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Impact of the phonon environment on the nonlinear quantum-dot–cavity QED:
Path-integral approach
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We demonstrate a strong influence of the phonon environment on the coherent dynamics of the quantum
dot (QD)-cavity system in the quantum strong coupling regime. This regime is implemented in the nonlinear
QD-cavity QED and can be reliably measured by heterodyne spectral interferometry. We present a semianalytic
asymptotically exact path integral-based approach to the nonlinear optical response of this system, which
includes two key ingredients: Trotter’s decomposition and linked-cluster expansion. Applied to the four-wave-
mixing optical polarization, this approach provides access to different excitation and measurement channels,
as well as to higher-order optical nonlinearities and quantum correlators. Furthermore, it allows us to extract
useful analytic approximations and analyze the nonlinear optical response in terms of quantum transitions
between phonon-dressed states of the anharmonic Jaynes-Cummings (JC) ladder. Being well described by
these approximations at low temperatures and small exciton-cavity coupling, the exact solution deviates from
them for stronger couplings and higher temperatures, demonstrating remarkable non-Markovian effects, spectral
asymmetry, and strong phonon renormalization of the JC ladder.
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I. INTRODUCTION

A quantum dot (QD) embedded in an optical microcavity
offers a technologically accessible platform for the study of
quantum-optics phenomena in solid state. This system can be
experimentally realized, for example, in self-assembled QDs
inside semiconductor micropillar or photonic-crystal cavities
[1,2]. Some properties of the system, including generation
of single photons [3–5], are important for development of
quantum devices with applications in the field of quantum
information.

The repeated mutual conversion of excitation between
the QD exciton and the cavity mode, well known as strong
light-matter coupling, is typically described by the Jaynes-
Cummings (JC) model [6]. The strong coupling itself is a
linear classical effect leading to polariton formation [7] and
observation of the vacuum Rabi splitting in various systems,
such as quantum wells inside planar microcavities [8] and
atoms inside optical cavities [9], as well as QDs coupled
to cavity modes [10,11]. However, owing to the fermionic
nature of QD excitons, their coupling to bosonic cavity modes
introduces a quantum nonlinearity, which manifests itself in
anharmonic ladderlike structure of hybrid QD-cavity states.
This is known in the literature as the quantum strong cou-
pling regime recently observed in QD-cavity systems [12,13]
and superconducting circuits [14]. This quantum nonlinear-
ity can naturally be measured by means of nonlinear optical
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spectroscopy [13,15], in which higher rungs of the JC ladder
are accessed through an external excitation in a form of a se-
quence of optical pulses and subsequent selection of different
channels of optical nonlinearity [16].

In practice, due to the solid-state environment, the QD can
be subject to significant non-Markovian behavior [17–20].
This is mainly a result of the coupling of QD excitons to
longitudinal acoustic (LA) phonons via the deformation po-
tential [17,21,22]. In specific parameter regimes, when a QD
exciton is not very strongly coupled to a cavity mode, the
effect of phonons may be addressed perturbatively [23], or
via the polaron transformation combined with a perturbation
theory [24,25]. However, for a stronger QD-cavity coupling,
phonons play a more significant role that requires develop-
ing nonperturbative techniques [26]. This has been recently
demonstrated by an exact theoretical approach to the linear
optical response [27,28]. The linear response is, however,
harder to observe experimentally, as compared to a nonlinear
optical polarization that can be reliably measured by means
of a heterodyne spectral interferometry [15], and is also a
suitable tool for the study of quantum nonlinearities and
the quantum strong coupling regime. Alternatively, quantum
nonlinearities can be studied by analyzing photon counting
statistics in photoluminiscence measurements [29].

The four-wave mixing (FWM) polarization of a QD-cavity
system has been the focus of many experimental and theoret-
ical works but the exciton-phonon interaction has either been
neglected or treated perturbatively [13,30–32]. In the absence
of a cavity, the effect of the phonon dephasing measured
in the FWM response [33] has been addressed theoretically
for ensembles of isotropic [34] and anisotropic QDs, also
accounting for real phonon-assisted transitions [35]. One im-
portant advantage of using a FWM scheme is a possibility to
use a two-dimensional hyperspectral imaging that reveals the
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information about coherences in the system [36]. The effect
of phonons on two-dimensional spectra for a nonlinear optical
response has been studied in the absence of a cavity using a
path integral (PI) based approach [37–39] in the context of
energy harvesting. In addition to the FWM, other quantities
of experimental relevance, including photoluminescence and
photon indistinguishability [40,41], have been recently stud-
ied in QD-cavity systems [42,43], using a PI-based approach
to include a phonon contribution. With an increasing interest
in understanding of non-Markovian effects and the need to
study nonperturbative regimes of more complex models, there
has been a rise in popularity of such treatments, including
applications in the context of QDs [44–46].

PI-based approaches offer a possibility to achieve numer-
ically exact solutions for a QD-cavity system in a phonon
environment and are capable of addressing arbitrary pa-
rameter regimes, where approximations fail. Such solutions
typically require Hilbert spaces, which rapidly grow in size.
However, the environment degrees of freedom can be reduced
dramatically by means of introducing a memory kernel [47].
The memory kernel takes into account all the necessary in-
formation introduced by temporal correlations in the system
evolution as a result of its interaction with the environment
[48]. The complexity of the problems one can address is gen-
erally limited by the computational memory and speed. The
approaches based on the early real-time PI methods developed
in Refs. [47,49] typically depend on the combined use of
Trotter’s decomposition and Feynman-Vernon influence func-
tional [50]. Instead of the latter, Ref. [27] uses a linked-cluster,
or cumulant expansion [51], that formed the basis of this
work, as it is a suitable approach for treating a linear coupling
between the system and a continuum of bath modes.

In order to tackle the computational costs and improve
efficiency, a number of further PI optimization schemes have
been proposed. Early approaches use basic selective filter-
ing methods, such as those which filter out path segments
with negligible weight by Monte-Carlo importance sampling
[52,53]. More recently, an idea to spread the temporal correla-
tions over path segments of increasing length, whilst their con-
tribution is reduced, was formulated [54]. Other recent works
have developed an optimization scheme, which is based on
rewriting the PI as a tensor network (TN), where the propaga-
tor is represented by a matrix product state (MPS). Compres-
sion of large tensors can be achieved by a selective truncation
that relies on singular value decomposition [55]. The propa-
gation can then be done very efficiently using existing tensor
network algorithms. This approach has seen further develop-
ment [56,57] and has been recently combined with mean-field
theory [58] to address systems with large Hilbert spaces.
Another work has combined the approach developed in
Ref. [55] with a different MPS-based algorithm, introducing
a time-discrete quantum memory as a second non-Markovian
reservoir, resulting in a quasi-two-dimensional TN [59].

In addition to PI-based approaches, there are other nu-
merically exact methods. These include solving hierarchical
equations of motion [60–62] and numerical renormalization
group approaches [63,64]. An implementation of the
density matrix (DM) renormalization group [65] is based
on the optimization of matrix product states [66], which
also uses singular value decomposition. One further

optimization implements a mapping of the environment
onto a one-dimensional chain with effective nearest-neighbor
interactions [67], which makes a subsequent application of
time-adaptive DM renormalization group algorithm [68] very
efficient.

In the present work, we focus on the FWM polarization
of a QD-cavity system linearly coupled to LA phonons. We
develop an asymptotically exact semianalytic approach which
is a generalization of the method presented in Ref. [27], with
key ingredients being the Trotter decomposition [69,70] and
linked-cluster expansion [71,72]. This method is an explicit
and physically intuitive PI-based approach allowing a number
of useful analytic approximations [27,28], also presented for
the case of the FWM in this and the follow-up paper [73].
Since the approach is nonperturbative, it allows us to explore
regimes of comparable exciton-cavity and exciton-phonon
coupling strengths, when the similarity of the system and envi-
ronment timescales opens up a possibility of phonon-assisted
transitions between different polariton states [27,74,75]. Al-
though the treatment of optical nonlinearities increases the
complexity of the approach, it remains physically intuitive and
computationally straightforward. Furthermore, it allows us to
address all possible channels of optical excitation and mea-
surement and provides perspectives to a further application
of the method to higher-order optical nonlinearities, arbitrary
elements of the density matrix, and other quantum correlators
and physical observables.

We demonstrate that the exciton coherent dynamics in
semiconductor quantum dots can be significantly modified
by the phonon environment, showing a remarkable non-
Markovian behavior. Based on the developed technique, we
propose two computationally simple approaches to the regime
of small exciton-cavity coupling. One of these approaches
has a fully analytic form, while the other reduces the general
method to a simple matrix multiplication. Being not limited to
perturbative regimes, our microscopic approach can deal with
arbitrary temperatures, as well as with situations where the in-
teractions of the exciton with the cavity mode and the phonon
environment are comparable. In the latter case, the phonon
cloud around the quantum dot is unable to adiabatically adapt
to a varying optical state, resulting in a non-Markovian dy-
namics and phonon-assisted transitions between states of the
Jaynes-Cummings ladder. We observe a spectral asymmetry,
a modification in anharmonicity of the ladder, and even de-
viation from the ladderlike structure, which becomes more
pronounced with increasing temperature. By extracting com-
plex fit parameters we analytically characterize the long-time
behavior of individual transitions which contribute to the
FWM signal and demonstrate the non-Markovian nature of
the latter.

II. PI-BASED APPROACH TO THE FWM DYNAMICS
USING TROTTER’S DECOMPOSITION

AND CUMULANT EXPANSION

In this section, we describe the formalism of our asymptot-
ically exact semianalytic approach to the FWM dynamics of
the QD-cavity system surrounded by a phonon environment.
We first introduce in Sec. II A the system Hamiltonian and
the master equation containing Lindblad dissipators for both
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the QD exciton and the cavity mode. We also discuss there
in detail optical excitation and measurement channels for ob-
servation of the FWM response of the system and comparing
them, where appropriate, to those of the linear response. We
then focus in Secs. II B and II C on two key elements of our ap-
proach: Trotter’s decomposition and linked-cluster expansion.
Finally, in Secs. II D–II F we show how these elements work
together to accurately describe the FWM dynamics of the
system. This includes the full rigorous L-neighbor approach
presented in Sec. II F and a number of useful approximations
following from it, such as nearest-neighbor and polaron ap-
proximation, presented in Secs. II D and II E, respectively.

A. System, its excitation, and measurement of the linear
and FWM polarizations

We consider a composite system, which presents a com-
bination of two analytically solvable models, the JC model
describing the exciton-photon coupling and the independent
boson (IB) model [76] taking care of the exciton-phonon
interaction. The composite system is, however, not solvable
analytically, to the best of our knowledge. Its full Hamiltonian
is given by

H = HJC + HIB, (1)

where

HJC = �xd†d + �ca†a + g(a†d + d†a), (2)

HIB = Hph + d†dV, (3)

Hph =
∑

q

ωqb†
qbq, V =

∑
q

λq(b†
−q + bq). (4)

Here, the fermionic (bosonic) creation operator d†(a†) cor-
responds to the exciton (cavity) mode with real frequency
�x (�c), and g is the exciton-cavity coupling strength. We
work in the units of h̄ = 1 throughout this paper. The bosonic
operator b†

q creates a phonon with momentum q and frequency
ωq, where q = |q|. The coupling of the exciton to the LA
phonon mode q is given by the matrix element λq, which has
a general symmetry property: λ∗

q = λ−q. The explicit form of
λq in case of a linear phonon dispersion is given by Eq. (B1)
of Appendix B.

The exciton-phonon Hamiltonian (3) contains a single ex-
citon mode, so we assume that other exciton states of the
QD do not couple to this state via phonons. Such a diago-
nal form of the exciton-phonon interaction is known in the
literature as the IB model, which leads in the absence of
the cavity to exciton pure dephasing [17]. While this model
can adequately describe a measured quick relaxation of the
FWM polarization [34], it does not include any mechanisms
of experimentally observed [77] density or polarization re-
laxation at longer times. To rectify on this, we add to the
model a phenomenological exponential decay rate γx of the
exciton state, which refers to the population decay time T2.
This can be further refined in a rigorous way within the
single-mode (i.e., diagonal) exciton Hamiltonian by mapping
the off-diagonal phonon coupling to other exciton states onto
a diagonal quadratic interaction [71,78] that accounts for the
pure dephasing time T ∗

2 . We also introduce a decay rate γc of

the electromagnetic eigenmode of the cavity, which is strictly
the negative of the imaginary part of the complex frequency
of the cavity mode. Both γx and γc are introduced consistently
via the Lindblad dissipation formalism and do not include any
phenomenological pure dephasing.

The evolution of the composite system between the pulses
is modeled by a master equation which has a Lindblad form:

iρ̇ = Lρ ≡ [HJC, ρ] + [HIB, ρ] + iγcD[a] + iγxD[d], (5)

where L is the Liouvillian superoperator of the composite
system. Here, the dephasing of the cavity and the exciton
modes is represented by a Lindblad dissipator defined as
D[c]ρ = 2cρc† − c†cρ − ρc†c.

In the dipole approximation, the excitation of the system
by a sequence of ultrashort pulses is given by an interaction
operator

Q(t ) = −
∑

j

δ(t − t j )Q j, (6)

Q j = E jμc j c
†
j + E∗

j μ
∗
c j

c j, (7)

in which the external classical field due to each pulse is
represented by a delta function peaked at t = t j and a pulse
area μc jE j , with the index j = I, II, . . . labeling the pulses.
This corresponds to a situation in which each pulse duration
is much shorter than the characteristic timescales of the sys-
tem. The effective dipole moment μc j describes the coupling
strength of the mode c†

j to the pulse field E j . The excitation

can take place via the cavity mode (c†
j = a†) or the exciton

mode (c†
j = d†), or a combination of both [28], and is further

referred to as the excitation channel.
The DM under the action of a single pulse j can be written

using the displacement operator eiQ j

ρ(t+
j ) = eiQ j ρ(t j )e

−iQ j , (8)

where t+
j represents a time immediately after t j , infinitesi-

mally close to it. The action of several pulses is given by a
product of such displacement operators separated by the sys-
tem evolution operators [13,16]. For arbitrary pulse strengths,
Eq. (8) needs to be addressed in full. This is done, e.g.,
in Ref. [16] without taking phonons into account, and in
Ref. [32] with phonon effects included via the polaron master
equation, which is equivalent to the polaron approximation
introduced in the present work and in Ref. [28]. For small
excitation powers, it is useful to represent Eq. (8) as a series
of nested commutators,

ρ(t+
j ) = ρ(t j ) + i[Q j, ρ(t j )] + i2

2
[Q j, [Q j, ρ(t j )]]

+ i3

3!
[Q j, [Q j, [Q j, ρ(t j )]]] + · · · (9)

The expansion in Eq. (9) contains terms in all orders of the
excitation field E j . For small E j , we can neglect the contri-
bution of third- and higher-order terms. The phase � j of the
complex pulse area μc jE j = |μc jE j |ei� j permits selection of a
particular channel in the optical polarization. The full phase
selected signal then generates a series of the form: E j (A +
B|E j |2 + C|E j |4 + . . . ), with constant prefactors A, B,C, . . .
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Q(I) Q(II)

Region I Region II−τ 0 t

FIG. 1. Pulsed excitation scheme showing a sequence of ultra-
short laser pulses with a positive delay time τ . The first pulse with the
pulse area μcIEI and action Q(I) on the DM arrives at tI = −τ . After
delay τ , two identical pulses with the resulting pulse area μcIIEII and
the total action Q(II) arrive together at tII = 0. The observation time
is denoted by t .

In the low power approximation, this series is truncated at the
first term.

For the linear polarization, we need to consider only a first-
order effect on the DM by a single pulse, which is proportional
to E∗

I ,

ρ (I)(−τ ) = iμ∗
cI
E∗

I [cI, ρ
(0)(−τ )], (10)

due to a single pulse at tI = −τ . For a nonlinear polariza-
tion, we focus on the well-known case of degenerate FWM
in which three-pulse excitation is effectively reduced to two
pulses, at tI = −τ and tII = 0, with τ being the delay time be-
tween the pulses. Figure 1 schematically illustrates this pulsed
excitation scheme. The action of the first pulse, denoted by
Q(I), is described by Eq. (10), the same way as in the linear
polarization. The second and the third pulses, both arriving at
t = 0, are considered as a single pulse, with the action denoted
by Q(II). The FWM signal is proportional to E∗

I E2
II in the lowest

excitation order, and a third-order correction to the DM is
given by

ρ (II)(0) = (iμcIIEII )2

2
[c†

II, [c†
II, ρ

(I)(0)]], (11)

describing the action Q(II) of the second pulse. We emphasize
that the excitation channels for pulses I and II need not be
the same, so one can have cI �= cII. Having discussed the
selection of the desired channels for both the linear and FWM
signals, in what follows, we will ignore the constant prefactors
−iμ∗

cI
E∗

I and (iμcIIEII )2, respectively, in Eqs. (10) and (11),
consistent with [16].

The total optical polarization is given by

P(t ) = 〈〈ρ(t )O〉〉, (12)

where the expectation value is taken with respect to the states
of the exciton-cavity system, as well as phonon degrees of
freedom, which is expressed by double brackets. Similar to
the excitation, the response is detected through the coupling to
an external field, and O represents an annihilation operator of
the observation channel: either cavity O = a or exciton O = d
or a combination (i.e., a linear superposition) of both [28].

It is convenient to expand the DM into the basis of the JC
model,

ρ(t ) =
∑
ηξ

ρηξ (t )|η〉〈ξ |, (13)

where ρηξ (t ) includes the phonon degrees of freedom. In order
to describe the linear and FWM polarizations, in addition to
the ground state |0〉, the following reduced basis [13] is used

in Eq. (13):

|1〉 = d†|0〉, |3〉 = a†d†|0〉,

|2〉 = a†|0〉, |4〉 = 1√
2

(a†)2|0〉. (14)

For the linear polarization, only the ground state |0〉, the
exciton state |1〉 and the single photon state |2〉 are required. In
order to describe a third-order nonlinearity, two states of the
second rung, are also needed. These are state |3〉 containing
single excitations both in the exciton and cavity modes and
the two-photon state |4〉. As we are dealing with a linearly
polarized light, the system also has in principle a biexciton
state involved in the FWM dynamics. However, owing to
the biexciton binding energy (which is typically much larger
than g), this state is detuned out of the energy range in focus
(which is of the order of g) and can be ignored. The effect of
phonons on a nonlinear response of an excitonic system with
a possibility of exciton-biexciton transitions was explored in
[79], in the absence of a cavity.

Using the expansion Eq. (13), the master equation (5) can
be expressed in terms of the Liouvillian written as a matrix
and the DM written as a vector [13]:

i �̇ρ =L�ρ. (15)

When expressed as a vector in the basis of states given by
Eq. (14), the DM takes the following form [16]:

�ρ (0) = (ρ00), �ρ (I) =
(

ρ01

ρ02

)
, �ρ (II) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ10

ρ20

ρ31

ρ32

ρ41

ρ42

⎞
⎟⎟⎟⎟⎟⎟⎠

. (16)

The superscripts 0 and I (II) are used to distinguish quantities
describing the system, respectively, before the pulses and af-
ter the application of the first (second) pulse. They refer to
a specific size of the reduced basis needed to describe the
signal. The initial DM has only one component ρ00 = ρph with
phonons in thermal equilibrium,

ρph = exp
(− Hph

kBT

)
trph
[

exp
(− Hph

kBT

)] , (17)

where kB is the Boltzmann constant and T is the temperature.
Before the first pulse (at tI = −τ ) and immediately after it (or
after both pulses if τ = 0), the DM is factorizable into the JC
and phonon parts. In fact, the excitation pulse acts only on the
JC component of the DM. Since the pulse is infinitely short,
the phonon component of the DM remains unaffected at the
time of excitation. At any later time, these parts of the DM
are entangled, and the phonon bath surrounding the QD is no
longer in equilibrium.

When the DM is factorizable or any effects of phonons are
neglected, the Liouvillian LJC of the exciton-cavity system
can be diagonalized analytically—a detailed procedure can be
found in the supplement of Ref. [16] where the FWM and
higher-order responses were studied with inclusion of many
rungs of the JC ladder, though in the absence of exciton-
phonon interaction. Here, we exploit this procedure in order
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to solve the full problem, in which the exciton-phonon inter-
action is taken into account.

1. Linear response

A linear polarization can be produced by exciting the sys-
tem with a single pulse. With �ρ (0) being a 1 × 1 vector [see
Eq. (16)], the action on the system of an ultrashort pulse at
tI = −τ can be represented by a vector �Q(I). Then Eq. (10)
takes the form

�ρ (I)(−τ ) = �Q(I)ρ00, (18)

with

�Q(I)
x =

(
1
0

)
, �Q(I)

c =
(

0
1

)
, (19)

where the index x (c) refers to the exciton (cavity) excitation
channel. The effect of �Q(I) is to produce a single-particle exci-
tation (in either the exciton or the cavity mode), converting
the element |0〉〈0| of the DM into |0〉〈1| or |0〉〈2| in the
decomposition Eq. (13). The Liouvillian for the exciton-cavity
system after the first pulse has the following form:

L(I)
JC =

(−�x − iγx −g
−g −�c − iγc

)
. (20)

Following the evolution of the DM, from �ρ (I)(−τ ) to �ρ (I)(t ), a
linear response is measured in a specific observation channel
O. With ρ(t ) and O represented as vectors, Eq. (12) takes the
form of a dot product

PLin(t ) = �O(I) · 〈�ρ (I)(t )〉, (21)

where, for the linear polarization,

�O(I)
x =

(
1
0

)
, �O(I)

c =
(

0
1

)
, (22)

and the thermal expectation value in Eq. (21) is taken over the
phonon bath only.

2. FWM response

Starting with the initial excitation, given by Eq. (18), fol-
lowed by a delay dynamics, in which the system evolves from
t = −τ to t = 0, the FWM response is produced by apply-
ing another pulse (consisting of two identical simultaneous
pulses) at tII = 0. With �ρ (I) given by a 2 × 1 vector in Eq. (16),
the action of the second pulse can be represented by a matrix
Q(II), so Eq. (11) becomes

�ρ (II)(0) = Q(II) �ρ (I)(0), (23)

where

Q(II)
x = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 0
0 0
0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Q(II)
c = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
0 −2
0 0
0 0√
2 0

0
√

2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (24)

In terms of the decomposition Eq. (13), Q(II)
x converts the

element |0〉〈1| into −2|1〉〈0|, while |0〉〈2| does not contribute.
In the case of the cavity excitation, Q(II)

c converts |0〉〈1| and
|0〉〈2|, respectively, into |4〉〈1|/√2 and −|2〉〈0| + |4〉〈2|/√2.
At any time after the second pulse (t > 0), there are six
components making up the DM: |1〉〈0|, |2〉〈0|, |3〉〈1|, |3〉〈2|,
|4〉〈1|, and |4〉〈2|, in accordance with Eq. (16). The Liouvil-
lian matrix then takes the form:

L(II)
JC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�x − iγx g 0 2iγc 0 0

g �c − iγc 2iγx 0 0 2
√

2iγc

0 0 �c − iγc − 2iγx −g
√

2g 0

0 0 −g �x − iγx − 2iγc 0
√

2g

0 0
√

2g 0 2�c − �x − iγx − 2iγc −g

0 0 0
√

2g −g �c − 3iγc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

The FWM polarization is given by

PFWM(t ) = �O(II) · 〈�ρ (II)(t )〉 (26)

and is measured (at t > 0) in an observation channel �O(II),
which can be either exciton or cavity,

�O(II)
x =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, �O(II)
c =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
1
0
0√
2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (27)

or a linear combination of the two.

B. Trotter’s decomposition

We now consider the evolution of the system between and
after the pulses which is described by the master equation (5),
or its matrix analog Eq. (15). The first key element of our
asymptotically exact approach to the system dynamics is the
Trotter decomposition. It is based on Trotter’s theorem [69]
for two noncommuting operators A and B:

e(A+B)t = lim
�t→0

(eA�t eB�t )N , (28)

where �t = t/N and N is an integer. In our case, the IB and
JC models are two exactly solvable parts of the system, which
are described by noncommuting operators. We therefore set
A = −iLIB and B = −iLJC, the two noncommuting operators
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of the full composite system, described by the Liouvillian

L = LIB + LJC. (29)

We then use Eq. (28), in order to separate the evolution of the
full system into discrete time intervals, and assume indepen-
dent evolution of the IB and JC parts within each time interval,
exploiting the exact analytic solvability of each part.

The time interval between the pulse time t0 (where t0 = −τ

or t0 = 0) and the observation time t is split into N discrete
time steps, which need not be equidistant. Concentrating on
the n-th time step, between tn−1 and tn, with �t = tn − tn−1,
and assuming that �t is small, the evolution of the DM over
this time interval can be approximated, in line with Eq. (28),
as

�ρ(tn) = e−iL�t �ρ(tn−1) ≈ e−iLIB�t e−iLJC�t �ρ(tn−1). (30)

To account for the effects of LIB and LJC, we introduce, re-
spectively, a matrix operator W and a matrix M (both defined
below), such that Eq. (30) can be written as

�ρ(tn) ≈ W (tn, tn−1)M �ρ(tn−1)W †(tn, tn−1). (31)

The exciton-phonon dynamics, represented by W , follows
a unitary evolution that can be fully described by the Hermi-
tian Hamiltonians HIB and Hph:

W (tn, tn−1) = eiHphtn e−iHIB(�t )e−iHphtn−1

= T exp

[
−i
∫ tn

tn−1

dt ′V (t ′)d†d

]
, (32)

where

V (t ′) = eiHpht ′
Ve−iHpht ′

(33)

is the interaction representation of the phonon coupling V
defined in Eq. (4) and T is a normal time-ordering operator.
Due to the diagonal form of the exciton-phonon interaction, W
and W † are diagonal matrices, and owing to the Hermiticity of
the IB model, W (tn, tn−1) = W †(tn−1, tn). The non-Hermitian
dynamics of the exciton-cavity system is in turn described by
the matrix M defined as

M = e−iLJC�t , (34)

where matrix LJC depends on the basis used and for the linear
and FWM polarizations is given, respectively, by Eqs. (20)
and (25).

Introducing the components of the DM vector, the approx-
imate Eq. (31) can be written as

ρin =
∑
in−1

Winin Minin−1ρin−1W
†

inin
, (35)

where the phonon operators Winin and W †
inin

are the matrix
elements of the diagonal matrix operators W (tn, tn−1) and
W †(tn, tn−1), respectively, the numbers Minin−1 are the matrix
elements of M, and ρin is the in-th component of the vector
�ρ(tn) representing the DM at the time moment tn. Note that
the subscript n is included in the index in labeling matrix and
vector components, in order to keep the information about this
time moment and the selected time interval (between tn−1 and
tn) of the system evolution described by Eq. (35). Physically,
in labels the quantum state of the full system at time tn on the

selected path of its evolution. In the case of nonequidistant
time steps, W and M depend also on n, which is omitted for
the brevity of notations.

Now, we introduce a specific time-ordering operator T̃ ,
which allows us to move the operator W †

inin
next to Winin :

ρin =
∑
in−1

T̃WininW
†

inin
Minin−1ρin−1 . (36)

In doing so, the order of phonon operators should be pre-
served. The operator T̃ ensures that all phonon operators in
W (W †) stand to the left (right) of �ρ in normal (inverse) order.
We further introduce an operator

Yin = T̃ exp

[
−i
∫ tn

tn−1

Ṽin (t ′)dt ′
]
, (37)

which includes the effects of both W and W †, with the help of
T̃ and the interaction

Ṽi(t
′) = αiV

(+)(t ′) − βiV
(−)(t ′). (38)

This allows us to write Eq. (36) as

ρin =
∑
in−1

T̃Yin Minin−1ρin−1 . (39)

Introduced in Eq. (38), operators V (±)(t ′) are the same as the
operator V (t ′), defined by Eq. (33), with the only difference
that under the action of T̃ all phonon operators in V (+) (V (−))
stand to the left (right) of �ρ in the normal (inverse) order.
Vectors �α and �β are related, respectively, to the left and
right sides of the DM and have Boolean components αi and
βi indicating whether or not the exciton-phonon coupling is
affecting the given element ρi of the DM from either side.
Within Eq. (39), Yin has effect on Minin−1ρin−1 from the left
(right) only if αin = 1 (βin = 1), which takes place when the
corresponding component of the DM contains exciton. Other-
wise αin = 0 (βin = 0), and there is no effect of Yin . Note that
�α and �β are constant vectors, independent of the time step n,
but are different for different orders of optical nonlinearity.
Their explicit form for the linear and FWM polarizations is
provided in this section below.

Applying Eq. (39) to the full dynamics of the DM, from the
initial time t0 of pulsed excitation to the final time t = tN of
signal observation, and using the excitation and measurement
conditions, as detailed in Sec. II A, the optical polarization
takes the form

P(t ) =
∑

iN ...i1i0

OiN MiN iN−1 . . . Mi2i1 Mi1i0 Qi0

× 〈T̃YiN . . .Yi2Yi1〉, (40)

where in the last line, a thermal expectation value is taken
over the phonon ensemble. The summation over in in Eq. (40)
represents a discretized integration over all possible paths in
system’s evolution, so it can be understood as a PI. Clearly,
the phonon contribution is present only in the time-ordered
product of the elements Yin consisting of V (±) operators. This
expectation value will be evaluated in Sec. II C with the help
of the linked-cluster theorem [76].

Equation (40) is valid for any channel of optical non-
linearity, including linear and FWM response, provided that
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the system is excited by ultrashort optical pulses. Below we
provide details of how to use Eq. (40) for calculating the linear
and FWM polarization at zero delay (τ = 0). The case of a
nonzero delay between the pulses (τ �= 0) is considered in
detail in Appendix A and also in Sec. II D.

1. Linear polarization

The linear polarization PLin(t ) can be extracted from
Eq. (40), by using M = M (I) with LJC = L(I)

JC given by
Eq. (20), �O = �O(I) given by Eq. (22), and �Q = �Q(I) given by
Eq. (19). The phonon contribution is taken care of by Yin ,
defined by Eq. (37), with �α = �α(I) and �β = �β (I), where

�α(I) =
(

0
0

)
, �β (I) =

(
1
0

)
, (41)

as follows from the DM components involved, which are
given by Eq. (16).

2. FWM polarization (τ = 0)

Similarly, the FWM polarization at zero delay,
PFWM(t, τ = 0), can be obtained from Eq. (40) by using
M = M (II) with LJC = L(II)

JC given by Eq. (25), �O = �O(II)

given by Eq. (27), and

�Q = Q(II) �Q(I) (42)

with �Q(I) and Q(II) given, respectively, by Eqs. (19) and (24).
For the phonon part, Yin is defined by the same Eq. (37), with
�α = �α(II) and �β = �β (II), where

�α(II) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
1
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, �β (II) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (43)

This follows from the components of the DM involved in the
FWM dynamics, as given by Eq. (16).

C. Linked-cluster expansion

The second element of our approach to the system dynam-
ics is the cumulant, or linked-cluster expansion. It allows us to
address the exciton-phonon interaction exactly, by providing
an analytic evaluation of the expectation value of the time-
ordered product of operators in Eq. (40). As a result, any
explicit phonon dependence is removed at a cost of introduc-
ing temporal correlations between the states of the system at
different time steps.

The linked-cluster theorem [76] is valid for arbitrary oper-
ators and a wide class of time orderings, including the normal
(T ) and the inverse (Tinv) time orderings. The specific form
of time ordering T̃ introduced above can be considered as a
combination of T and Tinv, which are distinctly separated. In
fact, differently ordered operators stand on either side of the
DM and do not mix. As the two classes of time ordering do
not mix in T̃ , the linked-cluster theorem holds for this time
ordering, resulting in cumulants similar to those which appear
in the IB model.

Within the IB model, only second-order connected dia-
grams contribute to the cumulant. Applying the linked-cluster
theorem, the expectation value of the product of Yi operators
in Eq. (40) takes the form

�(t ) ≡ 〈T̃YiN . . .Yi2Yi1

〉 = exp

(
N∑

m=1

N∑
n=1

K̃imin (m, n)

)
, (44)

where

K̃imin (m, n) = −1

2

∫ tm

tm−1

dτ1

∫ tn

tn−1

dτ2
〈
T̃ Ṽim (τ1)Ṽin (τ2)

〉
(45)

and Ṽi(τ ) is defined by Eq. (38). Shown above is a general
result for an arbitrary channel of nonlinearity. Depending on
which channel is considered, vectors �α and �β take a particular
form, see, e.g., Eqs. (41) and (43).

Owing to the linked-cluster expansion, the phonon contri-
bution to the system dynamics is thus expressed in a form
of two-time correlations in system variables determining the
path, indexed by in. The possible realizations (or paths) are
indicated via combinations of the basis state labels in for
all values of n on the time grid. In the optical polarization
Eq. (40), all possible realizations are summed over.

With a general derivation given in Appendix A, Eq. (45)
becomes

K̃imin (m, n) = (αim − βim

)(
αin Kmn − βin K∗

mn

)
(46)

for m � n, and is symmetric with respect to the interchange of
indices:

K̃inim (n, m) = K̃imin (m, n). (47)

Within Eq. (46), each cumulant element is given by

Kmn = −1

2

∫ tm

tm−1

dτ1

∫ tn

tn−1

dτ2D(τ1 − τ2), (48)

where

D(t ) =
∑

q

|λq|2[(Nq + 1)e−iωq|t | + Nqeiωq|t |] (49)

is the phonon propagator and

Nq = 1

exp[ωq/(kBT )] − 1
(50)

is the Bose occupation number. Substituting Eqs. (44), (46),
and (48) into Eq. (40) allows us to find the optical polarization.

Note that we have used so far an arbitrary time grid, which
is not necessary equidistant. Below, for clarity of presentation,
we use an equidistant time grid, with a constant time step
�t . As we would like the time evolution to be composed
of identical memory kernels (visualized by L shapes, see
below), an equidistant grid is also more relevant because the
cumulant function is a function of the difference between the
two times t1 and t2. In this case, all the cumulant elements
depend on the difference l = |n − m| only and can be written
as Knm = Kmn = Rl , with Rl found recursively via

2Rl−1 = K (l�t ) − lR0 − 2
l−2∑
k=1

(l − k)Rk, (51)
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starting from l = 2 and using R0 = K (�t ). Here the cumulant
function of the IB model is defined as

K (t ) = −1

2

∫ t

0
dτ1

∫ t

0
dτ2D(τ1 − τ2) (52)

[cf. Eq. (48)]. Then for m � n, Eq. (46) simplifies to

K̃imin (m, n) =Kin+l in (l )

≡ (αin+l − βin+l

)(
αin Rl − βin R∗

l

)
, (53)

where l = m − n � 0. In the opposite case of m � n, one can
use the symmetry Eq. (47) to obtain K̃imin (m, n) = Kim+l im (l )
with l = n − m and the same Ki j (l ) defined in Eq. (53).

If the phonon bath has a memory time τIB (introduced in
Ref. [27], see also Appendix C), it is not necessary to take into
account all Rl on the time grid up to l = N , but it is sufficient
to cover only a portion of the two-dimensional time grid
including a distance of about τIB/2 from the main diagonal
(see Sec. II F). In this case, the number of cumulant elements
Rl which are taken into account is limited to some finite value
l � L. The number of time steps in the memory segment of
the system evolution, or the number of “neighbors” L is cho-
sen in our calculation as to satisfy a criterion �t � τJC, τIB,
which is imposed by the Trotter decomposition. Here τJC is
the timescale for the JC dynamics, see Appendix C. Below
we first consider in Sec. II D the L = 1 case called a nearest-
neighbor approximation and then proceed in Sec. II F with a
general case of L � 1, which we call an L-neighbor approach.

D. Nearest-neighbor approximation

The theory presented so far has focused on the case of zero
delay between optical excitation pulses. For the purpose of
illustration of the full method, we consider here both cases of
zero and nonzero delay, illustrating and comparing them in the
nearest-neighbor (NN) approximation. The latter is achieved
by setting L = 1 so that only |n − m| � 1 are kept in the
double sum in Eq. (44), and the DM or the optical polarization
can be expressed at any time simply as a product of matrices.
This approach is valid for a relatively small exciton-cavity
coupling strength g, for which τJC 
 τIB, and breaks down as
the two timescales become comparable. Owing to its simplic-
ity, the NN approximation serves as a clear illustration of the
Trotter decomposition method in general and provides a basic
start point for the full L-neighbor (LN) solution presented in
Sec. II F below. It also allows us to clearly demonstrate how
one can treat an arbitrary sequence of excitation pulses, at the
same time taking into account any memory effects and the
phonon contribution to the evolution of the system between
the pulses.

In the limit τJC 
 τIB, the full cumulant in Eq.(44) can
be approximated by a reduced cumulant which includes only
the diagonal (m = n) and the NN (m = n ± 1) terms. For the
linear or FWM polarization with τ = 0, the cumulant for a
given realization (or a path) then takes the form

ln �(t ) ≈
N∑

n=1

Kinin (0) + 2
N−1∑
n=1

Kin+1in (1), (54)

where Ki j (l ) is defined in Eq. (53). For the linear polarization,
using the explicit form of �α(I) and �β (I) given by Eq. (41), this

reduces to

ln �(t ) ≈ δiN ,1R∗
0 +

N−1∑
n=1

δin,1
(
R∗

0 + 2δin+1,1R∗
1

)
, (55)

where δnm is the Kronecker delta. Note that Eq. (55) is the
complex conjugate of the expression given by Eq. (19) of
Ref. [27], which is obtained here in accordance with the phase
selection determined by Eq. (10).

The optical polarization can then be written as a product of
matrices,

PNN(t ) = �O · EGN−1M �Q, (56)

where

Gi j = Mi je
K j j (0)+2Ki j (1), (57)

Ei j = δi je
K j j (0), (58)

and t = N�t . The time step �t satisfies the condition �t �
τIB, and for short times (0 < t < τIB) is chosen as �t = t/2,
so that the NN approximation takes all cumulant elements
into account. Equations (56)–(58) are valid both for linear
and FWM polarization at τ = 0. For the FWM (linear) po-
larization, one should use �O, �Q, �α, and �β with index II (I),
except �Q which is given by Eq. (42) in the case of the FWM
with τ = 0. For the linear polarization, Eq. (56) reproduces
the result obtained in Ref. [27].

Physically, M �Q in Eq. (56) represents the state of the
system following a pulsed excitation and a subsequent prop-
agation by one time step under the influence of LJC. The full
evolution of the system by a single time step is carried out
through a multiplication with the matrix G, which is repeated
N − 1 times. The phonon contribution at the final step of evo-
lution is included in the matrix E , and the optical polarization
is then obtained by taking the dot product with �O, in this way
projecting the DM onto a selected observation channel.

For the FWM polarization with τ > 0, the cumulant
Eq. (54) modifies to include in the dynamics both the delay
time τ = NI�τ and the observation time t = NII�t , with the
number of discrete steps NI and NII, respectively. The time
steps satisfy the condition �t,�τ � τIB. Equation (56) then
modifies as follows:

PNN(t, τ ) = �O(II) · E (II)[G (II)]NII−1G (I−II)[G (I)]NI−1M (I) �Q(I),

(59)

where

G (I−II)
i j = [M (II)Q(II)]i j exp

(
K(I)

j j (0) + 2K(I−II)
i j (1)

)
, (60)

K(I−II)
i j (1) = (α(II)

i − β
(II)
i

)(
α

(I)
j R(I−II)

1 − β
(I)
j R(I−II)

1
∗)

, (61)

and matrices G (ζ ) and K(ζ )(l ) are defined as before, respec-
tively, by Eqs. (57) and (53), with the upper index ζ (taking
the values I or II) added to the matrix M and vectors �α and �β,
see Eqs. (20), (25), and (34), as well as Eqs. (41) and (43) for

their definitions. Matrix E (II)
i j = δi je

K(II)
j j (0) is also defined as in

Eq. (58), now with the upper index II added. The range of the
matrix indices is different in different regions: G (I) and M (I)

are 2 × 2 matrices; G (II), M (II), and E (II) are 6 × 6 matrices,
while G (I−II) is a 6 × 2 matrix.
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FIG. 2. An example of the time grid for the FWM polarization
with nonzero delay in the NN approach with NI = 4 and NII = 3,
showing the delay time (τ ) region (I), the observation time (t) region
(II) and the mixed region (I-II). Only the self interaction (main
diagonal) and the NN interaction (nearest off-diagonal elements)
are included. The evolution along this grid consists of L-shaped
regions (these are bounded by a dashed line), which correspond to
an element of a matrix G. Grid squares are colored to distinguish
different cumulant elements [see Eq. (62)].

The specific cumulant elements, which are required for
the NN approximation and appear in Eqs. (53) and (61), are
obtained in the same way as Rl in Eq. (51) and take the form

R(I)
0 = K (�τ ), R(II)

0 = K (�t ),

R(I)
1 = K (2�τ )/2 − R(I)

0 , R(II)
1 = K (2�t )/2 − R(II)

0 ,

2R(I−II)
1 = K (�τ + �t ) − R(I)

0 − R(II)
0 . (62)

Note that they are all expressed in terms of the cumulant
function K (t ) given by Eq. (52). Clearly, within the NN ap-
proximation there are only five distinct cumulant elements
given by Eq. (62) which must be considered.

The NN approximation Eq. (59) for the FWM polarization
with τ > 0 is illustrated in Fig. 2, indicating three different
regions in the time domain, labeled with (I), (II), and (I-
II). Different cumulant elements Rj defined in Eq. (62) are
distinguished by color. The correlations in memory, arising
from the phonon contribution, are limited to the indicated
L-shaped regions. Note in particular that the (I-II) region,
where the reduced basis size changes, includes path segments
connecting states of the system evolution both in the delay and
the observation time regions.

E. Long-time asymptotics

A much better understanding of system’s behavior can
be achieved by separating the dynamics which occurs on
different timescales, τIB � τJC. We provide two different

ways to describe the long-time behavior analytically: (i) ap-
plying a multiexponential fit to our numerical solution and
(ii) using the polaron approximation (PA). This section is
devoted to the PA, while the multiexponential fit approach is
introduced at the end of Sec. II F below. For the review of the
PA in greater depth and its behavior with the delay time, see
Ref. [73].

The PA is obtained by taking the long-time limit of
Eq. (52), K (t ) → −S − i�pt . For the linear and τ = 0
FWM polarization the PA is given by (see Ref. [73] for the
derivation)

PPA(t ) = �O · e−S/2e−iL̃JCt e−S/2 �Q, (63)

where S is a diagonal matrix, given by S (I) = diag(S, 0)
for the linear and S (II) = diag(S, 0, 0, S, S, 0) for the
FWM polarization, and L̃JC is the polaron transformed JC
Liouvillian, obtained from LJC provided in Eqs. (20) and (25)
by replacing the exciton transition energy �x and the coupling
strength g with, respectively, a polaron-shifted exciton energy
�̃x and an effective coupling strength g̃, which are given by

�̃x = �x + �p,

g̃ = ge−S/2. (64)

The polaron shift �p and Huang-Rhys [80] factor S have the
following explicit form:

�p = −
∫ ∞

0
dω

J (ω)

ω
,

S =
∫ ∞

0
dω

J (ω)

ω2
coth

( ω

2kBT

)
, (65)

and are determined by the phonon spectral density
J (ω) =∑q |λq|2δ(ω − ωq). For QD systems, considered
in this work, the phonon spectral density has a superohmic
form J (ω) = J0ω

3e−ω2/ω2
0 , where J0 and ω0 are constants

determined by the material parameters of the QD (see
Appendix F of Ref. [27] for details and derivation).

For τ > τIB, the PA for the FWM polarization can be
obtained from Eq. (59) (see Ref. [73] for the derivation) and
becomes

PPA(t, τ ) = �O(II) · e−S (II)/2e−iL̃(II)
JC t Q̃(II)e−iL̃(I)

JCτ e−S (I)/2 �Q(I),

(66)

where

Q̃(II)
x = Q(II)

x e−2S, Q̃(II)
c = Q(II)

c , (67)

with Q(II)
x and Q(II)

c defined in Eq. (24).

F. Full numerical L-neighbor approach

Here we present a full LN approach, already mentioned at
the end of Sec. II C, which is based on the scheme proposed
in Ref. [27] and can be understood as a “forward-memory”
approach (see below for details). For clarity of presentation,
we return back to linear and zero-delay FWM polarizations—
the general case of nonzero delay is derived in Appendix A
which also provides details of the formalism presented here.

The LN approach is a generalization of the NN approxima-
tion, given by Eq. (56), and consists of a recursive generation
of tensors F (n), starting from n = 1, and ending up with
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FIG. 3. Diagrams showing how the system variables determining
the path are linked within G (blue) and F (red) of Eq. (69) for
L = 5. G contains path segments connecting the time of observation
(indexed by j) to itself, as well as to five other nearest time intervals
(indexed by in). These links are weighted by appropriate cumulant
elements if the interaction is present or by zero if there is no inter-
action and form a memory kernel. In F , all system variables that
describe L-step segment along some path, are linked together. This
tensor contains a future “history” of exciton-phonon interactions that
extends over five nearest timesteps.

n = N , the latter determining the optical polarization:

F (1)
iL,...,i1

=
h∑

j=1

Mi1 jQ j, (68)

F (n+1)
iL,...,i1

=
h∑

j=1

GiL ...i1 jF (n)
iL−1...i1 j, (69)

GiL ...i1 j = Mi1 je
K j j (0)+2Ki1 j (1)+···+2KiL j (L), (70)

PLN(t ) =
h∑

j=1

eK j j (0)OjF (N )
p...p j . (71)

Tensors F (n) of rank L are generated with the help of a con-
stant tensor G of rank L + 1 which is the LN analog of the
matrix G, given by Eq. (57), that appears in the NN approach.
Calculation of the tensor G requires only L + 1 distinct cumu-
lant elements Ki j (l ) defined in Eq. (53). As in Eq. (56), for the
FWM (linear) polarization, one should use vectors, tensors,
and matrices with the upper index II (I), except �Q which is
given by Eq. (42) in the case of the FWM with τ = 0. We shall
introduce a short-hand notation, where we first specify the
excitation channel and then the measurement channel (e.g.,
c-x refers to the situation where the system is initially ex-
cited in the cavity mode and the response is measured via
the excitonic mode). In Eq. (71) h = p = 6 (h = p = 2) for
the zero-delay c-c and c-x FWM (x-x, x-c FWM, and linear)
polarization. The time step is set to �t = τIB/L for t � τIB

and at earlier times (t < τIB) to �t = t/(L + 1), in the latter
case taking all possible cumulant elements into account. This
allows one to resolve the initial dynamics on finer timescales
and capture the fast initial decay of the polarization.

Physically, Eq. (68) forms the initial DM, by applying a
pulsed excitation to the ground state of the JC system and
adding a propagation by one time step under the influence
of LJC [see Eq. (34)], without contribution from the phonon
dynamics yet. The subsequent evolution of the DM is de-
scribed by Eq. (69), representing each single time step in the
form of a tensor product, expressed as a summation over j.
The final result expressed by Eq. (71) is obtained by taking a

FIG. 4. A time grid for L = 5 corresponding to the evolution of
the system between the pulse time and the observation time t . The
evolution along this grid consists of L-shaped regions, which are
bounded by the dashed lines. The time steps within each L shape
are linked by an element of the tensor G. Grid squares are colored to
distinguish different cumulant elements Eq. (53), which characterize
the strength of nonlocal interaction between system variables for a
pair of time steps within the memory. Cumulants (elements of the
grid) not included in the path sum (as they are beyond t) are labeled
by ×.

dot product �O · 〈�ρ(t )〉, in accordance with Eqs. (21) and (26),
projecting the DM onto a selected observation channel.

The tensor G, given by Eq. (70), is a memory kernel respon-
sible for phonon-induced correlations which are schematically
demonstrated in Fig. 3 for both G and F . The tensor G con-
tains the full information required to propagate the system by
a single time step and includes path segments connecting the
current time interval to L nearest intervals and to itself (Fig. 3,
blue). The tensor F (n) contains the information about the state
of the system and its interactions with the phonon environ-
ment in the form of two-time correlations in system variables
determining the path (Fig. 3, red). It includes all possible path
segments within the memory kernel. In the literature, G and F ,
or their analogues, are sometimes referred to as the propagator
tensor and the augmented density tensor, respectively (see e.g.
[47,49,55]).

As already mentioned above, we follow the forward-
memory LN approach introduced in Ref. [27]. Figure 4 illus-
trates the method for L = 5, showing a time grid representing
temporal correlations in system variables. The L-shaped re-
gions (bounded by dashed lines) contain contributions within
the memory kernel. A product of terms in each such region
forms a rank-6 tensor Gi5...i1 j . As it is clear from direct L
shapes, the memory kernel includes correlations with the fu-
ture time steps, rather than the past, and any cumulant contri-
butions after the observation time (labeled by crosses) are dis-
carded. In Eq. (71), representing the physical observable ex-
tracted from the tensor F , the index p is chosen in such a way
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that any cumulant contributions which fall outside the range
of the propagation are removed. In other words, the choice of
the index p is dictated by the fact that L last L-shape regions
are truncated. Choosing p = 2 or p = 6 for the FWM polar-
ization (both corresponding to the cavity components of the
DM) ensures that there is no phonon contribution beyond the
observation time t , in accordance with the vanishing second
and sixth elements of both vectors �α(II) and �β (II), see Eq. (43).
In fact, this corresponds to paths beyond time t with no change
of the DM, since phonons do not interact with the cavity.

It has been demonstrated in Ref. [27] that the linear
polarization shows a biexponential behavior at long times.
Expecting a similar property of the FWM polarization, we
introduce a multiexponential form of a fit function,

Pfit (t ) =
h∑

j=1

Aje
−iω j t , (72)

which we use in Sec. III below for approximating the full
numerical data at long times, t 
 τIB. Here h = 6 (h = 2)
for the FWM (linear) polarization, corresponding to six (two)
optical transitions involved in the coherence dynamics. The
amplitudes Aj and the corresponding frequencies ω j are
complex-valued and found numerically by fitting the numer-
ical data at long times. Note that when excited via the cavity
channel, the system reaches second rung of the JC ladder, so
in fact six transitions take part in the FWM dynamics, and
h = 6. Excitonic excitation can only produce ground state to
first rung coherences in the FWM, therefore only two possible
transition frequencies contribute, so h = 2, the same as in the
linear polarization.

III. RESULTS

In this work we use the exciton-phonon parameters of
InGaAs QDs, same as in Ref. [27]. These parameters are
in turn taken from Refs. [71,72]: Dc − Dv = −6.5 eV, ρm =
5.65 g cm−3, vs = 4.6 km s−1, and l = 3.3 nm. They describe,
respectively, the difference in deformation potentials of the
conduction and valence bands, mass density, speed of sound
in the QD material, and the equal electron and hole Gaus-
sian confinement radius. The cavity parameters are extracted
from the FWM experiment [13] with QDs embedded in a
micropillar cavity: g = 50 μeV (corresponding to g̃ = 39 μeV
at T = 50 K), γc = 30 μeV, and γx = 2 μeV. We also use
in all results a zero effective detuning, Re(ω̃x − ωc) = 0, in
which the polaron shift �p is compensated by the energy
difference between the bare exciton and the cavity modes,
see Eqs. (64) and (65). As for the coupling strength g, in
addition to the above value of g = 50 μeV used in Sec. III A
and corresponding to the experiments [13,31], we explore in
Secs. III B and III C and in Appendices D and E also the
regime of a much stronger coupling, with g = 0.3 meV and
g = 0.8 meV. These large values of the coupling strength were
shown to be achievable in modern experiments [12,75,81–83].

A. Small g regime: comparison of approaches

In this section, we explore the regime of relatively small
exciton-cavity coupling strength g = 0.05 meV, for which

τJC 
 τIB. Still, the exciton and the cavity mode are strongly
coupled. In this regime, both the NN (corresponding to L = 1,
see Sec. II D) and the PA (see Sec. II E) provide good ap-
proximations to the exact optical polarization calculated in the
full LN approach (see Sec. II F). The latter is also analyzed
in terms of the multiexponential fit described at the end of
Sec. II F. The convergence of the LN result to the exact solu-
tion is studied in detail in Appendix E. In this section, we use
only L = 9 (the numerical results are referred below to as just
LN). This value of L is sufficient for the coupling strengths
used in this paper (with root mean square deviation from the
exact result of up to 0.03%–0.3% for the linear polarization),
as demonstrated in Appendix E.

While the main purpose of this paper is to study the FWM
polarization, we also include here some results for the lin-
ear polarization, in order to provide a broader comparison.
This allows us to see changes of the phonon contribution to
the polarization, induced by the third-order optical nonlinear-
ity. For a more detailed study of the linear polarization in
this system see Ref. [27]. As for the FWM, we focus here
on the case of zero delay τ = 0 for clarity. A generaliza-
tion of the theory for arbitrary delay times is available in
Appendix A and is studied in more depths in Ref. [73]. The
primary focus of the present work is the rigorous treatment of
phonons using the LN approach to study degenerate FWM
in the weak-excitation limit. In contrast, the follow-up pa-
per [73] presents instead an approximate treatment of the
phonon contribution to an arbitrary order of nonlinearity in
a degenerate N -wave-mixing channel, using the NN and the
PA approaches, and dealing with arbitrary excitation pulse
powers and phase channels with � = σI�I + σII�II, where
σI, σII are any integers under constraints N = |σI| + |σII| + 1
and σI + σII = 1.

To see how linear and nonlinear effects manifest them-
selves in different excitation and measurement channels, we
focus here on (i) the FWM polarization in the x-x channel
when the optical excitation and measurement are performed
through the QD exciton state, and on (ii) both the linear and
FWM polarizations in the c-c channel when the excitation and
measurement are done via the cavity mode. Other combina-
tions of excitation and measurement channels in the FWM and
linear polarizations are explored, respectively, in Appendix D
and Ref. [28]. The direct excitation and/or measurement via
the exciton channel is not typically considered in quantum
dot-cavity systems. This is mainly due to a weak signal,
making detection more challenging. However, this is still
achievable in practice as demonstrated by single-dot FWM
measurements, see, e.g., Ref. [84]. Note that the dynamics of
the x-x FWM polarization is essentially the same as the x-x
linear polarization, studied in Ref. [27], since only the first
rung of the JC ladder is involved, as it is clear from the form
of the excitation operator Q(II)

x given by Eq. (24). However,
this simpler coherent dynamics can still be measured [15] as
a nonlinear optical response of the system. As for the c-c
channel, the linear and the FWM polarizations are entirely
different, as they involve different quantum transitions, as
discussed below in more depths.

To begin with, we consider the situation when the system
is excited and the response is measured via the excitonic mode
(Figs. 5 and 6). In this case, the second-rung coherences are
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(ps)

FIG. 5. x-x FWM polarization at τ = 0, g = 0.05 meV (g̃ =
0.039 meV), and T = 50 K, calculated in the LN (L = 9, red solid),
NN (red dotted), and PA approach (black dashed line). The LN result
is fitted with two complex exponentials [see Eq. (72)], to separate
the long-time from the short-time behavior, here shown as a relative
error of the fit (green curve). The inset shows the initial dynamics.

absent in the dynamics and the results reduce to the linear
polarization, as mentioned above. Note that in the absence of
the cavity, the zero-delay FWM and the linear response are
identical up to a phase factor PFWM(t, 0) = −P∗

Lin(t ), and the
full effect of the linear exciton-phonon coupling Eq. (4) can
be taken into account analytically, which is know as the IB
model. Moreover, even for arbitrary delay times, the FWM
response can be expressed entirely in terms of the linear
response using an analytic relation [35]

PFWM(t, τ ) = −|PLin(t )|2[PLin(τ )]2

PLin(t + τ )
. (73)

In the presence of the cavity, the linear and the zero-delay
FWM polarizations in x-x and x-c channels (where the second
rung is not directly excited) are also identical up to a phase
factor in the full calculation.
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)

FIG. 6. x-x FWM spectrum, i.e., the Fourier transform of the
FWM polarization, calculated in the LN and PA approaches and
shown in Fig. 5. The full numerical LN result (red), is separated into
ZPLs (the inset) and a phonon broad band (green line), correspond-
ing, respectively, to the long-time and short-time parts of the signal.
The upper (lower) part of the spectrum has a logarithmic (linear)
scale. The inset shows the complex frequencies of the biexponential
fit Eq. (72) (blue crosses) and PA (black dots) along with the cor-
responding amplitudes |Ai| given by the circle area and their phases
(all shifted by π ) color coded.

Figures 5 and 6 show, respectively, the time dependence
of the FWM signal |PFWM(t, 0)| and the corresponding spec-
trum |P̃FWM(ω)|, which is the Fourier transform of the former,
P̃FWM(ω) = ∫∞

0 PFWM(t, 0)eiωt dt . One can see a fast initial
decay of the polarization (Fig. 5) followed by a multiexponen-
tial (here, biexponential) behavior at later times. The former
is well seen in the inset and the fit error (green line). The
initial decay can be attributed to the rapid polaron formation
as a result of the instantaneous excitation of the QD by a
laser pulse. The polaron formation occurs on a timescale of
τIB = 3.25 ps and corresponds to a phonon broad band (BB)
in the spectrum, represented by the Fourier transform of the
complex absolute error of the fit (green line in Fig. 6). The
Fourier transform of the fit corresponds to the zero-phonon
line (ZPL) in the spectrum. The ZPL is described in this case
by four complex parameters, which are illustrated in the inset.
The fit error, i.e., the difference between the biexponential fit
and the full calculation shown by the green line in Fig. 5 is in
the 10−4 − 10−3 range for long times and gradually (exponen-
tially) increases at earlier times, reflecting the non-Markovian
dynamics of the polaron formation.

The fitted long-time behavior of the LN is captured well by
the PA, although the decay rates are slightly underestimated,
as can be seen from the bubble plot (the inset in Fig. 6),
representing the complex frequencies and the amplitudes of
both exponentials (the circles are centered at the complex
frequencies, with the circle area proportional to the modulus
of the amplitude). In fact, the phonon BB is not taken into
account in the PA, and any phonon-related effects are limited
to reduction of the exciton-cavity coupling and a change in the
detuning, see Eq. (64). With this renormalization, the quantum
dynamics in the PA is entirely determined by the JC model.
The NN approximation is capable of capturing correctly the
BB and also describes the quantum dynamics at longer times
quite well, which is expected in this regime of small g [27,73].
Being very efficient and straightforward, the NN approxima-
tion is, however, a semianalytic approach. The fully analytic
PA is derived from the NN approximation in the long-time
limit, so the PA and NN naturally agree at long times and
differ only in that PA underestimates and NN overestimates
the decay compared to the LN.

Let us now focus on the case in which the initial exci-
tation and the measurement of the response are both done
via the cavity mode. Figures 7 and 8 show, respectively, the
time dependence and spectra for linear (upper panels) and
FWM (lower panels) polarizations. In the linear response, the
spectrum is dominated by two Lorentzian lines, corresponding
to quantum transitions between the ground state and the first
rung of the JC ladder, the same as in the x-x polarization, see
Fig. 8(a). In the time domain, the linear c-c polarization also
starts from one but does not show any initial pure dephasing,
see Fig. 7(a). As a result, the BB is practically absent in the
spectrum. The c-c FWM response shows a few notable differ-
ences compared to the x-x FWM and c-c linear polarizations.
One difference arises from the fact that there are six transitions
involved in the quantum dynamics, including four transitions
between the first and the second rungs, compare the insets in
Figs. 8(a) and 8(b). The spectra in Figs. 8(a) and 8(b) show, re-
spectively, two and six Lorentzian lines, both in the fit and PA.
As a result of destructive interference between the first- and
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(ps)

(a)

(b)

FIG. 7. As Fig. 5 but for (a) linear and (b) FWM c-c polariza-
tions. For the FWM polarization the multiexponential fit Eq. (72)
consists of six exponentials, corresponding to the six transitions be-
tween the rungs of the JC ladder involved in the quantum dynamics.

second-rung transitions [13,16], the FWM spectrum is shrunk
significantly (i.e., the spectral tails are suppressed) compared
to the linear spectra. The other difference is that in the time
domain, the FWM signal starts from zero, see Fig. 7(b). This
is because the excitation of the system via the cavity mode
does not immediately lead to an optical nonlinearity, because
the cavity itself is linear (photons do not interact directly with
each other). In other words, the excitation has to be converted
from photon to exciton and back to photon, in order to produce
a nonlinearity measured in the c-c FWM, with the rise time of
the signal proportional to t2 [16].

The absence of a visible phonon BB in the spectrum is a
feature common to all c-c polarizations. Indeed, this is what
we see in Fig. 8, and there is no apparent fast decay in the
LN data at short times, see Fig. 7. This is because the polaron
formation is adiabatically slow in the case of cavity excitation
and small g. In fact, the polaron cloud forms around the QD or
disappears on the timescale τIB, and since τJC 
 τIB the quick
non-Markovian dynamics of the polaron formation is spread
over the much slower JC evolution. As a result, there is a better
overall agreement between LN, PA, and NN, both in the linear
and FWM signals. Also, the fit error is reduced by an order of
magnitude compared to the x-x polarization (Fig. 7), reaching
10−5 for the FWM polarization. Still, there is a few times
smaller (compared to x-x) leftover after the multiexponential
fit at short times and, as a consequence, a small BB is
present in the spectra (green lines in Fig. 8, magnified by a
factor of 103 and 105 for the linear and the FWM response,
respectively). Surprisingly, the BB in the FWM corresponds
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FIG. 8. As Fig. 6 but for (a) linear and (b) FWM c-c polariza-
tions. The inset in (b) shows six exponentials of the fit (blue crosses
and dotted circles) and PA (black dots and dashed circles). The
amplitudes (circle areas) of the two transitions in the linear response
in the inset in (a) are multiplied by a factor of 0.415 to match the
amplitudes of the corresponding transitions in the FWM.

to a much longer non-Markovian time compared to the
linear and even the x-x FWM polarizations (10–20 ps versus
3 ps). This is due to the quantum nonlinearity of the JC
system, leading to a quicker polariton dynamics when the
second-rung transitions are involved. These non-Markovian
features enhance dramatically for higher-order nonlinearities,
involving higher rungs of the JC ladder, and for larger values
of g. The latter is demonstrated and discussed in more depths
in Sec. III B below.

B. Non-Markovian dynamics with increasing g

While the two approximate solutions, NN and PA, provide
simple and convenient results, they show strong deviation
from the correct behavior as the exciton-cavity coupling
strength g and the temperature T are increased. For the lin-
ear polarization, increasing g and T are known to cause the
breakdown of the PA and approaches based on the polaron
master equation [27,28]. Here, we present results for the c-c
FWM and linear response, focusing on the role of the cou-
pling strength g in the quantum dynamics. The temperature
dependence is studied in Sec. III C below.

As the timescales τJC and τIB become comparable, the LN
shows a slower convergence with L, forcing us to use a finer
time grid, with an increased memory kernel (which contains
6L+1 elements for the c-c FWM). In fact, with g increasing, the
time step must be reduced also to resolve a faster JC system
dynamics. To understand the effect of g on phonon induced
dephasing, it is useful to first consider a simpler case of the
linear polarization, where the kernel memory size is much
smaller (contains 2L+1 elements). In this case we can store
more time steps in memory and use a finer grid. To make
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(a)

(b)

FIG. 9. As Fig. 7 but for g = 0.3 meV (g̃ = 0.23 meV) and
without the NN approximation.

sure that the convergence was reached even in a regime of
comparable timescales, L = 15 was used in Ref. [27]. In this
work, we use L = 9, which is also sufficient, with RMSD of
0.03%–0.3%, as demonstrated in Appendix E. For the FWM
response, we do not expect to see any significant change in
convergence with L (see Appendix E) and all relevant features
of the physical behavior can be captured with L = 9.

Results for the linear and FWM c-c polarizations are shown
in Figs. 9–12 for the exciton-cavity coupling strengths g = 0.3
and 0.8 meV. The separation of the time dependence into
the long-time and short-time dynamics, using the multiex-
ponential fit Eq. (72), is attempted for these larger coupling
strengths, and the results of such fits are also included in
Figs. 9–12 and compared with the multiexponential behavior
predicted by the PA, now demonstrating a clear deviation
from the latter. In the LN, the actual Rabi splittings of both
rungs are larger than those predicted by the PA, but for g =
0.3 meV, the PA offers a reasonably good approximation.
For g = 0.8 meV instead, a better estimate of the Rabi split-
tings is given by the bare JC model, i.e., without the polaron
renormalization, but both approximations, with or without the
renormalization fail to capture the full dynamics. In particular,
the scaling of the splitting with the square root of rung number
n is no longer observed in the LN: The average scaling of the
Rabi splitting with

√
n is reduced (for the second rung) by

around 13% for g = 0.3 meV and 5% for g = 0.8 meV, as
compared to only 0.4% reduction for g = 0.05 meV. One can
infer from this comparison a phonon-induced modification of
the JC energy level structure.

As demonstrated by Fig. 7 in Sec. III A, the presence of first
to second rung transitions in the c-c FWM dynamics increases
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FIG. 10. As Fig. 8 but for g = 0.3 meV. The long-time behaviour
is also shown by the blue dashed line. The amplitudes (circle areas)
of the two transitions in the linear response in the inset of (a) are
multiplied by a factor of 0.95 to match the amplitudes of the corre-
sponding transitions in the FWM.

dramatically the timescale of the initial non-Markovian be-
havior as compared to the linear or x-x FWM polarization,
involving only ground state to first rung transitions. This
effect is getting stronger as g increases. Moreover, this

(ps)

(a)

(b)

FIG. 11. As Fig. 9 but for g = 0.8 meV (g̃ = 0.62 meV).
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FIG. 12. As Fig. 10 but for g = 0.8 meV and the two amplitudes
in the inset of (a) scaled by a factor of 0.993.

non-Markovian timescale grows with g both in the linear and
FWM polarizations, as it is clear from Figs. 9 and 11 (green
lines). Consequently, the corresponding non-Markovian con-
tribution to the spectrum is getting narrower and higher,
reducing the ZPL weights, see Figs. 10 and 12.

For g = 0.3 meV, the linear and the FWM response spectra
in Fig. 10 are very different, which is not seen as clearly in
the time dependence in Fig. 9. However, it is clear from Fig. 9
that the initial deviation from a multiexponential behavior is
more prominent in the FWM dynamics, same as in Fig. 7
but with longer non-Markovian times both for the linear and
FWM polarizations. We note that the overall spectrum in
Fig. 10(b) appears as a triplet. A tendency of nonlinearities of
the JC model to manifest as triplet structures in the presence
of pure dephasing, has been previously reported in Ref. [85],
but in the photoluminiscence spectra of the system subject to
continuous incoherent pumping. The spectra in Fig. 12 for
g = 0.8 meV show an increased asymmetry (which is dis-
cussed in Sec. III C) and higher deviation from the PA, while
the temporal dynamics demonstrates a further increase of the
non-Markovian times for both linear and FWM polarizations.

To understand the enhancement with g of the non-
Markovian component in the linear and FWM c-c polariz-
ations, let us recall that within the IB model, the exciton-
phonon interaction results in a non-Markovian pure dephasing
on the timescale τIB, which is the memory time of the phonon
bath and the time of the polaron formation around the QD
in the absence of the cavity or for a small coupling strength g
between the cavity and the QD. This pure dephasing manifests
itself as a quick nonexponential drop of the excitonic polariza-
tion, see e.g. the inset in Fig. 5. For small g, i.e., in the limit
τJC 
 τIB, this quick non-Markovian dynamics of the polaron
formation is spread over the much slower JC evolution, so that

on any time interval �t ∼ τIB, only a very little change of
lattice deformations around the QD occurs, and the whole pro-
cess of the polaron formation or disappearance (due to the JC
Rabi rotations) can be treated as adiabatically slow. In other
words, the non-Markovian part of the overall dynamics of
the whole system, which would manifest itself as a nonexpo-
nential behavior, is negligible, apart from a very short period
of time at the beginning during which the systems reaches a
“steady state” in this adiabatic process. This can be clearly
seen in the quality of the multiexponential fit (green curves in
Fig. 7). As g increases and the timescales τJC and τIB become
comparable, this period of time to reach the steady state is
getting longer, as it is clear from Figs. 9 and 11 (green curves),
and the quasi-periodic process of the polaron formation and
disappearance can no longer be treated as adiabatic. Finally,
in the c-c FWM polarization for g = 0.8 meV, this steady state
cannot be reached at all, see Fig. 11(b). In fact, even though
the quality of the multiexponential fit looks reasonable for
sufficiently long times (t > 50 ps), the fit is not unique in this
case and does not bring much value to the understanding of
the spectrum, see the green line and the inset in Fig. 12(b).
In this regime, the quantum dynamics observed in the FWM
and even in the linear polarization becomes essentially non-
Markovian, with a much stronger effect in the FWM, due to
a larger number of quantum transitions involved and owing to
the quantum nonlinearity of the JC system.

C. Temperature effects and spectral asymmetry

Here we concentrate on the temperature effects in the
FWM polarization. Figures 13 and 14 show, respectively,
the zero-delay FWM c-c polarization and its spectrum, for
two different temperatures (T = 4 and 50 K), and for three
different coupling strengths (g = 0.05, 0.3, and 0.8 meV), in
each case comparing LN results with the PA. For small g,
the LN shows good agreement with the PA, as previously
discussed (see Sec. III A), and the agreement is better at low
temperatures. Note a significant change with temperature of
the doublet splitting in the spectrum in Fig. 14(a), correspond-
ing to the change in the beating frequency in Fig. 13(a), in
agreement with the PA, see Eqs. (64) and (65). In fact, the cou-
pling constant g is renormalized (reduced) stronger at larger
temperatures, as dictated by the temperature dependence of
the Huag-Rhys factor S.

For an intermediate exciton-cavity coupling strength of
g = 0.3 meV [panels (b) in Figs. 13 and 14], the impact of
phonons on the FWM is much stronger. The exciton-cavity
dynamics occurs faster (in accordance with a larger Rabi
splitting), and phonons do not have enough time to adapt to the
changes in the QD-cavity system. In this regime, the behavior
is more complex and in general requires a non-Markovian
treatment, which is provided by the LN solution. For both
temperatures, the spectrum for g = 0.3 meV is asymmetric
due to phonon-assisted transitions between the polariton states
[27]. Surprisingly, for T = 4 K, the PA, despite its funda-
mental simplicity, still gives a reasonable agreement with
the LN result but fails to predict the spectral asymmetry. At
T = 50 K, the spectrum shows some drastic changes in shape
as compared to the PA: the frequencies of all six transitions
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(a)

(b)

(c)

FIG. 13. Zero-delay c-c FWM polarization signals for (a) g =
0.05, (b) 0.3, and (c) 0.8 meV, calculated in the LN approach (solid
lines), for T = 4 (blue) and 50 K (red lines). The PA is also shown
in (a) by black dashed lines.

and their linewidths are significantly modified by the presence
of the phonon environment.

At even larger exciton-cavity coupling strength of g =
0.8 meV [panels (c) in Figs. 13 and 14] the deviation be-
tween the PA and LN approaches becomes dramatic. The
exciton-cavity dynamics now occurs on a faster timescale
than the exciton-phonon dynamics. Note that comparable
timescales τJC ≈ τIB are observed in the linear polarization
at g ≈ 0.6 meV (see Fig. 3 in Ref. [27]). The spectral asym-
metry becomes more pronounced for both temperatures. For
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FIG. 14. Zero-delay c-c FWM spectrum for (a) g = 0.05, (b) 0.3,
and (c) 0.8 meV, the Fourier transform of the time dependent polar-
ization in Fig. 13, calculated in the LN approach (red solid lines) and
PA (black dashed lines), for T = 4 (thin) and 50 K (thick lines).

T = 5 K, the PA still agrees with the LN results surprisingly
well, apart from the asymmetry. This can be understood from
the fact that at low temperatures, there is a very little polaron
renormalization of the coupling g, hence the transition ener-
gies match quite well in both approaches. This is not true
at higher temperatures for large g, see Fig. 3 in Ref. [27]
demonstrating a strong deviation of the actual Rabi splitting
in the first rung of the JC ladder from that predicted by the
PA. This effect becomes even more pronounced in the second
rung involved in the FWM dynamics.

115312-16



IMPACT OF THE PHONON ENVIRONMENT ON THE … PHYSICAL REVIEW B 108, 115312 (2023)

IV. CONCLUSIONS

We have presented an asymptotically exact solution for
the FWM response of a QD embedded in a photonic cavity,
taking into account the LA phonon contribution in full. We
have implemented a real-time path integral-based approach,
combining Trotter’s decomposition and linked-cluster expan-
sion. Our work presents an important generalization of the
method recently developed for calculating the linear polar-
ization [27]. This generalization, applied here to the FWM
response, clearly demonstrates how the method can be used
for other elements of the density matrix and applied in prin-
ciple to any observable. This semianalytic approach unites
the behavior of two exactly solvable models into a common
framework, where they can influence each other by means of
a memory kernel responsible for temporal correlations within
the system. Our solution has a microscopic origin and is
capable of addressing intrinsically quantum dynamics beyond
perturbative regimes. We were thus able to explore the effect
of phonons on linear and nonlinear QD-cavity dynamics with
comparable exciton-cavity and exciton-phonon timescales, as
well as arbitrary temperatures.

The exactly solvable JC and IB models constituting the
system are characterised by the timescales τJC and τIB, respec-
tively. In the limit of fast phonon environment, τJC 
 τIB, our
microscopic approach allows us to develop and evaluate the
validity of two useful approximations: the nearest-neighbor
approach and the fully analytic polaron approximation follow-
ing from it. For τJC 
 τIB, both approximations describe the
dynamics of the system well but are computationally much
simpler, with the nearest-neighbor approach being able to
capture even the non-Markovian dynamics at the initial times
(t � τIB). In the polaron approximation, the effect of phonons
is reduced to the polaron shift of the exciton frequency and a
renormalization of the exciton-cavity coupling strength by the
Huang-Rhys factor, so that the quantum dynamics is described
as a superposition of exponentials. Inspired by the polaron
approximation, we have applied a complex-valued multiexpo-
nential fit to the exact solution, that allowed us to precisely
quantify the individual quantum transitions contributing to
the FWM signal. Moreover, the multiexponential fit separates
the full quantum dynamics into a short-time non-Markovian
and a long-time multiexponential behavior. The latter repre-
sents optical spectra as superpositions of complex Lorentzian
lines, corresponding to quantum transitions between phonon-
dressed states of the JC ladder, in agreement with the polaron
approximation. We have demonstrated this by focusing on the
excitation of the optical nonlinearity via the cavity mode, in
which case the second-rung states of the JC ladder are directly
excited and a more complex dynamics (compared to the linear
polarization) arises. We have also studied other excitation
and measurement channels corresponding to the third-order
optical nonlinearity.

We have studied the regime of τJC 
 τIB for the exciton-
cavity coupling strength of g = 0.05 meV which is close to
the one measured in Ref. [13]. For this coupling strength,
the calculated FWM spectra are qualitatively similar to those
simulated in Ref. [13] for g = 0.035 meV without phonons. In
this regime, phonons around the QD can quickly adapt to any
changes caused by the Rabi rotation. For larger values of the

coupling strength, g = 0.3 meV (close to the one measured in
Ref. [75]) and g = 0.8 meV, the similarity of the timescales
τJC and τIB opens up a possibility of phonon-assisted tran-
sitions between different polariton states, previously studied
in the linear polarization [27]. These transitions cause spec-
tral asymmetry which we have also demonstrated in FWM
spectra.

In the regime of comparable system and environment
timescales, τJC ∼ τIB, we have found an increased deviation
from the multiexponential behavior, clearly demonstrating
a non-Markovian character of the exciton-cavity FWM dy-
namics, not seen in the linear polarization. The phonon
cloud around the QD is unable to adiabatically adapt to a
varying optical state that results in non-Markovian effects
seen in the quantum dynamics. We have found a significant
deviation from the polaron approximation and multiexponen-
tial fit, which becomes even more pronounced at elevated
temperatures.

In a model of increased complexity, where linear and
nonlinear effects, as well as environmental interactions are
combined, there is a richer variety of interesting physical
behavior that can be seen. While the dynamics of the full
system exhibits characteristics of its individual parts, when
they are combined the actual behavior is different that results
in emergent phenomena, such as those demonstrated above.
These phenomena can only be captured in a fully microscopic
treatment, which is presented in this work.

ACKNOWLEDGMENTS

We thank Wolfgang Langbein and Amy Morreau for use-
ful discussions. L.S. acknowledges support from the EPSRC
under Grant No. EP/R513003/1.

APPENDIX A: LN APPROACH TO THE FINITE-DELAY
FWM POLARIZATION

Here we consider the general case of the FWM with an
arbitrary delay time τ � 0 between pulses. The regions of
delay time τ and the observation time t are split into discrete
numbers of time steps, NI and NII, respectively. For simplicity
and for brevity of notations, we assume equidistant grids,
so τ = NI�τ and t = NII�t , with generally different time
steps �τ and �t . Note, however, that the formalism presented
below can be adapted to nonequidistant grids. To distinguish
regions I and II in the time domain, we add to the operators
Yin defined by Eq. (37), respectively, indices (I) and (II), and
take into account the corresponding basis sizes of the DM, JC
Liouvillian matrix, and the vectors �α and �β.

The time evolution of the DM after the application of the
first pulse, described by Eq. (18), has the form

ρ jNI
(0−) =

∑
jNI−1... j0

T̃Y (I)
jNI

M (I)
jNI jNI−1

. . .Y (I)
j1

M (I)
j1 j0

ρ j0 (−τ ). (A1)

After the application of the second pulse, which is described
by Eq. (23), the DM takes the form

ρiNII
(t ) =

∑
iNII−1...i0

T̃Y (II)
iNII

M (II)
iNII iNII−1

. . .Y (II)
i1

M (II)
i1i0

ρi0 (0+). (A2)
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In the Eqs. (A1) and (A2), �ρ(0−) and �ρ(0+) refer to the DM, respectively, immediately before and after the ultrashort pulse is
applied. Matrices M (I) and M (II) are given by

M (I) = e−iL(I)
JC�τ , M (II) = e−iL(II)

JC �t . (A3)

Combining these equations and using the definition of the total polarization Eq.(26), where the vector �O has the meaning of
the annihilation operator of the observation channel, the FWM polarization becomes

P(t, τ ) =
∑
iNII

O(II)
iNII

∑
iNII−1...i1

M (II)
iNII iNII−1

. . . M (II)
i2i1

∑
i0

M (II)
i1i0

∑
jNI

Q(II)
i0 jNI

×
∑

jNI−1... j1

M (I)
jNI jNI−1

. . . M (I)
j2 j1

∑
j0

M (I)
j1 j0

Q(I)
j0

〈
T̃Y (II)

iNII
. . .Y (II)

i2
Y (II)

i1
Y (I)

jNI
. . .Y (I)

j2
Y (I)

j1

〉
. (A4)

The form of �Q(I), Q(II), and �O(II) depends on the excitation
and measurement channels, and is given, respectively, by
Eqs. (19), (24), and (27).

Similar to the derivation in Sec. II C, the application of
the linked-cluster expansion to the expectation value of the
T̃ -ordered product in Eq. (A4) gives

〈
T̃Y (II)

iN
. . .Y (II)

iNI+1
Y (I)

iNI
. . .Y (I)

i1

〉 = exp

(
N∑

m=1

N∑
n=1

K̃imin (m, n)

)
,

(A5)

where N = NI + NII, and a unified index in, having different
dimensions in regions I and II, is introduced. The cumulant
elements in Eq. (A5) are given by

K̃imin (m, n) = −1

2

∫ tm

tm−1

dτ1

∫ tn

tn−1

dτ2
〈
T̃ Ṽim (τ1)Ṽin (τ2)

〉
, (A6)

where

Ṽin (τ ′) = α
(ζn )
in

V (+)(τ ′) − β
(ζn )
in

V (−)(τ ′) (A7)

with V (±)(τ ′) introduced in Eq. (38). Here the operator Ṽin (τ ′),
however, has a more general meaning than in Eq. (38), as it
differentiates the two time regions by means of an extra index
ζn defined as

ζn =
{

I 1 � n � NI,

II NI + 1 � n � N.
(A8)

The time steps tn used in Eq. (A6) and below are defined in
the following way:

tn =
{

n�τ − τ 0 � n � NI,

(n − NI )�t NI + 1 � n � N.
(A9)

Now, using the definition of the time-ordering operator T̃
and the interaction Ṽi(τ ′), introduced in Eqs. (36) and (A7),
respectively, Eq. (A6) can be written more explicitly as

K̃imin (m, n)

= −1

2

∫ tm

tm−1

dτ1

∫ tn

tn−1

dτ2
{
α

(ζm )
im

α
(ζn )
in

〈TV (τ1)V (τ2)〉

− α
(ζm )
im

β
(ζn )
in

〈V (τ2)V (τ1)〉 − β
(ζm )
im

α
(ζn )
in

〈V (τ1)V (τ2)〉
+ β

(ζm )
im

β
(ζn )
in

〈TinvV (τ1)V (τ2)〉}, (A10)

from what immediately follows its symmetry, Eq. (47). To
evaluate it for m � n, we use the phonon propagator (also
known as autocorrelation function) with normal and inverse
time ordering

〈TV (τ1)V (τ2)〉 = D(τ1 − τ2),
(A11)〈TinvV (τ1)V (τ2)〉 = D∗(τ1 − τ2),

where D(t ) is given explicitly in Eq. (49) and in Appendix B.
Then we determine the form of each of the four terms in
Eq. (A10), by using the definition of V given in Eq. (4):

〈V (τ1)V (τ2)〉
=
∑
qq′

λqλq′ 〈(bq(τ1) + b†
−q(τ1))(bq′ (τ2) + b†

−q′ (τ2))〉

=
∑

q

|λq|2{〈bq(τ1)b†
q(τ2)〉 + 〈b†

q(τ1)bq(τ2)〉}

=
∑

q

|λq|2[(Nq + 1)e−iωq (τ1−τ2 ) + Nqeiωq (τ1−τ2 )]

=
{

D(τ1 − τ2) τ1 > τ2,

D∗(τ1 − τ2) τ1 < τ2,
(A12)

where bq(t ) = bqe−iωqt , λ∗
q = λ−q, and the phonon occupation

number Nq is defined by Eq. (50). Then Eq. (A10) simplifies
to

K̃imin (m, n) = (α(ζm )
im

− β
(ζm )
im

)(
α

(ζn )
in

Kmn − β
(ζn )
in

K∗
mn

)
(A13)

for m � n, using the definition of Kmn given by Eq. (48).
The vectors �α(ζ ) and �β (ζ ) in the above formula are given by
Eqs. (41) and (43) for ζ = I and II, respectively.

To derive more explicit expressions for K̃inim (n, m), we
start by distinguishing three cases for the cumulant elements
Kmn:

Kmn =

⎧⎪⎪⎨
⎪⎪⎩

R(I)
l (i) if m, n � NI,

R(II)
l (ii) if m, n > NI,

R(I−II)
ll ′ (iii) otherwise,

(A14)

where l = |m − n| in the first two cases, while in the last case,
l = m − NI and l ′ = NI + 1 − n for m > n (for the opposite
condition, m < n, one can simply use the symmetry Knm =
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Kmn, which always holds). As in Eq. (51), R(I)
l and R(II)

l can be
found recursively:

2R(I)
l−1 = K (l�τ ) − lR(I)

0 − 2
l−2∑
k=1

(l − k)R(I)
k , (A15)

2R(II)
l−1 = K (l�t ) − lR(II)

0 − 2
l−2∑
k=1

(l − k)R(II)
k , (A16)

starting from l = 2 and using, respectively, R(I)
0 = K (�τ ) and

R(II)
0 = K (�t ), with K (t ) defined in Eq. (52). R(I−II)

ll ′ can be
found in a similar way:

2R(I−II)
ll ′ = K (l�t + l ′�τ ) − lR(II)

0 − l ′R(I)
0

− 2
l−1∑
k=1

(l − k)R(II)
k − 2

l ′−1∑
k=1

(l ′ − k)R(I)
k

− 2
l∑

k=1

l ′∑
k′=1

R(I−II)
kk′ (1 − δklδk′l ′ ). (A17)

Then for (i) n � m � NI,

K̃imin (m, n) = K(I)
in+l in

(l )

≡ (α(I)
in+l

− β
(I)
in+l

)(
α

(I)
in

R(I)
l − β

(I)
in

R(I)
l

∗)
, (A18)

and for (ii) m � n > NI,

K̃imin (m, n) =K(II)
in+l in

(l )

≡ (α(II)
in+l

− β
(II)
in+l

)(
α

(II)
in

R(II)
l − β

(II)
in

R(II)
l

∗)
, (A19)

in both cases depending on the difference l = m − n � 0.
Finally, for (iii) m > NI � n,

K̃imin (m, n) = (α(II)
im

− β
(II)
im

)(
α

(I)
in

R(I−II)
ll ′ − β

(I)
in

R(I−II)
ll ′

∗)
,

(A20)

where l = m − NI and l ′ = NI + 1 − n. If m < n, one can
just use the symmetry Eq. (47) to evaluate K̃imin (m, n) in all
three cases (i)-(iii). Note also that Eqs. (A18) and (A19) have
the same form as Eq. (53), with the upper indices (I or II)
present explicitly in Eqs. (A18) and (A19) and implicitly in
Eq. (53). These upper indices indicate the relevant regions of
the two-dimensional time grid shown in Fig. 2 for the NN
approximation (L = 1) and in Fig. 15 for L = 2. Region I-II
in Figs. 2 and 15, consisting of two parts lying in the second
and forth quadrants of the plane, correspond to case (iii) with
the cumulant elements given by Eq. (A20).

Now, reducing the number of time steps in the memory seg-
ments to L, Eqs. (A4) and (A5) can be written as a sequence
of tensor products,

F (1)
iL,...,i1

=
hI∑

j=1

M (I)
i1 jQ

(I)
j , (A21)

F (n+1)
iL,...,i1

=
h∑

j=1

G̃ (n)
iL,...,i1 jF

(n)
iL−1,...,i1 j, (A22)

P(t, τ ) =
hII∑
j=1

eK
(II)
j j (0)O(II)

j F (N )
p,...,p j . (A23)

FIG. 15. As Fig. 2 (with NI = 4 and NII = 3) but for L = 2.
The L-shaped features belonging to four different regions (a)–(d)
discussed at the end of Appendix A are indicated. The entire first
quadrant belongs to the region (d).

where p = 2 or 6, hI = 2, hII = 6, and h = hI (h = hII) for
n < NI (n � NI). Unlike zero-delay FWM, the tensor G̃ (n)

for nonzero delay is generally n-dependent and has differ-
ent definitions in four different regions. In two regions, (a)
n � NI − L and (d) n > NI, it is independent of n and has
essentially the same form as in Eq. (70):

G̃ (n)
iL,...,i1 j = G (ζ )

iL,...,i1 j = M (ζ )
i1 j eK

(ζ )
j j (0)+2K(ζ )

i1 j (1)+···+2K(ζ )
iL j (L)

, (A24)

where ζ = I for region (a) and ζ = II for region (d), while
K(ζ )

in+l in
(l ) are given by Eqs. (A18) and (A19), respectively. In

the other two regions, it is n-dependent. In region (b), where
NI − L < n < NI,

G̃ (n)
iL,...,i1 j = M (I)

i1 je
K̃ j j (n,n)+2K̃i1 j (n+1,n)+,...,+2K̃iL j (n+L,n), (A25)

and in region (c), consisting of a single element n = NI,

G̃ (n)
iL,...,i1 j = [M (II)Q(II)]i1 je

K̃ j j (n,n)+2K̃i1 j (n+1,n)+···+2K̃iL j (n+L,n),

(A26)

where K̃i j (m, n) are given by Eq. (A18), (A19), or (A20),
depending on the numbers m and n used.

In the NN approximation, corresponding to L = 1, F (n)

and G̃ (n) become, respectively, vectors and matrices, region (b)
disappears, and in region (c) G̃ (n) becomes G (I−II) defined in
Eq. (60), so Eqs. (A21)–(A23) transform into Eq. (59). In fact,
within Eq. (A26), K̃ j j (n, n) and K̃i1 j (n + 1, n) are the only
remaining cumulants which become, respectively, K(I)

j j (0) and

K(I−II)
i1 j (1), the latter being defined in Eq. (61), in agreement

with Eq. (A20).
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APPENDIX B: QD PHONON PROPAGATOR

A quantum state of the phonon subsystem is described by a
set of excitations in different modes, which are distinguished
by their wave numbers q. The coupling of exciton to the
acoustic phonon mode q is determined by the coupling matrix
element

λq = qD(q)√
2ρMvsqV

, (B1)

where ρM is the mass density, vs is the sound velocity, and V
is the sample volume. The form-factor D(q) is given by

D(q) =
∫

dr{Dc|ψe(r)|2 − Dv|ψh(r)|2}eiq·r, (B2)

where ψe(r) and ψh(r) are, respectively, the electron and hole
confined wave functions, and Dc and Dv are, respectively, the
conduction- and valence-band deformation potentials. For a
symmetric QD, when the wave function has mirror symmetry,
λq is real and λ−q = λq.

In the phonon propagator D(t ), given by Eq. (49), the
phonon spectral density J (ω) =∑q |λq|2δ(ω − ωq) can be
used to convert a discrete sum into an integral:

D(t ) =
∫ ∞

0
J (ω)[(N (ω) + 1)e−iω|t | + N (ω)eiω|t |]dω, (B3)

where N (ω) = {exp[ω/(kBT )] − 1}−1 is the Bose function.
For a QD with spherically symmetric parabolic confine-
ment potential, the detailed expression for J (ω) is given in
Appendix F of Ref. [27].

APPENDIX C: CHARACTERISTIC TIMESCALES

The characteristic timescales determining the full quantum
dynamics of the system are introduced, following Ref. [27]:

τIB =
√

2π l/vs, (C1)

τJC1 = π/g, (C2)

τJC2 = τJC1/
√

2, (C3)

where l denotes the exciton confinement radius. The timescale
of the IB model depends on temperature (saturating at
large T ) and the parameters of the QD. The above expres-
sion for τIB is an estimate of the temporal decay of the
phonon autocorrelation function Eq. (B3). Note that in our
numerical calculations, we use slightly different values of
τIB which are determined by the condition D(τIB) − D(t →
∞) = D(τIB) + i�pt + S ≈ 10−4. As for the above given
timescales τJC1 and τJC2, they express the exact values of the
periods of the Rabi rotations in the first and second rungs of JC
ladder at zero detuning and in the absence of phonons, taking
into account the

√
n increase of the Rabi splitting with the

rung number n.
Figure 16 shows all three timescales as functions of g.

For the linear polarization, the maximum phonon-induced
dephasing is observed in the regime of comparable JC1 and
IB timescales, which is at g ≈ 0.6 meV [27]. We have also
observed similar behavior of the first rung transitions in the
FWM.

FIG. 16. Characteristic timescales for the exciton-phonon dy-
namics (green) and the exciton-cavity dynamics of the first (red) and
the second (blue) rungs as functions of the coupling strength g. The
timescales are shown for the parameters considered in the main text.
Please note that for T < 0.2K, τIB (here shown by the green line) is
much larger.

APPENDIX D: FWM RESULTS FOR OTHER EXCITATION
AND MEASUREMENT CHANNELS

In Sec. III, we have shown the FWM results when both the
excitation and the measurement are done in the same mode.
Here we consider the other possibilities, when the system is
excited via the cavity, while the response is measured via
the exciton channel (c-x FWM, see Fig. 17) and vice versa
(x-c FWM, see Fig. 18). The former is similar to the c-c
polarization shown in Figs. 7(b) and 8(b), although the results
are quantitatively different. In particular, a faster rise time of
the signal is seen in Fig. 17, since the cavity excitation needs
to be converted to the excitonic polarization in order to be
observed in this nonlinearity channel. This takes a shorter
time as compared to a further conversion of the excitation
back to the cavity, which is required in the c-c FWM, see
a discussion at the end of Sec. III A. Another feature is a
larger relative phase difference between the “inner transitions”
[16], compare the insets in Figs. 8(b) and 17(b). Also, an
increased contribution of the second-rung transitions is seen
in Fig. 17(b). All of these features are well reproduced in the
PA. The x-c FWM signal in Fig. 18(a) demonstrates an even
shorter rise time, and its deviation from the biexponential fit
is similar to the x-x FWM polarization, shown in Fig. 5. The
spectrum also consists of only two transitions, but this time
with very similar phases.

So far, we have considered the situation, where both
excitation pulses �Q(I) and Q(II) correspond to the same mode.
In general, this is not always the case, and we give here
examples of the xc-c and xc-x FWM polarizations, for which
the first (second) pulsed excitation �Q(I)

x (Q(II)
c ) occurs in

the exciton (cavity) mode and the measurement is done,
respectively, in the cavity and exciton mode. Figures 19 and
20 show, respectively, the xc-c and xc-x FWM polarizations
and the corresponding spectra for g = 0.05 meV. In this
regime, the xc-c and c-c FWM polarizations are very similar,
compare Fig. 19 with Figs. 7(b) and 8(b). The xc-x FWM is
much different from all other nonlinear channels considered
so far. In fact, its deviation from the multiexponential behavior
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FIG. 17. (a) c-x FWM polarization at τ = 0, g = 0.05 meV, and
T = 50 K, calculated in the LN (L = 9, red solid), NN (red dotted),
and PA (black dashed line). The LN result is fitted with six complex
exponentials [see Eq. (72)], to separate the long-time from the short-
time behavior, here shown as a relative error of the fit (green curve).
(b) Fourier transform of c-x FWM polarization, calculated in the LN
and PA approaches and shown in (a). The full numeric LN result
(red), is separated into ZPLs (the inset) and a phonon broad band
(green line), corresponding, respectively, to the long-time and short-
time parts of the signal. The inset shows the complex frequencies of
the multiexponential fit (blue crosses) and PA (black dots) along with
the corresponding amplitudes |Ai| given by the circle area and their
phases color coded.

is stronger, taking place at a longer timescale, which leads to
a more pronounced BB in the spectrum, see the green lines in
Fig. 20. Because of the stronger BB and the presence of all six
transitions at the same time, below we explore this FWM
channel further for different values of g and T , see Figs. 21
and 22.

For g = 0.3 meV and T = 4 K, the xc-x FWM spectrum is
wider, and the individual transitions are already well resolved
as opposed to the c-c FWM, compare Figs. 21(b) and 14(b). At
T = 50 K there is still a considerable overlap of the transitions
in the spectrum and only a small spectral asymmetry. For
g = 0.8 meV (Fig. 22) there is a deviation from a regular
periodic behavior in the time domain. The deviation from a
multiexponential behavior appears to be also very significant,
so these results cannot be fitted at all. The transitions are spec-
trally better resolved, having less overlap and rather similar
weights, both in the LN and PA. The LN spectrum has an
interesting profile, with more uneven distribution of weights
caused by phonon assisted transitions.

Another possibilities of excitation and measurement chan-
nels are cx-x and cx-c, produced by �Q(I)

c and Q(II)
x . However,

no signal is produced in these channel for zero delay between

(a)

(b)

(a
rb

. u
ni

ts
)

FIG. 18. As Fig. 17 but for the x-c FWM channel.

the pulses, since Q(II)
x

�Q(I)
c = 0, as can be seen from Eqs. (19)

and (24). Any other excitation and measurement conditions
can be expressed as linear combinations of those discussed
here and in the main text.

(ps)

(a)

(b)

(a
rb

. u
ni

ts
)

FIG. 19. As Fig. 17 but for the xc-c FWM channel, in which the
system is excited by �Q(I)

x and Q(II)
c .
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FIG. 20. As Fig. 19 but for the xc-x FWM channel.
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FIG. 21. As Fig. 20 but for g = 0.3 meV and two different tem-
peratures, T = 4 and 50 K, showing only the LN results in (a) and
both the LN (red solid lines) and PA (black dashed lines) in (b), with
the inset removed.

(a)

(b)

FIG. 22. As Fig. 21 but for g = 0.8 meV.

APPENDIX E: CONVERGENCE OF FWM
RESULTS WITH L

We explore convergence of both the linear and the FWM
numerical results towards the exact solution. For the linear
polarization, it is easier to assess the convergence, as we have
access to larger L. For both the linear and the FWM polariza-
tions, we compare our numeric results to those obtained using
the TEMPO algorithm [55,86].

Figure 23 shows the convergence of c-c linear polarization
with L, at T = 50 K and for different values of g (the same
as used in Figs. 13 and 14). For the linear polarization, we
have considered up to L = 27. For L = 27, it takes around
two seconds to propagate the system by one time step �t on a
standard PC.

Figure 24 shows the root mean square deviation (RMSD)
defined by

RMSD =
√√√√ 1

N + 1

N∑
n=0

|Pex(tn) − P9(tn)|2, (E1)

for the linear polarization versus g. A comparison of the L = 9
result with an exact solution Pex is considered, taking L = 27
or TEMPO as Pex. We had to manually tune the conver-
gence parameters in TEMPO each time g was varied. Having
observed the RMSD in the range 0.03%–0.3%, we believe
that the convergence we have reached is sufficient for
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(meV)(ps)(ps)

(meV)(ps)(ps)

(meV)(ps)(ps)

(a)

(b)

(c)

FIG. 23. Linear polarization, showing small L (blue), L = 9
(red), L = 27 (cyan) and TEMPO results (black dashed lines) for
T = 50 K, c-c channel and (a) g = 0.05, (b) 0.3, and (c) 0.8 meV.

FIG. 24. RMSD for the linear polarization, given by Eq. (E1),
for L = 9, using L = 27 (red) and TEMPO results (black dots) as
exact solution. The dashed line shows the corresponding fit with
0.000686e2.50g, where g is measured in meV.

(meV)(ps)(ps)

(meV)(ps)(ps)

(meV)(ps)(ps)

(a)

(b)

(c)

FIG. 25. FWM polarization, showing small L (blue), L = 9
(red), and TEMPO results (black dashed lines) for T = 50 K, c-c
channel and (a) g = 0.05, (b) 0.3, and (c) 0.8 meV.

demonstrating the key physical behavior across the entire
range of g here explored.

Figure 25 shows the convergence of c-c FWM results with
L, using the same parameters as in Fig. 23. The difference
between L = 9 and TEMPO FWM results in Fig. 25 is sim-
ilar to the difference we observed between L = 9 and the
exact results (L = 27, TEMPO) for the linear polarization in
Fig. 23. We therefore expect that the convergence of the FWM
signal with L is similar to that of a linear signal. The L = 9
result presented in this work is well converged to the exact
result for g = 0.05 and 0.3 meV. Although the situation looks
worse for g = 0.8 meV, the signal itself is fast decaying and
any significant difference between L = 9 and the exact result
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becomes visible only on a logarithmic scale, when the signal
is small.

We have experienced difficulties in obtaining FWM re-
sults with good precision using TEMPO. The number of
combinations of different convergence parameters we could
sample was limited by a long computational time. There-
fore we only show a visual comparison of the FWM results

with TEMPO in Fig. 25. As stated in the main text, it
is sufficient to consider six elements of the density ma-
trix in order to calculate the FWM response. We note that
in the TEMPO results shown here, we have used the full
exciton-cavity density matrix for the first two rungs of the
JC ladder (36 elements), which may have resulted in a poorer
convergence.
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