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ABSTRACT

The Brain Imaging Data Structure (BIDS) is a community- driven standard for the organization of data and metadata 
from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed 
and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, 
and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, 
with the aim of enabling researchers in other domains to learn from the success of BIDS.

Keywords: neuroimaging, data organization, standards, neuroinformatics

1. INTRODUCTION

The sharing of scientific research data is beneficial in 
numerous ways. Foremost, it maximizes the potential 
knowledge to be derived from the data, thus maximizing 
the benefit to the stakeholders who fund the research 
and the contributions of research participants. It also pro-
vides the means for researchers to attempt to reproduce 
the work of others in their field, which is an essential 
component of science. Further, it levels the scientific 
playing field by providing data to researchers from under- 
resourced environments or those without data acquisi-
tion capabilities, which they can use to develop novel 
analysis methods or test new scientific hypotheses. 

Given the rise of machine learning methods in science, 
another unsung benefit of data sharing is that it provides 
larger and more diverse training datasets, which can 
increase robustness and decrease overfitting and bias. 
For all of these reasons, the sharing of data has become 
increasingly common across science, as have demands 
from funding agencies and publishers that data be 
shared. Within the field of neuroimaging, data sharing 
efforts started around 2000 with the fMRI Data Center 
( Van  Horn  &  Gazzaniga,  2013). Ten years later, it began to 
flourish with the advent of the International Neuroimaging 
Data- sharing Initiative/Functional Connectomes Project 
(INDI/FCP) ( Mennes  et  al.,  2013). Subsequent projects 
have focused on prospective sharing of data, including 

mailto:poldrack@gmail.com


4

R.A. Poldrack, C.J. Markiewicz, S. Appelhoff et al. Imaging Neuroscience, Volume 2, 2024

the Human Connectome Project ( Van  Essen  et al.,  2013) 
and the Adolescent Brain Cognitive Development (ABCD) 
Study ( Casey  et al.,  2018), which have had a major impact 
on the field by providing large quantities of neuroimaging 
data to researchers.

The sharing of data is a worthy goal, but only if the data 
are shared in a way that makes them FAIR (Findable, 
Accessible, Interoperable, and Reusable) ( Wilkinson  et al., 
 2016). One major contributor to FAIRness is the use of 
standard file formats, which allow researchers to reuse 
data across multiple software platforms. The field of neu-
roimaging research using MRI has benefited from the 
longstanding convergence of the field on a standard file 
format for imaging data, the Neuroimaging Informatics 
Technology Initiative (NIfTI) format ( Cox  et  al.,  2004), 
which is used by nearly all major MRI analysis software 
packages. However, beyond file formats, the data and 
associated metadata must be organized in such a way 
that data recipients can quickly and accurately under-
stand the contents of the data. The benefits of a clear, 
formal organization scheme for data include minimizing 
the burden of curation for researchers and for data- 
sharing repositories, reducing the likelihood of errors due 
to misunderstanding or misinterpretation of the data, 
enabling the development of analysis tools that can auto-
matically utilize the structure of the data to analyze them 
appropriately and with minimal user input, and affording 
the ability to automatically validate the data to determine 
whether they meet the standard ( Gorgolewski  et al.,  2016).

In this paper, we outline the history, current status, and 
future directions of the Brain Imaging Data Structure 
(BIDS), which has become a widely accepted community- 
driven data standard within the neuroscience community. 
The goal of this exposition is to provide a written history 
of the events that gave rise to BIDS and outline the events 
leading to its establishment, which we hope will be of 
interest to researchers in the neuroimaging field as well 
as to those in other fields working to establish successful 
new data standards.

2. THE BIRTH OF BIDS

The birth of BIDS can be traced back ultimately to a 
social media post by Russ Poldrack on October 17, 
20141. The post referred to a talk that Chris Gorgolewski 
had given at the weekly Stanford cognitive/neuroscience 
seminar (“Frisem”). A reply to the post by Stuart Buck, 
then a program officer at the Laura and John Arnold 
Foundation, led to a discussion that ultimately resulted in 
a substantial grant from the Foundation to the Stanford 

group, with the aim of developing a new data- sharing 
platform that would supercede the OpenfMRI data- 
sharing platform ( Poldrack  et  al.,  2013) that the group 
had previously run. This new platform would ultimately 
become the OpenNeuro archive ( Markiewicz  et al.,  2021), 
and the support from the Arnold Foundation would help 
start the work on BIDS.

One of the major challenges of the OpenfMRI project 
had been data curation. The project had developed an 
in- house data organization scheme (see Fig. 1 in  Poldrack 
 et al.,  2013), which reflected common practice in many 
labs but was built around a specific workflow for task 
fMRI analysis based on the FSL software package 
( Jenkinson  et al.,  2012). Standardization of file layout and 
study design metadata gained traction in other projects 
interested in formalizing the loading of data; for example, 
PyMVPA ( Hanke  et  al.,  2009) version 2.6.1 (November 
2014) included “Direct support for loading data and 
design from openfmri.org- style datasets”2. Since the 
scheme was not formally described, researchers wishing 
to deposit data could not easily transform their data to 
meet it. Instead, data depositors would send their data to 
the OpenfMRI team and a curator within the team would 
work with the depositor to transform the data to meet the 
informal standard. There was also no way to easily deter-
mine whether this transformation was correct, other than 
running it through the automated workflow and seeing 
whether the workflow ran successfully. This resulted in 
significant personnel costs and greatly limited the amount 
of data that could be ingested to the archive. This stan-
dard was also limited to a very specific type of MRI data 
and analysis workflow, and thus was not necessarily use-
ful for a broad group of researchers.

When Chris Gorgolewski and Russ Poldrack began 
discussing the development of a new archive, they recog-
nized that it was essential to substantially shift the burden 
of curation from the archive to the data owners, in order to 
make the archive financially sustainable in the long run. It 
became clear that this would require a detailed and gen-
eral scheme for the organization of the intended data 
types, and that this scheme should support automated 
validation so that users can upload data and share them 
immediately without the need for manual curation. As it 
happened, the Stanford team was already participating in 
the Neuroimaging Data Sharing Task Force (or NIDASH), a 
collective effort under the umbrella of the International 
Neuroinformatics Coordinating Facility (INCF). Among 
other initiatives, this group was developing the Neuroim-
aging Data Model (NIDM) project, an informatics frame-
work for the formal description of neuroimaging 
experiments and datasets ( Maumet  et al.,  2016). As part 

1 https://twitter . com / russpoldrack / status / 523263185764491264; screenshot 
available at https://osf . io / ha8gx 2 https://github . com / PyMVPA / PyMVPA / pull / 240

https://twitter.com/russpoldrack/status/523263185764491264
https://osf.io/ha8gx
https://github.com/PyMVPA/PyMVPA/pull/240
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Fig. 1. Figure 1, showing an example mapping from DICOM to BIDS. BIDS is a community- driven standard for 
organizing, naming, and annotating neuroimaging data that places a heavy emphasis on human-  and machine- readability. 
Since its initial publication, BIDS has expanded from structural, functional, and diffusion MRI to incorporate other MR 
methodologies such as arterial spin labeling and other recording technologies such as electrophysiology. Reproduced 
from  Gorgolewski  et al.  (2016), CC- BY.

of a series of meetings organized by INCF to further the 
progress of NIDM and other data- sharing efforts, a meet-
ing had been planned for January 2015 at Stanford in 
order to discuss the development of an NIDM model for 
fMRI experiments, based on the OpenfMRI use case. This 
was the meeting at which BIDS was first envisioned.

A timeline of the development of BIDS is presented in 
Figure 2. The Stanford meeting was held January 27- 30, 
2015, with significant support from the INCF3. The in- 
person attendees were Mathew Abrams, Michel Dumon-
tier, Guillaume Flandin, Chris Gorgolewski, Karl Helmer, 
David Keator, Camille Maumet, Nolan Nichols, Russ 
Poldrack, Jean- Baptiste Poline, Ariel Rokem, and 
Vanessa Sochat; other invitees attending remotely 
included Satrajit Ghosh, Yaroslav Halchenko, Michael 
Hanke, David Kennedy, Angie Laird, Tom Nichols, and 
Jessica Turner. The meeting started with presentations 
on a number of ongoing relevant projects and their rela-
tion to the OpenfMRI use case. The first explicit mention 
of BIDS came on Day 2, when one of the subgroups was 
labeled as “Subgroup1: OBIDS (Open Brain Imaging Data 
Structure) format proposal (derived from the OpenfMRI 
format).” A photo of a whiteboard drawing (Fig. 3) shows 
the intended separation of standards, with a directory- 
based format (intended for most users) and a Resource 
Description Framework (RDF) based format (intended for 
computationally advanced users); the former is what 
would become BIDS.

Following the meeting in January 2015, there was a 
substantial effort to develop a set of examples that would 

be circulated with the initial draft of the specification, 
based primarily upon datasets from the OpenfMRI data-
base. An additional meeting was held at the OHBM con-
ference in Honolulu in June, 2015 and consequently at 
the INCF 2015 congress in Cairns, Australia, where both 
OBIDS and NIDM groups worked together as part of 
NIDASH to cross- fertilize both standards with basic 
metadata to describe MRI experiments and data. The 
BIDS specification draft and 22 example datasets were 
disseminated to the community for comments on Sep-
tember 21, 2015, along with an early version of the 
JavaScript- based bids- validator4, developed by Squishy-
media. Squishymedia was a contractor also responsible 
for primary development of the OpenNeuro archive; it 
later ended operations in 2021, after which Nell Hardcas-
tle (lead developer on the OpenNeuro project) joined the 
Stanford team. A NIDASH task force meeting was held in 
Chicago in October 2015 in advance of the Society for 
Neuroscience (SFN) Annual Meeting, and a BIDS leaflet5 
was distributed at the SFN meeting to promote the stan-
dard to a wider audience.

3. THE ESTABLISHMENT OF BIDS

The publication of a paper in Scientific Data in June 2016 
( Gorgolewski  et al.,  2016) marked the initial official release 
of the standard. As BIDS developed, a set of principles 
became enshrined which have been central to  subsequent 

3 The original agenda and notes from the meeting are available at https://osf 
. io / kmavh/

4 https://github . com / bids - standard / bids - validator/
5 A copy available from https://web . archive . org / web / 20230519223151 
/ https://neuro . debian . net /  _ files / brochure _ bids . pdf and also listed on https://
centerforopenneuroscience . org / engage

https://osf.io/kmavh/
https://osf.io/kmavh/
https://github.com/bids-standard/bids-validator/
https://web.archive.org/web/20230519223151/https://neuro.debian.net/_files/brochure_bids.pdf
https://web.archive.org/web/20230519223151/https://neuro.debian.net/_files/brochure_bids.pdf
https://centerforopenneuroscience.org/engage
https://centerforopenneuroscience.org/engage
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decision making in the project. The first principle is that 
adoption is crucial. This led to a focus on engaging the 
relevant research community, and on keeping the stan-
dard as close as possible to the practices already in use 
in the community, thus requiring engineering ingenuity to 
build a solution from simple existing components while 
avoiding technical complexity. For example, this led to 
the focus on human- readable text formats rather than 
more complicated formats such as RDF or XML (Extensi-
ble Markup Language).

The second principle is: don’t reinvent the wheel. This 
led to the use of existing standards and file formats when-
ever possible, including NIfTI, JSON (JavaScript Object 
Notation), and tab- separated text files (TSV), along with 

other projects later incorporated, such as the Hierarchical 
Event Descriptor (HED) annotation system ( Robbins  et al., 
 2022). It is important to note the historical trajectory that 
led to the choice of these particular formats. For example, 
Digital Imaging and Communications in Medicine (DICOM) 
has long been the dominant imaging data format within 
the field of medical imaging. However, due to the overall 
complexity of DICOM and the early absence of explicit 
MRI support (with DICOM Working Group 16 on MRI only 
established in 1998), the academic and research neuroim-
aging field in the 1990s turned to simpler formats, such as 
Analyze ( Robb  et  al.,  1989). Subsequently, in the early 
2000s, this simpler format inspired the creation of the 
NIfTI format, which quickly became the standard for data 

Fig. 3. A snapshot of the whiteboard at the initial BIDS meeting (January 27- 30, 2015), outlining the intended separation 
of a directory- based format (which would become BIDS) and a formal RDF- based description (which would become 
NIDM- Experiment).

Fig. 2. A graphical timeline of the historical development of the BIDS project, including important publications, meetings, 
and other developments.
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exchange and storage in academic neuroimaging 
research. As  advancements were made in MRI scanners, 
enhancing their capability to export acquired data in 
DICOM format, tools like dcm2nii and dcm2niix ( Li  et al., 
 2016) emerged to convert DICOM series into the simpler 
and widely supported NIfTI format. However, as NIfTI 
encapsulates only minimal metadata, compared to the 
comprehensive metadata represented within DICOM, 
these tools also needed to export the more complete ver-
sion of the metadata into separate (“sidecar”) files, gener-
ally represented using JSON. Currently, over 70 metadata 
fields in BIDS sidecar files originate from or are based on 
metadata acquired from DICOM series. DICOM has 
become the primary format for data export from MRI and 
PET scanners, which are then converted to NIfTI for 
interoperability with commonly used software packages.

Finally, the group has focused on the work that will 
achieve the largest amount of impact, and on not letting 
the perfect be the enemy of the good; this principle is 
now referred to informally as the “80/20 rule.” This 
requires admitting that there will always be edge cases 
that can’t be well accommodated by the standard, but 
that this is fine as long as the standard works well for 
most people in most circumstances most of the time. 
Perhaps most important was the community outreach 
performed by Chris Gorgolewski as the leader of the proj-
ect, whose dogged pursuit of feedback from a broad 
group of stakeholders led to a general feeling of inclu-
siveness and community- mindedness.

One particular idea for incentivizing the use of the 
standard was to develop software applications that could 
be easily applied to a BIDS dataset. This idea led to the 
concept of the BIDS App ( Gorgolewski  et  al.,  2017), 
which refers to a containerized software application of a 
specific analysis pipeline that is aware of the BIDS stan-
dard and can thus be applied directly to a BIDS dataset. 
This model has become highly successful, leading to 
widely used tools, including fMRIPrep ( Esteban, 
 Markiewicz,  et al.,  2019), QSIPrep (Cieslak et al., 2021), 
PyMVPA BIDS-App (Torabian et al., 2023), and MRIQC 
( Esteban  et  al.,  2017), and has almost certainly driven 
adoption of the standard by researchers who wish to use 
these software tools6. Those early efforts on BIDS Apps 
also catalyzed the development of interoperability layers 
for existing tools (e.g., the MNE- BIDS interoperability 
layer for MNE- Python;  Appelhoff  et al.,  2019) as well as 
generic libraries to facilitate interaction with BIDS data-
sets including PyBIDS ( Yarkoni  et al.,  2019), BIDS- Matlab 
( Gau  et  al.,  2022), and nilearn (RRID:SCR_001362). In 
particular, interactions between BIDS and developers of 

existing tools were nurtured at a series of coding sprints 
organized by the Stanford Center for Reproducible Neu-
roscience in 2016 and 2017.

4. BIDS EXTENSIONS

The initial BIDS standard was focused on specific types 
of MRI data, but even before its initial release it became 
clear that there would be a need for extensions to accom-
modate additional data types. Soon after the establish-
ment of the standard, the BIDS team began to formalize 
the concept of extending BIDS through “BIDS Extension 
Proposals” (BEPs), inspired by the Python Enhancement 
Proposal (PEP) process. The first extension proposals to 
be intensively discussed and eventually merged into the 
specification were BEP008 (“Magnetoencephalography”) 
and BEP007 (“Hierarchical Event Descriptor” HED tags) 
in BIDS version 1.1, which were quickly followed by 
BEP006 (“Electroencephalography”) and BEP010 (“intra-
cranial Electroencephalography”) in BIDS version 1.2. As 
the BEP numbers suggest, there were proposals even 
before these (e.g., BEPs 001 through 005); however,  
they progressed more slowly and were merged at later 
times or are still works in progress; see Table 1 for a list  
of merged BEPs and https://bids . neuroimaging . io / get 
_ involved . html for full documentation of all BEPs.

The process of developing a BEP was deliberately 
designed to be as inclusive and with as few technical hur-
dles for potential contributors as possible. Although the 
process has become more formal throughout the years 
and central documentation about the necessary steps and 
deliverables exists (https://bids - extensions . readthedocs 
. io), its core has stayed the same: Interested parties may 
suggest a BEP via the BIDS mailing list or central develop-
ment repository on Github. After an initial check by a group 
that has come to be known as the “BIDS maintainers” (see 
below) of whether the proposed idea broadly fits the scope 
of BIDS, a BEP receives a number and an entry in the list 
of ongoing BEPs. The BEP itself is then developed using 
shared public documents that are advertised via the cen-
tral BIDS website, and where any person may become a 
contributor by adding comments and suggestions. Each 
BEP is headed by a team of “leads” or “moderators,” who 
are responsible for tracking individual contributions, steer-
ing discussions, and accepting and rejecting suggestions 
to the document. The BEP leads are furthermore respon-
sible for organizing virtual discussion rounds (e.g., video 
calls) with all contributors, and for explicitly reaching out to 
the broader community working with the relevant meth-
ods. Several community members of BIDS that are active 
to this day have initially found their way into the commu-
nity by stumbling over a BEP document and offering their 
feedback and/or minor additions (i.e., simple typo 

6 See https://bids - apps . neuroimaging . io / apps/ for a complete list of currently 
available BIDS apps.

https://bids.neuroimaging.io/get_involved.html
https://bids.neuroimaging.io/get_involved.html
https://bids-extensions.readthedocs.io
https://bids-extensions.readthedocs.io
https://bids-apps.neuroimaging.io/apps/
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 corrections), further highlighting the inclusiveness of the 
community- driven process.

The first BIDS extension released for a new neuroim-
aging modality was for magnetoencephalography (MEG) 
( Niso  et  al.,  2018). The design process was initiated 
around the creation of the Open MEG Archive (OMEGA; 
 Niso  et al.,  2016) at the Montreal Neurological Institute, 
for which BIDS was identified as a principled framework 
to organize the multimodal data. Sylvain Baillet and 
Guiomar Niso thought that the development and adop-
tion of a data organization standard for MEG would 
require the active participation of academic software 
developers in the field. An ad hoc working group first met 
around the idea of a possible MEG extension to BIDS at 
the International Conference on Biomagnetism held early 
October 2016 in Seoul, South Korea7. The first elements 
of specification for MEG- BIDS were shared as a preprint 
( Niso  et al.,  2018), which received comments and sug-
gestions from the community. In July 2017, further input 
from the MEG community was collected through an 
online poll survey. The poll received 78 international 
entries, with the most salient results indicating strong 
interest in a common standard for MEG data organization 
(~99%) and affirming a willingness to try a MEG- BIDS 
solution (97%). Although the initial thought was to 
develop a single BIDS extension encompassing all elec-
trophysiological data modalities, the working group iden-
tified that each data type required specific adjustments 
that would be best addressed by their respective experts. 
The MEG extension to BIDS introduced substantial inno-
vations that stemmed from the original MRI elements, 
considering the radically different nature of the instru-
ment technology and time- resolved data types, paving 
the way for other electrophysiological modalities, such as 
EEG ( Pernet  et al.,  2019) and iEEG ( Holdgraf  et al.,  2019). 

With these three electrophysiology extensions (MEG, 
EEG, iEEG), BIDS became a common structure for a 
larger user group, including many different types of neu-
roimaging scientists beyond the original use case of MRI.

5. BIDS DERIVATIVES

The initial BIDS standard focused on “raw” data8. As a 
result of the excitement in the community for the BIDS 
standard, early growth of the project was horizontal, with 
a number of new data modalities being added over time. 
However, the need for a standard to organize processed 
data quickly became apparent, given that the end results 
of these studies are derived not directly from raw data, 
but rather through potentially numerous intermediate 
processing steps, possibly produced by one or more 
BIDS Apps. Discussions began in 2017 of a “layout file 
for derivatives,” and this led to the further development of 
the concept of a BIDS Derivatives Standard. In 2018, the 
US BRAIN Initiative funded a grant to develop BIDS stan-
dards for processed data, computational models, and 
statistical models9. This grant funded three meetings held 
in 2018 and 2019, in which members of the community 
convened to work on these new standards.

The description of processed data is much more chal-
lenging than the description of raw data, since there is an 
almost infinite set of possible processing operations that 
might be applied to a neuroimaging dataset and outputs 
that can be generated. Compounding this challenge are 
differences among practitioners of different modalities 

Table 1. Merged BIDS extensions as of December 2023.

BEP # Title Date merged Publication

BEP001 Quantitative MRI (qMRI) 2021- 02- 23 (v1.5.0) ( Karakuzu  et al.,  2022)
BEP003 Common Derivatives 2020- 06- 11 (v1.4.0)
BEP005 Arterial Spin Labeling (ASL) 2021- 02- 23 (v1.5.0) ( Clement  et al.,  2022)
BEP006 Electroencephalography (EEG) 2019- 03- 04 (v1.2.0) ( Pernet  et al.,  2019)
BEP007 Hierarchical Event Descriptor (HED) Tags 2018- 04- 19 (v1.1.0) ( Robbins  et al.,  2022)
BEP008 Magnetoencephalography (MEG) 2018- 04- 19 (v1.1.0) ( Niso  et al.,  2018)
BEP009 Positron Emission Tomography (PET) 2021- 04- 22 (v1.6.0) ( Norgaard  et al.,  2022)
BEP010 intracranial Electroencephalography (iEEG) 2019- 03- 04 (v1.2.0) ( Holdgraf  et al.,  2019)
BEP018 Genetic information 2020- 04- 14 (v1.3.0) ( Moreau  et al.,  2020)
BEP030 Near Infrared Spectroscopy (NIRS) 2022- 10- 29 (v1.8.0) ( Luke  et al.,  n.d.)
BEP031 Microscopy 2022- 02- 15 (v1.7.0) ( Bourget  et al.,  2022)

A full link of all BEPs (including works in progress) is available at https://bids . neuroimaging . io / get _ involved . html.

7 http://www . biomag2016 . org / download / program / BIOMAG2016 _ Poster 
_ Sessions . pdf, Poster Mo- P011

8 The concept of “raw” data remains controversial, with different researchers 
having very different interpretations of the term. The initial usage was meant 
to capture its most common usage in the MRI field, that is, data as down-
loaded from the MRI scanner, usually in DICOM format; however, this usage 
conflicted with the term’s usage in other modalities. At a BIDS Derivatives 
meeting in Copenhagen, Denmark in 2023, an operational definition of the 
term “raw” was proposed, such that a “raw BIDS dataset” is one for which 
there is no source BIDS dataset specified.
9 Original grant proposal and meeting summaries at https://osf . io / c3dgx/

https://bids.neuroimaging.io/get_involved.html
http://www.biomag2016.org/download/program/BIOMAG2016_Poster_Sessions.pdf
http://www.biomag2016.org/download/program/BIOMAG2016_Poster_Sessions.pdf
https://osf.io/c3dgx/
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(e.g., functional and diffusion imaging) for sharing pro-
cessed results, particularly with regard to what is consid-
ered necessary metadata and provenance. At an August 
2017 meeting at Stanford, it was agreed to split the BIDS 
Derivatives specification (BEP003) into a series of BEPs 
focused on particular modalities or use cases, to allow for 
independent development on largely independent com-
ponents. An August 2018 meeting focused specifically on 
derivatives with a goal of advancing each sub- proposal, 
establishing common principles, and recombining into a 
single BEP, leading to a finalized document in December 
2018 that was called “BIDS Derivatives Release Candi-
date 1” that was advertised for implementation. Follow-
ing the OHBM 2019 meeting, in the absence of Chris 
Gorgolewski as a primary driver for integration of all 
derivatives at once (see next section), the sections of 
BIDS Derivatives were again broken into sub- proposals, 
with the common principles being the most important tar-
get for inclusion into BIDS. These Common Derivatives 
principles were finally released as part of BIDS 1.4.0 in 
June 2020.

The initial push for BIDS Derivatives also included two 
projects aimed at the description of computational arti-
facts related to neuroimaging data. The first was the BIDS 
Computational Models framework, which was meant to 
describe computational models used in neuroimaging 
data analysis ( Poldrack  et al.,  2019). The Stanford group 
joined forces with Jonathan Cohen at Princeton Univer-
sity, who was developing a related project called PsyN-
euLink10, and held a meeting at Princeton in April 2019. 
This was a wide- ranging meeting, which focused on 
establishing a set of use cases and example implementa-
tions that could be used to guide further development. 
Ultimately, this effort split in two different directions. One 
effort to develop a generic framework for the specifica-
tion of a broad set of computational models, led by Jon-
athan Cohen, Padraig Gleeson, and Tal Yarkoni, became 
the ModECI Model Description Framework ( Gleeson 
 et al.,  2023); this is an example where a standard initially 
developed as part of BIDS became a freestanding sepa-
rate project. A separate effort led by Petra Ritter aimed at 
establishing a more constrained framework for the spec-
ification of inputs to and outputs from computational net-
work modeling software (such as the Virtual Brain;  Sanz 
 Leon  et  al.,  2013;  Schirner  et  al.,  2022); this project is 
currently developing a BEP for review.

Another aim of the BIDS Derivatives project was to 
develop a framework to describe common statistical 
models that are applied to neuroimaging data. Statistical 
modeling of neuroimaging data follows broadly stereo-
typed patterns, with researchers making a relatively small 

number of significant decisions within established pipe-
lines. However, the details of the pipelines’ construction 
lead to a high degree of analytical flexibility ( Botvinik- Nezer 
 et  al.,  2020), which is difficult to capture using idiosyn-
cratic user- generated code. The “BIDS Stats Model” 
specification was created on the observation that a major-
ity of neuroimaging analysis methods can be represented 
by the General Linear Model (GLM) and common data 
flow operations. The effort kicked off with an initial docu-
ment by Chris Gorgolewski, Tal Yarkoni, and Satra Ghosh 
in September 2016, which became BEP002. Subsequent 
efforts to develop the specification and the tooling were 
driven by Neuroscout ( de  la  Vega  et al.,  2022), which was 
the first project to use the specification in production. An 
effort to substantially complete the specification was 
undertaken at a meeting at Stanford in October 2018, and 
was subsequently led by Tal Yarkoni, Alejandro de la Vega, 
and Chris Markiewicz until Yarkoni left academia in 2021. 
The specification was finalized at a Spring 2022 meeting 
at the University of Texas and published as a standalone 
website (https://bids - standard . github . io / stats - models/) 
with dual goals of creating user- facing documentation, 
validator, and technical specifications for implementa-
tions. Currently, the BIDS Stats Model specification is 
able to represent a majority of GLM models used in neu-
roimaging, and is implemented by PyBIDS/FitLins and 
BIDS- MATLAB/bidspm. Ongoing efforts are being made 
to develop tools to facilitate user- friendly model specifica-
tion, as well as integration of the specification with the 
most popular neuroimaging analysis packages.

Other efforts have worked to add specifications for 
specific forms of derivative data across multiple modali-
ties. One example is the BIDS Connectivity project, a 
BRAIN Initiative project led by Franco Pestilli of the Uni-
versity of Texas that aims to extend the BIDS standard to 
describe research objects commonly used in experiments 
related to brain connectivity. The BIDS connectivity exten-
sion(s) project comprises most major neuroimaging data 
modalities (sMRI, fMRI, DWI, PET, EEG, iEEG, and MEG) 
and covers data products pertaining to a broad range of 
analyses, including structural and functional connectivity 
matrices, seed- based connectivity maps, networks based 
on dimensionality reduction, and tractograms and trac-
tometry. The BIDS connectivity project is the first example 
of a large- scale coordination effort spanning multiple 
BEPs, with at least five BEPs encompassing different 
derivative types being advanced in a coordinated manner.

6. WEATHERING AN EXISTENTIAL CRISIS

BIDS was envisioned from the beginning as a community 
project, but in practice its leadership fell heavily on the 
shoulders of its founder, Chris Gorgolewski. Chris’s 10 https://princetonuniversity . github . io / PsyNeuLink/

https://bids-standard.github.io/stats-models/
https://princetonuniversity.github.io/PsyNeuLink/
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strong leadership role in the BIDS community ended with 
his departure from academia in March 2019, and the 
resulting leadership vacuum led to an existential crisis 
within the BIDS community, which had by then grown 
substantially. This discussion came to a head at a BIDS 
Town Hall meeting organized at the OHBM 2019 meeting 
in Rome11. Following an overview of the BIDS project, 
there was a spirited discussion about the future leader-
ship of BIDS. This discussion continued on the BIDS 
Standard GitHub repository12; a particularly impactful 
argument was made by Kirstie Whitaker in favor of com-
munity governance and against the “tyranny of structure-
lessness” ( Freeman,  1972) in which a small number of 
voices come to dominate the discussion.

In the wake of the OHBM meeting, Tom Nichols pro-
posed the idea of a BIDS Steering Group, which would 
be elected based on a vote by the BIDS community. In 
parallel, a plan for community governance was devel-
oped by members of the community (see https://bids 
. neuroimaging . io / governance). The development of this 
process was led substantially by Franklin Feingold from 
the Stanford team, who served as the principal project 
manager for BIDS from 2018 through 2022. The first elec-
tion was held in October 2019. The winning slate was 
chaired by Guiomar Niso including Melanie Ganz, Robert 
Oostenveld, Russ Poldrack, and Kirstie Whitaker, a team 
that represented the diversity of neuroimaging modalities 
already then in BIDS, including MRI, PET, MEG, and EEG. 
In 2021, an election was held to replace Kirstie Whitaker, 
which resulted in the election of Ariel Rokem. In 2022, an 
election was held to replace Melanie Ganz and Russ 
Poldrack, which resulted in the election of Yaroslav Hal-
chenko and Cyril Pernet. In 2023, an election was held to 
replace Guiomar Niso and Robert Oostenveld, which 
resulted in the election of Dora Hermes and Camille Mau-
met. The continued successful operation of the commu-
nity in the absence of its founder demonstrates the 
strength of the community governance model.

The governance process also formalized the role of 
the BIDS maintainers. This was spurred by the move of 
the primary BIDS specification document from a collabo-
ratively edited document to a website generated from a 
version- controlled GitHub repository, which increased 
the technical barriers to contribution. The initial maintain-
ers’ group consisted of Stefan Appelhoff, Franklin Fein-
gold, Ross Blair, and Chris Markiewicz, who took 
responsibility for managing the repository and validator 
and facilitating contributions from users less familiar with 
working in GitHub. The work of the maintainers group 
includes social infrastructure, such as the BIDS website 

and social media, as well as running the steering group 
elections. The maintainers group remains a self- selected 
set of contributors that collectively make infrastructure 
decisions around the specification, validator, and exam-
ple datasets, facilitate additions to the standard, and 
advise the steering group. Taylor Salo and Remi Gau 
joined the group in 2020, Anthony Galassi and Eric Earl in 
2021, and Christine Rogers, Nell Hardcastle, and Kim 
Ray in 2023.

One key strength of BIDS is the engineering acumen 
of the scientists involved, which is reflected in the way 
that the standard is now rendered for public consump-
tion. Initially, the published standard for the web site and 
a machine- readable JSON schema used by the JavaS-
cript validator were kept in sync manually. The develop-
ment of a generic, declarative schema to describe the 
standard (described further below) allowed the BIDS 
maintainers and other contributors to develop tools that 
generate some crucial specification text and tables 
directly from the very same schema as the validator and 
therefore avoid conflicts between the published standard 
and the validator. The unified schema also allowed down-
stream tools, such as HeuDiConv (RRID:SCR_017427), 
to avoid hardcoding the standard, thus making them also 
more robust to changes to the BIDS standard.

7. THE PRESENT STATE OF BIDS

At present, BIDS is a highly successful example of a 
community- driven standard for data organization; to our 
knowledge, it is one of the only grass- roots standards to 
have gained such broad acceptance within its field. This 
community support was recognized by the INCF when 
they endorsed BIDS as a best practice standard in 2018, 
and re- endorsed it in 2021. Not only has the adoption of 
BIDS continued to grow, but BIDS itself has also grown to 
reflect developments in the field.

A massive amount of data is now shared in the BIDS 
format. The OpenNeuro archive (as of June 2023) shares 
data for more than 34,000 individuals from more than 850 
BIDS datasets; Figure 3 shows the consistent increase in 
the size of this database over time. The ABCD- BIDS 
Community Collection ( Feczko  et  al.,  2021) shares a 
BIDS version of the ABCD dataset that includes longitu-
dinal data from 11,877 children.

Another lens into BIDS usage comes from the statis-
tics collected by the MRIQC BIDS app, which stores 
telemetry information about each MRI run (unless the 
user opts out) that is then shared via an open web API 
( Esteban,  Blair,  et al.,  2019). Figure 4 shows the cumula-
tive number of unique images (distinguished based on a 
checksum of each image) submitted to the MRIQC web 
API between 2018 and June 2023, which demonstrates a 

11 Slides available at https://osf . io / kmavh/
12 https://github . com / bids - standard / bids - specification / pull / 104

https://bids.neuroimaging.io/governance
https://bids.neuroimaging.io/governance
https://osf.io/kmavh/
https://github.com/bids-standard/bids-specification/pull/104
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Fig. 4. Growing usage of BIDS over time. Left: Growth of the OpenNeuro database since its inception in 2017, adapted 
from ( Markiewicz  et al.,  2021). Right: Cumulative number of unique T1- weighted anatomical (t1w) and BOLD images from 
BIDS datasets submitted to the MRIQC web API ( Esteban,  Blair,  et al.,  2019) from 2018 to June 2023. Source data and 
code to generate figures available at https://osf . io / x7fh8/.

sustained and consistent growth in the number of data-
sets converted to BIDS. Given that these datasets repre-
sent only a subset of the total number of BIDS datasets, 
we would estimate that there are likely to be well over 
100,000 datasets with millions of images that have been 
converted to BIDS at this point. These results highlight 
the fact that BIDS is being used by a significant number 
of researchers in the community.

BIDS has also enabled a number of important data 
integrations that grow community adoption via the soft-
ware ecosystem. For example, the cloud platforms 
brainlife.io ( Hayashi  et al.,  2023) and nemar.org ( Delorme 
 et al.,  2022) have utilized BIDS to provide ready- to- use 
data services. The BIDS standard provides a common 
data format for ingestion and exchange; combined with 
DataLad (Halchenko et al., 2021) as a transfer mecha-
nism, OpenNeuro datasets are made seamlessly available 
to [brainlife.io] (http://brainlife.io) and NEMAR users. 
Further, the BIDS Apps specification ( Gorgolewski  et al., 
 2017) enabled BIDS- aware platforms such as brainlife.
io to make third- party BIDS Apps available to a large 
community of users. Other open- source platforms that 
integrate BIDS support, such as LORIS ( Das  et  al., 
 2011) and CBRAIN ( Sherif  et al.,  2014), also contribute 
open tools and workflows to onboard new user groups 
to BIDS ( Rogers  et al.,  2022) as a basis for research col-
laboration. To take one final example, another BRAIN 
Initiative® data archive, DANDI (RRID:SCR_017571), 
has effectively employed BIDS in harmony with stan-
dards from other subfields, such as Neurodata Without 
Borders ( Teeters  et  al.,  2015) and OME- Zarr ( Moore 
 et  al.,  2023), to facilitate integration across diverse 
domains of neuroscience data.

One major achievement of the BIDS community in 
recent years has been the development of a machine- 
readable schema to represent the standard. The early 
releases of BIDS consisted of a specification written in 
English and a validator written in JavaScript, which 

aspired to have a validation procedure for each English 
rule. As the standard grew to include more data types, 
the number of people with the expertise needed to adapt 
and maintain these parallel representations became 
vanishingly small. At the same time, each tool imple-
menting BIDS recommendations resulted in yet another 
representation of the standard that required updating. 
These difficulties led to an effort to create a declarative 
(i.e., non- procedural) schema that is maintained as part 
of the specification document (Fig.  5). This has four 
important benefits. First, it allows much easier inclusion 
of new elements to the standard (such as new BEPs). 
Second, it enables the consistent implementation of the 
validator across multiple languages. Third, it makes it 
possible for the validator and any downstream tool using 
the schema to provide handling of the BIDS dataset 
specific to its BIDS version. Fourth, the inclusion of the 
schema with the specification encourages contributors 
who wish to propose a new rule to consider the difficulty 
of expressing that new rule within the schema. The 
schema- based validator has been implemented and is 
currently being tested, and is expected to replace the 
original validator in 2024. It has already been adopted by 
the DANDI and OpenNeuro data archives, both of which 
contributed to the efforts to develop the schema and 
schema- based validator.

8. THE FUTURE OF BIDS

As BIDS nears its tenth anniversary, its success has also 
led to increasing recognition of the limitations of the 
existing framework. This has, in turn, driven a growing 
discussion regarding the need for a new major version of 
BIDS (“BIDS 2.0”) that would introduce changes that are 
incompatible with the existing BIDS framework. A dedi-
cated repository (https://github . com / bids - standard / bids 
- 2 - devel / issues) is collecting issues, a subset of which 
will be chosen for BIDS 2.0. It is likely that the discussion 

https://osf.io/x7fh8/
http://brainlife.io
https://github.com/bids-standard/bids-2-devel/issues
https://github.com/bids-standard/bids-2-devel/issues
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of a new version will continue over the next few years, 
given the significant difficulty that breaking changes 
would impose on tool developers.

As an example, one contentious issue that would 
require resolution in any successor specification is the 
“inheritance principle.” This allows metadata to be speci-
fied at a higher level in the data hierarchy, and be “inher-
ited” by multiple data files to which it is applicable. On one 
hand, this introduces a degree of complexity to user com-
prehension and software interaction with the BIDS specifi-
cation and BIDS datasets; on the other hand, it collapses 
redundant information in a manner that is faithful to the 
hierarchical nature of the metadata at hand, which 
becomes increasingly pertinent for datasets of increasing 
complexity. Many such situations exist where identification 
of an issue or contention would not have been possible 
without hands- on experience within the BIDS ecosystem.

Another major challenge for the BIDS community is to 
decide where the standard should end. BIDS has already 
extended beyond what is classically considered as “neu-
roimaging data,” through the Microscopy extension 
(BEP031) and other extensions including genetic infor-
mation (BEP018), eye tracking (BEP020), and movement 
data (BEP029). The success of BIDS has garnered inter-
est from many researchers in developing related stan-
dards under the BIDS umbrella, but continued expansion 
of the scope of the standard also threatens to increase its 
complexity to a degree that it becomes difficult to change.

The question of where the standard ends is particu-
larly relevant to continued standardization of BIDS Deriv-
atives and their interaction with software tools.

 1.  Hierarchical complexity: The filesystem structure 
of the BIDS standard was designed to meet the 

requirements of BIDS Raw data, with data files 
arranged in an immutable hierarchy across data-
sets, then subject, (optionally) session, and finally 
imaging modality. While there may be tremendous 
flexibility in file naming within this structure, the 
hierarchy itself is inflexible. This did not pose an 
issue for BEP003 Common Derivatives, as each 
proposed derivative was a standalone piece of 
data derived from raw data from a single modality. 
However, there are future prospects where this will 
no longer be the case, such as derivatives that are 
the result of explicitly multi- modal analysis, or data 
hierarchies more complex than that aforemen-
tioned (such as the result of a model fit that is 
spread across multiple data files), which cannot be 
faithfully represented in a BIDS structure with 
inheritance under the current standard.

 2.  Derivatives as inputs: From their inception, BIDS 
Apps were designed on the premise of taking as 
input a BIDS Raw dataset, and producing as output 
a final set of computed derivative data. The interest 
in BIDS Derivatives has been principally in facilita-
tion of the sharing and unambiguous interpretation 
of such data. In parallel, a number of BIDS Apps 
have implemented the ability to identify and utilize 
the derivatives already computed by some other 
application rather than duplicating those requisite 
calculations internally. Combining these concepts 
presents an opportunity for the construction of 
large, complex, multi- modal processing pipelines 
incorporating disparate softwares. Just as many 
existing BIDS Apps are based on constructing and 
executing a directed acyclic graph of underlying 
individual commands from different neuroimaging 

Fig. 5. Overview of BIDS Schema usage. In this example, BEP 030 (NIRS) introduces a file naming rule to the schema as 
part of the BEP process. The schema rule is used to render a file naming template in the specification. The BIDS Validator 
uses the rule to identify valid NIRS data files while rejecting improperly named files. Finally, third- party tools, such as a 
query library, may ingest the updated schema to automatically gain access to new features of BIDS.
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software packages ( Gorgolewski  et  al.,  2017), 
larger analysis pipelines could be based on con-
structing and executing a directed acyclic graph of 
underlying BIDS Apps, with BIDS Derivatives serv-
ing as the means of translation between those Apps.

 3.  Existing toolchains: A large proportion of neuroim-
aging analyses are performed using one of a small 
set of existing software packages. Many of these 
have long- standing file layout schemes and tools 
designed to operate on their own specific sets of 
derivatives. Conformance of such packages to a 
completely new data structure may therefore be 
too high an expectation. There are two key ways in 
which this problem should be considered. Firstly, 
any derivatives extension proposal should ideally 
have accompanying it a software tool for perform-
ing bidirectional conversions between the outputs 
of one or more major toolchains and the proposed 
specification; this would facilitate generation of 
conforming data by users and BIDS App develop-
ers alike, and subsequent manipulation / visualiza-
tion of shared data using the originating toolchain. 
Secondly, an alternative approach would be to 
describe in the specification a way to encapsulate 
those results in the native toolchain format and 
merely annotate them with agreed common terms, 
an approach with precedents in BEPs 015 (Deriva-
tive mapping files) and 035 (Mega- analysis using 
non- compliant derivatives), and which may dove-
tail with BEP 028 (Provenance). This would permit 
post hoc annotation of derivatives that predate 
BIDS Derivatives and/or are generated by tools 
outside of the BIDS ecosystem; and while it may 
sacrifice ultimate filesystem convention conformity, 
it would not preclude the ongoing pursuit of such.

Another direction for future efforts is further integration 
with other related standards. Whereas the NIfTI file for-
mat has become standard within the MRI research com-
munity, DICOM has grown into the industry standard for 
a wide range of imaging modalities (such as physiology, 
etc.), while addressing the many shortcomings that had 
originally turned the neuroimaging research community 
towards simpler formats. As a result, many standardiza-
tion efforts have been duplicated. As DICOM is the indus-
try standard and more data will be arriving in DICOMs, 
coordination with developments in DICOM could help to 
ensure more rapid adoption of new imaging sequences 
and even modalities into the BIDS standard, which pro-
vides an umbrella organization at the study level. Contin-
ued work with related standards such as NWB and 
OME- Zarr will also be important to avoid unnecessary 
duplication of effort or conflicting recommendations for 

datasets and archives on the interface of neuroimaging 
and electrophysiology/microscopy.

The funding of continued BIDS development and 
maintenance remains a challenge. The BRAIN Initiative 
has funded many of the developments of BIDS, either 
directly (for BIDS development projects) or indirectly 
(through funding to data archives that have relied upon 
and contributed to BIDS). Much of the work to develop 
and maintain the standard is performed by the BIDS 
Maintainers; many of the maintainers are currently sup-
ported by related grants, which endanger the project 
given that grants usually have time windows of three to 
five years. The establishment of a foundation to support 
BIDS could be a useful future development.

9. LESSONS LEARNED

Given the demonstrable success of BIDS, it is useful to 
ask: What lessons can be learned that might be useful for 
other standards projects? The first important point to 
acknowledge is that the success of any particular project 
derives in part from pure luck, so one should not overfit 
too heavily to the following. Nonetheless, we believe that 
there are several potentially important lessons to be 
learned.

9.1. Main factors in the success of BIDS

9.1.1. Absence of existing solutions

Many standardization projects commence on the prem-
ise that there are multiple existing competing standards 
in that domain, each with their own strengths and weak-
nesses, and a new standard is sought that inherits more 
desirable attributes, takes into account lessons learned 
from those prior standards, and achieves more wide-
spread adoption. The BIDS project was quite unique in 
that, within the neuroimaging community, there was 
effectively universal acceptance of ad hoc organization of 
neuroimaging data beyond the formatting of individual 
files. The benefits that were to be inherited through the 
prospect of field- wide harmonization were therefore 
implicitly attributed to BIDS itself.

9.1.2. Clear use cases

One of the main initial motivations to develop BIDS was 
to allow ingestion of datasets into data repositories at 
scale without the need for human curation. This not only 
provided a practical problem that defined the solution (as 
reflected by the project principles: “adoption is crucial,” 
“don’t reinvent the wheel,” and “80/20 rule”), but also 
enabled the team to fund the initial development of the 
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standard via the OpenNeuro project. Subsequently, BIDS 
apps provided use cases for adoption by end- users, by 
enabling them to effortlessly process BIDS datasets 
using high- quality software tools.

9.1.3. Solving a common end user problem

Standardizing data organization was not only beneficial for 
data repositories and software platforms, but also for indi-
vidual labs and projects. Even if data are never shared 
publicly, having a standard data organization scheme helps 
researchers within a lab group work together, and enables 
future reuse of the data within the lab. The development of 
BIDS absolved individual groups of the need to develop, 
document, and implement their own individual schemes, 
and provided tools (such as the validator and conversion 
tools) to help with this. Moving the project away from purely 
“open science” and “data sharing” framing by dropping 
“Open” from the name was crucial to reinforce the mes-
sage that BIDS was not only for external sharing.

9.1.4. Low technical barrier to entry

The practices adopted by BIDS do not require sophisti-
cated tools beyond those already widely in use in most 
laboratories, enabling rapid and widespread adoption. At 
the same time, community- based efforts arose to provide 
introductory materials to explain the core concepts of 
BIDS to a broad audience, such as the BIDS Starter Kit13. 
It is also worth acknowledging that community forums 
such as NeuroStars14 have played a role in educating 
users as well as sharing best practices that fall outside 
the scope of the standard itself.

9.1.5. Maturity and the size of the field

When the BIDS efforts started, human neuroimaging was 
more than 30 years old. Standard patterns across experi-
mental design and data types had already emerged, and 
common file formats were already widely adopted in some 
subfields (such as NIfTI within the MRI community). At the 
same time, the overall size of the community (several thou-
sand scientists, several hundred labs) allowed the team to 
gather detailed feedback from a significant portion of the 
community and required small overall alignment effort.

9.1.6. Broad financial and institutional support

BIDS has the benefit of early support by INCF (which 
supported a set of meetings of the neuroimaging data 

sharing (NIDASH) task force that included the first meet-
ing at Stanford), and major funding from the Laura and 
John Arnold Foundation subsequently provided support 
for the early development of BIDS. Since then, BIDS 
development has been supported by grants from a num-
ber of institutions (NIMH, NSF, Novo Nordisk Foundation, 
French National Research Agency) to a number of differ-
ent investigators15, which has broadened the base for 
support of the project and ensured that it didn’t rely too 
heavily on any one particular grant or researcher.

9.1.7. In- person meetings with a diverse  
set of participants

Key aspects of BIDS were drafted over many in- person 
meetings with participants traveling long and far to 
attend, and various BEPs have been started and devel-
oped spontaneously at conferences, workshops, and 
hackathons. These in- person meetings were key to brain-
storming the different aspects of the standard and chart 
the work that happened later asynchronously.

9.1.8. Open doors without “death by consensus”

BIDS managed to finely balance having an open struc-
ture and listening to feedback from many members of the 
neuroimaging community, but at the same time avoiding 
trying to please everyone and creating a standard that 
was too flexible to be usable. An example of this was 
denying early calls to allow the MINC file format in addi-
tion to NIfTI; despite the technical superiority of MINC, 
this would have made supporting the standard by any 
software tool much harder and diminished its adoption. 
Achieving this outcome required deft leadership by Chris 
Gorgolewski, which relied heavily upon his trusted posi-
tion in the community.

9.2. Stumbling points for the BIDS project

A number of challenges have arisen during the develop-
ment of BIDS, which developers of other standards can 
also possibly learn from.

9.2.1. Delayed adoption by large databanks

With the exception of OpenNeuro, BIDS was not adopted 
by any large databases or consortia during its early 
development. Gaining the support of a large prospective 
data- sharing project (such as UK Biobank or Human 
Connectome Project) at launch would have made it  

13 https://bids - standard . github . io / bids - starter - kit/
14 https://neurostars . org/

15 Full list of funding is available at https://bids . neuroimaging . io / acknowledgments 
. html

https://bids-standard.github.io/bids-starter-kit/
https://neurostars.org/
https://bids.neuroimaging.io/acknowledgments.html
https://bids.neuroimaging.io/acknowledgments.html
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stronger and helped promote it. Instead, researchers 
have created “BIDS- ified” versions of these datasets, 
such as the ABCD- BIDS Community Collection ( Feczko 
 et al.,  2021). A major challenge with a community- driven 
project like BIDS is the relatively slow pace of develop-
ment (due to the need for community input and conver-
gence), which can conflict with the desire of large projects 
to solve their problems quickly without constraints from 
outside. It would be useful in the future for funding agen-
cies to require large data- generation projects to employ 
community standards in order to enhance the FAIRness 
of the resulting datasets.

9.2.2. Challenges of BIDS conversion

Conversion of new datasets into the BIDS format has 
been, and often remains, a challenge for many research-
ers, which has limited even wider adoption of the stan-
dard. Converters have proliferated16, covering more use 
cases but also potentially increasing the burden on new 
users to choose which conversion tool to adopt. Earlier 
concerted efforts on developing more easily usable con-
version tools could have increased early adoption.

9.2.3. Lack of a machine- readable standard

For many years, there was no common machine- readable 
instantiation of the standard. This led to misalignment 
between the standard, the validator, and the documenta-
tion, and made the implementation of changes in the 
standard difficult and time- consuming. This has been 

addressed by the schematization of the standard, but 
earlier development of a machine- readable standard may 
have improved the development workflow.

9.2.4. Challenges of BEP management

While BIDS Extension Proposals (BEPs) will remain the 
main driver of future BIDS development, they bring unique 
challenges for community management. Some BEPs may 
see development stagnate when faced with low devel-
oper availability or as project requirements are clarified. In 
the best case, this relative dormancy marks a clear growth 
point for the project, as developers realize that more work 
is necessary to clarify the BEP scope. In the worst case, 
BEPs may be abandoned by the proposing team; how-
ever, if this is telegraphed appropriately, other community 
members can choose to step in. Other more conceptual 
challenges include ensuring the same level of community 
consultation across BEPs. BEP leads who have not previ-
ously participated in BIDS development may not be famil-
iar with its governance process. This is particularly 
concerning if BEPs are preemptively yoked to traditional 
incentives, with BEP leads committing to firm timelines for 
associated publications, grant deliverables, or graduate 
degree progress. Ensuring that BEPs maintain the same 
level of community consultation while sustaining the 
engagement of domain researchers motivated to develop 
BEPs is an ongoing challenge for BEP management.

9.2.5. Geographical diversity and inclusivity

Figure 6 shows the institutional locations of all authors on 
the present paper. This map highlights the fact that BIDS 

16 A current list of BIDS converters is available at https://bids . neuroimaging . io 
/ benefits # converters

Fig. 6. A world map of the institutional locations of all coauthors on the present paper.

https://bids.neuroimaging.io/benefits#converters
https://bids.neuroimaging.io/benefits#converters
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has received contributions from a diverse group of loca-
tions across the United States, Western Europe, and 
Australia. At the same time, there is a notable lack of con-
tributions from researchers in other parts of the world. A 
goal for the future development of BIDS is to include 
researchers from these parts of the world that are not 
currently well- represented in the community.

10. CONCLUSIONS

Few of us would have envisioned in 2015 that BIDS would 
be as successful as it has been, or that it would weather 
the departure of its initial founder so robustly. This suc-
cess is a testament to the sustained efforts of the large 
number of individuals who have contributed in many dif-
ferent ways to the community and surrounding ecosys-
tem of tools and data. We hope that BIDS can serve as a 
demonstration that communities of researchers can 
effectively develop standards that are essential to enable 
the effective and FAIR sharing of research data.

USE OF GENERATIVE AI LANGUAGE TOOLS

Generative AI tools were not used in the generation of 
the manuscript text, but were used in the formatting of 
the author affiliations and generation of code for the  
figures.

DATA AND CODE AVAILABILITY

All data and code used to generate the figures in this 
paper are available at https://osf . io / x7fh8/ under a per-
missive open source license.
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