
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/165872/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Akhtar, Ahmed, Barati, Masoud, Shafiq, Basit, Rana, Omer , Afzal, Ayesha, Vaidya, Jaideep and Shamail,
Shafay 2024. Blockchain based auditable access control for business processes with event driven policies.

IEEE Transactions on Dependable and Secure Computing 21 (5) , pp. 4699-4716.
10.1109/TDSC.2024.3356811 

Publishers page: http://dx.doi.org/10.1109/TDSC.2024.3356811 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, JANUARY 2023 1

Blockchain Based Auditable Access Control For
Business Processes With Event Driven Policies

Ahmed Akhtar, Masoud Barati, Basit Shafiq, Omer Rana,
Ayesha Afzal, Jaideep Vaidya, and Shafay Shamail

Abstract—The use of blockchain technology has been proposed to provide auditable access control for individual resources. Unlike
the case where all resources are owned by a single organization, this work focuses on distributed applications such as business
processes and distributed workflows. These applications are often composed of multiple resources/services that are subject to the
security and access control policies of different organizational domains. Here, blockchains provide an attractive decentralized solution
to provide auditability. However, the underlying access control policies may have event-driven constraints and can be overlapping in
terms of the component conditions/rules as well as events. Existing work cannot handle event-driven constraints and also does not
sufficiently account for overlaps leading to significant overhead in terms of cost and computation time for evaluating authorizations over
the blockchain. In this work, we propose an automata-theoretic approach for generating a cost-efficient composite access control
policy. We reduce this composite policy generation problem to the standard weighted set cover problem. We show that the composite
policy correctly captures all the local access control policies and reduces the policy evaluation cost over the blockchain. We have
implemented the initial prototype of our approach using Ethereum as the underlying blockchain and empirically validated the
effectiveness and efficiency of our approach.

Index Terms—Blockchain, Business Processes, Workflows, Access Control, Event-driven Policies, Automata-theoretic Approach

✦

1 INTRODUCTION

THE emerging cloud and edge computing infrastruc-
ture has enabled the development of next-generation

internet-centered distributed applications that are au-
tonomous, cooperative, adaptive, evolvable, emergent, and
trustworthy. Such Internet-centered distributed applications
include business processes (BPs), distributed workflows,
and web service mashups [1], [11], [19]. Since these ap-
plications are architected and developed using resources
and services that may belong to different organizational
domains, access to the underlying resources and services
is governed by the security and access control policies of
the respective resource owner domains [23], [26].

Access control ensures that resources are used only ac-
cording to the access control policies defined by the resource
owners. Typically, resources are protected by access control
systems deployed within the organization. However, this
does not directly provide auditability of the access control
enforcement and also causes a significant organizational
burden since the organizations now need to bear the over-
head of configuration, deployment, and management of the
system along with the hardware, software, and manpower
cost. A recently proposed alternative solution is to use
blockchain technology [17] for access control. The basic idea
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here is to transform the access control policy evaluation pro-
cess into a completely distributed smart contract execution.
With this transformation, access control enforcement is at
the same time outsourced and auditable. However, existing
solutions [17], [21] focus on the access control policy for
individual resources and encode the access control policy
for each resource within a single smart contract on the
blockchain. The execution of this smart contract returns the
access decision for that particular resource. This is quite
expensive, and if all of the resources are within a single orga-
nization, issues of trust do not exist and alternative solutions
exist (such as tamper-proof logs [25]) to provide auditability
at a lower cost. On the contrary, distributed applications,
including BPs and distributed workflows, are composed of
multiple resources/services that are subject to the security
and access control policies of different autonomous orga-
nizational domains. Consequently, each of these services
in a BP will have its own access control policy and a
corresponding smart contract to evaluate it. Here, utilizing a
blockchain is very attractive since it provides auditability in
a decentralized environment. However, directly using exist-
ing blockchain-based solutions to manage access control for
such distributed applications requires evaluating the user’s
authorization separately for each service that needs to be
accessed. This may have significant overhead in terms of
cost and computation time for blockchain transactions, espe-
cially when the individual domain’s access control policies
are overlapping, resulting in repeated evaluations of these
overlapping parts. Additionally, the access control policies
of services may be context dependent and may have event-
driven constraints [26], [27]. These event-driven constraints
cannot be formulated as rules in simple predicate logic and
require state-space models (e.g., automata, Petri nets, etc.)
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Fig. 1: Architectural view of the proposed approach for BP access control over blockchain

for their representation and analysis. The individual access
control policies of all services involved in a BP may be over-
lapping in both attribute-based and event-driven policies.
If each of the corresponding smart contracts evaluating the
access control policy of every service is executed separately,
the clauses/conditions in the overlapping parts will be re-
evaluated, as many times as they appear in the individual
access control policies. This re-evaluation of overlapping
conditions results in a significant cost of policy evaluation
for a blockchain-based access control system. This is due to
the increased computation and storage requirements.

A composite access control policy can reduce this cost of
evaluation for a blockchain-based access control system, by
removing the repetitive evaluations. Such a plan should be
designed keeping in view the access control policy needs of
the particular BP in question, and it should be optimal with
respect to computation and storage requirements.

This is precisely the problem that we address in this
work. The goal is to save the cost by trying to combine the
evaluation of multiple conditions, hence avoiding repeated
evaluation. However, this is not always possible because
the execution of the BP often depends on certain user-
initiated events which cannot be predetermined, and in
such cases, we want to defer the evaluation of the condi-
tions to the point where they are needed to save cost by
avoiding unnecessary evaluation. Specifically, we propose
an approach to generate an efficiently evaluatable composite
access control policy using the local access control policies
of component services that include both attribute-based and
event-driven policies. Since a BP and event-driven policies
can be abstracted as automata, we can make use of a
behavior composition framework to automatically compose
the BP and event-driven policies for realizing a desired spec-
ification – called a target behavior [4], [6]. The framework
uses a sound and complete automata-theoretic technique for
synthesizing a controller/orchestrator that at each step of
execution delegates a requested operation by the target to
a proper available service. Fig. 1 provides an architectural
overview of the proposed approach. The proposed approach
is designed for a cloud services environment wherein the
cloud service provider hosts the BP and is also responsible
for access control management of the BP based on the local
access control policies of component services.

We note that an initial study of this problem was con-
ducted in [2] where we also proposed a blockchain-based

solution for auditable evaluation of access control policies of
distributed BPs. However, [2] only considered static policies,
whereas this work can be used for event-driven policies
which are dynamic in nature. The automata-theoretic ap-
proach of this work is also completely new and allows for
the restructuring and optimization of smart contracts that
reduce the overall evaluation cost.
Thus, the key contributions of this work are to:
• Propose an automata-theoretic approach for the genera-

tion of a cost-efficient access control policy for a BP that
encapsulates the local access control policies of compo-
nent services. The optimality criterion is based on the cost
of policy evaluation over the blockchain.

• Reduce the problem of efficient evaluation of policy over
the blockchain to the standard weighted set cover problem
for which several approximation techniques exist.

• Implement and empirically validate the proposed ap-
proach using Ethereum’s testnet Rinkeby.

The rest of the paper is organized as follows. Section 2
presents an illustrative example to explain the problem. Sec-
tion 3 presents the preliminaries and the problem statement.
Section 4 presents the methodology. Section 5 presents the
experimental results. Section 6 discusses the related work
in the literature. Finally, Section 7 concludes the paper and
discusses future work.

2 ILLUSTRATIVE EXAMPLE

Distributed applications requiring access to resources from
different autonomous organizational domains can be repre-
sented as distributed BP workflows. The underlying access
control policy of each resource may specify authorization
rules based on user attributes (e.g., the user should be a
graduate student having a CGPA of at least 3.5) or the oc-
currence of certain user-initiated events (e.g., the IT adminis-
trator will approve the request for access). A distributed BP
workflow may require access to many such resources and
hence it will be subject to multiple access control policies.

We now present an illustrative example in a virtual
university context that serves to comprehensively illustrate
the access control requirements in a multi-organizational
business process (BP).

Example 1. Consider a virtual university environment
in which three universities (e.g., LUMS, Rutgers, and
Cardiff) collaborate to offer online courses to students.
An instructor from any of these universities can teach
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Fig. 2: Course assessment BP from virtual university domain

Select Topic:
A senior student can select
a topic.

Access Video
Lecture (Rutgers):

A senior student working
in the same area as the
course can access the video
lecture from the digital li-
brary of Rutgers only after
the approval of the digital
library administrator.

Access Video
Lecture (Cardiff):

A student belonging to
a specific department,
who has also studied
a pre-requisite course,
can access the video
lecture from the digital
library of Cardiff, only
after the approval of
the digital library
administrator.

Use HPC Cluster for
LabAssignment(CSDept.):
A registered graduate student
working as an RA in an
HEC-recognized university
can access the HPC cluster of
the CS department only after
an instructor designates them
and provides approval to
access the cluster followed by
the approval of the Computer
Science administrator.

Use HPC Cluster for
LabAssignment(EEDept.):
A registered senior PhD
student can access the HPC
cluster of the EE department
only after an instructor
designates them and provides
approval to access the cluster
followed by the approval of
the Electrical Engineering
administrator.

Fig. 3: Access control policies of five services from course assessment BP

a course to the students of other universities. Also,
resources from one university can be used for teaching
courses to students of other collaborating universities.
However, each university is an autonomous entity with
its own policies governing access to its resources.
Fig. 2 shows a course assessment BP in which the student
first goes through the lecture materials for a specific topic
and then takes an interactive tutorial and completes a
lab assignment for that topic. The first step in this BP is
the selection of a topic followed by a video lecture on
that topic served from the digital library of one of the
different universities. After accessing the video lecture,
the student starts an interactive tutorial about that topic.
To complete this tutorial a simulator needs to be run
on a VM instance on one of the available servers of
different domains. After the tutorial, the student gets a
lab assignment. To complete this assignment, the student
needs to access one of the HPC clusters of different
domains. Finally, the lab assignment is submitted.
The web services in this BP belong to different organiza-

tional domains and each of them has an access control policy
associated with it. The access control policies of five of the
services used in Example 1 are given in Fig. 3. Some access
control policies depend upon the attributes of the user. For
instance, the Use HPC Cluster for Lab Assignment (CS Dept.)
service from the BP of Example 1 can only be accessed if the
requesting person is a registered graduate student working
as a research assistant in a university which is recognized
by the Higher Education Commission (HEC). Such policies
do not have any event-driven constraint associated with
them and they give the same result upon each evaluation
as long as the attributes themselves do not change. There
are other access control policies that depend upon certain
events and may give a different result upon each evaluation
depending on the occurrence of the underlying events. For
instance, there is an additional event-driven constraint on
the policy for Use HPC Cluster for Lab Assignment (CS Dept.)

service from the BP of Example 1. HPC Cluster (CS Dept.) is
a shared resource for running batch processing jobs and it
can only be accessed if a faculty member designates a user
and provides approval to the user to access the cluster and
after that, the computer science administrator based on the
instructor’s approval, provides approval to run the job.

The probabilities in Fig. 2 represent the likelihood of a
service being called based on service availability statistics
and/or execution paths.

2.1 Overlap in Access Control Policy Evaluation
Since the services in the BP are from different organizational
domains, there can exist overlap between the underlying
access control policies of the services. For instance, the con-
dition that the requesting student should be a senior student
is required by the access control policies of three services:
i) Select Topic; ii) Access Video Lecture (Rutgers); and iii) Use
HPC Cluster for Lab Assignment (EE Dept.). The condition that
the student should be registered is also common across the
access control policies of two services: i) Use HPC Cluster
for Lab Assignment (CS Dept.); and ii) Use HPC Cluster for
Lab Assignment (EE Dept.). Similarly, an overlap between
the policy events is also present, like the approval of the
administrator of the digital library is required by the policy
for both services: i) Access Video Lecture (Cardiff); and ii)
Access Video Lecture (Rutgers). The event of approval by
the instructor is also common across the policies of the
two services: i) Use HPC Cluster for Lab Assignment (CS
Dept.); and ii) Use HPC Cluster for Lab Assignment (EE Dept.);
however, subsequent events in their respective event-driven
policies are different as they require approval from their
respective department administrators.

2.2 Avoiding Re-evaluation of Overlapping Policies
The problem of increased blockchain cost due to the re-
evaluation of overlapping policies can be solved by combin-
ing the conditions from policies of multiple services, to be
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evaluated within a single smart contract while removing the
duplicate conditions. This combined access control policy
includes all the authorization rules of the individual policies
of the combined services. However, depending on the BP
execution state and event-driven constraints, only a few of
these authorization rules may be relevant for a given user
request. A naive approach would be to evaluate the user
authorization against the combined access control policy
and depending on the result of this evaluation, start the
execution of the combined services. However, this may
result in an unnecessary evaluation of user attributes and
authorization rules of the combined access control policy
in the case that the BP execution path and event-driven
constraints render such attributes/authorization rules to be
irrelevant. For instance, in the access control policies of
the BP of Example 1 given in Fig. 3, the condition that
the student should be working in the same area as the
course, is required only if the user selects the service Access
Video Lecture (Rutgers) and not otherwise. Similarly, the
condition that the student belongs to an HEC-recognized
university is only required if the event of the approval of
the Computer Science administrator occurs in succession to
the event of the approval of the instructor and not otherwise.
Evaluating such conditions for paths on which they are not
required, results in an increased blockchain cost due to their
redundant evaluation. Also, since these paths depend upon
user-initiated events occurring at runtime, they cannot be
predetermined. It would therefore be beneficial to delay the
evaluation of conditions to the point where they are really
needed to avoid evaluating any unnecessary conditions.

A composite access control policy is needed which takes
the above criteria into consideration for efficient access
control policy evaluation over the blockchain.

3 DEFINING THE PROBLEM

We model the access control policies of service providers
and the given BP as automata which enables us to verify
the BP structure and constraints with respect to the service
provider’s policies. This representation also facilitates the
efficient evaluation of policies by identifying and removing
redundancies across the policies.

We use the following definition of automaton (similar
to “Transition Systems” in action languages [10]) to model
access control policies and BP.

Definition 1. An automaton is a tuple of
⟨A, Q, q0, F,Φ,Θ, η⟩, where A is a finite set of actions; Q
is a finite set of states; q0 ∈ Q is the initial state; F ⊆ Q
is the set of final states; Φ is a set of guards over the
actions; Θ is a set of state constraints over the actions;
η ⊆ Q×A× 2Φ × 2θ ×Q is the transition relation. The
tuple ⟨q, a, ϕ, θ, q′⟩ ∈ η also denoted as q

a, ϕ, θ−−−−→ q′ is a
transition from q to q′ on action a with set of guards ϕ
and a state constraint θ.

We represent the access control policies as automata
given in Definition 1 by considering the set of actions A
to represent the events of the policy and the set of guards Φ
to represent the predicates of the attribute-based conditions
of the policy. The set of state constraints Θ is empty for a
policy automaton and will be useful when we define the
BP automaton later. The automaton of the access control

policy of Use HPC Cluster for Lab Assignment (CS Dept.)
service of Example 1 is shown in Fig. 4. In this policy
automaton, the set of events A includes instructor approval
and CS admin approval while the set of guards Φ includes
isAnRA, isRegistered, isGradStudent and isUniHECRecognized.

Use HPC Cluster For Lab Assignment (CS Dept.):
Instructor requests HPC cluster (CS Dept.) access for the student.
The CS administrator approves the request. Pre-conditions: The
student i) is a research assistant; ii) is a registered student; ii) is
a graduate student; and iv) is a student of an HEC-recognized
university.

Fig. 4: Access control policy automaton of a service from
the course assessment BP

We represent the BP as an automaton given in Definition
1 by considering the set of actions A to represent service
selection or service execution events of the BP and the sets
Φ and Θ, of guards and state constraints respectively, to
represent the access control policies of service providers as
pre-conditions to service execution events of the BP. Each
of the guards from Φ specifies a predicate of the attribute-
based conditions of the respective service providers policy
and each of the constraints from Θ specifies a particular
final state of the policy automaton representing an event-
based condition of that policy. Table 1 shows the events
associated with the BP of Example 1 and Fig. 5 shows
its automaton along with the access control policies of
underlying services. Note that events labeled with pe and
ue are both user-initiated whereas events labeled with se
are service-execution events. In this BP automaton the set
of events A includes Execute Select Topic service, Select
Access Video Lecture (Cardiff) service, Execute Access Video
Lecture (Rutgers) service, etc., the set of guards Φ includes
isSenior, isSameArea, isGradStudent, etc., while the set of state
constraints Θ includes FSM1 .state = q1, FSM2 .state = p2,
etc. Note that Definition 1 requires each transition to only
have one state constraint (associated with a particular pol-
icy). If multiple state constraints need to be captured, it
would be necessary to create a composite policy automaton
encompassing all required state constraints, with a single
final state, which would then allow expression with a single
state constraint in accordance with Definition 1.

To verify the composability of the BP structure and
the constraints with respect to the service provider’s
policies, a target behavior is specified. Let us consider
k automata T1, T2, · · · Tk such that ∀ i ∈ [1..k] Ti =
⟨Ai, Qi, q0i , Fi,Φi,Θi, ηi⟩. T1 is the BP automaton and
T2, · · · Tk are the policy automata. Then the target behavior
is defined as follows:

Definition 2. The target behavior TT is an automaton obtained
using the BP automaton T1 and the policy automata
T2, · · · Tk and is a tuple:

TT = ⟨AT , QT , q0T , FT ,ΦT , ηT ⟩, where
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Fig. 5: BP automaton annotated with policies of underlying services

Fig. 6: Target Behavior
TABLE 1: All events associated with the automaton for the

course assessment BP
Event Description

pe0 Instructor Approval

pe1 Digital Library Admin Approval

pe2 Electrical Engineering Admin Approval

pe3 Computer Science Admin Approval

ue0 Select Access Video Lecture (Cardiff) service

ue1 Select Access Video Lecture (Rutgers) service

ue2 Select Run Simulator on VM Instance (LUMS) service

ue3 Select Run Simulator on VM Instance (Cardiff) service

se0 Execute Select Topic service

se1 Execute Access Video Lecture (Cardiff) service

se2 Execute Access Video Lecture (Rutgers) service

se3 Execute Take Interactive Tutorial service

se4 Execute Run Simulator on VM Instance (LUMS) service

se5 Execute Run Simulator on VM Instance (Cardiff) service

se6 Execute Get Lab Assignment service

se7 Execute Use HPC Cluster for Lab Assignment (CS Dept.) service

se8 Execute Use HPC Cluster for Lab Assignment (EE Dept.) service

se9 Execute Submit Lab Assignment service

• AT =
⋃

1≤i≤k
Ai is a finite set of events

• QT = Q1

⋃[ ⋃
2≤i≤k

(Qi \ q0i)
]

is a finite set of states

• q0T = q01 is the initial state
• FT = F1 is the set of final states
• ΦT =

⋃
1≤i≤k

Φi is a set of guards over the events

• ηT ⊆ QT × AT × 2ΦT × QT is the transition relation
where transition (σ, a, ϕ, σ′) ∈ ηT , also denoted as,
σ

a, ϕ−−→ σ′ is in TT , if one of the following is true:

– ∃ σ a, ϕ, θ−−−−→σ′ in T1 s.t. θ = ∅
– ∃ σ a, ϕ, θ−−−−→σ′ in Ti, where i∈ [2..k] s.t. σ ̸= q0i

– ∃ σ a′, ϕ′, θ−−−−−→ ω in T1 s.t. θ contains a state constraint
referring to a final state of policy automaton Tj ,
where j∈ [2..k] and q0j

a, ϕ, θ′

−−−−→ σ′ exists in Tj
– ∃ ω′ a, ϕ, θ−−−−→ σ′ in T1 s.t. θ contains a state constraint

referring to σ, where σ ∈ Fl is a final state of policy
automaton Tl, where l∈ [2..k]

The target behavior TT is specified by merging the policy
automata into the BP automaton while ensuring that the
event dependencies between the policy events and service
events are preserved. We do this by directly inserting each
policy automaton in the BP automaton before the transition
which contains a guard referring to the respective policy
automaton. The target behavior for the BP of Example 1 is
shown in Fig. 6. Here, note that the policy event pe1 (Dig-
ital Library Admin Approval) comes before the transitions
containing the service events se1 (Execute Access Video Lec-
ture (Cardiff) service) and se2 (Execute Access Video Lecture
(Rutgers) service) because both of these service events have
the guard FSM1 .state = q1 associated with them in the
BP automaton. Similar observations can be made about the
target behavior for all guards in the transitions of the BP
automaton referring to some policy automaton.
Problem Statement: Given a BP automaton T1 and automata of
policies T2 · · · Tk, compose and restructure the policy conditions to
minimize the enforcement cost over the blockchain while ensuring
correctness in terms of the policy and BP constraints.

4 METHODOLOGY

The architecture of the proposed approach for finding a
cost-efficient access control policy consists of five major
components as depicted in Fig. 1. For a given BP and
associated access control policies, the Composer performs
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behavior composition and uses the behavior composition
model obtained to generate a cost-efficient access control
policy. The Translator is responsible for transforming the
composite access control policy into one or more smart
contract(s). The Deployment Engine deploys these smart con-
tracts over the blockchain, on which they are executed to
determine the access control decision for any given user
request. The composite access control policy may split the
individual service provider’s policy into multiple smart
contracts. Moreover, a single smart contract may be part of
multiple service providers’ policies. The deployment engine
creates a mapping between each web service and the set
of smart contracts satisfying its access control policy. The
deployment engine also registers the associated smart con-
tracts for each web service with the corresponding service
provider. The service provider may verify that the associ-
ated smart contracts satisfy its local access control policy.
The BP Manager (BPM) is responsible for the evaluation and
enforcement of the composite access control policy through
the smart contracts. The Adaptation Engine monitors changes
in the service providers’ policies and triggers revision of the
composite access control policy with minimum changes.

Fig. 7: Overview of the methodology of the proposed
approach for BP access control over blockchain

The overall methodology for the generation of a com-
posite access control policy for efficient evaluation of user
authorizations for a given BP is shown in Fig. 7. The
execution of the BP depends upon user-initiated events in
the BP and access control policies. For this reason, we first
generate a behavior composition model which represents
the BP and all the corresponding access control policies
of the component services (Section 4.1). We then reduce
the policy evaluation cost over blockchain by combining
multiple access control conditions to avoid repeated evalu-
ation of overlapping access control policies to obtain a cost-
efficient access control policy. Specifically, we reduce the
problem of efficient evaluation of policy over the blockchain
to the standard weighted set cover problem for which
several approximation techniques exist [5] (Section 4.2).
After obtaining a cost-efficient policy, we re-annotate the
behavior composition model with it for formal verification
to ensure conformance with the access control policies of
all component services (Section 4.3). Now, the groups of
conditions are encoded into smart contracts and deployed
on the blockchain for evaluation, enforcement, and auditing
purposes (Sections 4.4, 4.5 and 4.6). Below, we discuss each
step in detail.

4.1 Behavior Composition of BP with Policies

Note that the execution path of the BP depends on the role
and/or attributes of the user as well as the user-initiated
events that occur at runtime and cannot be predetermined.
For this reason, we first generate a behavior composition
model which represents the BP and all the corresponding
access control policies of the component services. To gener-

ate the behavior composition model we need the system be-
havior, which is a combined automaton of the BP automaton
and the policy automata and is modeled as a direct product
automaton which is defined as follows:

4.1.1 System Behavior
Let us consider a direct product automaton that combines
k automata, each of which follows Definition 1. For each
i ∈ [1 . . . k], letAi be a finite set of events. Qi is a finite set of
states; q0i ∈ Qi is an initial state; ηi is the transition relation.
Note that the global set of events is given byAS =

⋃
1≤i≤k

Ai.

For each event a ∈ AS , the automata in which a can be
found is given by the set loc(a) = {i | a ∈ Ai}.
Definition 3. The direct product automaton of the BP au-

tomaton and the policy automata gives us the system
behavior TS which is a tuple:

TS = ⟨AS , QS , q0S , FS ,ΦS , ηS⟩, where

• AS =
⋃

1≤i≤k
Ai is a finite set of shared events

• QS = Q1 ×Q2 × · · · ×Qk is a finite set of states
• q0S = q01 × q02 × · · · × q0k ∈ QS is the initial state
• FS ⊆ QS is the set of final states
• ΦS =

⋃
1≤i≤k

Φi is a set of guards over the events

• ηS ⊆ QS × AS × 2ΦS × QS is the transition relation
defined below:
∀⟨q1, q2, . . . , qk⟩, ⟨q′1, q′2, . . . , q′k⟩ ∈ QS , ∃ a transition
(⟨q1, q2, . . . , qk⟩, a, ϕ, ⟨q′1, q′2, . . . , q′k⟩) ∈ ηS , also de-

noted as, ⟨q1, q2, . . . , qk⟩
a, ϕ−−→ ⟨q′1, q′2, . . . , q′k⟩ in TS , if

and only if

– For each j ∈ loc(a), qj
a, ϕj , θj−−−−−→ q′j ∈ ηj

– For each j /∈ loc(a), qj = q′j
where, ϕ =

⋃
j∈loc(a) ϕj

4.1.2 Behavior Composition Model Generation
As defined above, the system behavior TS is the direct
product automaton and therefore is likely to contain a large
number of extraneous states and transitions that are not
relevant to the target behavior TT . Therefore, we perform
behavior composition [6] given in Algorithm 1 to obtain
a mapping R which contains only the relevant states and
transitions.
Now, R can be used to obtain a reduced automaton from
the system automaton to realize the target behavior. This re-
duced automaton is called the behavior composition model
and is formally defined below.

Definition 4. The behavior composition model TB is an automa-
ton which is obtained using TT , TS and R is a tuple:

TB = ⟨AB , QB , q0B , FB ,ΦB , ηB⟩, where

• AB = AS (also = AT ) is the finite set of shared events
• QB = {(qT , qS) ∈ QT × QS | (qT , qS) ∈ R} is

the set of states, formed by all pairs of TT and TS
states belonging to the largest ND-simulation relation
R; given σ = (qT , qS) we denote qT by partT (σ) and
qS by partS(σ)

• q0B = (q0T , q0S ) ∈ QB is the initial state
• FB ⊆ QB is the set of final states
• ΦB is a set of guards over the events
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Fig. 8: A fragment of the behavior composition model for the course assessment BP

Algorithm 1 NDS(TT , TS) - Largest Non-Deterministic
Simulation to obtain mapping

Input: TT , TS
Output: R

1: R := QT ×QS \ (qT , qS) | qT ∈ FT ∧ qS /∈ FS

2: repeat
3: R := (R \ C), where C is the set (qT , qS) ∈ R

such that for event a ∈ AS and its associated
set of guards ϕ there exists a transition
qT

a, ϕ−−→ q′T in TT such that either:
(a) there is no transition qS

a, ϕ−−→ q′S in TS or
(b) there exists a transition qS

a, ϕ−−→ q′S in TS but
(q′T , q

′
S) /∈ R.

4: until (C = ∅)
5: return R

• ηB ⊆ QB × AB × 2ΦB × QB is the transition relation
where ∃ (σ, a, ϕ, σ′) ∈ ηB , also denoted as, σ

a, ϕ−−→ σ′

in TB , if and only if:
– there exists:
∗ a transition partT (σ)

a, ϕ−−→ partT (σ
′) in TT

∗ a transition partS(σ)
a, ϕ−−→ partS(σ

′) in TS
– ∀ σ′′ ∈ QT ×QS such that partT (σ)

a, ϕ−−→ partT (σ
′′)

in TT , partS(σ)
a, ϕ−−→ partS(σ

′′) in TS , it is the case
that (partT (σ′′), partS(σ

′′)) ∈ QB

Since the behavior composition model represents the
entire set of policies as well as the BP in a single automaton,
it can be used to compose and restructure the policy condi-
tions to minimize the enforcement cost over the blockchain
while ensuring correctness in terms of the policy and BP
constraints, as further discussed below. Fig. 8 depicts a
fragment of the behavior composition model for the course
assessment BP obtained using Definition 4.

4.2 Efficient Evaluation of Policies

As discussed earlier, the access control policies of web
services in a BP may be overlapping. One way to avoid
repeated evaluation of overlapping conditions is to group
the conditions of the access control policies of multiple
services and consequently evaluate the repeated conditions
only once. However, such grouping across all services of
the BP may not be possible because there are user-initiated
events that cannot be predetermined, as their occurrence
time is not known a priori. Our objective is to save pol-
icy evaluation cost by avoiding unnecessary evaluation by
deferring the evaluation of the conditions to the point where
they are needed.

For this reason, we first partition the behavior compo-
sition model over the user-initiated events (Section 4.2.1).

We then reduce the repeated evaluation by grouping the
conditions of the access control policies of all the services in
a partition and restructuring the policies across partitions.
For a given partition, we identify all the duplicate conditions
that have been pre-evaluated in prior partitions and remove
them from the current partition. Moreover, the conditions
that have to be evaluated on all subsequent paths leading
from the current partition are pre-evaluated in the current
partition. After restructuring the policy, the conditions to be
evaluated for a given partition may be encoded as a single
smart contract or multiple smart contract(s). While encoding
the restructured access control policy using a single smart
contract for each partition (Section 4.2.2) reduces the re-
peated policy evaluation, due to the presence of multiple
execution paths in the BP, we cannot completely eliminate
the repeated policy evaluation. Using multiple smart con-
tracts can further reduce the repeated policy evaluation.
This splitting of the conditions into multiple smart contracts
considers the cost of policy evaluation which depends on
the probability of the execution path taken in the BP. We
develop a heuristic to optimize the cost for each partition to
reduce the overall cost. We do this by selecting the least cost
configuration out of multiple smart contract configurations
for each partition to obtain a cost-efficient access control
policy. This heuristic is run iteratively for each partition
(Section 4.2.3). We now discuss these steps in detail.

4.2.1 Partitioning of the behavior composition model
User-initiated events in the BP and access control policies
can be used to partition the behavior composition model.
Accordingly, the user authorization for the BP will be eval-
uated for only those partitions that are reachable from the
current state of the behavior composition model encoding
the BP structure and access control policies.

In order to partition, we take the transition set ηB of
the behavior composition model TB and remove the user-
initiated event transitions from it to obtain the reduced
transition set η′B :

η′B = ηB \ U where,
U = {x | x ∈ ηB , x is based on a user-initiated event}

This essentially results in multiple connected components
each of which is a fragment of the behavior composition
model. We term each of these connected components as
partitions. Since the removal of a specific user-initiated
event transition results in the creation of a specific partition
(which follows the transition), we label that partition with
the event transition. The first partition (which does not have
a preceding user-initiated event transition) is labeled as the
root partition. We use PTB

to denote the set of these parti-
tions. Note that we are only concerned with the transitions
within each partition. We stress that while there may be an
overlap between the states in different partitions, there is no
overlap between the transitions in different partitions.

Fig. 9 shows the behavior composition model TB, of the
BP of Example 1, marked along with the partitions and
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TABLE 2: Categories of access control policy conditions
Name Description

SubsequentDefinitiveConditions(TB , p)
Subsequent definitive conditions include all the (non mutually exclusive) conditions that will

be evaluated along all the execution paths originating from the current partition p in TB .

PriorDefinitiveConditions(TB , p)
Prior definitive conditions include all the conditions that have already been evaluated along

all the execution paths leading to the current partition p in TB .

SubsequentPartialConditions(TB , p)
Subsequent partial conditions include all the conditions that will be evaluated along some

(but not all) the execution paths originating from the current partition p in TB .

PriorPartialConditions(TB , p)
Prior partial conditions include all the conditions that have already been evaluated along

some (but not all) the execution paths leading to the current partition p in TB .

baseConditions(TB , p)
Base conditions include all the conditions to be evaluated for the partition p in TB which do

not overlap with either PriorDefinitiveConditions(TB , p) or
PriorPartialConditions(TB , p)

annotated with the access control policies of underlying
services. Note that the transitions in the partitions therein
do not include any user-initiated event transition.

4.2.2 Single smart contract per partition

Once the partitions are created, we first consider the ap-
proach of encoding the conditions to be evaluated for each
partition as a single smart contract. We try to reduce the
repeated evaluation of overlapping conditions of the access
control policies across the partitions PTB

of the behavior
composition model TB to obtain the restructured policy. The
evaluation of these conditions depends upon the execution
path of the behavior composition model TB , taken during
a particular execution of the BP. Therefore, we categorize
the access control policy conditions, represented as guards
in the policy automata given in Definition 1, into five types,
which are given in Table 2 and our approach to deal with
each of them is discussed below.
Given a current partition p of the behavior composition
model TB :

• SubsequentDefinitiveConditions(TB , p) need to be
evaluated for all paths originating from p and they can
be pre-evaluated in p.

• PriorDefinitiveConditions(TB , p) have already been
evaluated before reaching p and do not need to be re-
evaluated in p.

• SubsequentPartialConditions(TB , p) should not be
pre-evaluated in p and their evaluation is deferred until
the partition containing them is reached.

• PriorPartialConditions(TB , p) may or may not have
been pre-evaluated upon reaching p depending on
the execution path leading to p. Therefore, we
need to evaluate these conditions along with the
baseConditions(TB , p) to check the user authorizations
for the services in p. These conditions can be grouped
together with the base conditions in a single or multiple
smart contract(s) for evaluation, depending on their
pre-evaluation probability as well as the cost of the
resulting smart contracts. We formulate the problem of
grouping these conditions with the base conditions of
p to reduce their evaluation cost over the blockchain in
Section 4.2.3

Algorithm 2 uses the first two types of conditions, given
in Table 2, to generate the restructured policy. We visit
each partition p of the behavior composition model TB
starting from the root partition (line 1). We take the union

of the set of guards of all transitions in p to collect the
relevant conditions of the access control policy for p (line
2). Then we look at the transitions subsequent to p to find
all definitive conditions (see Table 2) (line 3). Then we merge
these subsequent definitive conditions to the conditions to
be evaluated for p and remove them from the partitions
subsequent to p (lines 4 and 5). We also remove the prior
definitive conditions (see Table 2) from the conditions to
be evaluated for p (line 6). Lastly, we add the conditions
to be evaluated for p as guards of the first transition of
p (line 7). We return the behavior composition model re-
annotated with the restructured policy (line 9). Fig. 10 shows
the restructured behavior composition model T ′

B marked
along with the identified partitions.

Algorithm 2 Policy Restructuring

Input: TB - behavior composition model annotated
with service provider policies

Input: PTB
- partitions of TB

Output: T ′
B - restructured behavior composition

model
1: for each partition p ∈ PTB

do
2: ACp ← ConditionsInPartition(TB, p)
3: D ← SubsequentDefinitiveConditions(TB, p)

4: ACp ← ACp ∪D
5: removeConditions(TB, D)
6: ACp ← ACp\PriorDefinitiveConditions(TB, p)

7: firstTransition(p). ϕ← ACp

8: end for
9: return T ′

B

4.2.3 Multiple smart contracts per partition
Once we have the restructured policy, we can optimize
the evaluation of the set of conditions for each partition,
by considering the approach of encoding multiple smart
contracts, to obtain a cost-efficient policy. Note that within
the restructured policy, there can still be cases where some
conditions may have been pre-evaluated when a partition
is reached. This is specifically the case with prior partial
conditions given in Table 2 (depicted as underlined con-
ditions in Fig. 10). However, we cannot completely omit
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Fig. 9: Behavior composition model with identified partitions and annotated with service providers’ access control policies

Fig. 10: Behavior composition model with identified partitions and annotated with restructured access control policy

these conditions from the smart contract of the current
partition because it is uncertain if they have already been
evaluated. Instead, we can make a decision of whether
to keep such conditions within the smart contract of the
current partition to be evaluated regardless of the previous
path taken to reach the current partition. For example in
Fig. 10, the prior partial condition isUniHECRecognized
in partition pe3 can be evaluated in the smart contract of
pe3 regardless of the previous path taken to reach pe3.
Alternatively, they can be removed from the smart contract
of the current partition, while ensuring that they are only
evaluated if the path having a partition containing them
was not taken to reach the current partition. That is, the
condition isUniHecRecognized can be removed from the
smart contract of partition pe3 and it can be ensured that
it is only evaluated if the path containing ue2 is not taken
to reach pe3. In this case, the missed conditions can either
be evaluated as a separate smart contract or as part of the
smart contract of the previous partition lying on the path
that was not taken to reach the current partition. That is, the
condition isUniHECRecognized can be evaluated as part
of a separate smart contract or as part of the smart contract
of partition ue2, the path of which was not taken to reach
pe3.

Ideally, the decision of how to evaluate the aforemen-
tioned conditions needs to be made after exploring the
cost of all possible combinations across all the partitions of
the restructured behavior composition model T ′

B . However,
this may not be a viable solution because the execution
path of the behavior composition model depends on user-
initiated events in the BP and access control policies. These
user-initiated events occur at runtime and cannot be prede-
termined. Therefore, we devise a heuristic that iteratively
solves an optimization problem for each partition of the
restructured behavior composition model to reduce the
overall cost of policy evaluation on the blockchain, based
on the probabilities of the BP execution paths. The resulting
policy gives us an improvement, in terms of cost, over the
restructured policy. We use the following notations before
discussing this heuristic:
Given a partition p of the restructured behavior composition
model T ′

B let,
• ACp be all the access control policy conditions required

to check the authorization for all the services in p
• BCp ⊆ ACp be the baseConditions(T ′

B, p) (see Table 2)
• OCp ⊆ ACp be the overlapping conditions between
ACp and the prior partial conditions (see Table 2) i.e.

OCp = ACp ∩ PriorPartialConditions(T ′
B , p) (1)
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We consider two types of smart contracts for each partition:

• Integral smart contract
• Additional smart contract

There is one integral smart contract for each partition which
is always executed when that partition is reached. The
integral smart contract contains all the base conditions BCp

along with one or more of the overlapping conditions OCp.
There can be multiple additional smart contract(s) for each
partition which may not be always executed. The additional
smart contract(s) are composed of different combinations
of the overlapping conditions OCp. An additional smart
contract for a partition is executed only if the underlying
conditions have not been pre-evaluated when that partition
is reached. For a given partition p, the leftover conditions
(which are not part of the integral smart contract or any of
the additional smart contract(s) for p) are evaluated as part
of the smart contract of some previous partition, only if they
have not been pre-evaluated when p is reached.

We formulate the problem of selecting the overlapping
conditions OCp for the integral smart contract or any of
the additional smart contract(s) as a partition-specific policy
evaluation (PSPE) problem. We call the policy obtained as
a solution to the PSPE problem, the PSPE policy. The PSPE
problem can be reduced to the standard weighted set cover
problem. The weighted set cover problem is an NP-complete
problem. However, several approximation techniques exist
for finding a near-optimal solution to this problem [5]. For
this formulation, we define three sets of groupings of the
overlapping conditions OCp using the following notations:
Let,

•
−
U denote the set of all possible combinations of the
integral smart contract for a partition p i.e.

−
U =

⋃
∀O∈ 2OCp

{BCp ∪O} (2)

•
−
V denote the set of all possible combinations of the
additional smart contract(s) for a partition p i.e.

−
V = 2OCp (3)

•
−
W denote the set of previously deployed smart con-
tracts covering any combination of the overlapping
conditions OCp and no other condition i.e.

−
W = {W |W is a previously deployed smart

such that W ⊆ OCp}
(4)

Each of the smart contracts in
−
U,

−
V and

−
W has a cost

associated with it. This is the cost of blockchain transactions
of the smart contract encoding these conditions. There are
two types of costs associated with a smart contract i.e. the
deployment cost and the execution cost, of which the former
is a one-time cost whereas the latter is a per execution
cost that is incurred every time the underlying policy is
evaluated. For a given number of executions of the BP,
the execution cost of a smart contract for a given partition
depends upon the probability that the smart contract needs
to be executed when that partition is reached. We want to
select the smart contracts which give the least cost. The cost
of each of the smart contracts in

−
U and

−
V is given by the

cost function C (given in equation (5)). While the cost of
each of the smart contracts in

−
W is given by the cost without

deployment function CWD (given in equation (7)).

Computing Costs:
We now discuss how the cost functions C and CWD are
computed. Suppose T ⊆ ACp denotes the set of conditions
encoded as a smart contract. This smart contract will entail
a deployment cost, given by the deployment cost function
d : 2ACp → R, and an execution cost, given by the execution
cost function e : 2ACp → R. The total estimated cost, for N
number of evaluations (where N could be in 100s or 1000s),
denoted by the function C : 2ACp → R, is computed as:

C(T ) = d(T ) +N · e(T ) · Pr(T ) (5)
Where Pr(T ) is the execution probability of the smart
contract encoding the set of conditions T . There may be
multiple smart contracts for a given partition. However, not
all of these smart contracts are executed for each run of
the BP. The probability of a smart contract being executed
depends on the probability that the underlying conditions
are evaluated for a given execution of the BP. Consequently,
the execution cost of a smart contract for a given partition
depends upon the probability that the smart contract needs
to be executed when that partition is reached.
Computing Probabilities:
We now discuss how to compute the execution probability
Pr(T ) of the smart contract encoding the set of conditions
T . Given a partition p of the restructured behavior compo-
sition model T ′

B let,

• Π denote the set of paths of T ′
B reaching partition p in

which all the conditions contained in T appear
• prob(π) denote the path probability of any path π ∈ Π

Then the probability that the smart contract, encoding the
set of conditions T ⊆ ACp, will be executed upon reaching
the partition p, is defined in equation (6) and explained
below:

Pr(T ) = 1−
∑

∀π ∈Π

prob(π) (6)

If all the conditions in T have been evaluated prior to
reaching partition p, then we do not need to execute the
smart contract encoding the set of conditions T for partition
p, otherwise, we need to execute it. Note that, since Π is a
subset of all the paths reaching partition p, the sum of the
probabilities of the paths in Π is always less than or equal
to 1.

We also need to compute the cost of evaluating one
or more of the leftover overlapping conditions OCp by
executing the pre-deployed smart contract of a previous
partition. Such an evaluation cost estimate does not include
any deployment cost because an already deployed smart
contract of a previous partition is being used to evaluate
some conditions for this partition. So, in addition to the
cost function (C), there is another cost without deployment
(CWD) function. This function gives the total estimated
cost, for N number of evaluations of a set of overlapping
conditions W ⊆ OCp using a pre-deployed smart contract
of a previous partition and it is computed as:

CWD(W ) = N · e(W ) · Pr(W ) (7)
Where, W is the set of conditions of a previously deployed
smart contract s.t. Pr(W ) follows equation (6).
Partition Specific Policy Evaluation:
Having defined the cost we now discuss the formulation of
the PSPE problem.
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Let Z be a collection of all the smart contracts in
−
U,

−
V and

−
W (given in equation (2), (3) and (4)) i.e.

Z =
−
U ∪−

V ∪ −
W

Then the PSPE problem is defined as:
Definition 5. (Partition Specific Policy Evaluation Problem):

Given a set of conditions ACp to be evaluated for par-
tition p in the restructured behavior composition model
T ′
B and a set Z ⊆ 2ACp of smart contracts, each of which

encodes a subset of the conditions in ACp, with costs of
the smart contracts in R defined by the cost functions C
and CWD. The goal is to find a set H ⊆ Z such that:

• all conditions in ACp are covered by the smart contracts
in H, and

• the sum of the costs of the smart contracts in H is
minimized

The set of smart contracts in H will give the minimum cost
while covering all the conditions required for partition p in
the restructured behavior composition model T ′

B .
Reduction To Weighted Set Cover Problem:
The PSPE problem can be reduced to the standard weighted
set cover problem for which several approximation tech-
niques exist [5]. Here we give the steps of the reduction.

The weighted set cover problem is defined as follows:
Definition 6. (Weighted Set Cover Problem): Given a set

of elements E = {e1, . . . , en}, and a set S ⊆ 2E

of m subsets of E,S = {S1, . . . , Sm} with weights
Q = {q1, . . . , qm}. The goal is to find a set I ⊆ S such
that:

• all elements in E are covered by I , and
• the sum of the weights of the subsets in I is minimized

The PSPE problem is reduced to the weighted set cover
problem as follows:

• The set of conditions ACp in the PSPE problem cor-
responds to the set of elements E in the weighted set
cover problem i.e. E = ACp and n = |ACp|

• The set Z ⊆ 2ACp in the PSPE problem corresponds to
the set S ⊆ 2E in the weighted set cover problem i.e.
S = Z and m = |Z|

• The costs of the smart contracts in Z , defined by the
cost functions C and CWD, in the PSPE problem
correspond to the weights Q in the weighted set cover
problem i.e.

qi =

{
C(Si) if Si ∈

−
U or Si ∈

−
V

CWD(Si) if Si ∈
−
W

(8)

• The resulting set of smart contracts H which gives
the minimum cost while covering all the required con-
ditions in the PSPE problem corresponds to I in the
weighted set cover problem i.e. I = H

The solution to the weighted set cover problem gives us
the minimum set cover I, which is equivalent to the set of
minimum cost smart contracts H from the PSPE problem.

The steps to generate the PSPE policy are given in
Algorithm 3. We visit each partition p of the restructured
behavior composition model T ′

B , starting from the root par-
tition (line 1). For each partition p, we fetch the guards of the
first transition of p to get the conditions ACp to be evaluated
for p (line 2). Then we find the overlapping conditions OCp

Algorithm 3 Partition Optimization

Input: T ′
B - restructured behavior composition

model
Input: PT ′

B
- partitions of T ′

B

Output: T ′′
B - PSPE behavior composition model

1: for each partition p ∈ PT ′
B

do
2: ACp ← firstTransition(p). ϕ
3: Op ← ACp ∩ PriorPartialConditions(T ′

B, p)
4: firstTransition(p). ϕ←

OptimizePartition(T ′
B, ACp, OCp)

5: end for
6: return T ′′

B

which are common between the conditions to be evaluated
for this partition ACp and the prior partial conditions (see
Table 2) (line 3). After that, we update the guards of the first
transition of p to the conditions to be evaluated for p after
optimization (line 4). We return the behavior composition
model re-annotated with the PSPE policy T ′′

B (line 6).
4.3 Policy Re-annotation
The behavior composition model TB which is annotated
with the service providers’ policies is re-annotated with
the restructured policy and the PSPE policy to obtain the
restructured behavior composition model T ′

B and PSPE
behavior composition model T ′′

B respectively. Once all par-
titions in T ′

B are re-annotated with the optimal selection
of smart contracts according to the PSPE problem, we
obtain the PSPE behavior composition model T ′′

B . We can
then formally verify T ′′

B against TB for conformance with
the access control policies of all component services. This
verification involves checking whether all the accesses that
are allowed in TB are also allowed in T ′′

B and those that
are not allowed in TB are also prohibited in T ′′

B . In fact, we
show that there is no need for such verification since the
restructured policy is equivalent to the service providers’
policies. For this purpose, we give two theorems and their
proof sketches below:
Theorem 1. The restructured policy, which is annotated on
T ′
B (see Algorithm 2) and the PSPE policy, which is

annotated on T ′′
B (see Algorithm 3), are equivalent to

the service providers’ policies, which are annotated on
TB (see Fig. 9)

Proof Sketch: To prove Theorem 1, we see that TB tran-
sitions into T ′

B and then into T ′′
B by passing through Al-

gorithm 2 and Algorithm 3 in succession. If the changes
made to the policy by Algorithm 2 and Algorithm 3 are
such that they do not violate the service providers’ policies,
then the resulting policy will be equivalent. So, the proof of
Theorem 1 is reduced to the proof, that both Algorithm 2
and Algorithm 3 either make changes to the policy without
violating the service providers’ policies or keep the policy
unchanged.

First, we consider Algorithm 2. In lines 4 and 5 of
this algorithm, the subsequent definitive conditions are
merged into the current partition and they are removed
from the subsequent partitions. This means, that we pre-
evaluate these conditions because we are sure that they
will eventually have to be evaluated anyway. So, this pre-
evaluation will not violate the policy of the underlying
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service providers. In line 6 of this algorithm, we remove the
prior definitive conditions from the current partition. This
means, that we avoid re-evaluation of identical conditions
that have already been evaluated. So, avoiding this re-
evaluation will not violate the policy of the underlying
service providers. The rest of the conditions, which are not
moved by this algorithm, keep the policy unchanged.

Now, we consider Algorithm 3. In line 4 of this al-
gorithm, the conditions to be evaluated for the current
partition are updated after optimization. This optimization,
is based on the PSPE problem, given in Definition 5. This
problem selects the least cost choice for evaluating overlap-
ping conditions (see equation (1)) of a partition out of three
cases: 1) evaluating an overlapping condition in the integral
smart contract of the current partition; or 2) evaluating it
in an additional smart contract for the current partition; or
3) using an already deployed smart contract of a previous
partition to evaluate it. So, all three cases of this problem
will evaluate the overlapping conditions in one way or the
other, while the base conditions (see Table 2) will always be
evaluated as part of the integral smart contract (see Section
4.2.3). Hence, the solution to this problem will not violate
the policy of the underlying service providers.

This shows, that both Algorithm 2 and Algorithm 3
always either make changes to the policy without violating
the service providers’ policies or keep the policy unchanged.
This concludes the proof.

Theorem 2. The PSPE policy always gives lesser or equal
cost than the restructured policy which gives lesser or
equal cost than the service providers’ policies.

Proof Sketch: The proof of Theorem 2 is much more intu-
itive. The PSPE policy tries to bring down the cost of policy
evaluation for each partition of the restructured policy. In
the worst case, it simply does not reduce the cost of the pol-
icy evaluation of any partition giving the same cost as that
of the restructured policy. Whereas, if it reduces the cost of
the policy evaluation for even one of the partitions, then the
overall cost of the PSPE policy will be less than that of the
restructured policy. We can deduce in a similar way that the
restructured policy tries to remove the repeated evaluation
of conditions for the service providers’ policies. In the worst
case, if it does not remove any repeated evaluation, it still
gives the same cost as that of the service providers’ policies.
Whereas, if it removes the repeated evaluation of even one
of the conditions, then the overall cost of the restructured
policy will be less than that of the service providers’ policies.
This concludes the proof of Theorem 2.

4.4 Smart Contract Translation and Deployment

The job of the Translator is to transform the composite access
control policy into one or more smart contract(s) specified
in the appropriate language for the blockchain. In our im-
plementation, we use Solidity, the programming language
of smart contracts for the Ethereum blockchain. However,
our approach is agnostic to the underlying blockchain.

The deployment engine is responsible for the deploy-
ment of smart contracts corresponding to the composite
access control policy to the blockchain. In addition, the de-
ployment engine registers the smart contracts with relevant
service providers. This registration involves the following:

1) Deployment engine sends the details of smart con-
tracts to relevant service providers for verification. Each
service provider checks whether the deployed smart
contract(s) satisfies its local access control policy.

2) The deployment engine and service providers agree on
a penalty, which needs to be paid by the BPM if the
service provider’s policy is not correctly enforced. The
service provider may selectively audit the smart con-
tract executions to find violations of its access control
policy as discussed in Section 4.6.

3) For each smart contract, the deployment engine gener-
ates a public/private key pair and shares the private
key with all the service providers whose access con-
trol policy is evaluated using this smart contract. The
attribute managers use the public key to encrypt the
attributes needed for smart contract evaluation. The
service providers can use their private key to decrypt
the attribute values stored in blockchain transactions,
of the corresponding smart contract, for auditing.

Fig. 11: Policy evaluation and enforcement mechanism for
BP over blockchain

4.5 Enforcement over the Blockchain

The BPM is responsible for the evaluation and enforcement
of the composite access control policy through smart con-
tracts. Fig. 11 depicts the architecture of the blockchain-
based access control system for BPs. The specific steps for
policy evaluation and enforcement are discussed below.
1) The user provides the needed credentials to the BPM.
2) The BPM invokes the relevant smart contracts of the

composite access control policy to determine the user’s
authorization. The BPM also notifies the relevant at-
tribute managers to provide the verified attribute values
for the given user to the corresponding smart contracts.

3) For a given condition over an attribute (e.g., CGPA ≥
3.5), the attribute manager encrypts the attributes, their
values, and the user id with the public key for that
smart contract. It also includes the condition evaluation
result as true or false. This is together encoded in a
single message which is digitally signed by the attribute
manager and inputted into the smart contract.

4) Evaluation of all the relevant smart contracts begins after
the required inputs from attribute managers are received.

5) The BPM receives the evaluation results of all the smart
contracts of the composite access control policy. The BPM
combines the evaluation results to determine the autho-
rization of the user for the given BP. In case of conflicting
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authorizations, the BPM applies the appropriate rule
combining algorithm to resolve these conflicts.

6) If the authorization decision is permit, the BPM forwards
the user request to the policy enforcement points (PEPs)
of all participating service providers, along with the de-
cision and transaction identifiers of smart contracts used
for reaching this decision. The service provider(s) can use
these transaction identifiers for the sake of auditability.

4.6 Auditing
The primary benefit of using the blockchain for access
control is to provide auditability. Typically, auditing might
be requested by one of the service providers for a specific
service. In this case, one possibility is to simply validate all
of the corresponding transactions, but this has a significant
cost. Instead, we can leverage the fact that for effective
validation, it is not necessary to recheck all the accesses, but
only a random fraction of them. We have proposed a game-
theoretic mechanism for auditing that reduces the auditing
cost while incentivizing honest behavior for the BPM in [2].

5 EXPERIMENTAL EVALUATION

We analyzed the effectiveness and efficiency of the proposed
approach using the Ethereum testnet Rinkeby as the un-
derlying blockchain. Specifically, we compared the cost of
evaluating the smart contracts corresponding to the PSPE
access control policy with: i) separate policies (the access
control policy of each participating service is encoded as
a separate smart contract); and ii) the restructured access
control policy. The deployment cost and evaluation cost
are computed using Rinkeby, which provides an accurate
estimate of the costs of running the actual smart contracts
on the Ethereum mainnet. Both deployment cost and evalu-
ation cost are characterized in terms of the size and storage
requirements of the underlying smart contracts.

We evaluated the costs of the approach considering the
workflow in Example 1 (the corresponding BP is in Fig.
2). Note that each web service in this BP has its own
access control policy. Fig. 4 shows the access control pol-
icy automaton of Use HPC Cluster For Lab Assignment (CS
Dept.) web service. We do not show the automata of access
control policies of the remaining web services due to space
limitations.

Fig. 12: Cost comparison of course assessment BP for a
varying number of evaluations

Fig. 12 shows the cost (in Ethers) of evaluating the
separate policies, restructured policy, and, PSPE policy for
a varying number of evaluations. As can be seen from this
figure, the cost of evaluating separate policies is significantly

higher as compared to the restructured policy and the PSPE
policy. This is due to the overlap between the access control
policies of the component web services of the BP, resulting
in the revaluation of overlapping conditions multiple times.
The degree of overlap between the web services in a BP can
be measured using the Jaccard Index (JI):

JI(si, sj) =
|Intersection of conditions in si and sj |

|Union of conditions in si and sj |

Degree of overlap = ∀si, sj ∈ BP ,
∑

i

∑
j JI(si,sj)

No. of service pairs

The degree of overlap between the access control policies
of the course assessment BP example given in Fig. 5 is
0.0741. The evaluation cost of the restructured policy and
the PSPE policy is close. The cost difference between the two
policies depends on the number of branches in the BP and
branching probabilities. Indeed, in the case of a sequential
BP, the restructured policy is optimal.

To analyze the effect of the degree of overlap on the
overall cost, we next measure the cost for different de-
grees of overlap. For this, we consider the course assess-
ment BP example, given in Fig. 5, with varying degrees
of overlapping conditions in the access control policies of
the underlying services. To reduce the degree of overlap
between the access control policies of the course assessment
BP, we replaced some of the overlapping conditions with
unique non-overlapping ones. Similarly, to increase the de-
gree of overlap we replaced some of the non-overlapping
conditions with common overlapping ones. This gives us
3 different sets of access control policies for the same BP
having a similar size in terms of the number of access
control policies but different degrees of overlap. We then
compute the restructured policy and consequently the PSPE
policy for each case. We compute the evaluation costs for
each of the 3 cases for 2500 evaluations, repeating the same
computation 100 times and report the average.

Fig. 13: Cost comparison of different degrees of overlap for
2500 Evaluations

Fig. 13 shows the cost (in Ethers) of evaluating the
different policies obtained for varying degrees of overlap.
As can be seen from this figure, the cost improvement from
separate policies to restructured policy and the PSPE policy
increases proportionally to the degree of overlap. This is as
expected since we can avoid revaluation of the overlapping
conditions. The cost of the PSPE policy is always lower
than that of restructured policy because it leverages the BP
structure information to minimize unnecessary evaluation.
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6 RELATED WORK

The transparency and auditability properties of blockchains
and distributed ledgers have attracted huge interest for
it to be utilized as the underlying technology for access
control enforcement, especially in distributed environments
[8], [16], [20], [21], [24], [30], [31], [33]. The initial works
on access control using blockchain [16], [21] employ the
exchange of access tokens between users via transactions on
the blockchain to enable the transfer of access rights. These
tokens use a scripting language to express an unlockable
public/private key authentication mechanism which can
only be unlocked by users holding the corresponding rights.
Fine-grained access control policies cannot be expressed
using the scripting language used in these works.

Rajput et al. in [22] propose a system based on a permis-
sioned blockchain for managing access to patients’ data in
emergency situations. They store user role assignments in
smart contracts which are evaluated based on pre-defined
rules when an emergency situation occurs. Yazdinejad et al.
in [32] presented an approach that uses private and public
blockchains tailored for an IoT network with the goal of
reducing energy consumption and increasing the security of
communication between IoT devices. They use a public/pri-
vate key pair based authentication method evaluated on the
tailored private and public blockchains.

The approaches given above either do not evaluate the
policy on the blockchain or evaluate simple access control
policies on the blockchain. The first work to propose an au-
ditable blockchain-based access control solution considering
fine-grained access control policies was that of Maesa et al.
[17]. They transform the access control policy into a smart
contract which is executed on the blockchain to evaluate
the access control policy. Another similar work is that of
Islam and Madria [12] which proposes an attribute-based
access control system for IoT networks using permissioned
blockchain. Resource owners issue attributes that provide
access to their resource. The resource owners register access
attributes by calling smart contracts which will later be re-
sponsible for the evaluation of the access requests. However,
these and all of the above works deal with the access control
policy of individual resources, while distributed applica-
tions contain many resources and are subject to the access
control policies of the respective organizational domains of
the underlying resources. Marangone et al. [18] propose an
approach based on blockchain technology to control data
access in the context of a multi-party business process using
attribute-based encryption. They encrypt data on the basis
of user permissions such that only those who have access
to the data are actually able to decrypt it. This way they are
able to use a public blockchain while ensuring that access
to all resources is restricted. However, they do not consider
overlap in the policy for different resources. Therefore, using
these solutions for access control enforcement of distributed
applications would result in the repeated evaluation of over-
lapping policies, leading to significant overhead. Another
limitation of these works is that they use only attribute-
based policies and do not consider event-driven policies.

Di Ciccio, Claudio, et al. in [7] give the conceptual
foundation of the use of blockchain for the executions of
inter-organizational business processes involving collabora-

tion between untrusted parties. They compare two systems
named Caterpillar [15] and Lorikeet [28] which provide sup-
port for process execution on the blockchain. They propose
that the immutability property of the blockchain can be
utilized for auditability and dispute resolution between the
untrusted parties. Therefore, these works focus on ensuring
compliance of the BP execution using auditibality as op-
posed to access control enforcement.

There has been significant work on modeling context-
based and fine-grained access control policies [3], [14]. Se-
curity properties for authorization and access control have
also been verified using automata-theoretic and other for-
mal approaches [9], [13], [29]. Shafiq et al. [27] propose a
verification framework for the detection and resolution of
inconsistencies and conflicts in policies modeled through
event-driven RBAC which is a subset of GTRBAC. Shafiq
et al. [26] propose a framework for verifying the secure
composability of distributed workflows in an autonomous
multi-domain environment. The objective of workflow com-
posability verification is to ensure that all the users or
processes executing the designated workflow tasks conform
to the time-dependent security policy specifications of all
collaborating domains.

The above approaches consider temporal and event-
based policies, their composability in the context of multi-
domain organizational workflows as well as their optimal
reconfiguration. In addition to doing all of the above, our
approach easily enables auditability of the access control
enforcement using blockchain as an immutable log. This
introduces a novel aspect of optimization related to the cost
of blockchain transactions used to store the audit logs.

7 CONCLUSION

In this work, we have examined the problem of enabling au-
ditable access control for distributed BPs with event-driven
policies. We have proposed a solution based on blockchain
technology that minimizes the cost of deployment and
enforcement. We also reduce the problem of generating the
cost-efficient composite access control policy to the standard
weighted set cover problem. The cost savings benefit the
service providers, users, and/or the BPM depending on
who bears this cost. In the future, we plan to analyze in
detail the effect of different cost-sharing models where the
cost is split between these parties in different ways. We also
plan to work on the adaptation problem which occurs when
the BP or policies may change, and propose incremental
solutions that are still efficient.
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