
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/165857/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Gao, Shiyuan, Li, Peng, Ji, Haoran, Zhao, Jinli, Yu, Hao, Wu, Jianzhong and Wang, Chengshan 2024. Data-
driven multi-mode adaptive operation of soft open point with measuring bad data. IEEE Transactions on

Power Systems 39 (5) , pp. 6482-6495. 10.1109/TPWRS.2024.3351135 

Publishers page: http://dx.doi.org/10.1109/TPWRS.2024.3351135 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



IEEE TRANSACTIONS ON POWER SYSTEMS 

 

1 

 Abstract—The high penetration of distributed generators (DGs) 

deteriorates the uncertainty of active distribution networks 

(ADNs). Soft open points (SOPs) can effectively improve flexibil-

ity and deal with operational issues in ADNs. However, the for-

mulation of SOP control strategies depends on the accurate 

mechanism model. Data-driven method can utilize only measur-

ing data to conduct operation and becomes a promising way. In 

practical conditions, the measuring data may suffer from bad 

data and measuring errors, which poses a challenge to meet the 

diverse operational requirements. This paper proposes a da-

ta-driven multi-mode adaptive control method for SOP with 

measuring bad data. First, considering the inaccurate network 

parameters and quality of measuring data, a robust data-driven 

framework for SOP operation is proposed based on robust hier-

archical-optimization recursive least squares (HO-RLS). Then, a 

multi-mode control strategy for SOP is proposed to adapt to the 

diverse operational requirements. A dynamic triggering mecha-

nism is designed to achieve adaptive mode switching. The case 

studies on practical distribution networks show that the proposed 

method can fully explore the benefits of SOP to improve the op-

erational performance of ADNs. The potential limitations are 

discussed to enhance practicality. 

 

Index Terms—active distribution networks (ADNs), soft open 

points (SOPs), data-driven, bad data, multi-mode adaptive con-

trol. 

NOMENCLATURE 

Sets 

𝒩 Set of all nodes in ADNs 

ℒ Set of all lines in ADNs 

𝒢 Set of all DGs in ADNs 

𝒮 Set of all SOPs in ADNs 

ΩO Set of all control modes 

Ωm Set of all SOP converters 

Indices 

𝑖, 𝑗 Index of nodes 

𝑖𝑗 Index of lines 

𝑡 Index of time periods 

𝑚 Index of measurements 

𝑢 Index of time window 

Variables 

𝒚𝑡, �̃�𝑡 Expected and actual measurement vector 

 
This work was supported by the National Natural Science Foundation of 

China (U22B20114), Key Project of Tianjin Natural Science Foundation 

(22JCZDJC00700).(Corresponding author: Haoran Ji) 

S. Gao, P. Li, H. Ji, J. Zhao, H. Yu and C. Wang are with the Key Laboratory 
of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, 

China (email: gaosy@tju.edu.cn; lip@tju.edu.cn; jihaoran@tju.edu.cn; 

jlzhao@tju.edu.cn; tjuyh@tju.edu.cn; cswang@tju.edu.cn).  
J. Wu is with the Institute of Energy, School of Engineering, Cardiff Uni-

versity, Cardiff CF24 3AA, U.K. (email: wuj5@cardiff.ac.uk). 

at period 𝑡 
𝒙𝑡 Strategy of SOP at period 𝑡 
𝑭𝑡, 𝑭𝑡

′  Expected and actual response functions at 

period 𝑡 
𝒒𝑡 Auxiliary optimization vector of SOP at 

period 𝑡 
𝒐𝑡, 𝒐𝑡 Real and estimated bad data vectors at 

period 𝑡 
𝜺𝑡 Measurement error at period 𝑡 

�̂�𝑡
′  Estimated response function at period 𝑡 

𝜏𝑘 Bad data step size of the 𝑘-th iteration 

𝑼𝑡, 𝒚𝑡
U Actual and measured nodal voltage vector 

at period 𝑡 
𝑰𝑡 Actual line current vector at period 𝑡 

𝒚𝑡
L Equivalent measurement value of current 

loading vector at period 𝑡 

𝒚𝑡
P Equivalent measurement value of square 

of line current vector at period 𝑡 

𝜔𝑡
U, 𝜔𝑡

L,  

𝜔𝑡
P, 𝜔𝑡

M 

Switching flag of Modes I, II, III, and IV at 

period 𝑡 

𝐶U, 𝐶L Voltage deviation cost, current loading 

deviation cost of state variation between 𝑡 
and 𝑡 − 1 

𝑃𝑡,𝑖
SOP, 𝑄𝑡,𝑖

SOP Active and reactive power injection by 

SOP at node 𝑖 at period 𝑡 

𝑃𝑡,𝑖
SOP,L

 Power loss of SOP at node 𝑖 at period 𝑡 

𝑆𝑖
SOP Capacity limit of SOP at node 𝑖 

Parameters 

𝑁 Number of all nodes 

𝑁DG Number of all DGs 

𝑁SOP Number of all SOPs 

𝑀 Number of all measurements 

𝜆𝑢 Weight coefficient of bad data 

𝑡0 Initial time period 

𝜆LASSO LASSO regression coefficient 

𝜏max, 𝜏min Maximum and minimum values of itera-

tion step size 

𝒚U,ref Nodal voltage reference 

𝑰max  Rated line current vector 

𝑰thr  Maximum of optimized line current vector  

𝒚L,ref Current loading reference vector  

𝒚P,ref Square of line current reference vector  

𝑼max, 𝑼min Maximum and minimum values of voltage 

vector  

𝑼max
thr , 𝑼min

thr  Maximum and minimum values of opti-

mized voltage vector  
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𝑄𝑖,max
SOP , 𝑄𝑖,min

SOP
 

Maximum and minimum values of reac-

tive power injection of SOP at node 𝑖 
𝑇 Optimization time 

∆𝑇, ∆𝑡 Optimization/control horizon 

I. INTRODUCTION 

IGH penetration of distributed generators (DGs) deteri-

orates the uncertainty and variability of active distribution 

networks (ADNs), which causes reverse power flows and se-

vere voltage fluctuations [1]. Power electronic devices, repre-

sented by soft open points (SOPs) [2], can accurately regulate 

the active and reactive power flow of the connected feeders. 

SOP is expected to become a vital physical foundation of dis-

tribution networks to deal with the operational issues caused by 

DG integration [3]. However, day-ahead operation of SOP may 

be difficult to deal with the frequent voltage fluctuations in 

complex operational environments [4]. The rapid and efficient 

control is still the main concern for SOP operation [5]. 

Extensive studies have been conducted on the intra-day 

control of SOP, such as robust operation [6], coordinated con-

trol [7], [8], etc. The authors in [9] proposed a two-layer control 

strategy for SOP to improve the economy and reliability of 

system. A two-stage optimization framework was proposed in 

[10] for the optimal installation and operation of SOPs to de-

fend systems against load-altering attacks. The authors in [11] 

proposed a real-time coordinated method for SOP and electric 

vehicles with multiple time scales under uncertainties. How-

ever, in practical applications, the above model-based methods 

are dependent on accurate mechanism models and parameters, 

which may be difficult to obtain in practical ADNs, especially 

with the increasing complexity and numerous components [12]. 

Therefore, a more intelligent control method for SOP is crucial 

in the absence of network parameters. 

With the rapid development of digitization level and com-

munication technologies, distribution phasor measurement unit 

(D-PMU) [13] and supervisory control and data acquisition 

systems (SCADA) [14] have gradually been deployed in dis-

tribution networks. Sufficient real-time measurement data can 

be acquired, which provides an opportunity to realize optimi-

zation without accurate parameters or physical models of 

ADNs. The heterogeneous measurements contain important 

operational information such as the system status and opera-

tional trend [15]. Developing a data-driven model, fully uti-

lizing the operational data, and optimizing the strategies of 

flexibility resources in complex scenarios have become essen-

tial in improving operational performance. 

Data-driven methods that rely only on measurement or his-

torical data to optimize the system operation have attracted 

widespread attention. Such methods can be divided into two 

categories: machine learning methods and iterative control 

methods. Machine learning methods train the neural network 

models offline using the historical data, which are then applied 

online with real-time data input [16], [17]. The authors in [18] 

proposed a multi-agent deep reinforcement learning-based 

approach to enhance the control capability under various op-

eration conditions. The authors in [19] proposed a decomposi-

tion and coordination reinforcement learning algorithm based 

on a federated learning framework with a satisfactory learning 

convergence. A multi-mode data-driven voltage control strat-

egy based on a convolution neural network was proposed in 

[20], which provided a novel control mode. However, the 

training of machine learning models may be a time-consuming 

process and lacks the adaptability to environment changing. If 

the network topology changes, the model needs to be retrained 

to adapt to the changes. In contrast, operational strategies based 

on iterative control methods can be formulated online accord-

ing to real-time measurements to deal with inaccurate model 

parameters and the DG fluctuations. 

Data-driven control methods of ADNs have been prelimi-

narily studied. Considering the inaccuracy of parameters, the 

authors in [21] proposed a data-driven operational strategy for 

SOPs based on model-free adaptive control, which improved 

the operational performance. The authors in [22] proposed a 

data-driven estimation method of voltage-to-power Sensitivi-

ties, which considered mutual dependency of the sensitivities 

and achieved high accuracy. Ref. [23] employed a hysteresis 

control strategy for data-driven voltage-VAR sequential control 

to avoid frequent control actions. The novel data-driven robust 

hierarchical-optimization recursive least squares (HO-RLS) 

method proposed in [24] could accurately describe the in-

put-output relationship of the system and eliminate the impact 

of bad data. Ref. [25] further applied the robust HO-RLS 

method to control multiple virtual power plants to realize da-

ta-driven distributed voltage control, which improved the con-

trol robustness. 

As for the data-driven control of SOPs, further research is 

required on the following aspects. a) Data driven methods lack 

effective guidance information. The quality of measuring data 

can not be guaranteed owing to inevitable communication 

delays or data interruptions. Bad data poses a risk to the ro-

bustness of data-driven methods, and existing literature have 

studied bad data identification methods [26], [27]. The con-

sideration of bad data still needs to be addressed in the da-

ta-driven process. b) Conventional data-driven single-mode 

control may not satisfy the diverse operational requirements of 

ADNs in complex scenarios. In the control process, it is of 

significance to realize adaptive mode-switching and improve 

the operational performance according to the status of ADNs. 

To address the above issues, this paper proposes a da-

ta-driven multi-mode adaptive control method for SOP with 

bad data, as shown in Fig. 1. Based on the robust HO-RLS 

method, a dynamic response function is established with re-

al-time measurement data. Compared with conventional da-

ta-driven approaches, the robust HO-RLS method imposes a 

small computational burden and exhibits strong robustness 

against bad data. Furthermore, multiple modes can be adap-

tively switched to satisfy different operational requirements 

and improve the operational performance of ADNs. The 

HO-RLS method is first applied to the operation of SOP and is 

developed with multi-mode to realize data-driven adaptive 

control. The contributions of this paper are summarized as 

follows: 

H 
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1) A data-driven framework for SOP operation is proposed 

based on HO-RLS, which depends on the measurement data 

rather than mechanism model. The linear response function 

between the SOP strategy and control target is established to 

respond to system state changes in complex scenarios. A bad 

data elimination approach is embedded into the response func-

tion for enhanced robustness based on the general iterative 

shrinkage and thresholding (GIST) method. 

2) A multi-mode adaptive control strategy for SOP is pro-

posed based on response function to improve operational per-

formance, including voltage control, load balancing, economic 

operation, and mixed control modes. A dynamic triggering 

mechanism is designed to achieve adaptive mode switching 

based on state variation and measurements, which satisfies the 

diverse operational requirements. 
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Fig. 1. The framework of proposed data-driven control. 

The remainder of this paper is organized as follows. Section 

II introduces the data-driven operation of SOP based on the 

robust HO-RLS method. In Section III, a data-driven mul-

ti-mode adaptive control method is proposed. The case studies 

and analysis are presented in Section IV. Finally, the conclu-

sions are drawn in Section V. 

II. ROBUST DATA-DRIVEN OPERATION OF SOP 

Measurement quality has a significant impact on control 

performance. Considering bad data in measurements, a robust 

data-driven operation model of SOP is proposed based on the 

outlier-robust HO-RLS method. The linear response function 

between the SOP strategy and control target is established, 

which can dynamically describe the operational status and 

identify bad data. 

A. Data-driven Control of SOP 

Consider an ADN with nodes denoted by the set 𝒩 ≔
{1,2, … , 𝑁}, lines denoted by the set ℒ ≔ {𝑖𝑗|𝑖, 𝑗 ∈ 𝒩}, DGs 

denoted by the set 𝒢 ≔ {1,2, … , 𝑁DG}, and SOPs denoted by the 

set 𝒮 ≔ {1,2, … , 𝑁SOP}. The essence of data-driven operation 

of SOP is to establish the relationship between the objectives 

and SOP strategy. The nonlinear relation at time period 𝑡 can be 

formulated as follows. 

𝒚𝑡 = 𝑓𝑡(𝒙𝑡) (1) 

where 𝒚𝑡 = {𝒚𝑡
U, 𝒚𝑡

L, 𝒚𝑡
P} ∈ ℝ𝑀  represents the measurement 

vector collected from the ADN at time period 𝑡, which can be 

the nodal voltage, line current, and line power measurements. 

𝒙𝑡 = {𝒙𝑡,𝑛
SOP = [𝑃𝑡

SOP, 𝑄𝑡
SOP]

𝑛
|𝑛 ∈ 𝒮} represents the operational 

strategies of SOPs at time period 𝑡, including the active power 

transfer and reactive power support. 𝑓𝑡 describes the nonlinear 

relation between the measurement vector 𝒚𝑡  and operational 

strategy 𝒙𝑡, which is dependent on the system models, such as 

the line impedance and load levels. 

Although the above equations are nonlinear, preliminary 

research has provided a linear approximation to realize re-

al-time optimal power flow [28]. In addition, the nonlinear 

function 𝑓𝑡 in (1) relies on accurate network parameters, which 

are difficult to obtain in practice. Thus, a data-driven linearized 

response function of ADNs is constructed, as shown in (2). 

𝒚𝑡 = 𝑭𝑡 ∙ 𝒙𝑡  (2) 

where 𝑭𝑡 is the linearized form of 𝑓𝑡. Our target is to estimate 

the response function 𝑭𝑡  based on the measurement data of 

ADNs at time 𝑡. 

B. Estimation of Response Function 

1) Design of response function 

Measuring errors and bad data are inevitable owing to the 

accuracy of measurement devices or communication delay. 

Thus, considering the measuring error and bad data, (2) is fur-

ther extended to (3). 

�̃�𝑡 = 𝑭𝑡
′ ∙ 𝒒𝑡 + 𝒐𝑡 + 𝜺𝑡  (3) 

where 𝜺𝑡 ∈ ℝ
𝑀 is the measurement error, which can be gener-

ally assumed to be a Gaussian distribution [29]. 𝒐𝑡 ∈ ℝ
𝑀 

models the bad data with sparsity. 𝒒𝑡 = [(𝒙𝑡)
T, 1]T ∈ ℝ𝑀  is 

the auxiliary optimization vector. 𝑭𝑡
′  is the practical response 

function to be estimated. 

Considering diverse control objectives in the following sec-

tion, four forms of response function 𝑭𝑡
′  are considered, which 

is described as follows. 

𝑭𝑡
′ =

[
 
 
 
 
 𝜔𝑡

U𝑭𝑡
′[U]

𝜔𝑡
L𝑭𝑡

′[L]

𝜔𝑡
P𝑭𝑡

′[P]

𝜔𝑡
M𝑭𝑡

′[M]
]
 
 
 
 
 

 (4a) 

∑ 𝜔𝑡
{∗}

{∗}∈ΩO = 1, 𝜔𝑡
{∗} ∈ {0,1} (4b) 

ΩO = {U, L, P,M} (4c) 

where ΩO is the set of control mode. U, L, P, and M represent 

voltage control mode, load balancing mode, economic opera-

tion mode, and mixed control mode, respectively. The mode 

flag 𝜔𝑡
{∗}

 is assigned by the dynamic triggering mechanism 

based on measurements and the state variation. When a mode is 
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activated, the corresponding flag is assigned as 1. The detailed 

description on the modes will be introduced in Section III. 

2) Estimation of response function 

A typical estimation is to form a regularized least squares 

(RLS) estimator to solve the response function 𝑭𝑡
′  in real-time 

with the available data pair (�̃�𝑡 ,𝒒𝑡). However, the computa-

tional burden will increase with large-scale systems. To address 

this issue, the robust HO-RLS method is introduced, which 

utilizes the recursions form to deal with bad data and simplify 

the calculation. The data-driven estimation of response function 

based on robust HO-RLS method is expressed as follows. For 

all 𝑡 > 𝑡0, it satisfies: 

𝒐𝑡 ∈ argmin
𝒐

1

2
||�̃�𝑡 − �̂�𝑡−1

′ 𝒒𝑡 − 𝒐||
2 + 𝜆LASSO||𝒐||1 (5a) 

�̂�𝑡
′ =HO-RLS(�̂�𝑡−1

′ , (𝒒𝑡 , �̃�𝑡 − 𝒐𝑡)) (5b) 

where 𝜆LASSO > 0 is the Least absolute shrinkage and selection 

operator (LASSO) regression coefficient. 

HO-RLS(�̂�𝑡−1
′ , (𝒒𝑡 , �̃�𝑡 − 𝒐𝑡))  denotes the HO-RLS updates, 

with the newly obtained data (𝒒𝑡 , �̃�𝑡 − 𝒐𝑡) at time period 𝑡. All 

four types of response function in (4) can be obtained according 

to measurement data and dynamically updated. 

Two issues remain to be addressed, including initialization 

and dynamic update. As for initialization, the initial state is 

vital to the operation and control, which influences the optimal 

estimation of the response function, and further impact the 

convergence and control effect. If the proper initial values are 

selected, then the response function is obtained, and the further 

control can adaptively adjust the SOP strategies. In the control 

process, the physical constraints must always be satisfied 

within a reasonable range. Therefore, the initialization is real-

ized offline with a fixed time window 𝑡0, as shown in (6). 

(�̂�𝑡0
′ , {𝒐𝑢}𝑢=1

𝑡0 ) ∈ argmin
(𝑭,{𝒐𝑢}𝑢=1

𝑡0 )

𝓕  (6a) 

𝓕 = ∑ [
1

2
||�̃�𝑢 − 𝑭𝒒𝑢 − 𝒐𝑢||

2 + 𝜆𝑢𝜌(𝒐𝑢)]
𝑡
𝑢=1   (6b) 

As for the dynamic update, the sample-average loss is 

adopted to approximate the response function: 𝑔𝑡(𝑭) =
1

2Γ𝑡
∑ 𝛾𝑡−𝑝||�̃�𝑝 − 𝑭𝒒𝑝 − 𝒐𝑝||

2𝑡
𝑝=𝑡0

. 𝛾 ∈ (0,1] is the forgetting 

factor that mimics the classical exponentially-weighted RLS 

and Γ𝑡 = ∑ 𝛾𝑡−𝑝𝑡
𝑝=𝑡0

. 

The update of HO-RLS is based on the gradient of 𝑔𝑡(𝑭). 
For all 𝑡 > 𝑡0, define the correlation matrices 𝑹𝑎𝑏,𝑡 as follows. 

𝑹𝑎𝑏,𝑡 =
1

Γ𝑡
∑ 𝛾𝑡−𝑝𝑡
𝑝=𝑡0

𝒂𝑝𝒃𝑝
T  (7) 

so that for the processes 𝒒𝑝 , �̃�𝑝 , and 𝒐𝑝  under study, define 

𝑹𝑞𝑞,𝑡, 𝑹�̃�𝑞,𝑡, and 𝑹𝑜𝑞,𝑡, respectively. 

Then, the gradient of 𝑙𝑡  can be expressed as ∇𝑔𝑡(𝑭) =

(�̂�𝑡−1
′ 𝑹𝑞𝑞,𝑡 −𝑹𝑦𝑞,𝑡 + 𝑹𝑜𝑞,𝑡) . The previous gradient infor-

mation is incorporated into HO-RLS via the mapping 𝑇𝑡(𝑭) =

𝐹 −
1

𝜛𝑡
∇𝑔𝑡(𝑭) to produce the update process, which is for-

mulated as follows. 

�̂�
𝑡+

1

2

′ = �̂�𝑡−1
′ + �̂�

𝑡−
1

2

′ − �̂�𝑡−2
′ +

𝛼

𝜛𝑡−1
(�̂�𝑡−2

′ 𝑹𝑞𝑞,𝑡−1 −

𝑹�̃�𝑞,𝑡−1 + 𝑹𝑜𝑞,𝑡−1) −
1

𝜛𝑡
(�̂�𝑡−1

′ 𝑹𝑞𝑞,𝑡 − 𝑹�̃�𝑞,𝑡 + 𝑹𝑜𝑞,𝑡)  
(8) 

where 𝜛𝑡  is to overestimate the spectral norm with the aid of 

user-defined 𝜀𝜛 > 0 . Since (�̂�𝑡−2
′ 𝑹𝑞𝑞,𝑡−1 − 𝑹�̃�𝑞,𝑡−1 +

𝑹𝑜𝑞,𝑡−1) is already available in the last recursion, the compu-

tational burden can be reduced and the real-time performance is 

ensured. 

3) Robust estimation against bad data 

Owing to communication delays or data interruptions, the 

measuring data inevitably contains bad data [30], [31]. Da-

ta-driven approaches only rely on measurements to achieve the 

data model construction and solution without state estimation, 

which have high requirements for data quality. Thus, da-

ta-driven approaches should consider the impact of measuring 

bad data for enhanced robustness. Bad data elimination is em-

bedded into the HO-RLS process based on GIST method [32]. 

The HO-RLS is based on steepest-descent directions with a 

constant step size, which does not require matrix inversion, and 

has low computational complexity. The theoretical analysis is 

provided in [24] for the convergence of HO-RLS solution. Bad 

data identification is processed as a subtask of HO-RLS and is 

regarded as a sparse optimization problem, as shown in (9). 

argmin
𝒐

ℎ𝑡(𝒐) = 𝑙𝑡(𝒐) + 𝑟𝑡(𝒐)  

(9) 𝑙𝑡(𝒐) =
1

2
||�̃�𝑡 − �̂�𝑡−1

′ 𝒒𝑡 − 𝒐||
2  

𝑟𝑡(𝒐) = 𝜆LASSO||𝒐||1 

The GIST-based bad data identification method solves 

problem (9) by generating a sequence {𝒐𝑘} via: 

𝒐𝑘+1 = argmin
𝒐

 𝑙𝑡(𝒐𝑘)+< ∇𝑙𝑡(𝒐𝑘), 𝒐 − 𝒐𝑘 >

+
𝜏𝑘

2
||𝒐 − 𝒐𝑘||

2 + 𝑟(𝑜)  
(10) 

In fact, problem (10) is equivalent to the following proximal 

operator problem: 

𝒐𝑘+1 = argmin
𝒐

1

2
||𝒐 − 𝒘𝑘(𝒐𝑘 +

1

𝜏𝑘
)||2 +

1

𝜏𝑘
𝜆||𝒐||1  

(11) 

𝜏𝑘+1 = 𝜂𝜏𝑘 

where 𝒘𝑘 = 𝒐𝑘 − ∇𝑙𝑡(𝒐𝑘)/𝜏𝑘. Thus, a gradient descent along 

the direction −∇𝑙𝑡(𝒐𝑘) with step size 𝜏𝑘 is first performed and 

is updated adaptively. Then, a proximal operator problem is 

solved. 

At each iteration, the appropriate initial step size can signif-

icantly reduce the computational burden, which is crucial for 

algorithm convergence. Thus, at each iteration of the algorithm, 

a line search initialized by the Barzilai-Borwein rule is utilized 

to improve the computational efficiency, as shown in (12). 

𝜏𝑘 = argmin
𝑡
||𝑡𝒂𝑘 − 𝒃𝑘||

2 =
<𝒂𝑘,𝒃𝑘>

<𝒂𝑘,𝒂𝑘>
  

(12) 
𝒂𝑘 = 𝒐𝑘 − 𝒐𝑘−1, 𝒃𝑘 = ∇ℎ(𝒐𝑘) − ∇ℎ(𝒐𝑘−1)  

One commonly used line search criterion is to require that 

the objective function is monotonically decreasing. Thus, the 

step size 1/𝜏𝑘 is accepted if the following monotone line search 

criterion is satisfied: 

ℎ𝑡(𝒐𝑘+1) ≤ ℎ𝑡(𝒐𝑘) −
𝜎

2
𝜏𝑘||𝒐𝑘+1 − 𝒐𝑘||

2  (13) 

where 𝜎 is a constant in the interval (0,1). 

In summary, the process of robust estimation of data-driven 

response function is given in Algorithm 1. 
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Algorithm 1: Robust estimation of response function  

Data: (𝒒𝑡 , 𝒚𝑡) 

User’s input: 𝑡0, 𝛼 ∈ (0.5,1], 𝜆 ∈ ℝ > 0, 𝜀𝜛 ∈ ℝ > 0. 

Output: Sequence 𝑭𝑡, 𝑡 > 𝑡0 

1   Initialization 

2      (�̂�𝑡
′ , {𝒐𝑢}𝑢=1

𝑡0 ) ∈ argmin
(𝑭,{𝒐𝑢}𝑢=1

𝑡0 )

𝓕  

3      𝜛𝑡0 = ||𝑹𝑞𝑞,𝑡0|| + 𝜀𝜛 

4      �̂�𝑡0/2
′ = �̂�𝑡0−1

′ −
𝛼

𝜛𝑡0
(�̂�𝑡0−1

′ 𝑹𝑞𝑞,𝑡0 − 𝑹�̃�𝑞,𝑡0 + 𝑹𝑜𝑞,𝑡0) 

5      �̂�𝑡0
′ =�̂�𝑡0/2

′  

6   end 

7   for 𝑡 = 𝑡0 + 1 to +∞ do 

8      𝒐𝑡 ∈ argmin
𝒐

1

2
||�̃�𝑡 − �̂�𝑡−1

′ 𝒒𝑡 − 𝒐||
2 + 𝜆LASSO||𝒐||1 

9      𝒒𝑡 = 𝑹𝑞𝑞,𝑡𝒑𝑡−1; 𝒑𝑡 = 𝒒𝑡/||𝒒𝑡|| 

10      𝜛𝑡 = 𝒑𝑡
T𝑹𝑞𝑞,𝑡𝒑𝑡 + 𝜀𝜛 

11      �̂�𝑡
2

′ = �̂�𝑡−1
′ + �̂�𝑡−2

2

′ − �̂�𝑡−2
′ +

𝛼

𝜛𝑡−1
(�̂�𝑡−2

′ 𝑹𝑞𝑞,𝑡−1−𝑹�̃�𝑞,𝑡−1 

                     +𝑹𝑜𝑞,𝑡−1) −
1

𝜛𝑡
(�̂�𝑡−1

′ 𝑹𝑞𝑞,𝑡 − 𝑹�̃�𝑞,𝑡 + 𝑹𝑜𝑞,𝑡)  

12      �̂�𝑡
′ = �̂�𝑡/2

′  

13   end 

The response function is obtained based on the robust 

HO-RLS method while enhancing the robustness against bad 

data, which can provide effective guidance information for 

data-driven control. 

III. MULTI-MODE ADAPTIVE CONTROL FOR SOP 

Conventional single-mode regulation of SOP may not meet 

the diverse operational requirements of ADNs in complex 

environments. Based on the response functions estimated in the 

previous section, this part constructs the multi-mode adaptive 

control strategy for SOP. With the real-time measurement data, 

different modes can be adaptively switched and the operational 

strategies of SOP can be adjusted to improve the performance 

and realize the flexible operation of ADNs. 

A. Principle of Multi-Mode Control 

To meet different operational requirements, four modes are 

formulated, as shown in Fig. 2. Modes I, II, III, and IV repre-

sent voltage control, load balancing, economic operation, and 

mixed control modes, respectively. It is assumed that SOP is 

operated in one mode at any period. Then, a dynamic triggering 

mechanism is designed to achieve mode switching adaptively 

based on measurements and the state variation. The mode flags 

for different modes are shown in (14). 

Distribution 

networks

Historical 

data

[Ut, It]

Mode I

Mode II

Mode III

Mode IV

Dynamic triggering 

mechanism
Data-driven 

control of SOP

SOP 

mode

Control 

strategy

[Ut-1, It-1]

[ΔUt, ΔIt]

 

Fig. 2. Four operation modes of SOP. 

{
 
 

 
 𝜔𝑡

U = 1, if condition C1 is satisfied

𝜔𝑡
L = 1, if condition C2 is satisfied

𝜔𝑡
P = 1, if condition C3 is satisfied

𝜔𝑡
M = 1, if condition C4 is satisfied

 (14a) 

{
 
 

 
 
C1:  𝑼𝑡 ∉ [𝑼min, 𝑼max] & 𝐶U > 𝜎U
C2:  𝑰𝑡 ∉ [0, 𝑰

thr]  & 𝐶L > 𝜎L
C3:  𝑼𝑡 ∈ [𝑼min, 𝑼max] & 𝑰𝑡 ∈ [0, 𝑰

thr]

C4:  𝑼𝑡 ∉ [𝑼min, 𝑼max] & 𝑰𝑡 ∉ [0, 𝑰
thr]

 (14b) 

where 𝜔𝑡
U = 1  indicates that Mode I is activated, the same 

meaning for 𝜔𝑡
L, 𝜔𝑡

P, and 𝜔𝑡
M. 𝜎U and 𝜎L are the thresholds for 

voltage deviation and current loading deviation, respectively. 

𝐶U and 𝐶L represent voltage deviation cost and current loading 

deviation cost of state variation between periods 𝑡 and 𝑡 − 1, 

respectively. Taking 𝐶U  as an example, 𝐶U = ∑ Δ𝑈𝑖,𝑡𝑃𝑖,𝑡𝑖∈𝒩 , 

where the voltage changes between 𝑼𝑡 and 𝑼𝑡−1 is converted 

into the cost of voltage deviation [33]. 𝐶L can be obtained in the 

similar way. 

B. Multi-mode Adaptive Control Model 

1) Mode I: voltage control mode 

This mode minimizes the voltage deviation and maintains it 

within a reasonable range by the flexible control of SOP. 

Therefore, the active power and reactive power of the SOP in 

Mode I are determined by minimum voltage deviation cost. The 

data model of Mode I is formulated as follows. 

𝑼𝑡 = �̂�𝑡
′[U]
𝒒𝑡   (15a) 

�̃�𝑡
U = 𝑼𝑡 + 𝒐𝑡 + 𝜺𝑡  (15b) 

where �̂�𝑡
′[U]

 is the response function of Mode I, which is cal-

culated by Algorithm 1. 

The objective function of Mode I is described as (16). 

min 𝐽1 = (𝒚U,ref − �̃�𝑡
U)

T
(𝒚U,ref − �̃�𝑡

U) + 𝜆||𝒒 − 𝒒𝑡−1||
2  (16) 

where 𝒚U,ref is the nodal voltage reference, which is usually 

takes a value of 𝟏. 

2) Mode II: load balancing mode 

Each feeder of ADNs consists of different types of loads, 

such as industrial, commercial, and residential loads. The in-

tegration of DGs exacerbates the load imbalance, leading to the 

inefficient use of network assets. Therefore, this mode is de-

signed to balance the load between the feeders and improve the 

efficiency of the ADN. The data model of Mode II is formu-

lated as follows. 

(
𝑰𝑡

𝑰max
)
2

= �̂�𝑡
′[L]
𝒒𝑡   (17a) 

�̃�𝑡
L = (

𝑰𝑡

𝑰max
)
2

+ 𝒐𝑡 + 𝜺𝑡   (17b) 

where �̂�𝑡
′[L]

 is the response function of Mode II, which can be 

also obtained by Algorithm 1.  

The objective function of Mode II is described as (18). 

min 𝐽2 = (𝒚L,ref − �̃�𝑡
L)
T
(𝒚L,ref − �̃�𝑡

L) + 𝜆||𝒒 − 𝒒𝑡−1||
2  (18) 

where 𝒚L,ref is the current loading reference, which is based on 

historical data and operating experience. 

3) Mode III: economic operation mode 

The optimal operation point changes with the fluctuation of 

the DGs, loads, and other devices. Mode III is designed to 
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reduce network loss with a reasonable voltage range and cur-

rent loading level. Owing to the quadratic relationship between 

the power and line current, the square of line current is utilized 

to describe the network loss. The data model of Mode III is 

formulated as follows. 

𝑰𝑡
2 = �̂�𝑡

′[P]
𝒒𝑡   (19a) 

�̃�𝑡
P = 𝑰𝑡

2 + 𝒐𝑡 + 𝜺𝑡  (19b) 

where �̂�𝑡
′[P]

 is the response function of Mode III calculated by 

Algorithm 1.  

The objective function of Mode III is described as follows. 

min 𝐽3 = (𝒚P,ref − �̃�𝑡
P)
T
(𝒚P,ref − �̃�𝑡

P) + 𝜆||𝒒 − 𝒒𝑡−1||
2  (20) 

4) Mode IV: mixed control mode 

In practice, voltage violation and load imbalance may occur 

at the same time. Based on Modes I and II, the mixed control 

mode is designed as (21). 

𝑴𝑡 = �̂�𝑡
′[M]𝒒𝑡   (21a) 

�̃�𝑡
M = 𝑴𝑡 + 𝒐𝑡 + 𝜺𝑡 (21b) 

�̃�𝑡
M = [�̃�𝑡,1

M , �̃�𝑡,2
M ] (21c) 

𝑴𝑡 = [𝑼𝑡; (
𝑰𝑡

𝑰max
)
2

]  (21d) 

�̂�𝑡
′[M] = [�̂�𝑡,1

′[M];  �̂�𝑡,2
′[M]] (21e) 

where �̂�𝑡
′[M]

 is the response function of Mode IV. 𝑴𝑡 includes 

voltage measurement and line current measurement. 

The objective function of Mode IV is described as follows. 

min 𝐽4 = 𝜇1,𝑡(𝒚
U,ref − �̃�𝑡,1

M )
T
(𝒚U,ref − �̃�𝑡,1

M ) +  

     𝜇2,𝑡(𝒚
L,ref − �̃�𝑡,2

M )
T
(𝒚L,ref − �̃�𝑡,2

M ) + 𝜆||𝒒 − 𝒒𝑡−1||
2 

(22) 

where 𝜇1,𝑡 and 𝜇2,𝑡 are weight coefficient, which represents the 

penalty coefficient for voltage violations and current loading 

violations and can be calculated as follows. 

𝜉𝑖,𝑡
U =

{
 
 
 

 
 
 
0, 𝑈min,𝑖

thr ≤ 𝑈𝑖,𝑡 ≤ 𝑈max,𝑖
thr

𝑈min,𝑖
thr −𝑈𝑖,𝑡

𝑈min,𝑖
thr − 𝑈min,𝑖

, 𝑈min,𝑖 < 𝑈𝑖,𝑡 ≤ 𝑈min,𝑖
thr

𝑈𝑖,𝑡 − 𝑈max,𝑖
thr

𝑈max,𝑖 − 𝑈max,𝑖
thr

, 𝑈max,𝑖
thr < 𝑈𝑖,𝑡 ≤ 𝑈max,𝑖

1, 𝑈𝑖,𝑡 < 𝑈min,𝑖 , 𝑈𝑖,𝑡 > 𝑈max,𝑖

 (23a) 

𝜉𝑖𝑗,𝑡
I =

{
 
 

 
 0, 0 < 𝐼𝑖𝑗,𝑡

2 ≤ (𝐼𝑖𝑗,𝑡
thr)

2

𝐼𝑖𝑗,𝑡
2 − (𝐼𝑖𝑗,𝑡

thr)
2

(𝐼𝑖𝑗,𝑡
max)

2
− (𝐼𝑖𝑗,𝑡

thr)
2 , (𝐼𝑖𝑗,𝑡

thr)
2
< 𝐼𝑖𝑗,𝑡

2 ≤ (𝐼𝑖𝑗,𝑡
max)

2

1, (𝐼𝑖𝑗,𝑡
max)

2
< 𝐼𝑖𝑗,𝑡

2

 (23b) 

𝜇1,𝑡 =
∑ 𝜉𝑖,𝑡

U
𝑖∈𝒩

∑ 𝜉𝑖,𝑡
U

𝑖∈𝒩 + ∑ 𝜉𝑖𝑗,𝑡
I

𝑖𝑗∈ℒ
 (23c) 

𝜇2,𝑡 =
∑ 𝜉𝑖𝑗,𝑡

I
𝑖𝑗∈ℒ

∑ 𝜉𝑖,𝑡
U

𝑖∈𝒩 +∑ 𝜉𝑖𝑗,𝑡
I

𝑖𝑗∈ℒ
 (23d) 

where (23a) - (23b) represent the penalty coefficient of voltage 

violations and current loading violations, respectively. By 

calculating the penalty coefficient, the weight coefficient of the 

objective function can be determined to ensure effective solu-

tion for both voltage violations and current loading violations. 

 

5) Multi-mode adaptive control for SOP  

The multi-mode adaptive control model for SOP is summa-

rized as follows. 

min 𝐽 = 𝑓(𝒒𝑡)  (24a) 

s.t. ℎ(𝒒, �̃�𝑡) ≤ 0  (24b) 

�̃�𝑡 = �̂�𝑡
′𝒒 + 𝒐𝑡  (24c) 

where (24a) represents objective function, which can be ex-

pressed as follows. 

𝑓(𝒒𝑡) = 𝜔𝑡
U𝐽1 + 𝜔𝑡

L𝐽2 + 𝜔𝑡
P𝐽3 + 𝜔𝑡

M𝐽4  (25) 

Unlike the linear weighted objective function, (25) indicates 

that only one mode can be activated at time 𝑡. (24b) represents 

the SOP operational constraints. The structure of an SOP is 

based on the power electronic device, which often adopts 

back-to-back voltage source converters. Taking an M-terminal 

SOP as an example, the operational constraints are formulated 

as follows. 

∑ (𝑃𝑡,𝑖
SOP + 𝑃𝑡,𝑖

SOP,L)𝑀
𝑖∈Ωm

= 0  (26a) 

𝑃𝑡,𝑖
SOP,L = 𝐴𝑖

SOP√(𝑃𝑡,𝑖
SOP)

2
+ (𝑄𝑡,𝑖

SOP)
2
, ∀𝑖 ∈ Ωm  (26b) 

𝑄𝑖
SOP,min ≤ 𝑄𝑡,𝑖

SOP ≤ 𝑄𝑖
SOP,max, ∀𝑖 ∈ Ωm  (26c) 

√(𝑃𝑡,𝑖
SOP)2 + (𝑄𝑡,𝑖

SOP)2 ≤ 𝑆𝑖
SOP, ∀𝑖 ∈ Ωm  (26d) 

where constraints (26a) - (26c) represent the active and reactive 

power limits of multi-terminal SOP, respectively. Constraint 

(26d) represents the capacity limits of multi-terminal SOP. 

Compared with other data-driven methods, the proposed 

multi-mode adaptive control method has several advantages. i) 

The response function contains system status information and 

is adaptively updated during the iterative process, which can 

provide correct guidance for control. ii) The objective function 

is scalable and can integrate diverse operation objectives to 

satisfy the diverse needs of ADN. 

C. Coordination and Transition among Different Modes 

A dynamic triggering mechanism is designed to achieve 

mode switching adaptively. Three aspects are considered to 

improve the control performance. Measurements are utilized to 

determine whether the system state violates the secure opera-

tional constraints. The cost of state variation is considered to 

avoid frequent triggering of mode switching. The change of 

SOP output is added to the objective function to mitigate the 

impact on the system during mode switching. 

Fig. 3 shows the coordination and transition among different 

modes. The operational mode of SOP is initialized as Mode III 

to reduce the network loss and improve the economy of ADN, 

which means 𝜔𝑡
P = 1. Twelve switching conditions can acti-

vate the mode transition process. Due to the consideration of 

state variation, the operational mode can not be transmitted 

frequently. Specifically, if the voltage violation occurs and 

voltage variation exceeds the threshold, condition C1 is satis-

fied, and Mode I will be activated and take effect until the 

violation situation is alleviated. Taking mode transition with 

the sequence of Modes III-IV-I-III as an example, the opera-

tional mode is first in Mode III. When the voltage and current 



IEEE TRANSACTIONS ON POWER SYSTEMS 

 

7 

loading violations occur simultaneously, the operational mode 

of SOP is switched to Mode IV. If after SOP regulation, the 

voltage still exceeds the threshold owing to DG fluctuations, 

the operational mode switches to Mode I. Until the violation 

situation is alleviated, Mode III is activated again. Thus, dif-

ferent modes can be adaptively switched and the operational 

strategies of SOP can be adjusted to realize the flexible opera-

tion of ADNs. 

Mode III

Mode IIMode I

Mode Switching

Mode IV

C 3

C 3C 4

C 3

C 1

C 2  

Fig. 3 Coordination and transition among different modes. 

D. Implementation of Data-driven Strategy of SOP 

The flow chart of the proposed method is shown in Fig. 4. 

First, determine the operational mode of SOP based on the 

current system status. On the control time scale, by using the 

real-time measurement data, the data-driven operation model of 

SOP is established, which accurately estimates the response 

function. Then the multi-mode adaptive control for SOP is 

implemented to satisfy the operational requirements of ADN. 

Start

Initialize overall total optimization time T, 

optimization time step  T = 1min, control time 

step  t = 20s, counter s = 0

Collect measurement Data 

of ADN

Set  t = 0, s = s + 1

Determine the current operational mode and assign 

a value to switching flag ωt
U
, ωt

L
, ωt

P 
and ωt

M 

Conduct the data-driven multi-mode adaptive 

operation of SOP based on response function

Estimate the response function based on 

Algorithm 1 according to the measurement 

data yt, eliminate bad data based on (9)-(11)

t = t +  t

Control 

process

t >  T ? No

 T * s > T ?

Yes

No

End

Yes

Initialize response function     and bad 

data     in time window t0

0

'ˆ
tF

0t
o

 
Fig. 4. Flow chart of data-driven multi-mode adaptive control method. 

In summary, by establishing robust data-driven multi-mode 

adaptive operation of SOP, bad data can be addressed and the 

operational requirements can be effectively satisfied. 

IV. CASE STUDIES AND ANALYSIS 

In this section, the effectiveness of the proposed method for 

SOP is verified on a practical distribution network. The pro-

posed method is implemented in the YALMIP optimization 

toolbox [34] with MATLAB R2020a and solved by Gurobi 

10.0.1. All numerical experiments are carried out on an Intel 

Core i7 @ 3.20GHz computer with 16GB RAM. 

A. Distribution Networks with Four-terminal SOP 

The structure of a practical distribution network is shown in 

Fig. 5. The system consists of three substations, of which the 

rated voltage level is 10.5 kV. The total active and reactive 

power demands are 9.99 MW and 7.34 Mvar, respectively [35]. 

To consider the impact of the high penetration of DGs, three 

photovoltaics (PVs) and three wind turbines (WTs) are 

integrated into the system, whose active power reaches almost 

100% of the peak demand. The parameters of the DG capacity 

are listed in Table I. The capacity of each converter of 

multi-terminal SOP is set to 3.0 MVA. 

2 3 5 7
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12131516

20

17

21 19

23 25 27

36

434547

48

18
14

46

33

41

4 6

44
24 26

28 29 30 31 32
34 35

37 38 39 40

11

22
42

Area1 Area2

Area3 Area4

PV

SOP

PV

PV

WT

WT

WT

Industrial load Commercial load Resident load

1

 
Fig. 5. Structure of practical distribution network. 

TABLE I 

PARAMETER OF DG INVERTER 

Type PV PV PV WT WT WT 

Location 10 33 46 18 27 41 

Capacity 

(kVA) 
1000 1000 1000 2000 2000 2000 

 

(a) Operation curves of loads. 

 

(b) Operation curves of DGs. 

Fig. 6. Operation curves of DGs and loads. 
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Fig. 6 shows the daily operation curves of the DGs and loads, 

with a 1-minute time interval. The measurements are config-

ured based on the area of SOP adjustment. The measurements 

are generated by adding the random measurement noise with 

Gaussian distribution to the real value. The maximum and 

minimum limits of the voltage range are set as 1.05 p.u. and 

0.95 p.u., respectively. The maximum current loading is set as 

0.5 p.u. The total optimization time 𝑇 is set as 24 hours. The 

optimization horizon Δ𝑇 is set as 1 minutes and the control 

horizon Δ𝑡 is set as 20 seconds, which is also adopted as the 

sampling time interval of the SCADA measurements. The 

convergence threshold 𝜀 is set as 0.01. 

B. Analysis of Multi-mode Control 

To fully consider the uncertainty of DGs and verify the 

control effect of the proposed method, four scenarios are 

considered. 

Scenario I: The initial operation state of ADN is obtained 

without the SOP operation. 

Scenario II: The proposed data-driven multi-mode adaptive 

control method of SOP is conducted. 

Scenario III: The model-based day-ahead operation method 

of SOP is conducted. 

Scenario IV: The model-based real-time operation method 

of SOP is conducted. 

In Scenario III, the commonly used day-ahead operation 

strategy of SOP is obtained based on a day-ahead forecast 

curve of source and loads with a 15-minute time interval. In 

Scenario IV, the optimal value is obtained by real-time opti-

mization based on the mechanism model. However, this 

method is difficult to implement in real-time control due to the 

huge computational and communication burden, so it is only 

the theoretical optimal value. 

1) Analysis of mode switching 

Fig. 7 shows the control mode-switching of the day, in which 

the black, dark grey, light gray, and white grids represent the 

voltage control mode (Mode I), load balancing mode (Mode II), 

economic operation mode (Mode III), and mixed control mode 

(Mode IV), respectively. It can be seen that the mode can be 

adaptively switched among the four modes. Specifically, 

voltage violation occurs from 0:00 to 1:10. The operation mode 

is switched to Mode I, which adjusts the voltage to the desired 

range. Then, the operation mode is switched to Mode III. 

Therefore, multi-mode adaptive control can rationally utilize 

control resources to realize the flexible operation of ADN. 

Time(5min)

Mode IIIMode I Mode IVMode II

0-2h

2-4h

4-6h

6-8h

8-10h

10-12h

12-14h

14-16h

16-18h

18-20h

20-22h

22-24h

 

Fig. 7. Switching of different control modes in a day. 

2) Analysis of operation result  

Fig. 8 shows the voltage profiles in 24 hours. During 

0:00-2:00 and 10:00-13:00, the voltage exceeds the upper 

limit due to the high active power outputs of WTs and PVs, 

respectively. The voltage exceeds the lower limit due to the 

heavy load during 18:00-22:00. Compared to Scenario I, the 

proposed method is conducted based on the accurate response 

function to maintain the voltage within a desired range. Fig. 9 

shows the comparison of the voltage profile at node 7. 

Compared to the model-based day-ahead control in Scenario 

III, the proposed method can quickly respond to DG fluctua-

tions, which also reduces the impact on ADN. However, the 

control effect cannot reach the optimal value in Scenario IV. 

The reason is that data-driven methods lack accurate model 

parameters and effective information from physical models. 

Scenario I

Scenario III

Scenario II

Scenario IV

 
Fig. 8. Nodal voltage profiles in the test day. 

 

Fig. 9. Comparison of voltage profile at node 7. 

Scenario I Scenario II

Scenario III Scenario IV

 
Fig. 10. Current loading in the test day. 

Fig. 10 shows the current loading in 24 hours. The high 

current loading scenario mainly occurs in Areas 1 and 3. 
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Compared to Scenario I, the current loading in Scenario II is 

significantly reduced and comes close to the control effect 

with the optimal value in Scenario IV. Simultaneously, the 

nodal voltages remain within the desired range, which 

demonstrates the effectiveness of the proposed method. 

Fig. 11 shows the network power loss in 24 hours. It can be 

seen that the network power loss in Scenario II is significantly 

reduced compared to Scenario I, which meets the economic 

operation requirements of ADN. 

P
  
(k

W
)

 
Fig. 11. Network power loss in the test day. 

To quantify the control effect, voltage deviation index (𝑉𝐷𝐼) 
and load balance index (𝐿𝐵𝐼) are defined as (27). 

𝑉𝐷𝐼 = ∑ ∑ |𝑦𝑖
U,ref − 𝑈𝑖[𝑠]|𝑖∈𝒩𝑠∈𝑇 (𝑁 ∗ 𝑁𝑇)⁄   (27a) 

𝐿𝐵𝐼 = ∑ ∑ |𝑦𝑖
M,ref −𝑀𝑖[𝑠]|𝒋∈ℒ𝑠∈𝑇 (𝑁𝑛)⁄   (27b) 

The daily operation results of the four scenarios are shown in 

Table II. Compared to Scenario I, the proposed data-driven 

multi-mode operation strategy of SOP in Scenario II can ef-

fectively mitigate the voltage deviation and load imbalance of 

ADN. The voltage deviation, current loading, and power loss 

are reduced by 48.53%, 34.98%, and 47.13%, respectively. 

Compared to Scenario III, the proposed method has a signifi-

cant improvement in voltage control, which can effectively 

address the impact of DG uncertainty. The optimal method in 

Scenario IV can achieve the best control effect, as the optimal 

solution can be obtained based on accurate model parameters. 

TABLE II 

OPERATION RESULT OF THE FOUR SCENARIOS 

Scenario 
Minimum  

voltage (p.u.) 

Maximum  

voltage (p.u.) 

𝑉𝐷𝐼 
(p.u.) 

𝐿𝐵𝐼 
(p.u.) 

Power loss 

(kW) 

I 0.9409 1.0734 0.0068 58.2631 131.1204 

II 0.9671 1.0175 0.0035 37.8854 69.3206 

III 0.9340 1.0572 0.0064 39.0622 74.4027 

IV 0.9701 1.0098 0.0021 27.0510 57.2022 

C. Convergence Analysis 

The iterative data-driven method will inevitably affect the 

operation of the ADN owing to the interaction with the prac-

tical ADN in real time. Therefore, the data-driven method must 

achieve convergence within a limited number of iterations to 

reduce the impact on the real ADN. Taking 19:00 as an exam-

ple, the proposed data-driven control effect and dynamic con-

trol process are shown in Fig. 12. The blue solid line represents 

the voltage profile without control in Scenario I. The red dotted 

line represents the voltage profile after the control in Scenario 

II. And the gray area represents the dynamic voltage control 

process in Scenario II. 

 

Fig. 12. Voltage profiles of control process at 19:00. 

It can be seen from Fig. 12 that the accurate response func-

tion can effectively guide the SOP output, thus maintaining the 

voltages at a desired range. The computational efficiency of 

control process is shown in Table III. The computational effi-

ciency of the control process is determined by the calculation 

time in each iteration and the number of iterations. The pro-

posed method ensures convergence within the finite number of 

iterations, which also proves the effectiveness of the control 

strategy. In addition, the response function only needs to be 

calculated by a simple algebraic operation, bringing a small 

computational burden. The calculation time for each step is 

much less than the control horizon. Therefore, the control 

strategy can be completed to ensure real-time performance. 

Fig. 13 shows the voltage iteration of nodes 8 and 38 at 19:00. 

Fig. 14 shows the operation strategy of SOP at 19:00. The 

residual meets the convergence threshold and can achieve rapid 

convergence benefitting from the accurate guidance of the 

response function. 

 
(a) Voltage iteration of nodes 8 and 38. 

 
(b) Convergence of the residual of nodes 8 and 38. 

Fig. 13. Voltage iteration at 19:00. 

P
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k
W

)

 
(a) Active power transfer of SOP. 
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(b) Reactive power output of SOP. 

Fig. 14. Operation strategy of SOP at 19:00. 

The proposed method is compared with the mode free 

adaptive control (MFAC)-based method for SOP operation in 

[21]. Scenario V is added as follows. 

Scenario V: The MFAC-based method of SOP is conducted. 

The comparison is made by the number of convergence and 

computational time. Taking 19:00 as an example, the voltage 

control performances of Scenarios II and V are shown in Fig. 

15. It can be seen that the MFAC method in Scenario V (blue 

line) converges after ten iterations, whereas the proposed 

method in Scenario II (red line) converges after only four 

iterations. This improves the convergence speed and ensures 

the real-time performance. In addition, the control effect of the 

two methods is almost at the same level, which further verifies 

the control effectiveness. The computational efficiency of 

control process is shown in Table III. Compared to the MFAC 

method, the proposed method has a higher computational speed. 

The average computational time in each iteration has been 

reduced from 0.5051s to 0.4286s. Due to a decrease in the 

number of convergences, the total computational time has been 

reduced from 5.0503s to 1.7145s. 

 
(a) Voltage iteration of node 8 at 19:00. 

 
(b) Voltage iteration of node 16 at 19:00. 

Fig. 15 Comparison of voltage control performances of Scenarios II and V. 

TABLE III 

COMPUTATIONAL EFFICIENCY OF CONTROL PROCESS 

Scenario 

Number of 

convergence 
steps 

Average computational 

time in each iteration 
(second) 

Total computa-

tional time 
(second) 

II 4 0.4286 1.7145 

V 10 0.5051 5.0503 

Accurate guidance information has a significant impact on 

convergence performance. In the MFAC process, a feedback 

error mechanism is added to the data-driven operational control. 

The feedback error between measurement and the desired 

control objective in each iteration is utilized for correction. The 

correction performance will gradually decrease as the number 

of iterations increases, which leads to a reduction in conver-

gence speed. In contrast, in addition to feedback errors, the 

proposed method can adaptively update the response function 

during the iteration process. The accurate response function 

contains the system operational situation information, which 

can provide effective guidance for the data-driven process. 

Therefore, the proposed data-driven method can realize state 

perception of the system and improve the control performance. 

D. Robustness Analysis 

This subsection verifies the robustness of the proposed 

method under the condition of bad data. Based on the scenarios 

above, the following scenarios are considered as follows. 

Scenario VI: Randomly select some of the measurements, set 

them as bad data, and execute the control strategies directly 

without bad data identification. 

In this paper, 20% of the measurement values are randomly 

set as bad data. The bad data is generated with the real data 

multiplied by the error factor from a uniform distribution with 

the interval [0, 0.3]. Ten simulation cases are performed. Bad 

data identification results are shown in Table IV, and three of 

the bad data identification results are shown in Fig. 16. The red 

circle is the true value of the bad data, while the blue triangle is 

the estimated value of the bad data. It can be seen that the GIST 

method can effectively identify the bad data in the 

measurements, which lays the foundation for the robust control 

of ADNs. 

TABLE IV 

BAD DATA IDENTIFICATION RESULTS 

Number of 
simulations 

Number of bad 
data 

Number of bad 
data identified 

Bad data 

identification 

rate 

10 10 10 100% 

 
(a) Bad data identification results of case 1. 

 
(b) Bad data identification results of case 2. 
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(c) Bad data identification results of case 3. 

Fig. 16. Bad data identification results. 

 
(a) Voltage iteration of node 9 at 19:00. 

 
(b) Voltage iteration of node 36 at 19:00. 

Fig. 17. Comparison of voltage control performances of Scenarios II and VI. 

Fig.17 shows the comparison of the voltage control perfor-

mances of Scenarios II and VI. It can be seen that the voltage of 

each node in Scenario VI can not converge to the optimal value 

owing to the bad data. However, the nodal voltages in Scenario 

II can still ensure satisfactory convergence, which effectively 

improves the robustness. Specifically, Fig. 17(a) and (b) show 

that the voltage of nodes 9 and 36 will oscillate and cannot 

achieve stable convergence in Scenario VI owing to the addi-

tion of bad data at these nodes. In contrast, after identifying and 

eliminating the bad data by the GIST method, the iterations can 

still converge within a few steps, which illustrates that the 

proposed method can effectively deal with the bad data and 

improve control robustness. 

E. Scalability Analysis 

The modified IEEE 123-node distribution network is 

adopted to verify the scalability of the proposed data-driven 

method. Fig. 18 shows the topology of the test system. Six PVs 

with a capacity of 1000 kWp and three WTs with a capacity of 

1000 kVA are integrated into the distribution network. A mul-

ti-terminal SOP is deployed among nodes 61, 117, and 123. The 

capacity of each converter of multi-terminal SOP is set to 3.0 

MVA. The Scenarios I and II in Section IV.A are also carried 

out in the test case. 

The control performance is demonstrated in Table V. The 

improvement of multi-mode adaptive control is obvious in 

Scenario II. Compared with Scenario I, the 𝑉𝐷𝐼 , 𝐿𝐵𝐼 , and 

power loss are diminished by 27.45%, 55.58% and 53.60% 

respectively. Thus, the proposed data-driven multi-mode con-

trol method can effectively satisfy the diverse operational re-

quirements. 
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Fig. 18. Structure of IEEE 123-node distribution network. 

TABLE V 

CONTROL PERFORMANCES OF THE IEEE 123-NODE SYSTEM 

Scenario 

Minimum 

voltage 
(p.u.) 

Maximum 

voltage 
(p.u.) 

𝑉𝐷𝐼 
(p.u.) 

𝐿𝐵𝐼 
(p.u.) 

Power loss 

(kW) 

I 0.9028 1.0660 0.0357 30.3518 880.8925 

II 0.9228 1.0214 0.0259 13.4814 408.7404 

The discussion of the relationship between computational 

burden and node number of large-scale systems is also provided, 

as shown in Table VI. The data-driven SOP control problem 

scales with the number of nodes in distribution networks, and 

the computational time grows approximately linearly. In prac-

tical operation, distribution networks are generally divided into 

several regions of similar size. The computational time can 

meet the requirement of the control horizon, which is set to 20 

seconds in this paper. Thus, the proposed data-driven mul-

ti-mode control method can be implemented in practical ap-

plications. 

TABLE VI 

COMPUTATIONAL EFFICIENCY OF CONTROL PROCESS 

Test case 
Average number of 

convergence steps 

Average calculation 
time in each iteration 

(second) 

Practical distribution 

network 
4 0.4286 

Modified IEEE 123-node 

distribution network 
7 1.0884 

In summary, the proposed multi-mode data-driven control 

method can effectively alleviate the impact of DG integration 

and satisfy the diverse operational requirements in ADNs. In 

addition, the proposed method is also suitable for large-scale 

systems and improving the operational performance of ADNs. 

V. CONCLUSIONS 

To meet diverse operational requirements in complex oper-

ational environments, this paper proposes a data-driven mul-
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ti-mode adaptive control method for SOP with bad data. First, 

considering the inaccurate network parameters and quality of 

measurement data, a robust data-driven framework for SOP 

operation is proposed based on the robust HO-RLS method to 

determine the accurate response function. Then, multi-mode 

adaptive control for the SOP is designed to improve the flexi-

bility of the system operation. The results show that the pro-

posed method can fully explore the potential benefits of SOP to 

adaptively respond to different operational requirements and 

improve the operational performance of ADNs. 

Future research can be conducted from the following per-

spectives. First, there are multiple flexible resources with dif-

ferent time scales in ADNs. Coordinating SOP with multiple 

flexible resources will further improve the control effectiveness. 

Second, the development of edge computing makes it possible 

for the local control to respond quickly to DG fluctuations. 

Local data-driven methods of SOP can be further investigated. 
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