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Summary

Modern cosmology is seeking to understand the mechanisms behind the Universe birth and evo-
lution, dynamics at limiting cases of both high energy quantum physics and the theory of gravi-
tation. Since the observation of the Cosmic Microwave Background, primordial light revealed at
the Universe’s creation, a technological push was made towards the precise detection of its subtle
variations, especially with regards to its polarisation states. Directly or not, the scientific impact
resulting from this effort is strong. Radio-antennas, optical component at the base of cosmology
telescopes, are commonly used for telecommunication purposes in cars, phones, computers, etc.
The detectors used in instruments for Cosmic Microwave Background observations are based on
superconductors, ground technology for Magnetic Resonance Imaging or quantum-computer qubits.
Metamaterials, a recent artificial media tunable to shape the light as desired, enabled microscopy
at nanometric scales for instance.

This thesis presents efforts to prove the concept of the Metal, a focal optics made of metamaterial
surfaces. Details on the Cosmic Microwave Background current knowledge and considerations on
future experiments are discussed. Compliance with the requirements dressed for Cosmic Microwave
Background instrumentation is partly demonstrated through a full experimental characterisation of
a prototyped device. Excellent optical performances, similar to an existing optics counterpart, are
demonstrated in a warm setup. Further plans and preliminary results to prove the coupling with a

detecting element cold are laid out.
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Foreword

"Il y a deux réponses a cette question, "There are two answers to this question,
comme a toute les questions : as for any questions:
celle du poéte et celle du savant. that of the poet and that of the scholar.
Laquelle veux-tu en premier 2" Which one would you like first?"
P. Bottero, Le Pacte des Marchombres, Tome P. Bottero, The Pact of the Shadowwalkers,
1 : Ellana, 2010 Book 1 : Ellana, 2010

It was dark. As if awakened from a deep slumber, my ears slowly picked up on the sound of the
surrounding mountains, the wind rustling against the fabric of the tent and the rumbling of the
river stream. Despite the comfortable warmth my duvet was providing, I was driven to go out-
side, partly because, as they say in Wales, the Dragon needed to be released, but also because I
knew from the crisp cold biting my cheeks that the sky was clear and couldn’t skip the marvel-
lous spectacle that awaited outside. Minutes later, I stood there looking up, lost in a moment,
less than a grain of sand on a minuscule rock spinning around a slightly less minuscule and some-
what shiny thermonuclear reactor, lost in the Orion Spur of the Milky Way... My awareness of the
infinities we're lost within arising just as the more immediate awareness of my surroundings did
when I woke up earlier. Funny how, with the correct instrument, we can look at the sounds the
Universe was making at its birth. How it grew from one infinite to the other in an unimaginably
small amount of time. A couple mosquito bites later, I was back asleep inside the tent.

Climbing summits over multiple days on your own is obviously exhausting. The muscle fatigue
builds up over hours marching, the prolonged loneliness takes on moral, rest is precarious... In a
sense, it is a very good mirror of one’s life where multiple factors, internal or external, takes their
toll. But then why carrying on climbing?

That’s where my very short and somewhat generic story comes to play. Those moments where the
mind can wonder freely in a blend of contemplation, curiosity and imagination are the driver. It
is my firm belief that as trying times as it may be, we need to preserve this dreamer side under

which science is inscribed, providing the answers of the "poet" through the "scholar" perspective.
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Inscribed in the effort carried by generations of researchers to give humanity an eye that can see
clearly the very origin of the Universe, this thesis present a humble contribution to the develop-
ment of a focal optics, the Metamaterial-based Lenslet (Metal.). The material constituting this
lenslet is essentially reshaping light as it travels through. The proof of concept for that device is
further progressed by coupling it to a new generation of detectors that can perceive the faintest
variations of primordial light yet achieved, very much like the human eye can distinguish more
shades of green than any other colour.

The developments carried through are decomposed as follows. The current scientific perspective
under which we describe the origin and evolution of the Universe will be explored first in Part 1.
Here will be discussed the Cosmic Microwave Background (CMB), the image we can see of the
Universe near it’s origin, and what kind of instrument are used or currently being developed to
observe it, emphasising the potential role our Metal. could play in future instrumentation develop-
ments. The requirements set by the community on such telescopes will further be depicted in Part
I1. Optical systematics, defects generating impurities in the desired CMB picture, will be defined.
Followed by the presentation of a method to investigate further the impact of a real lens such as
the MetaL. on sky observations. To acquire a deeper understanding of this device, its operating
principle and design will then be depicted further in Part III. It will be discussed in details how
light is being remodelled through metamaterial-based filters, and how this technology has been
readapted to produce a Metal.. More practical concerns are looked upon in Part IV, where the
fabrication processes involved in the manufacture of a prototype is presented, and the discussion
is extended to inherent limitations for other types of design. The optical quality of the prototyped
lenslet, measured with a high precision setup, will then be compared with the analytical model
dressed so far and validated against the desired characteristics for CMB observations. With this
focal optics fully understood, the next concern to prove its concept is to properly transfer the light
from the prototyped device down to a detector set. Such pixel design is depicted in Part V. A dis-
cussion on the operating principle of the Kinetic Inductance Detector (KID), explaining how this
elegant detector responds to the requirements set for future CMB instruments. Understanding
both end of the light path, a solution is devised to couple them together. Namely, a broadband
planar antenna transfers the light focused by the lenslet to a microstrip architecture matching the
propagating signal to the KID. The current status and future plans for the experimental characteri-

sation of this now fabrication device will finally be discussed.
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Part I Outline

Beginnings. The starting point of something new, evocative of an epoch untainted by time. But
there is never such thing as a "clean" start. A child’s birth, for instance, is actually an utter mess,
predated by a fairly intense and relatively short period of cellular activity. Cosmology, literally
the study of (Aoyio-logia) the Universe (xéouoc-késmos), modernised through the scientific dis-
coveries made during the XX*" century, is humanity’s attempt at understanding the genesis of
the Universe and how it evolves. Very much like our own birth, inaccessible to us, the Universe’s
origins are currently blurry, and so are the dynamics involved. This view will be depicted in Sub-
section I.1.1 through a short discussion on the Big Bang paradigm, the current scientific consensus
born from recent observations of the CMB, the oldest light relic of our Universe, discussed in Sub-
section I.1.2.1. Further description of the polarisation states of this primordial trace will be given
in Section 1.1.2.2, linking the Universe’s evolutionary model to its observables. Considerations will
be laid out in Subsection 1.2 on how, to refine the current CMB picture, future observations will
be carried out, overviewing the design of the related instruments. By further discussing the current
technological options for Focal Plane Unit (FPU) designs, we will finally argue in Subsection 1.2.5
why the Metal, is an attractive option that could be implemented there.




iy

I.1. A gllmpse at the ’/f;rimorydial Universe

I[.1.1 The Big-Bang Consensus

The Big Bang, a paradigm that depicts the Universe at its earliest time, was precursed by Al-
bert Einstein’s theory of general relativity, Niels Bohr’s efforts to push it towards a dynamic cos-
mological solution and Edwin Hubble’s discovery of nebulae as being other galaxies outside ours
[1]. The latter effectively underlined the Copernican principle, essential in Cosmology, stating in
essence that our place in the Universe is representative of any other. The detection of the CMB by
Arno Penzias and Robert Wilson in 1965 gave the Big Bang paradigm a final evidence and it grew
steadily in the end of the XX century through the efforts of scientists like Yakov B. Zel’dovich
who tried to devise the origin and dynamics of the large scale structures observable on sky in the
Far Infra-Red (FIR) range [2]. In 1992, the first detailed map of the CMB is observed by the COs-
mic Background Explorer (COBE) mission [3], further enhanced by the Wilkinson Microwave
Anisotropy Probe (WMAP) mission in 2001 [4, 5] and finally by the Planck satellite in 2013. This
newly acquired cartography of our Universe helped shaping the Big Bang theory further, to the
chronology it has today.

Planck Era

The current consensus proposes that at the very origin, from 0s to the Planck time 107%3s, the
Universe was in a singular state regarding both the theory of general relativity and quantum
physics. At this time, the Universe was at the Planck Temperature 1.41 x 1032 K, 10'Y times hotter
than the surface of the Sun. According to the Heisenberg uncertainty principle and considering the
wavelengths of concern, neither the primordial particles spin nor their probability density can be
predicted within the scope of quantum mechanics. Furthermore, the mass contained within this
region is of order of the Planck Mass 5.5 x 10~8kg, which is 10'® times bigger than the mass of
hydrogen, resulting in a limiting case for general relativity [6]. The four fundamental interactions,
namely the strong nuclear interaction, electromagnetism, the weak nuclear interaction and gravity,
cannot be directly observed nor predicted in these limit conditions. At present, it is suggested that

they were unified under a single interaction.
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Figure 1.1.1: Artistic impression of the Big Bang Chronology, from the radiation dominated epoch to
present times. Watercolour paint created and property of Mme Louise Betremieuz.

Grand Unified Theory (GUT) Epoch

From 107%s to 1073% s seconds, the Universe is thought to be dominated by photo-radiative energy.
The GUT proposes that pairs of proto-particles and their opposite anti-particles form and instantly
annihilates with one-another under suspected quantum gravitational interaction, decoupling from

the other unified interactions whilst the Universe grows.

Inflation

As will be seen in Subsection 1.1.2.1, measurements of the CMB strongly suggests an inflationary
scenario where, from 1073¢s to 10732 s, the strong nuclear force also decouples from the other uni-
fied interactions during the Universe’s growth, causing a sudden expansion of the Universe from
the Planck length up to roughly the size of a coin on modern scales. A less but still hot and dense
plasma of pre-baryonic matter and photons is spread out within these extended dimensions. The
expanded quantum fluctuations seeded a characteristic acoustic imprint which slowly triggered the

agglomeration of matter during later times.

Pre-baryonic Era
From 107325 to 10722, the conditions settles for massless elementary particles to form as the
strong interaction decouples. The intense characteristics of the Universe at this stage maintain a

non-baryonic plasma where matter and anti-matter combines to cancel out, immersed in bath of




highly energetic photons. Massive particles start forming as the electro-weak interaction decouples.

Baryogenesis & Baryosynthesis

Eventually, as the Universe continues expanding, an asymmetry between matter and anti-matter
causes the excess matter to form baryons as the conditions relaxed enough, somewhere between
10725 and 107 °s.

Radiation Dominated Epoch & Nucleosynthesis

From 3 minutes to 20 minutes, nuclear fusion of some baryons triggers. Hydrogen, helium, deu-
terium and lithium nuclei form within the plasma whilst the Universe cools and becomes less
dense. This nucleosynthesis process sustains for 20 minutes. The Universe is still under extreme
conditions, where photons are continuously travelling through matter constituents, either ionising
the medium locally or bouncing off electrons through Thomson scattering as is depicted on the
top layer of Fig.I.1.1. The resulting photo-energy competes with gravity, causing perpetual den-
sity fluctuations in the media, direct result of the acoustic oscillations released during inflation.
The Universe carries on expanding and cooling, providing sufficient conditions to maintain this

baryonic plasma for the next 240000 years.

Decoupling/Recombination

The constituents of the baryonic plasma finally recombines into neutral atoms, a process that ends
approximately 380000 years after the Big Bang. In Fig.I.1.1, the deep blue pockets represents
highly dense and hot regions forming through recombination. Eventually, there is enough room for
the photons to decouple from the plasma and travel unhindered as gamma rays. The CMB is the
remanent picture of this surface of last scattering, shown as a clear transition from the baryonic
plasma to the more familiar darkness of the sky in Fig.I.1.1. The CMB depicts the last density
perturbation, result of the acoustic oscillations, distribution that subsequently seeded the Universe
structures. The Matter Era is entered, where gravity dominates over the other interactions on a

cosmic scale.

Dark Era
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