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Humans are remarkably sensitive to temporal regularities 
in their environment (Damsma et al., 2021; Di Luca & 
Rhodes, 2016; Jazayeri & Shadlen, 2010, 2015; Maaß 
et al., 2022; Narain et al., 2018; Rhodes, 2018; Rhodes & 
Di Luca, 2016; Rhodes et al., 2018; Tanaka & Yotsumoto, 
2017). The detection and processing of such regularities is 
crucial for the prediction of future events and enables 
adjustments of behavioural responses. In dynamic environ-
ments, temporal regularities are often subject to slow as 
well as sudden changes, and an ongoing adaptation to these 
changes imposes a critical challenge for the human sensory 
system (Cicchini et al., 2012, 2014; Di Luca & Rhodes, 
2016; Li et al., 2016; Petzschner et al., 2015, 2012; Rhodes, 
2018; Rhodes & Di Luca, 2016; Riemer et al., 2016).

Several studies have shown that perceptual uncertainty 
about environmental aspects affect behaviour (Beierholm 
et al., 2009; Ernst, 2006; Kersten & Yuille, 2003; Knill & 
Richards, 1996; Körding & Wolpert, 2004, 2006; Lee & 
Wagenmakers, 2009; Ma et al., 2006; Maloney & 
Mamassian, 2009; Mamassian et al., 2002; Miyazaki et al., 
2006; Moreno-Bote et al., 2011; Petzschner et al., 2015; 
Riemer et al., 2016; Sato & Aihara, 2011; Shi et al., 2013; 
Vilares & Körding, 2011; Vincent, 2015; Wei & Stocker, 

2015). The Bayesian framework provides a simple and 
elegant way of formalising and describing human and ani-
mal behaviour in experimental tasks that require percep-
tual judgements under varying degrees of uncertainty. The 
applicability of the Bayesian framework has been demon-
strated in various areas, such as visual detection of stimu-
lus properties (Peelen & Kastner, 2014), control of 
goal-oriented movements (Elliott et al., 2014; Körding & 
Wolpert, 2004, 2006; Wolpert & Ghahramani, 2000; 
Wolpert et al., 1995), and temporal cognition (Cicchini 
et al., 2014; Di Luca & Rhodes, 2016; Maaß et al., 2019; 
Petzschner et al., 2012, 2015; Rhodes & Di Luca, 2016; 
Riemer et al., 2016; Sato & Aihara, 2011).
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Abstract
The prediction of future events and the preparation of appropriate behavioural reactions rely on an accurate perception 
of temporal regularities. In dynamic environments, temporal regularities are subject to slow and sudden changes, and 
adaptation to these changes is an important requirement for efficient behaviour. Bayesian models have proven a useful 
tool to understand the processing of temporal regularities in humans; yet an open question pertains to the degree of 
flexibility of the prior that is required for optimal modelling of behaviour. Here we directly compare dynamic models 
(with continuously changing prior expectations) and static models (a stable prior for each experimental session) with 
their ability to describe regression effects in interval timing. Our results show that dynamic Bayesian models are superior 
when describing the responses to slow, continuous environmental changes, whereas static models are more suitable to 
describe responses to sudden changes. In time perception research, these results will be informative for the choice of 
adequate computational models and enhance our understanding of the neuronal computations underlying human timing 
behaviour.
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In the terminology of the Bayesian framework, humans 
combine previously acquired knowledge about, for exam-
ple, temporal intervals (prior), with current sensory infor-
mation (likelihood) to form a percept (posterior). This 
process is assumed to converge towards an optimal perfor-
mance for a specific task (Ernst & Banks, 2002; Ernst & 
Di Luca, 2011; Hartcher-O’Brien et al., 2014; Hillis et al., 
2002; Knill & Richards, 1996; Lee & Wagenmakers, 2009; 
Mamassian et al., 2002; Rhodes, 2018). Such a way of 
thinking and modelling phenomena is consistent with the 
free-energy principle (Friston, 2005, 2008; Friston et al., 
2006; Friston & Stephan, 2007), where the brain seeks to 
reduce uncertainty to optimise behaviour through percep-
tion (Friston et al., 2017; Friston & Kiebel, 2009). In this 
sense, minimising free energy is, in terms of the Bayesian 
framework (i.e., model inference through priors, likeli-
hoods and posteriors), analogous to optimising perfor-
mance (Bogacz, 2017; Buckley et al., 2017; Ernst & 
Banks, 2002; Ernst & Di Luca, 2011; Friston, 2009, 2010; 
Friston et al., 2006; Friston & Kiebel, 2009; Friston & 
Stephan, 2007; Hartcher-O’Brien et al., 2014; Hillis et al., 
2002; Parise & Ernst, 2016; Rohde et al., 2015).

Duration judgements are influenced by recent experi-
ences (Damsma et al., 2021; Di Luca & Rhodes, 2016; Gu 
et al., 2016; Jazayeri & Shadlen, 2010, 2015; Maaß et al., 
2022; Rhodes & Di Luca, 2016; Rhodes et al., 2018; Shi & 
Burr, 2016; Shi et al., 2013), both over long periods of 
time (Jazayeri & Shadlen, 2010, 2015; Roach et al., 2016), 
and in rapid contextual calibration (Di Luca & Rhodes, 
2016; Rhodes & Di Luca, 2016; Rhodes et al., 2018). In 
this way, the perception of duration adheres to the princi-
ples of Bayesian inference, that is, it is the result of both 
memory traces about what has been previously experi-
enced (temporal context) and a representation of a cur-
rently perceived duration (Cicchini et al., 2012; Di Luca & 
Rhodes, 2016; Jazayeri & Shadlen, 2010, 2015; Maaß 
et al., 2019; Rhodes, 2018). In their seminal work, Jazayeri 
and Shadlen (2010) presented subjects with a duration that 
had to be reproduced. In an experimental session, subjects 
were presented with a predetermined distribution of inter-
vals that were sampled from a uniform-random distribu-
tion. The subjects’ responses were in accordance with 
Bayesian principles (and other models incorporating an 
influence of past trials): Relatively short intervals were 
over-reproduced, while relatively long intervals were 
under-reproduced, that is, their behaviour was biased 
towards the mean of a uniform sampling distribution. This 
phenomenon is known as Vierordt’s Law and has been 
reported in many other studies (Lejeune & Wearden, 2009; 
Riemer & Wolbers, 2020).

Extending these ideas, we recently posited a computa-
tional model of the dynamic updating of expectations 
within a single sequence of stimuli (Di Luca & Rhodes, 
2016; Rhodes, 2018; Rhodes & Di Luca, 2016; Rhodes 
et al., 2018), and proposed that such a mechanism acts in 

parallel with a causal inference layer (Elliott et al., 2014; 
Kayser & Shams, 2015; Mendonça et al., 2016; Rhodes 
et al., 2018; Shams & Beierholm, 2010) that assigns priors 
given the relative evidence for their relation to previous 
instances. According to these dynamic models, priors are 
updated over time, trial-by-trial, stimulus-by-stimulus, 
which puts them in contrast to “static” Bayesian models of 
duration perception (Jazayeri & Shadlen, 2010, 2015; 
Roach et al., 2016; Shi et al., 2013). These latter accounts 
posit a single generalised prior that is known from the first 
trial of the experiment, and that is parameterised by the 
objective distribution of intervals presented in one com-
plete session.

In a previous investigation, we presented subjects with 
a series of four isochronous tones, where the final tone was 
either earlier, on-time or later than expected (Di Luca & 
Rhodes, 2016; Rhodes & Di Luca, 2016). We found that 
the timing of the final tone after a regularly paced sequence 
was perceptually distorted: Stimuli presented earlier than 
expected were reported as slightly delayed, whereas stim-
uli occurring later than expected were reported as slightly 
earlier. This result suggests that the brain regularises devi-
ant stimuli in accordance with expectations, that is, in line 
with Bayesian principles (Bayes, 1763; Freestone & 
Church, 2016; Gu et al., 2016; Hollingworth, 1910; 
Jazayeri & Shadlen, 2010, 2015; Knill & Richards, 1996; 
Lee & Wagenmakers, 2009; Shi et al., 2013).

In another study, we used the same task, but presented 
subjects with sequences of auditory stimuli that had on 
average shorter inter-stimulus intervals, and sequences of 
visual stimuli with on average longer inter-stimulus inter-
vals (Rhodes et al., 2018). We found that subjects appear to 
update multiple duration priors contingent on the sensory 
modality, that is, a dynamic updating of expectations for 
separate, categorical priors.

In previous work, a simple Kalman filter (Cicchini 
et al., 2014; Di Luca & Rhodes, 2016; Petzschner et al., 
2012; Rhodes et al., 2018) (Figure 1) was able to ade-
quately describe subjects’ responses to dynamic changes 
in the environment. A Kalman filter is a system that alter-
nates between two states: (1) priors about the duration of 
an event are combined with likelihoods using Bayesian 
principles leading to a posterior probability about the state 
of the world and (2) the resulting posterior becomes the 
prior for the next iteration of the model. Put simply, a 
Kalman filter is an iterative (dynamic) Bayesian model.

In the present study, we asked whether duration pro-
cessing systems act in accordance with strict Bayesian 
“laws,” that is, whether posterior estimates for duration 
update in a way that is similar to a Kalman filter. In previ-
ous studies (Gu et al., 2016; Jazayeri & Shadlen, 2010, 
2015; Jong et al., 2021; Rhodes et al., 2018; Roach et al., 
2016; Shi et al., 2013), subjects were generally presented 
with time intervals sampled from uniform or Gaussian dis-
tributions of a specific range, and subsequently were asked 
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to reproduce these intervals (by terminating a second inter-
val once it has reached the same duration). The mean 
responses for each sampled interval are then computed and 
presented as a function of the physical interval presented 
(Gu et al., 2016; Jazayeri & Shadlen, 2010, 2015; Rhodes 
et al., 2018; Roach et al., 2016; Shi et al., 2013). Thus, 
what has been analysed in these experiments are summary 
metrics for each interval—which neglect the trial-by-trial 
estimates for each subject. However, these trial-by-trial 
effects can reveal important information about rapid updat-
ing of priors and temporal expectations, and ultimately 
about the adaption of the sensory system to sudden envi-
ronmental changes. There are two distinct possibilities 
about rapid contextual updating of priors in interval tim-
ing: Gradual or sudden adaptation to environmental 
changes.

To highlight trial-by-trial metrics, we presented sub-
jects not with a uniform random sample of intervals, but 
instead with a sequential sampling pattern that followed 
either a sinusoidal or square pattern (Figure 2b). We used 
the sine wave condition to test for adaptation to gradual 
changes and the square condition to test for adaptation to 
sudden changes in the environment. Subjects reproduced 
intervals using the classic ready-set-go procedure for inter-
val timing to each sampling pattern (Jazayeri & Shadlen, 
2010, 2015). Our results present clear evidence that the 

subjects’ behaviour follows Bayesian principles through 
rapid Bayesian updating. In addition, we compare our 
Kalman filter model to static models, and find that dynamic 
Bayesian models best describe the data.

Methods

Participants

Seventeen undergraduate students from Nottingham Trent 
University took part in the experiment (Mage = 20.94, 
SDage = 0.52, range: 18–26). All participants gave written 
informed consent. The School of Social Sciences Research 
Ethics Committee (SREC) approved this experiment and 
the methodology involved. Participants were naïve to the 
structure of the study (i.e., the interval sampling patterns) 
and all had normal or corrected-to-normal vision.

Stimuli

The experiment was performed in a quiet room. All stimuli 
were presented on a MacBook Screen, using PsychoPy3 
(Peirce et al., 2019). During an experimental block, a 10 × 
10 pix fixation cross was presented at the centre of the 
screen (Figure 2a). In each trial, a “ready” and “set” stimu-
lus was presented, both consisting of a 128 × 128 pix 

Figure 1. Illustration of a Bayesian (Kalman filter) account of subjective time in an isochronous sequence of six stimuli. In Stage 

1, the sample interval is estimated by an internal Bayesian estimator as a measurement likelihood p tl ( ) , i  on a linear scale. 
The posterior estimate of the sample interval is determined by the combination of the likelihood and an a priori estimate of the 

interval p tl ( ) , i . Stage 2, an added constant, is combined with the resultant posterior to balance complete fusion of the prior and 
likelihood in the following ith trial (Di Luca & Rhodes, 2016).
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diameter linear Gaussian Gabor patch, which appeared in 
the centre of the screen, and was identical for each trial in 
the experiment.

Procedure

All participants performed a ready-set-go reproduction 
task under two conditions: sine wave sampling and square 
wave sampling, that is, the standard durations were taken 
from a sample, the mean of which changed over trials (and 
hence over time) according to a sinusoidal versus a square 
function (Figure 2b). The square wave sampling condition 
consisted of two intervals of 100 and 1100 ms. In the sine 
wave condition, durations were calculated by taking the 
sine of a range of arbitrary intervals (in this case [1:31]), 
multiplying by 1000, adding 1200 to each value, and then 
dividing by 0.5. This gives the sine wave sampling distri-
bution as presented in Figures 2b and 3a.

The presentation order of both conditions was counter-
balanced across participants, and participants started each 
block at the same point (Trial Number 1). In each block, 
participants were presented with a sampling pattern of a 
total of 200 trials. Each trial started with a 500-ms fixation 
cross (Figure 2a). Subjects were presented with a “ready” 
signal (50 ms), followed by an inter-stimulus interval 
determined from the sampling patterns and ended with the 
“set” signal (50 ms). Participants were instructed to press 
the spacebar when they perceived that the duration between 
the “set” signal and their button press matched the length 
of the initial interval between the “ready” and “set” 
signals.

Results

As expected, participants adjusted their responses to the 
standard sampling intervals. Figure 3 shows that partici-
pants performed in accordance with Bayesian inference: 
Their responses follow the sampling patterns of each con-
dition—but they do so in a way that conforms to a regres-
sion towards the mean. In other words, responses generally 
do not peak above the longest or lie below the shortest 
duration in each sampling pattern. To test whether partici-
pants were more accurate (i.e., reproduced durations as 
close as possible to the sample interval) in the square ver-
sus the sine wave condition, we calculated for each trial 
the absolute differences between the presented sample 
interval and the reproduced duration (i.e., the difference 
between the red and blue lines in Figure 3). A paired sam-
ples Bayesian t-test with a default Cauchy prior scaled to 
.707 confirmed that the evidence was in favour of there 
being a statistical difference between the conditions, such 
that the responses were more accurate in the sine wave 
sampling condition (Figure 4a and b; µ = 128.48, σ = 75.29) 
than in the square wave condition (µ = 212.10, σ = 95.04), 
BF10 = 8.41e+17.

Allied to this, the standard deviation across subjects for 
each trial n increased (or decreased, respectively) with the 
magnitude of the tested sample, according to the Weber–
Fechner law (Fechner, 1860; Gibbon, 1977; Gibbon et al., 
1984) for perception. To test whether each sampling 
adhered to this law, we plotted the standard deviation of 
each sampling pattern for all trials as a function of the pre-
sented sample interval (Figure 4c and e). A Bayesian 

Figure 2. Methods. (a) The ready-set-go procedure. Subjects were presented with two Gaussian patches that determined the 
sample interval. Subjects were required to complete the sequence by pressing the spacebar (go!) when, after the set signal, the same 
time had elapsed as between the ready and set signal. (b) Sampling patterns for the sine wave and square wave conditions.
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paired correlation test between the sample interval and the 
standard deviation over all trials revealed that they were 
correlated for both the sine wave (r = .73, BF10 = 5.66e+31) 
and the square wave condition (r = .67, BF10 = 1.97e+24) 
(Figure 4d and f), indicating adherence to the Weber–
Fechner law.

Figure 3 also shows that the reproduction of relatively 
long intervals (i.e., 1100 ms in the square wave condition) 
were already biased towards lower values in the first trials, 
that is, when the relatively short intervals of that condition 
haven’t been presented yet. This is a consequence of both 
conditions being presented in a counterbalanced order, so 
that half of the participants have already experienced the 
complete range of intervals from the sine wave condition. 
For participants who performed the square wave condition 
first, this bias was significantly reduced (t13 = 3.1, p = .004). 
However, even for those participants a residual bias 
towards lower values was still observable (mean repro-
duced interval in the first 38 trials was 1013 ms), which 

might be due to a general tendency to respond rather early 
than late in temporal reproduction tasks (Akdoğan & 
Balcı, 2017; Riemer et al., 2019).

Comparing static and dynamic 
models of perceived duration

In the following section, we test the key motivation of this 
work: can both static and dynamic interval timing models 
describe adequately regression effects in interval timing, 
and which of the following models best describes the data?

Dynamic Bayesian model

We have previously shown that the performance in interval 
timing tasks can be modelled with a Kalman filter (Di 
Luca & Rhodes, 2016; Jong et al., 2021; Rhodes, 2018; 
Rhodes & Di Luca, 2016; Rhodes et al., 2018). Accordingly, 
we used a Kalman filter to model the results of the present 

Figure 3. Results from the experiment. Subjects reproduced intervals sampled either from a sine wave or a square wave set (red 
lines). Blue lines show the subjects’ responses as a function of the interval presented (with standard error of mean across subjects). 
A Bayesian updating model (Kalman filter) provides a reasonable description to the sine wave and square wave sampling patterns 
(green lines).
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experiment. We modelled the “perceived” interval as the 
posterior distribution, that is, the integration of the current 
sensory evidence (likelihood) with a priori expectations 
about the stimulus’ duration (prior). In contrast to “static” 
Bayesian models (Jazayeri & Shadlen, 2010, 2015; Roach 
et al., 2016; Shi et al., 2013), we propose that these 

expectations are not static (Cicchini et al., 2014; Di Luca 
& Rhodes, 2016; Petzschner et al., 2012; Rhodes, 2018; 
Rhodes et al., 2018), but that they are iteratively updated 
by the incoming sensory evidence about duration. The 
likelihood probability distribution p tl ( )  is the probability 
of perceiving a specific duration l at time t. Gaussian 

Figure 4. Results of the experiment. (a) The difference between the presented interval and the subjects’ responses for the sine 
wave and square wave sampling patterns. (b) Robustness check for the paired sample Bayesian t-test between both conditions. The 
Cauchy prior width plotted as function of the estimated Bayes Factor confirms a robust effect. (c) The standard deviation (across 
subjects) as a function of the presented interval for the sine wave sampling pattern and (e) for the square wave sampling pattern. (d) 
Robustness checks for the Bayesian paired correlations for the sine wave sampling pattern and (f) the square wave sampling pattern 
with the Bayes Factor plotted as a function of a stretched beta prior confirm a robust effect.
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distributions with a mean equal to the presented interval, 
and variance σ2  describe the noise in the representation 
of intervals. Given the scalar property of time perception 
(Church et al., 1994; Gibbon, 1977; Gibbon et al., 1984), 
which states that the variance of a given estimate increases 
given the magnitude of the stimulus to be estimated, we 
calculated σ2  as a power law

 σ2 = ⋅M Db  (1)

D is the intensity of the stimulus in physical units (in our 
case duration in ms), M is an exponent that depends on the 
stimulus, and b is a proportionality constant that depends 
on the units of measurement (D). We obtained the poste-
rior probability distributions p tq ( )  by multiplying the 

probabilities of the likelihood p tl ( )  and the prior p tp ( )

 p t p t p tq l p( ) ∝ ( ) ⋅ ( )  (2)

We obtained the prior probability distribution p tp ( )  using 
the posterior probability p tq ( )  for the previous stimulus 
(i.e., p tp ( )  for the time t-IOI; inter-onset interval). The 
added constant ω leads to a prior with heavy tails (Di Luca 
& Rhodes, 2016; Roach et al., 2006) that allows sudden 
changes in duration magnitude, and then decreases the ten-
dency of fully incorporating the posterior into a new prior 
(thus mitigating the increase in false alarms; Carnevale 
et al., 2015). This is expressed by

 p t IOI p tp q+( ) ∝ ( ) + ω  (3)

Static model

In addition to the dynamic Bayesian model defined above, 
we realised a static model based on previous work—but 
with a twist. In these models, a single static prior distribu-
tion is constructed from an objective sampling distribution 
p tp ( ) , and combined with current sensory evidence about 
the perceived duration on a given trial p tl ( ) . The combi-
nation of the prior and posterior leads to the posterior dis-
tribution from which a sample is taken (maximum a 
posteriori estimate—the mode of the posterior) to model 
the reproduced duration. This leads to the same computa-
tion as equation (2); however, this model is static, and as 
such, there is no updating of the prior. The twist, to make 
the model more in unison with present work, is that we 
again fit the variance σ2  of each sample duration with the 

power law as outlined in equation (1). In previous work, 
the σ2  is specified as linearly increasing with the mean of 
the likelihood (Jazayeri & Shadlen, 2010). It is also impor-
tant to note, that these static models do not consider any 
trial-by-trial data, and to facilitate with previous work, we 
plotted the actual sample interval on the x-axis, and the 
reproduced duration on the y-axis (Figure 4). We thus fit 
the model to this “summarised” representation of the data.

Model fitting and model comparison

To obtain the model fits for both the square and sine wave 
trial sequences, we calculated the values (MAP) of the 
posterior probability distributions for the presented dura-
tion, for each of the models described above. The free 
parameters (see Table 1) were fit to the responses of each 
participant in all trials, by calculating the error between the 
model’s output (i.e., the mean of a model posterior distri-
bution) and the actual reproduced duration. We used 
MATLABs fminsearch function to maximise the likeli-
hood of model parameters for each subject—for each 
model (Table 1). We calculated the Akaike Information 
Criterion (AIC) as a metric of model evidence and inter-
preted these results using the rules of thumb given by 
Burnham and Anderson (2003).

Our model comparison (Figure 5e), using AIC, selected 
the dynamic Bayesian model as the preferred model for the 
sine wave sampling data (AIC = −16.42 ± 0.18), and the 
static model for the square wave data (AIC = −13.69 ± 0.14). 
In sum, the Kalman filter does a better job of describing 
the data than a static model in the sine sampling condition, 
that is, with gradual changes in the (temporal) environ-
ment. Second, the static model better described the square 
wave sampling condition; however, this is a trivial result, 
as the model is simply fitting a regression line between 
two points in the static model, whereas in the Kalman filter 
models, there are trial-by-trial updating of prior probabili-
ties, which in turn leave more room for fitting error. That 
said, it is difficult to compare the two models, given the 
divergence in the number of conditions across models, and 
how different they are in dynamics.

Discussion

In this work, we investigated human timing behaviour 
under conditions of gradual versus sudden changes of tem-
poral contexts. Instead of focusing on static metrics on 
temporal context effects in interval timing, we instead 
focused on and compared trial-by-trial metrics.

We found that participants behave in a way that is pre-
dicted by Bayesian accounts of time perception (Di Luca 
& Rhodes, 2016; Rhodes, 2018; Rhodes et al., 2018), that 
is, participants consider their recent sensory experiences to 
inform their responses. Participants did not meander away 
from the mean. Even in the first few trials of each sam-
pling pattern, there are no apparent anti-Bayesian 

Table 1. Free parameters per model.

Model Free parameters #

Sine dynamic ω , m, b 3
Sine static σ2 , m, b 3
Square dynamic ω , m, b 3
Square static σ2 , m, b 3
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responses. Subjects’ duration estimates do not fall outside 
the range of sampled values that were presented, but rather 
they appear to track the sampling patterns and regress 
towards the mean. This finding is important, as one criti-
cism of work into temporal context effects in interval tim-
ing is that because they are modelled “in static,” that is, 
they assume a fixed objective prior based solely on the 
sampling distribution, it is difficult to believe that subjects 
know what the objective prior is within a few trials of start-
ing the experiment. Our data demonstrate that subjects are 
reacting to dynamic temporal changes in recent sensory 
experiences in a “lawful” way.

The data continued to act in what appears a lawful way 
by adhering to the Weber–Fechner law for perception (or 
oftentimes called the “Scalar Property” in the field of 
interval timing; Church et al., 1994; Gibbon et al., 1984). 
We found that as the sample presented to subjects increased 
in duration, so did the sample standard deviation. This 
finding, that there is more variance across subjects in 
longer sampling intervals (and vice versa), serves as a san-
ity check that subjects are behaving in a predictable way 
with regards to interval estimates.

The first question we asked in this article was whether 
participants behave in a way predicted by Bayesian 

accounts of interval timing at the trial-by-trial level. The 
second question was whether static (Jazayeri & Shadlen, 
2010, 2015; Rhodes, 2018; Shi et al., 2013) or dynamic 
Bayesian models do a better job of describing trial-by-trial 
interval sampling data. We found that a dynamic Bayesian 
model applied to interval timing can indeed approximate 
human behaviour in our task (Figures 3 and 4). This is 
important, as it adds credence to previous work that such 
models can be applied to “temporal-order” and “on-time” 
judgements in a rhythmic timing task (Di Luca & Rhodes, 
2016; Rhodes, 2018; Rhodes & Di Luca, 2016; Rhodes 
et al., 2018). Our work expands upon these models by 
highlighting the trial-by-trial effects, rather than summary 
metrics—such as the mean. Bayesian updating models fit 
the data better than the static model for the sine wave con-
dition (Figure 5), but there is not an incredible difference 
between the fit of the static model compared to the dynamic 
model. It is important to highlight here that the dynamic 
model is one (Bayesian) way to model trial-by-trial data 
(Figure 3) in this instance (though others have recently 
worked on this too; Visalli et al., 2021). To facilitate model 
comparison, we ignored any trial-by-trial dynamics in our 
data, and instead calculated mean values as a function of 
the sample intervals presented across the experiment. In 

Figure 5. Results of the model fitting and model comparison. (a) Static model for the sine wave sampling condition, with 
reproduction interval as a function of the sample interval. In all graphs, blue lines indicate participant mean data, while green lines 
are the best fitting model output. (b) Static model for the square wave sampling condition. (c) Dynamic model for the sine wave 
condition, and (d) dynamic model for the square wave sampling condition. Red lines indicate the actual samples presented to 
participants. (e) AIC model comparison. Error bars denote standard error of the mean.
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this way, we lose variability, data points and insight by 
summarising the data. This is not to say static models are 
unimportant, but more so to highlight limitations in their 
application.

In general, both models were a better fit to the sine 
wave sampling pattern (as opposed to the square wave 
sampling pattern). Considering the best overall model fits 
and subjects’ responses (cf. Figure 3), we can see that the 
model tracks the sine wave sampling pattern better than 
the square wave sampling pattern. We might speculate 
here that the “surprise” of suddenly changing (and as such, 
adaptation processes) from one value to another value at 
the other end of a scale, might be driving such a difference 
in fit, and the difference in tracking. This is not entirely 
surprising, as Bayesian “surprise” is a concept that is 
firmly integrated within the free-energy principle of per-
ception and action (Friston, 2005, 2008, 2010; Friston 
et al., 2006, 2017; Friston & Kiebel, 2009; Friston & 
Stephan, 2007).

Developed from the predictive coding model of percep-
tion (Friston & Kiebel, 2009; Hosoya et al., 2005; Huang & 
Rao, 2011; Kilner et al., 2007; Rao & Ballard, 1999; Sedley 
et al., 2016; Shi & Burr, 2016; Spratling, 2010; Srinivasan 
et al., 1982; Vuust et al., 2009; Vuust & Witek, 2014), the 
free-energy principle was influenced by Helmholtz’ ideas 
of “perception as unconscious inference” and statistical 
thermodynamics (Helmholtz, 1866), and the relatively new 
concept of machine learning (Buckley et al., 2017; Clark, 
2013). This idea, that perceptions are the result of the prob-
abilistic modelling of their causes, has seen a rise in promi-
nence of “Bayesian Brain” and “Predictive Coding” 
accounts of brain function. Given this, the free-energy prin-
ciple, and as such, predictive processing, is analogous to a 
simple Kalman filter (Friston et al., 2017; Kneissler et al., 
2015), the model that we present here.

After the slight detour through defining the free-energy 
principle, Bayesian “surprise” is the difference between an 
internal (a prior) model of the world and current sensory 
information (the likelihood function). We could posit 
therefore, that our data might be explained by the (rela-
tively) large difference (and change) from one value to 
another in the square wave sampling pattern, inciting a 
large prediction error, and as such, a large amount of “sur-
prise.” The magnitude of this surprise culminates in a large 
difference between what is expected—and what is per-
ceived, which manifests in a slower updating of the prior.

Limitations and outlook

In this study, our aim was to investigate the impact of rapid 
or incremental changes in temporal context on interval 
perception. One problem consists in the implementation of 
very short intervals (100 ms) to mark the lower bound of 
tested intervals. This interval lengths lies below the thresh-
old for minimal reaction time in simple reaction time tasks 

(Woods et al., 2015). Although, except for the sudden steps 
in the square wave condition, our experimental design 
allowed for a certain degree of anticipation of the interval 
between the “ready” and “set” stimulus (a 100-ms interval 
did occur either in a sequence of equal intervals or in a 
sequence of slowly and continuously decreasing intervals. 
As such, participants’ responses were, in all probability, 
influenced by minimal reaction times, and as such reduced 
the sensitivity of our paradigm.

A further consideration for this work is in how Bayesian 
updating models fit into the flexibility–stability paradox. 
The flexibility–stability paradox raises the question of 
how short-term contextual changes require rapid updating 
of the prior (at the expense of stability), while simultane-
ously modelling a prior that is resistant to recent experi-
ence (at the expense of flexibility). Recent research and 
modelling has explored non-Bayesian explanations for this 
paradox (Killeen & Grondin, 2022; Salet et al., 2022; 
Taatgen & van Rijn, 2011), which further highlights the 
need to address this paradox within a Bayesian framework. 
One potential approach to address this challenge is the 
integration of hierarchical priors (Rhodes et al., 2018) and 
a causal inference layer that determines which priors 
should be updated (or not) based on the similarity or dis-
similarity of incoming sensory information (Elliott et al., 
2014; Salet et al., 2022; Taatgen & van Rijn, 2011). By 
incorporating these elements into Bayesian models, we 
may be able to better account for the flexibility–stability 
paradox and enhance our understanding of temporal per-
ception through a Bayesian lens.

Alternative models

Time perception and its mechanisms have been exten-
sively examined from various angles, each model bringing 
its own set of insights and assumptions. An essential ele-
ment seen across models is the representation of perceived 
duration stored in some central memory framework 
(Bausenhart et al., 2014; Lejeune & Wearden, 2009; Salet 
et al., 2022; Shi & Burr, 2016; Taatgen & van Rijn, 2011; 
Wehrman et al., 2018). However, the methodology to 
arrive at this representation, and the consequential context 
effects, show a rich tapestry of approaches.

One of the models that stands at an interesting crossroads 
of this discussion is the formalised multiple trace theory of 
temporal preparation (fMTP). The unique associative learn-
ing mechanism in fMTP posits a relationship between time 
cells and a layer of readout neurons. When extended, this 
model shows that context effects, such as those observed in 
Vierordt’s law or sequential effects (as in the work presented 
here), emerge naturally. The fMTP’s framework is espe-
cially intriguing because it finds resonance with other mod-
els yet holds its distinction. For instance, both Bayesian 
observer models and sequential-updating models represent 
time through mathematical operations like Bayesian 
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integration into prior distributions (Di Luca & Rhodes, 
2016; Petzschner et al., 2012; Shi et al., 2013) or averaging 
durations with recency-weighted techniques (Taatgen & van 
Rijn, 2011). The Internal Reference Model and the mixed-
pool model follow similar principles. What sets fMTP apart, 
however, is the neural embodiment of these principles. 
Durations are represented through distinct neural properties 
of the time cell layer, and the arising context effects stem 
from Hebbian learning dynamics between this layer and the 
readout circuit. This bridging of neural circuitry and time 
representation showcases the versatility and depth of the 
fMTP model (Salet et al., 2022).

Contrastingly, the mixed-pool model (Taatgen & van 
Rijn, 2011) underscores a blend of recent experiences shap-
ing our perception of time. It suggests that representations 
of different time intervals can inadvertently influence each 
other, highlighting the significance of memory processes. 
The Internal Reference Model (Bausenhart et al., 2014), 
meanwhile, champions the dynamism in time perception, 
and emphasises the continual updating of an internal refer-
ence, especially in a sequential stimulus environment such 
as the one implemented in the present study.

Through the prism of a simple Kalman filter, our model 
illuminates the facets of dynamic Bayesian models in 
understanding perceived durations, especially in ever-
changing (and sometimes sudden) temporal contexts. 
While our model contributes to this discourse by under-
scoring the probabilistic nuances in human timing behav-
iour, it is pivotal to understand its orientation within the 
larger tapestry of theories on temporal perception, and 
how similar models contribute to our understanding.

Conclusion

To summarise, we demonstrate that a simple Kalman filter 
(a dynamic Bayesian model) can adequately capture 
changes in perceived duration in a sequential sampling 
task with rapid and surprising changes in temporal context. 
We assert that static models, and as such, static temporal 
priors, could also model data with Kalman filters, to cap-
ture the fast and slow uptake of environmental information 
about time, and in doing so provide more insights into the 
neurocomputations underlying such processes. As such, 
models of time perception that adhere to such frameworks 
seem like a good bet when trying to understand how time 
might be processed in the brain.
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