubit problem may be tractable. Also, since this is likely
an optimization landscape issue, a reformulation of the RL
control problem could also alleviate this issue by reducing
the probability of SAC getting stuck by increasing the range
of fidelities the RL agent sees as “proximally optimal.” At
present, the agent’s goal is to maximize all fidelities it ob-
serves, with most of the observations being premature, i.e.,
before the final gate time. This is highlighted in Fig. 6, which
shows the infidelity 1 − F as a function of time for 100 pulses
found by LH-MBSAC and GRAPE for the two-qubit trans-
mon control problem. Compared to GRAPE, LH-MBSAC
pulses are much more consistent and periodic in terms of
the intermediate fidelity values. This highlights that the RL
approach is biased towards optimizing intermediate fideli-
ties along with the final target fidelity [since the objective
function in Eq. (19) is the regularized expected cumulative
fidelity]. This is quite different from the approach taken by the
gradient-based GRAPE algorithm. Despite being interesting
from a controller robustness point of view [12], this bias can
prevent solutions that do not admit high intermediate fideli-
ties from being found as RL can get stuck in a loop mining
medium-level fidelity values. Stepping away from this partic-
ular sequential decision-making MDP formulation might be
one solution to consider in future work.

There are silver linings for the aforementioned MDP for-
mulation. RL pulses are fidelity-wise better, on average,
across the duration of the pulse. Leveraging the learned sys-
tem Hamiltonian, we can further improve the performance
of the RL pulses by using GRAPE with the RL pulse
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FIG. 6. The infidelities over time for 100 different control pulses
found by LH-MBSAC and by GRAPE using the learned system
Hamiltonian H0(ζ) for the two-qubit transmon control problem with
final time T � 20 µs. RL pulses are further optimized using GRAPE.
GRAPE is also used to obtain pulses without the RL controls as
initial values for a fixed final gate time T = 20 µs. Short optimal con-
trols found by RL are identified by truncating RL pulse parameters
at times t � {6, 9} µs whose final infidelities are shown as stars, with
t = 6 µs being Pareto optimal with respect to the efficient frontier
(the surface indicating the best fidelity for that time).

parameters as initialization. As seen in Fig. 6, these pulses are
still better than the ones found by GRAPE using the learned
system Hamiltonian but with completely random pulse initial-
izations, i.e., without LH-MBSAC controllers as seeds.

Furthermore, this RL bias towards valuing intermediate
fidelities allows us to identify optimal pulses that can be exe-
cuted in short times, which is a difficult problem for GRAPE
even if the final gate time is explicitly added to the control
objective [9].

Truncating the control sequence for pulses at time t if the
infidelity is below 5 × 10−2, we again leverage GRAPE to
maximize the final fidelities at these shorter times. These are
shown as stars in Fig. 6 with the fidelities at t = 6 µs being
approximately Pareto optimal, i.e., the best fidelity for that
time. The Pareto optimal efficient frontier is constructed by
sampling 100 GRAPE pulses with random initializations at
different final gate times.

V. CONCLUSION

We have presented a learnable Hamiltonian soft actor-critic
(LH-MBSAC) algorithm for time-dependent noisy quantum
gate control. LH-MBSAC augments the model-free soft-actor
critic by allowing the reinforcement learning (RL) policy to
query a learnable model of the environment or the controllable
system. It thereby reduces the total number of queries (sample
complexity) required to solve the RL task. The model is a
differentiable ODE with a partially characterized Hamilto-
nian, where only the parametrized time-independent system
Hamiltonian is required to be learned. This is a good induc-
tive bias for the quantum control task as ODE trajectories
do not intersect, and the Schrödinger ordinary differential
equation (ODE) preserves unitary evolution, thereby sensi-
bly constraining the space of models to be learned. Using

exploration data acquired from the policy during the RL loop,
we train the model by reducing a model prediction error over
the data. We show that LH-MBSAC is able to reduce the
sample complexity for gate control of one- and two-qubit
nitrogen-vacancy (NV) centers and transmon systems in uni-
tary and single-shot measurement settings.

Moreover, we highlight that despite the generally nonlinear
relationship between the error in the learned Hamiltonian
and the model prediction error, LH-MBSAC’s performance
is robust to this variation. Furthermore, even if the learned
Hamiltonian that minimizes the model prediction error is not
the same as the true system Hamiltonian, the learned Hamil-
tonian which is locally consistent in terms of its dynamical
predictions can be leveraged using gradient-based methods
that require full knowledge of the controllable system, like
GRAPE, to further optimize the controllers found by LH-
MBSAC. Applying LH-MBSAC in high and low Lindblad
dissipation regimes with shot noise, we found that its perfor-
mance in both was not improved if the Lindblad dissipation
terms are also learned in addition to the system Hamiltonian
as it is likely that the latter part compensates for the extra
dissipation effects.

Despite LH-MBSAC’s limitations requiring it to know
the time-dependent Hamiltonian and system scalability be-
yond two qubits [four with single-shot measurements due
to ancilla assisted process tomography (AAPT)], the algo-
rithm can be used to augment many existing model-free RL
approaches for quantum control. This should afford more
sample-efficient RL-based optimization of quantum dynam-
ics for near-term noisy quantum processors on a variety of
architectures, as shown in the paper. Specific tasks can include
noisy small circuit optimization, state preparation [14,15],
or gate optimization using a partially known model of the
underlying dynamics [13]. Since having an accurate model
can be extremely useful for validation of quantum operations,
and because model bias can be crippling, model-based RL
methods like LH-MBSAC can improve the model specifically
tailored for some downstream task, e.g., quality assessment of
topological codes [65] or fine-tuning current implementations
of a two-qubit cross resonance gate on some novel architec-
ture [24] using a preexisting but partially correct model. Here,
the goal for the RL agent would be to help learn effective and
potentially scalable models of the target system while opti-
mizing the target functional. Another interesting goal in this
direction could just be incorporating the number of measure-
ments or queries of the system in the RL objective so that the
learning is sample-efficient. Another avenue of future work is
to combine LH-MBSAC with a more feasible measurement
protocol than AAPT. AAPT is not a hard requirement for our
approach, and it was used here for its theoretically simple
estimation of a quantum process. Two angles of attack are ei-
ther sparsity assumptions on the dynamics generator [66] and
the generated evolution [57], or a partially observed Markov
decision process formulation of the control problem [6,67].

Moreover, despite the scalability problems due to the
potentially hindering nature of the RL strategy towards max-
imizing intermediate fidelities, it can be useful in particular
to identify short time optimal pulses. Learning the time-
dependent part of the Hamiltonian is harder and might require
a stronger learning protocol, e.g., using the zero-order hold
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method with the learning protocol presented in this paper,
Bayesian Hamiltonian learning [62], or a more informative
learning process or Hamiltonian learning methods [66,68]
which would be exciting to pursue in the future.

The study of the abilities and limitations of our Hamilto-
nian learning protocol using ZOH will be left to future work.
Our code is available at [69].

APPENDIX A: MAPPING COMPLEX LINEAR ODES
TO COUPLED REAL ODES AND STEP-SIZE EFFECTS

The quantum control problem in Eqs. (4) and (14) involves
ODEs [Eqs. (2) and (9)] in the complex domain with a com-
plex vector field map fθ : R × Cd → Cd (where θ denotes
some learnable parameters that can be optimized). For the uni-
tary control problem, we have a linear map fθ (U (u(t ), t ), t ) =
Hθ (u(t ), t )U (u(t ), t ), where Hθ is a Hermitian Hamiltonian
that generates the ODE path of the propagator U (t ). We make
use of the following isomorphism to map the complex ODE
to two coupled real ODEs in R2d by separating the prop-
agator into its real and imaginary parts U = Ureal + iUimag

and mapping the Hamiltonian isomorphically, H (u(t ), t )
∼−→

1 ⊗ Hreal(u(t ), t ) − iσy ⊗ Himag(u(t ), t ), to get the following
[20] coupled real ODE system:

d

dt

(
Ureal(u(t ), t )
Uimag(u(t ), t )

)

=
(

Himag(u(t ), t ) Hreal(u(t ), t )
−Hreal(u(t ), t ) Himag(u(t ), t )

)(
Ureal(u(t ), t )
Uimag(u(t ), t )

)
.

(A1)

The mapping is analogous for the superoperator ODE in
Eq. (9). Likewise, various other metrics, e.g., fidelity F , were
analogously transformed. We made use of the real nature of
the Pauli vector decomposition of H to keep track of both
the time-independent learnable Hamiltonian and the time-
dependent control Hamiltonian representations.

We use Heun’s method [70] to implement a custom dif-
ferentiable numerical ODE solver in pytorch [55], a popular
automatic differentiation code library. The solver is able to
evolve multiple ODEs under multiple generators in parallel
using generalized matrix/tensor operations (ideally on a GPU
to maximally leverage computational efficiency). The solver
can be accessed in the LearnableHamiltonian module in
our code [69]. To determine the optimal tradeoff between
accuracy of dynamical simulation, computed gradients, and
the size of the computation graph that is held in memory for
automatic differentiation, we conduct experiments by simulat-
ing the dynamics of random n-qubit Hamiltonians from n = 1
to 4 at different precision or tolerance or step size of the ODE
solver (see Fig. 7).

Computational speed of the solver naturally trades off with
the accuracy in the simulation and the computed gradients. We
find that a step size of 10−2 is sufficiently accurate for forward
dynamical simulation (no gradients are computed in this step),
and a step size of 5 × 10−4 is required for the backward step
when the gradients need to be computed to train the ODE
model. The errors in the dynamical predictions (averaged over
many thousands of data points) in both steps are reasonably
small and monitored. The ODE solvers in scipy [71] and the

matrix exponential method for solving linear ODEs [9] both
have similar errors to those of our method for the step size
5 × 10−4 (likely the Bayes’ optimal error for our numerical
simulation).

The ability to be fast but produce slightly less accurate pre-
dictions improved the wall time of our algorithm. Specifically,
a significantly large number of trajectories can be quickly
sampled in the forward step to augment the RL policy’s train-
ing data, while the much slower backward step can be limited
to a smaller number of trajectories that need to be predicted
and are divided over multiple batches.

APPENDIX B: BOUNDS ON THE MODEL
PREDICTION ERROR

Consider a unitary RL control problem with the MDP in
Eq. (17), where the environment’s Hamiltonian and prop-
agator at some time step tl are given by HE (tl , ul ) =
H0 + Hc(ul , tl ) and UE (uk ). Now consider the model
Mζ (sk+1|ak, sk ) that predicts a single step of unitary dynamics

sk
Hζ−→ sk+1 under its parametrized generator Hζ = H (L)

0 (ζ) +
Hc(ul , tl ) following our assumptions in Sec. III. Now we
bound the error in the single step predicted propagator Uζ

using the integration-by-parts lemma from Ref. [59]. We
consider a continuous version of the propagators and the gen-
erators since the result is only used qualitatively.

Proposition 2 (Bound on the model predictions). The fol-
lowing bound between the unitary model’s predicted state
Uζ (u:k ) and the environment’s unitary state UE (uk ) holds:∥∥UE − UMζ

∥∥
∞,t

� t2
∥∥H (L)

0 (ζ) − H0

∥∥ ·
(

1

t
+ 2

t
‖Hc‖1,t + ‖Hζ‖ + ‖HE‖

)
.

(B1)

Proof. The generator difference Hζ − HE = H (L)
0 (ζ) − H0

is time-independent. So the integral action difference term
becomes∥∥∥∥

∫ t

0
ds H (L)

0 (ζ) − H0

∥∥∥∥
∞,t

= t
∥∥H (L)

0 (ζ) − H0

∥∥
∞,t

= t
∥∥H (L)

0 (ζ) − H0

∥∥, (B2)

where in the last line, we drop the supremum over time due to
time independence. Now we can rewrite

‖HE (u(t ), t )‖1,t = t‖H0 + Hc(u(t ), t )‖1,t

� t[‖H0‖ + ‖Hc(u(t ), t )‖1,t ] (B3)

using the triangle inequality. Combining both facts yields the
inequality. �

The inequality in Eq. (B1) can be analogously extended to
the open system setting with respect to the Choi matrix �.
Here, we focus on the unitary case for simplicity since the
arguments are similar.

There are two observations worth mentioning about in-
equality (B1): (a) when all other variables are fixed, the error
in the model’s unitary predictions with respect to the envi-
ronment’s ground truth grows as a function of time; (b) the
model prediction error is a lower bound of the error in the
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FIG. 7. Frobenius norm of the prediction error of the Heun ODE solver [70] compared to the matrix exponential
method. The number of qubits n are shown on top of each subfigure. The random time-dependent sinusoidal Hamil-
tonians are as follows: for n = 1, H = −2.32σz cos 2.19t − 0.011 sin 3.62t + 1.79σx cos 4.89t + 3.04σy cos 2.69t ; for n = 2, H =
1.01σz1 cos 1.44t + 4.511 sin 4.55t − 2.7σyσz sin 1.07t + 0.48σxσz cos 2.26t ; for n = 3, H = −1.281σx1 cos 2.62t − 0.23σyσzσy sin 3.75t −
1.341σyσx sin 3.35t + 3.38σxσxσz cos 2.34t ; for n = 4, H = −0.411σzσzσx sin 2.86t + 2.19σy1σxσz sin 1.38t − 0.87σyσxσxσz sin 2.26t +
4.06σxσxσz1 sin 1.76t , where the shorthand used is 1σx1 ≡ 1 ⊗ σx ⊗ 1. For example, trace fidelities with respect to the generalized CNOT

(NOT or X-gate for n = 1, CNOT for n = 2, CCNOT for n = 3, and so on) are shown in the twin axis on the right. It can be seen that the step size
of 10−1 leads to quick accumulation of error seen in the sharp peaks, but a step size of 10−2 is more stable with more than O(103) times less
prediction error.

model parameters H0(ζ)(L) with respect to the ground truth
parameters H0. The prediction error Lmodel(Dval) can be esti-
mated using a validation data set Dval and relates this observed
validation loss to the Hamiltonian difference. Importantly,
the inequality implies that the closeness in the propagator
does not always translate to closeness in the Hamiltonian.
Therefore, a model Hamiltonian can be locally a good fit for
propagator predictions while still having a large Hamiltonian
error ‖H (L)

0 (ζ) − H0‖. So arbitrary closeness in terms of the
Hamiltonian error need not be necessary for good unitary
predictions. But conversely, if we can be certain that the model
Hamiltonian is close to the system Hamiltonian, then the
unitaries must be close. This suggests that a good guess (in
the form of partial knowledge about the system) of the true
Hamiltonian is useful in bounding the prediction errors.

We exploit this fact to learn the local Hamiltonian H (L)
0 (ζ)

that approximates the dynamics of H0 with respect to UE .

Qualitatively, we observe that Hamiltonian error, propagator
validation, and training error are improved during training
(i.e., the propagator loss on the validation set is predic-
tive of Hamiltonian error). This can be seen in Fig. 8
for the noisy shot setting. But we also note in this ex-
ample that the learned Hamiltonian H (L)

0 (ζ) is local, as
seen from the Hamiltonian error plateauing at a nonzero
value.

APPENDIX C: MONOTONIC IMPROVEMENT
FOR MODEL RETURNS

We show that it is possible to improve the environment’s
reward under an incorrect model ansatz in Mζ . For that we
need the following result from [27]:

Theorem 1 (Monotonic improvement for model-based re-
turns [27]). Given k-branch rollout returns ηbranch(π ) for a
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FIG. 8. The Hamiltonian error, unitary training Lmodel(Dtrain ), and validation (holdout) loss Lmodel(Dval ) as functions of training epochs for
the two-qubit transmon unitary control problem with noisy measurements and M = 105. Data size denotes the number of single-step unitary
transitions. The validation set is fixed to 5000 transitions under random policy actions ak . All three error measures improve as a function of
training. Adding more training data appears to provide diminishing returns in predicting the local unitary dynamics.

policy π under the model, the true returns η(π ) are lower
bounded,

η(π ) � ηbranch(π )

− 2rmax

(
γ k+1επ

(1 − γ )2
+ γ k + 2

1 − γ
επ + k

1 − γ
(εmodel)

)
,

(C1)

where the returns η are defined as

η(π ) := Eπ

[ ∞∑
t=0

γ t rt (st , at )

]

= Ert ∼E (st−1,aπ
t )

[ ∞∑
t=0

γ t rt (st , at )

]
. (C2)

rmax is the maximum reward for an MDP transition; the policy
error επ is the upper bound,

επ � DTV[πD(s, a)‖π (s, a)], (C3)

where DTV is the total variation distance and πD is the data
generating policy (i.e., the policy that generated the MDP data
by interacting with the environment E). The model error εmodel

is the upper bound

εmodel � max
t

(
Es∼π

(t )
D

{DTV PE (s′|s, a)‖PM (s′|s, a)]}), (C4)

where PM (s′|s, a) is the MDP transition probability distribu-
tion under the model M that estimates the environment E and
likewise for PE . γ is the discount factor and k is the branch
rollout length.

Proof. See the proof of Theorem 4.3 in [27]. �
Informally, the theorem states that as long as the returns

under the model ηbranch are improved by at least the tolerance
term 2rmax(· · · ), then the returns under the environment η are
guaranteed to improve. This also assumes that the policy π

generating the model returns is reasonably close to the policy
that interacts with the environment to generate the MDP data

that we use to compute the statistics including the returns.
This policy error επ can be monitored online and controlled
while running the algorithm by curtailing its training once it
exceeds some tolerance threshold. Moreover, Ref. [27] shows
that as long as the data-set size is large enough, the model
error εm can be decoupled from the policy error επ . The
optimal branch rollout length k∗ is given by the minimizer
of the tolerance. In practice, there are other considerations
(e.g., the interplay between various hyperparameters) that
need to be accounted for to determine k∗, so it is usually tuned
numerically.

Using Theorem 1 for the ODE model, we can indi-
rectly connect the Hamiltonian error using the validation loss
Lmodel(Dval) with εmodel. If the Hamiltonian error is small, then
εmodel is small and the returns from the model and the envi-
ronment are similar for any interacting policy πθ . However,
the returns need not be exactly the same and just need to be
better than the tolerance provided by the term −2rmax(· · · ) in
Eq. (C1) which is a function of εmodel. The tolerance is smaller
for a more accurate model, and so less of an improvement of
the model returns ηbranch is necessary. The following lemma
makes this idea concrete by applying Theorem 1 to our RL
control problem setup.

Lemma 1 (Model error upper bound for the ODE model).
If the model error εmodel upper bounds the risk,

εmodel � max
t

(
Es∼π

(t )
D

{I[Mζ (s, a) �= E (s, a)]}), (C5)

then it also upper bounds the unitary prediction error

εmodel � max
t

(
Es∼π

(t )
D

[‖UE (s,a) − UMζ (s,a)‖∞,t ]
)
, (C6)

and the total variation distance between the model and envi-
ronment probabilistic distributions,

εmodel � max
t

(
Es∼π

(t )
D

[DTV(PE (s′|s, a)‖PMζ
(s′|s, a))]

)
.

(C7)
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Proof. Since the model Mζ and the environment are both
deterministic by assumption, we need to modify the lower
bound on the model error εmodel in Theorem 1. We can replace
the total variation distance between the two supposed distribu-
tions PE , PMζ

by an indicator variable I[Mζ (s, a) �= E (s, a)] if
s′

Mζ
�= s′

E , which is 1 if the transitioned states do not match and
0 if they do. We can upper bound the total variation distance
like this since DTV(PE , PMζ

) = supA |PE (A) − PMζ
(A)| � 1 in

case the probabilities do not match and DTV(PE , PMζ
) = 0

when they match perfectly. Hence, there exists some εmodel

such that

εmodel � max
t

(
Es∼π

(t )
D

{I[Mζ (s, a) �= E (s, a)]})
� max

t

(
Es∼π

(t )
D

{DTV[PE (s′|s, a)‖PM (s′|s, a)]}).
The risk Es∼π

(t )
D

{I[Mζ (s, a) �= E (s, a)]} is essentially the frac-
tion of unitaries that the model predicts incorrectly and is
related to the unitary error in Proposition 2 by the fact that∥∥UE − UMζ

∥∥
∞,t � I[Mζ (s, a) �= E (s, a)], (C8)

provided that ‖UE − UMζ
‖∞,t

is normalized to be in [0,1]. So
we have

Es∼π
(t )
D

[‖UE (s,a) − UMζ (s,a)‖∞,t ]

� Es∼π
(t )
D

{I[Mζ (s, a) �= E (s, a)]}. (C9)

So εmodel upper bounds the expected unitary error if and only if
εmodel upper bounds the expected risk in the unitary prediction
error. �

APPENDIX D: HOW MUCH DATA ARE NEEDED
FOR MODEL TRAINING?

A hallmark for a good ansatz for the model Mζ estimating
the dynamics of the controllable system would be less demand
of supervised learning MDP data needed for low prediction
error.

We consider the Hamiltonian error, unitary train, and hold-
out error. Hamiltonian error δ is the spectral norm error
between the learned and true system Hamiltonian. The others
are mean-squared errors. Cross-validation is used to estimate
the model’s generalization ability on a holdout data set of
unseen random unitary data, also sampled from the MDP
transitions and collected by the policy π during training.

As seen from Fig. 8, for the two-qubit transmon control
problem, for very small data-set sizes comprising 20–200

FIG. 9. Effect of training data size on model generalization met-
rics: Hamiltonian error, unitary training Lmodel(Dtrain ), and validation
(holdout) loss Lmodel(Dval ) for noisy single-shot measurement-based
unitary control of the transmon.

unitary transitions, the single step unitary prediction error is
large compared to training with about 2000 unitaries or about
100 full length pulses with 20 time steps, though the decrease
in error is diminishing with data-set size. All errors are in
agreement across the data sets over 200 training epochs. This
is further corroborated by Fig. 9 where the final errors after
200 epochs are plotted. There is a reduction in the final errors
for the 2000 data-set size, but the improvement is diminishing
in magnitude and plateaus at this loss for larger data-set sizes.
This is still much less than what was required to train a neural
network model for Mζ during the initial stages of our research
where the training data-set size needed to be of the order of
106. Moreover, these experiments provide us with an idea of
what data-set size to use to train the model Mζ by setting
the number of initial exploration MDP transitions to add to
the policy’s buffer for the transmon control problem. We also
adopted multiple training phases to continuously train Mζ

using fresh batches of training data collected by the policy.

APPENDIX E: LEVERAGING THE LEARNED
HAMILTONIAN FOR THE TWO-QUBIT NV CENTER

Similar to the results found in Sec. IV C, here we report the
structural differences between the learned and target Hamilto-
nians for the two-qubit NV center.

The matrix difference between the true H0 and learned
Hamiltonian H0(ζ) is

H − H0(ζ) =

⎡
⎢⎢⎣

0.0116 0.0013i −0.0001 − 0.0002i −0.0007
−0.0013i −0.0111 −0.0001 + 0.0002i 0.0003 + 0.0003i

−0.0001 + 0.0002i 0.0001 + 0.0002i −0.0108 −0.0005 − 0.0002i
−0.0007 0.0003 − 0.0003i −0.0005 + 0.0002i −0.013

⎤
⎥⎥⎦.

Moreover, the nonlinear relationship between the model
prediction errors and the spectral norm error δ or the mean-
squared Pauli expectation value error is confirmed as before
in Fig. 10(a). Local and global trajectory differences under a

random control pulse and the results of using GRAPE on RL
controllers are shown in Figs. 10(b) and 10(c), respectively.
The learned Hamiltonian is able to improve the controller
fidelities to greater than 0.999.
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FIG. 10. (a) The nonlinear relationship between the prediction error ‖UE − UMζ
‖ and Hamiltonian spectral norm error or mean-squared

Pauli expectation value error δ for the two-qubit NV center Hamiltonian. For the same 1000 random control pulses, we evaluate the average
unitary prediction error of Mζ with increasing δ for three different uniform randomly sampled two-qubit Hamiltonians H0(ζ). (b) Local and
global unitary trajectories: F as a function of a random control pulse with either the learned H0(ζ) or true H0. The learned trajectories and
global trajectory overlap less with increasing time with the spectral norm error of δ = 0.013 01 and a global phase factor Tr[H − H0(ζ)] of
∼0.01. (c) The learned H0(ζ) can be leveraged using GRAPE to further optimize the fidelities of LH-MBSAC’s controllers. Repeating the
procedure in Sec. IV C yields fidelities of greater than 0.999.

APPENDIX F: THREE-QUBIT TRANSMON
CONTROL PROBLEM

In this Appendix, we discuss the issue of scalability of LH-
MBSAC’s performance related to the three-qubit transmon
control problem in Sec. IV E in detail.

Working with two level systems, we extend the two-qubit
transmon Hamiltonian to its three-qubit version H (3)

tra . The
system part generalizes trivially. For the control part H (3)

trac
,

we generalize the cross-resonance interaction presented in
Ref. [72] to construct the following time-dependent part of
the three-qubit transmon Hamiltonian:

H (3
trac

(t )

h̄
=

3∑
l=1

(al (t )(ZlXl+1 + Xl+1 + Yl+1 + Zl )

+ bl (t )(XlZl+1 + Xl + Yl + Zl+1)), (F1)

where al (t ), bl (t ) are the real drive amplitudes and Xl ,Yl , Zl

are the corresponding Pauli operators on the lth qubit.
To start, we mention our hyperparameter strategy. Only an

initial hyperparameter search is performed for the two-qubit
transmon control problem, and we were successfully able to
transfer the same hyperparameters to all problems in the paper
that were studied, including the ones presented in Fig. 2.

It is a desirable property for the stability of RL algorithms
to be robust to hyperparameter changes for different target
problems, which we found to be the case. The search was only
conducted for the model-free SAC since LH-MBSAC is just a
model-based augmentation of the underlying SAC algorithm
so there is no strong reason for the hyperparameters to fail to
transfer.

However, for the three-qubit transmon control problem,
we encountered issues and had to repeat the search. This
was extensive, and we focused on the following: more ini-
tial exploration data, using bigger layer sizes for the policy
and value function neural networks, changing the learning
and update rates for the policy and value functions, among
other things. An extremely thorough search is difficult since

the problem is more computationally challenging, and it is
hard to determine when to terminate the training during a
trial run that necessarily needs to be premature during the
hyperparameter search. Please see the accompanying code for
the list of hyperparameters we searched over using Bayesian
optimization in tune_hypers.py along with some results in
the hyper_tests folder.

Furthermore, we make observations that make this issue
seem less like a hyperparameter issue and more like an opti-
mization landscape problem:

(i) The values and the gradients for policy and value func-
tions that saturate are both stuck in suboptimal extrema and
ultimately we get stuck at a prematurely optimized reward
function. This is illustrated in Fig. 11. Essentially, SAC gets

FIG. 11. Noiseless unitary sample complexity for the three-qubit
transmon where the target gate is the Toffoli gate. Since LH-MBSAC
is based on SAC, the latter’s training curves are obtained first to see
if it viably solves the problem, and it was trained for much longer,
i.e., in the order of millions of samples as seen in Fig. 11. Mean
(solid) and maximum fidelities (dashed) saturate as the policy and
value function gradients and outputs saturate due to the agent getting
stuck in a suboptimal extremum of the optimization landscape.
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FIG. 12. This figure shows how much the fidelity measures relate to one another as the dissipation strength varies in terms of the
decoherence and the decay coefficients in Eq. (6) for the Lindbladian ld operators. Here, deca, deco refer to inverse decay and decoherence
rates 2/T ∗

l , 2/Tl , respectively, for the lth qubit measured in MHz. The x-axis refers to a controller c j obtained for the two-qubit transmon gate
control problem with single-shot measurement noise where the target is the CNOT gate. The controllers are in random order with respect to
the fidelity, but the ordering is preserved across each subfigure. The number of single-shot measurements is 106, and diamond, pauli_vec,
av_gate refer to the diamond norm fidelity [64], the generalized state fidelity [48], and the average gate fidelity [73], respectively.

stuck in a loop mining medium level fidelities and its policy
outputs saturate on the extremes of the control amplitudes. It
was already detailed in Sec. IV E that RL pulses are biased
towards maintaining high intermediate fidelities due to the
nature of the MDP used in the paper. Figure 6 shows example
pulses found by RL versus GRAPE for the two-qubit trans-
mon, confirming this.

(ii) Since we have the model Hamiltonian, we insert
it into GRAPE initialized with the highest fidelity SAC
controller values, and it also gets stuck (at slightly better
fidelities).

Despite these issues, the system Hamiltonian is still
learned. It can be inserted into GRAPE with uniform random
initialization of control pulse parameters to achieve fidelities
of over 0.999.

APPENDIX G: COMPARISON OF FIDELITIES
FOR LINDBLADIAN DYNAMICS

We study the agreement between three different fidelity
measures of realized noisy gates on open systems with Lind-
blad decay and decoherence for the two-qubit transmon gate
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control problem. The fidelity measures are the diamond norm
fidelity [64], the generalized state fidelity [48], and the aver-
age gate fidelity [73]. The diamond norm fidelity, derived from
the diamond norm or the completely bounded trace norm, is
the most expensive to compute as it involves solving a convex
optimization problem:

F�(�(u(t ), t ),�target )

= 1 − ‖�(u(t ), t ) − �target‖�
= 1 − max

ρ
‖�(u(t ), t ) ◦ ρ − �target ◦ ρ‖1, (G1)

where the maximization is over the space of all density matri-
ces ρ. This can be done by solving an equivalent semidefinite
program [74], 0.5 � F�(�(u(t ), t )) � 1.

To study the sensitivities of the measures to dissipation and
their agreement with respect to each other, we consider low,
medium, and high dissipation regimes. We evaluate 100 of
our controllers found for the noisy single-shot measurements
setting of the two-qubit transmon in these regimes. The results
are plotted in Fig. 12. Here, deca and deco refer to inverse de-
coherence and decay rates 2/T ∗

l , 2/Tl , respectively, for the lth

qubit, measured in MHz. We renormalize the trace of the real-
ized operator �(u(t ), t ) during our experiments, as is standard
practice. Due to the exhaustive nature of its computation, F� is
the most sensitive to noise and loss of coherence out of all the
measures. The generalized state fidelity is the least sensitive,
and the average gate fidelity falls in the middle. For very low
to medium dissipation levels, e.g., (0.05, 0.05), (0.05, 0.1),
or (0.05, 0.2) for the pair (deca, deco), the generalized state
fidelity is near perfect while the gate and diamond norm fi-
delities are more sensitive and closer to 0.9. For this reason, in
Sec. IV D, we chose to use the diamond norm fidelity to more
accurately gauge controller performance—this was especially
true for the low dissipation regime results.

As a side note, some controllers shown in Fig. 12 are
more robust to dissipation than others, as revealed by the
noisy variation across the controller index versus fidelity
plot. The controllers are not ordered, so the fidelity in the
zero dissipation regime has some noise/variation as seen for
deca, deco = (0.05, 0.05). Across all the subfigures, the ro-
bustness is captured by all the fidelity measures where the
variation magnitudes and positions are more or less aligned.
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ometric deep learning: Grids, groups, graphs, geodesics, and
gauges, arXiv:2104.13478.

[34] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, Soft
actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor, in International Conference
on Machine Learning (PMLR, Stockholm, Sweden, 2018),
pp. 1861–1870.

[35] S. S. Hegde, J. Zhang, and D. Suter, Efficient quantum gates for
individual nuclear spin qubits by indirect control, Phys. Rev.
Lett. 124, 220501 (2020).

[36] E. Magesan and J. M. Gambetta, Effective Hamiltonian models
of the cross-resonance gate, Phys. Rev. A 101, 052308 (2020).

[37] M. Clouâtré, M. J. Khojasteh, and M. Z. Win, Model-predictive
quantum control via Hamiltonian learning, Trans. Quantum
Eng. 3, 1 (2022).

[38] A. Dutkiewicz, T. E. O’Brien, and T. Schuster, The advan-
tage of quantum control in many-body Hamiltonian learning,
arXiv:2304.07172.

[39] H.-P. Breuer, F. Petruccione et al., The Theory of Open Quantum
Systems (Oxford University Press on Demand, 2002).

[40] F. F. Floether, P. De Fouquieres, and S. G. Schirmer, Robust
quantum gates for open systems via optimal control: Marko-
vian versus non-Markovian dynamics, New J. Phys. 14, 073023
(2012).

[41] C. J. Wood, J. D. Biamonte, and D. G. Cory, Tensor networks
and graphical calculus for open quantum systems, Quant. Inf.
Comput. 15, 0579 (2015).

[42] A. Lichnerowicz, Elements of Tensor Calculus (Courier Dover,
Mineola, New York, USA, 2016).

[43] M.-D. Choi, Completely positive linear maps on complex ma-
trices, Lin. Alg. Appl. 10, 285 (1975).

[44] A. Jamiolkowski, Linear transformations which preserve trace
and positive semidefiniteness of operators, Rep. Math. Phys. 3,
275 (1972).

[45] J. B. Altepeter, D. Branning, E. Jeffrey, T. C. Wei, P. G. Kwiat,
R. T. Thew, J. L. O’Brien, M. A. Nielsen, and A. G. White,
Ancilla-assisted quantum process tomography, Phys. Rev. Lett.
90, 193601 (2003).

[46] R. A. Bertlmann and P. Krammer, Bloch vectors for qudits,
J. Phys. A 41, 235303 (2008).

[47] F. Sauvage and F. Mintert, Optimal quantum control with poor
statistics, PRX Quantum 1, 020322 (2020).

[48] S. T. Flammia and Y.-K. Liu, direct fidelity estimation from few
Pauli measurements, Phys. Rev. Lett. 106, 230501 (2011).

[49] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey
et al., Maximum entropy inverse reinforcement learning, in
Aaai (Association for the Advancement of Artificial Intelli-
gence, Chicago, 2008), Vol. 3, pp. 1433–1438.

[50] L. Younes, Shapes and Diffeomorphisms, Applied Mathematical
Sciences Vol. 171 (Springer, New York, USA, 2010).

[51] R. Howard, The Gronwall inequality, Lecture notes in Physics
(1998).

[52] F. Frank, T. Unden, J. Zoller, R. S. Said, T. Calarco, S.
Montangero, B. Naydenov, and F. Jelezko, Autonomous cali-
bration of single spin qubit operations, npj Quantum Inf. 3, 48
(2017).

[53] A. Cross, The IBM Q experience and QISKit open-source
quantum computing software, in APS March Meeting Abstracts
(APS, 2018), Vol. 2018, pp. L58–003.

[54] T. D. Kühner, S. R. White, and H. Monien, One-dimensional
Bose-Hubbard model with nearest-neighbor interaction, Phys.
Rev. B 61, 12474 (2000).

[55] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al.,
Pytorch: An imperative style, high-performance deep learning
library, in Advances in Neural Information Processing Systems
(Curran Associates, Vancouver, Canada, 2019), Vol. 32.

043002-20

https://doi.org/10.1103/PhysRevA.95.042318
https://doi.org/10.1103/PRXQuantum.2.040324
https://doi.org/10.1038/s41586-023-05782-6
http://arxiv.org/abs/arXiv:2304.06087
https://doi.org/10.1145/122344.122377
http://arxiv.org/abs/arXiv:1910.05513
http://arxiv.org/abs/arXiv:2104.13478
https://doi.org/10.1103/PhysRevLett.124.220501
https://doi.org/10.1103/PhysRevA.101.052308
https://doi.org/10.1109/TQE.2022.3176870
http://arxiv.org/abs/arXiv:2304.07172
https://doi.org/10.1088/1367-2630/14/7/073023
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/10.1103/PhysRevLett.90.193601
https://doi.org/10.1088/1751-8113/41/23/235303
https://doi.org/10.1103/PRXQuantum.1.020322
https://doi.org/10.1103/PhysRevLett.106.230501
https://doi.org/10.1038/s41534-017-0049-8
https://doi.org/10.1103/PhysRevB.61.12474


SAMPLE-EFFICIENT MODEL-BASED REINFORCEMENT … PHYSICAL REVIEW RESEARCH 5, 043002 (2023)

[56] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of
Machine Learning (MIT press, Cambridge, MA, 2018).

[57] H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many prop-
erties of a quantum system from very few measurements, Nat.
Phys. 16, 1050 (2020).

[58] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, 2010).

[59] D. Burgarth, P. Facchi, G. Gramegna, and K. Yuasa, One bound
to rule them all: From adiabatic to zeno, Quantum 6, 737
(2022).

[60] A. Anshu, S. Arunachalam, T. Kuwahara, and M. Soleimanifar,
Sample-efficient learning of interacting quantum systems, Nat.
Phys. 17, 931 (2021).

[61] J. Haah, R. Kothari, and E. Tang, Optimal learning of quan-
tum Hamiltonians from high-temperature Gibbs states, in IEEE
63rd Annual Symposium on Foundations of Computer Science
(FOCS) (IEEE, Piscataway, NJ, 2022), pp. 135–146.

[62] T. J. Evans, R. Harper, and S. T. Flammia, Scalable Bayesian
Hamiltonian learning, arXiv:1912.07636.

[63] A. Izmalkov, S. H. W. van der Ploeg, S. N. Shevchenko, M.
Grajcar, E. Il’ichev, U. Hübner, A. N. Omelyanchouk, and
H.-G. Meyer, Consistency of ground state and spectroscopic
measurements on flux qubits, Phys. Rev. Lett. 101, 017003
(2008).

[64] G. Benenti and G. Strini, Computing the distance between
quantum channels: Usefulness of the fano representation,
J. Phys. B 43, 215508 (2010).

[65] A. Valenti, E. van Nieuwenburg, S. Huber, and E. Greplova,
Hamiltonian learning for quantum error correction, Phys. Rev.
Res. 1, 033092 (2019).

[66] H.-Y. Huang, Y. Tong, D. Fang, and Y. Su, Learning many-body
Hamiltonians with Heisenberg-limited scaling, Phys. Rev. Lett.
130, 200403 (2023).

[67] M. Hausknecht and P. Stone, Deep recurrent Q-learning for
partially observable MDPs, in AAAI Fall Symposium Series,
arXiv:1507.06527.

[68] H.-Y. Huang, S. Chen, and J. Preskill, Learning to predict arbi-
trary quantum processes, arXiv:2210.14894.

[69] https://github.com/erg0dic/transmon_public.
[70] E. Süli and D. F. Mayers, An Introduction to Numerical Analysis

(Cambridge University Press, 2003).
[71] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland,

T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W.
Weckesser, J. Bright et al., SciPy 1.0: Fundamental algorithms
for scientific computing in python, Nat. Methods 17, 261
(2020).

[72] S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gambetta,
Procedure for systematically tuning up cross-talk in
the cross-resonance gate, Phys. Rev. A 93, 060302(R)
(2016).

[73] A. Uhlmann, Fidelity and concurrence of conjugated states,
Phys. Rev. A 62, 032307 (2000).

[74] J. Watrous, Semidefinite programs for completely bounded
norms, arXiv:0901.4709.

043002-21

https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.22331/q-2022-06-14-737
https://doi.org/10.1038/s41567-021-01232-0
http://arxiv.org/abs/arXiv:1912.07636
https://doi.org/10.1103/PhysRevLett.101.017003
https://doi.org/10.1088/0953-4075/43/21/215508
https://doi.org/10.1103/PhysRevResearch.1.033092
https://doi.org/10.1103/PhysRevLett.130.200403
http://arxiv.org/abs/arXiv:1507.06527
http://arxiv.org/abs/arXiv:2210.14894
https://github.com/erg0dic/transmon_public
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1103/PhysRevA.93.060302
https://doi.org/10.1103/PhysRevA.62.032307
http://arxiv.org/abs/arXiv:0901.4709

