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Very light pseudoscalar fields, often referred to as axions, are compelling dark matter candidates and can

potentially be detected through their coupling to the electromagnetic field. Recently a novel detection

technique using the cosmic microwave background (CMB) was proposed, which relies on the fact that the

axion field oscillates at a frequency equal to its mass in appropriate units, leading to a time-dependent

birefringence. For appropriate oscillation periods this allows the axion field at the telescope to be detected

via the induced sinusoidal oscillation of the CMB linear polarization. We search for this effect in two years
of POLARBEAR data. We do not detect a signal, and place a median 95% upper limit of 0.65° on the
sinusoid amplitude for oscillation frequencies between 0.02 days™" and 0.45 days™', which corresponds to
axion masses between 9.6 x 10722 eV and 2.2 x 1072° eV. Under the assumptions that (1) the axion
constitutes all the dark matter and (2) the axion field amplitude is a Rayleigh-distributed stochastic variable,
this translates to a limit on the axion-photon coupling g, < 2.4 x 107! GeV~! x (m,,/107%! eV).

DOI: 10.1103/PhysRevD.108.043017

I. INTRODUCTION

The nature of dark matter, particularly its nongravita-
tional interactions, remains one of the biggest open ques-
tions in cosmology and particle physics. One possibility
that has recently received significant attention is low-mass
bosonic dark matter [1-3]. The canonical example is the
original QCD axion, a pseudo-Nambu Goldstone boson
associated with the spontaneous breaking of a U(1)
symmetry proposed to solve the strong CP problem.
[4-7]. More generally, a broader class of pseudoscalar
fields with small masses and couplings to the standard
model have been considered. These are often called
axionlike-particles and are not necessarily solutions to
the strong CP problem; nevertheless, we will refer to them
as axions in this work for brevity. String theory generi-
cally predicts the existence of many such axions populat-
ing a wide range of masses and couplings, which is
sometimes called the axiverse [8,9]. Axions with astro-
physically large de Broglie wavelengths (4 ~ 1 kpc for
axion mass mg ~ 10722 eV) are a particularly intriguing
dark matter candidate because of their ability to act as
fuzzy dark matter, which can potentially resolve conflicts
between small-scale predictions of cold dark matter
models and observations [10,11].

One way to detect axions is via their interaction with
electromagnetism. Laboratory experiments such as ADMX
[12] and ABRACADABRA [13], for example, exploit the
coupling between axions and magnetic fields to set limits
on the axion dark matter in the QCD mass range.
Reference [14] provides an overview of experimental
approaches. It is well known that the coupling between
the electromagnetic field and a pseudoscalar field generates
an effective birefringence, rotating linearly polarized light
[15,16]. The axion is well modeled as a classical field,
which, when the axion mass is less than the Hubble rate,
oscillates at a frequency equal to its mass. Fedderke er al.
[17], hereafter F19, pointed out two novel effects in the
cosmic microwave background (CMB) caused by this
oscillation and birefringence. The first is the suppression

of the overall CMB polarization signal due to averaging
over many axion oscillation periods during recombination,
which was constrained in F19. The second is a coherent,
all-sky oscillation of the CMB’s linear polarization due to
the oscillation of the axion field at the telescope. This effect
can be constrained when the oscillation period is appro-
priate for CMB experiments, e.g. hours to years, corre-
sponding to masses in the 10~1° eV-1072? eV range. This
also happens to be the mass range in which the axion can
act as fuzzy dark matter [10]. In this work, we search for
this effect using data from the POLARBEAR experiment.

This signal has been constrained by other CMB experi-
ments: BICEP/Keck, in [18,19] (the latter hereafter BK22),
and the South Pole Telescope (SPT) in [20] (hereafter
SPT22). Our analysis is similar to these analyses, with two
primary differences. The first is that we estimate the CMB
polarization angle using C£# power spectra rather than in
Q/U pixel space. This allows us to use the theoretical C£#
power spectrum from precisely measured cosmological
parameters as a polarization template rather than coadded
Q/U maps, and also facilitates easier systematic error
checks. The second is that we model the amplitude of the
axion field at the telescope as a stochastic, Rayleigh-
distributed variable rather than assuming a fixed value
corresponding to the mean Milky-Way halo density [21].
The need for this approach was pointed out in [22] and
weakens the median constraint on the axion-photon cou-
pling constant by a factor of 2.2 in our analysis.

The birefringence signature generated by axion dark
matter can be constrained by other astrophysical polarized
sources, and many other authors have used this effect to
place constraints in a similar mass range using pulsars,
active galactic nuclei, protoplanetary disks, Sagittarius A*,
and black hole superradiance [23-30]. The CMB, however,
has several attractive features that make it ideal for this type
of analysis. The signal is entirely due to the axion field at
the telescope, so we do not require any modeling of the
field at the source (during the release of the CMB). The
template polarization signal from the CMB has minimal
time-dependent contamination and is extremely well
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measured across many experiments. Finally, POLARBEAR
and other CMB instruments have a long history of precision
CMB polarization measurements with well-understood noise
properties. These factors all serve to mitigate the systematic
error in this analysis.

In addition to birefringence-based measurements,
bounds from cosmological structure like the Lyman-a
forest and Milky Way satellites have placed constraints
on the minimum allowed axion mass [31-33] if it is fuzzy
dark matter. A constraint on the minimum allowed mass has
also been derived from the impact of dynamical heating on
the velocity dispersions of ultra-faint dwarf galaxies [34].
These bounds strongly constrain the allowed parameter
space for fuzzy dark matter, but are subject to different
systematic and modeling uncertainties than birefringence
analyses. Upper bounds on the axion-photon coupling
which are constant in the mass range we consider have
been derived from axion-photon conversion in the Sun,
supernova 1987A, quasar H1821 4 643 and in the intra-
cluster medium [35-38].

To perform this analysis we use the first two seasons of
data from the POLARBEAR experiment, which measured
the polarization of the CMB during 2012-2016. During the
first two seasons of observations, POLARBEAR observed
three small sky patches in order to measure gravitationally
lensed B-modes. These results were presented in [39]
(hereafter PB14) and [40] (hereafter PB17). The telescope
has an angular resolution of 3.5 arcmin and reported
measurements of the B-mode power spectrum up to multi-
poles of Z = 2100 from the first two seasons, including the
angular scales at which the CMB polarization signal is the
strongest. POLARBEAR measurements have previously
been used to constrain anisotropic birefringence and
primordial magnetic fields [41]: this work is entirely
seperate, however, because we are searching for time-
dependent oscillations of the isotropic birefringence angle,
whereas [41] considered time-independent birefringence.

The rest of the paper is organized as follows. In Sec. I, we
describe the POLARBEAR instrument and observations. In
Sec. III, we detail the analysis procedure used to generate
CMB polarization angles and search for an axion signal. In
Sec. IV and V, we describe the null tests and systematics
estimates used to validate the dataset. The results are
presented in Sec. VI, and the conclusion in Sec. VIL

II. FIRST AND SECOND SEASON OBSERVATIONS
OF THE POLARBEAR INSTRUMENT

The POLARBEAR experiment consisted of a cryogenic
receiver attached to a two-mirror reflective telescope, the
2.5 m Huan Tran Telescope. It was located at the James Ax
Observatory in the Atacama Desert in Chile at an elevation
of 5,190 m. The receiver contained 1,274 transition-edge
sensors arranged into 637 polarization-sensitive pixels
situated in 7 detector wafers on the focal plane, which
was cooled to 0.3 K, and observed at a single frequency

centered at 150 GHz. We will report data from the first and
second season observations, which occurred from May
2012 to June 2013 and October 2013 to April 2014,
respectively. More details about the POLARBEAR receiver
and telescope can be found in [42] and [43].

The POLARBEAR observing strategy during the first
and second seasons is described in detail in PB14 and
PB17, and will be summarized here. Three separate sky
patches were observed, each with an effective sky area of
7-9 square degrees. In this work, an “observation” will
refer to a single, continuous measurement of one patch
which lasts until the patch is no longer visible, typically 4—
8 hours. Each observation consists of many 15-minute
constant elevation scans (CESs). During one CES, the
telescope scans back and forth in azimuth repeatedly at a
constant elevation, and as the sky rotates, the entire patch is
observed. The telescope then changes elevation and repeats
the process. A typical observing day involves sequentially
observing all three patches. This observing strategy allows
us to probe oscillation periods longer than about 2 days.

During the first two seasons the telescope observed with
a cryogenic half-wave plate (HWP) located on the sky-side
of the lenses. During the first season it was periodically
rotated between observations in order to mitigate system-
atic errors, and during the second season it remained fixed.
In PB17, it was noted that this generated some uncertainty
in the absolute polarization angle of the instrument during
the first season and between the two seasons. This source of
systematic error limits the maximum oscillation period we
can assess to 50 days, as discussed in Sec. V.

III. ANALYSIS METHOD
A. Expected signal

Following F19, the axion-photon coupling in the
Lagrangian can be written as

1 -
L= _Zg¢y¢FuuFﬂyv (1)

where ¢ is the axion field, g, is the axion-photon coupling,
F,, is the electromagnetic field tensor and F* is its dual.
Assuming that the amplitude is small enough so the
potential is well-approximated by V(¢) = mj¢?/2, the
axion field at the telescope is well described by
¢(t) = ¢posin(myt + ). We treat the amplitude ¢, and
phase 6 as constants because the duration of the experiment
1s much less than the axion coherence time, as discussed in
Sec. VIC. The polarization angle of the CMB due to the
axion field at the telescope is then (F19)

_ 9prPo
2

Poms (1) = sin(mt + 6). (2)

This can be conveniently parametrized as
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Bemp (1) = Asin(2zft +0). (3)

This is a sinusoid with unknown amplitude A, frequency f,
and phase 8. The basic unit of time in the POLARBEAR
survey schedule is one observation of a single patch, which
can last up to 8 hours. For each observation, therefore, we
construct CMB maps and estimate a single angle, generat-
ing several hundred angles over the course of the two years
of data. We will then form a likelihood to search for the
presence of a sinusoidal signal in this data.

B. Angle estimation procedure

There are multiple ways to estimate a rotation angle from
the observation maps. The most direct way is to search for
the rotation in the Stokes Q and U parameter maps by
comparing them to a template of Q and U maps containing
only the unrotated CMB. This is the method employed in
BK22 and SPT22. Another way is to transform the Q and U
maps into E-mode and B-mode maps, then use a single-
observation CEB spectrum to estimate a rotation angle.
While the latter method has the disadvantage of requiring
more computationally-intensive steps, we choose to imple-
ment it for the following reasons. The first is that we can
use the extremely well-determined theoretical CEF from
other experiments as our polarization template, rather than
a Q/U template map created by coadding our observations.
While the CEF template is affected by sample variance, this
effect is not important for the # range we use. The second
advantage is that the power spectra approach is very similar
to the approach taken in the construction of the full,
coadded spectra in PB17. This lets us reuse most elements
of this validated pipeline, including many of the same
systematics estimates.

The method of estimating a time-independent rotation
angle using the CEP power spectrum is well established
[44], and has been used in many analyses, including PB17,
to correct for an overall telescope miscalibration angle. The
method we will employ to search for a time-varying
rotation angle is similar, except that we must construct a
spectrum for every observation. This will be used to
estimate a single rotation angle for each observation,
constant over the duration of the observation. We can then
search for a time-varying signal in the timestream of these
angles. For a single observation with CMB rotation angle a,
in the absence of noise and foreground contamination
(which are addressed in Sec. IIIE and Sec. V C respec-
tively), the observed Fourier transformed E/B-mode coef-
ficients are

E®S = cos(2a)ESMB — sin(2a) BEMB (4)
B = sin(2a) ESM® + cos(2a) BSME. (5)

This analysis is sensitive to signals of amplitude ~1°, so
we use the small angle approximation

B = ESYP ~ 205 )

B = 2aESYP + BEYP. )

Since the CMB is E-mode dominated, to leading order
all of the rotation information is contained in the 2aESMB
term in Eq. (7). In order to recover an angle from a single
observation, then, we can construct a power spectrum using
one B-mode map correlated with the full, coadded E-mode
maps. The spectra for observation j, rotated by angle «;, is

1 1
EB,obs __ obs obs ) x
C,;"" = NRZT+T) Z ; Eg (B ;)
= 2a,CLMB, (8)

The E-mode maps have been coadded over all
observations i = 1, ..., N. The intrinsic CEB CMB has been
set to zero, and we have neglected C?B'CMB because it
is < CEECMB,

C. Mapmaking

The mapmaking procedure is nearly identical to the one
used in “Pipeline A” of PB17, and will be briefly reviewed
here. To make maps of the polarized sky, the raw time-
ordered data (TOD) undergo a series of quality cuts, are
converted to CMB temperature units, and then differenced
to form polarization timestreams. The timestreams are
filtered to remove high and low frequency noise as well
as scan-synchronous signals then combined with the
detector pointing data to make maps. The maps are
apodized with noise-weighted masks, which cover point
sources as well. This procedure yields a single Q and U
map for each observation. Finally, O and U maps are
transformed to E and B maps using the pure B-mode
transform [45]. Due to the filtering, they are biased
estimates of the true sky signal.

The chief difference between the maps used in this
analysis and those in PB17 is the apodization. PB17 uses a
separate mask for each observation, whereas this analysis
uses one apodization mask common to every observation
within each patch. This is done in order to simplify the
calculation of the mode-mixing matrix, discussed in
Sec. III D. However, this masking procedure does sub-
optimally weight each pixel within a given observation,
leading to an increase in noise. In some observations the
increase in noise from edge pixels is excessive, and they are
removed from the analysis if the map noise increase
exceeds a certain threshold. The same cut is applied to
observations that have excessive noise on one split in a null
test as well, as described in Sec. IV A. The overall impact of
this apodization procedure is an effective noise increase of
about 15%. Improving the apodization procedure to lessen
this noise hit is an area of improvement for future analyses.
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their error, &;/c;. The angles are Gaussian distributed.

D. Maps to spectra

The procedure to construct single-observation CZB
spectra as outlined above is identical to PB17, with the
modification that only one B-mode map is used per
observation. The coadded E-mode maps and a single
B-mode map are used to construct pseudospectra (Cy),
which are biased estimates of the true spectra:

e =g Sty (s Swat). )

kebin, U j#j

The 1, denotes a Fourier-transformed map with 2D wave
vector k and observation j. The flat-sky approximation is
used due to the size of the POLARBEAR patches, and the
spectra are combined into ¢ bins of width AZ = 40. N, is
the number of wave vectors in bin #. The term in the
parentheses represents the coadded E-mode map, with
observation weights w;. Observation j is removed from
the coadd to eliminate noise bias, since noise is assumed to
be uncorrelated between observations.

The estimated true spectra (C ;) are calculated from the
pseudospectra using

Cht = ZKW Py, CEE (10)
and
Ky j = ZbeMff',pamth’.jBfw Qe (11)
o7

All variables in this calculation have the same meaning as
in PB17 but some are re-calculated for this analysis. The
mode-mixing matrices M sz yocp correct for the effects of
apodization and are calculated analytically for each patch
using the patch apodization mask, discussed in Sec. III C.
The filter transfer functions F, ; correct for the effects of
time-domain filters for observation j, B, corrects for the
beam, and P, and Q. are binning matrices. There are

-2.5 0.0 2.5
Angle/Error

Left: the 515 estimated per-observation rotation angles &; used in this analysis. Right: a histogram of the angles normalized by

four bins b centered at £ = [700, 1100, 1500, 1900], each

of width AZ = 400.

E. Spectra to angles

Since the noise between different observations is uncor-
related, the noise between different CE® spectra is also
uncorrelated. We will neglect the impact of foregrounds in
the angle estimation: all three patches were chosen to have
low foregrounds, and this systematic effect is discussed in
Sec. V C. The estimated rotation angle @; for observation j
is then obtained by minimizing

@)= (C5h

bb'

—24 CEEth)(VEEI) (6}515_2 CEEth).

(12)
The theoretical power spectrum C%F M js calculated from
the WMAP 9-year data. We use WMAP rather than Planck
data because there are negligible differences for the purpose
of our analysis and the WMAP results are already inte-
grated in our pipeline. The covariance matrix Vbb, is
calculated from 500 simulated maps that contain ACDM
signal and instrumental noise. These simulated maps are
generated by constructing maps containing only ACDM
signal and scanning them into TOD. White noise from the
PB17 noise model is added before running the maps
through the full analysis pipeline. These simulations are
also used to generate an error term o; for each observation,
which is the standard deviation of all simulated angles for
that observation. This construction includes the effect of
sample variance, which is not relevant for our analysis
because we make many observations of the same fixed
CMB realization. The effect is negligible, however, because
the angle error from sample variance alone is at least 16x
smaller than the total statistical error for each observation.
The set of angles used in this analysis is shown in Fig. 1.

As in PB17, the absolute polarization angle of the
instrument is calibrated using the FEB-derived angle
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coadded across both seasons. This means that the weighted
mean angle in this analysis is fixed to zero. While other
non-EB calibration sources exist, this procedure, described
in [44], is the most accurate way to calibrate the instrument.
We show in Sec. III F 2 that this absolute polarization angle
calibration has a negligible effect on our analysis.

The TOD filtering causes E-mode power to leak into
B-mode maps, which can be estimated via simulation. 100
simulations of maps containing only CMB CZT and CEE
power are run through the pipeline and used to construct
C‘fg . A small amount of leakage is detected. It is less than
6% of the statistical error for any angle, resulting in a
negligible < 0.01° bias at any axion frequency probed in
this analysis, and so we ignore its impact.

F. Likelihood
The noise between observations is assumed to be

uncorrelated, and the errors on each angle Gaussian. The
likelihood for the sinusoid parameters is then

L(A,f,0) & e (AS0) (13)

where

Q)

(14)

N
Af@zz
J

\l\)l

The index j represents a single observation, and the signal
(s;) is defined below. The likelihood normalization factor
va c j\/fz; is dropped because we are only interested in
relative likelihoods. Observations which have o; at least
two times larger than the mean value are discarded, since
they contribute negligibly to the likelihood and are more
likely to have systematic errors. This removed 23 obser-
vations, which constituted < 0.5% of the statistical weight
of the dataset. This leaves N = 515 angles available for the
analysis.

The signal (s;) must be averaged over the duration of
each observation:

1 fend )
(s;) = g / " dtAsin 2zft +0)
J J 4

start
J

= Asinc(zfAt;) sin(2zf7; + 0). (15)

Aty = te“d %" is the observation duration and 7; =
(te“d + tsm) / 2 is the middle of the observation time.
The effect of averaging is to wash out signals with
oscillation periods that are shorter than the 4-8 hour
observation periods.

1. Frequency domain

The frequency domain for our search is
0.02 days™! < f <0.45 days™'. (16)

The dataset spans 694 days, so we are able to probe
sinusoidal periods out to approximately that length.
However, as explained in Sec. V, uncertainty in the relative
HWP angle between the two seasons may show up as a
low-frequency signal, leading us to set a minimum fre-
quency of 0.02 days~'. The maximum frequency is set to
0.45 days™' because the typical time-spacing between
observations of a single patch is one day. This causes a
significant loss in sensitivity around a frequency of
0.5 days~!, as well as integer multiples of this frequency.
Furthermore, at frequencies higher than 0.5 days™' the
averaging effect in Eq. (15) reduces the amplitude of the
signal beyond the level of a few percent. For these reasons,
we choose to only analyze frequencies up to 0.45 days™!

We assess the likelihood at a set of 1,492 evenly-spaced
frequencies. In the absence of noise, this allows the
likelihood estimator to recover an injected signal at any
frequency to within 5% of the correct amplitude. This
results in a frequency resolution about 5 times smaller than
1/694 days~!, which is the spacing that a discrete Fourier
transform of the same length of data would have. As a
result, likelihood results from neighboring frequencies are
highly correlated. This does not pose an issue for our
analysis because we compare the results to simulated
distributions which do not assume independence between
different frequencies.

2. Effect of absolute polarization angle calibration

As described in Sec. II1 E, the absolute polarization angle
of the instrument is calibrated by setting the weighted mean
angle to zero. This means that our analysis is not sensitive
to a static birefringence angle. To first order this is not an
issue because we are searching for an oscillatory signal.
However in the presence of such a signal, there will
generally be some small shift in the mean angle caused
by a partial oscillation. This shift is removed by the mean
angle subtraction. This effect only becomes significant
when there is <1 oscillation period in the entire dataset.
Our maximum period is 50 days, which corresponds to
about 14 oscillation periods over the 694-day duration of
our dataset. Therefore the subtraction in mean angle has
negligible impact on the recovery of the signal amplitude.

IV. NULL TESTS

We run a series of null tests to check for systematic errors
in our analysis before unblinding the data. The data are split
along 15 possible sources of potential contamination,
differenced to cancel any true signal, and tested for the
presence of systematics. Twelve of the splits are the same as
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9 LEINT3

in PB17: “moon distance,” “sun distance,” “rising vs.
setting,” “high vs. low precipitable water vapor (PWV),”
“high vs. low elevation,” “high vs. low gain,” “sun above
or below horizon,” “Ist vs. 2nd season,” “1st vs. 2nd half
of dataset,” “left- vs. right-going scans,” “left vs. right side
of the focal plane,” and “pixel polarization type.” We also
add three new patch null tests, which pair two patches
together in all three possible ways. Each split in these tests
contains only the angles that were made from the B-mode
maps from that patch, allowing us to probe for differences
between patches.

A. Methodology

Two sets of angles are constructed for each test, one per
split. The angles are constructed following the procedure in
Sec. 111, with the following modifications:

(i) The B-mode maps contain only data from the split.
This means that each map may contain less data or
be eliminated altogether.

(i) For each split, a new map apodization mask is
constructed per patch. These masks reflect
differences in map coverage for each split. There
are a few observations that have excessive noise in
the unmasked region of some splits, and therefore
cannot be null-validated. These observations’ B-
mode and E-mode maps are excluded from the
analysis in this paper, as described in Sec. III C.

For each split, all of the E-mode map data is used to
construct CEB, not just data from the split. This is because
we wish to test for time-dependent systematic issues with
the B-mode maps, and consider the coadded E-mode map
validated in previous analyses (PB17).

A set of null statistics are computed for each test. For
each of the two sets of angles “1” and “2,)” at each
frequency f, we find the maximum likelihood estimation
(mle) of the amplitude A™ and phase 6™ that maximizes
L(A, f,0). The null statistic at a given frequency is

_ |Anull (f)|2
Ton(h) = A VP a7
where
An(f) = (AT — AZlC2") (F). (18)

The T, can be thought of as a generalization of the
difference of two discrete Fourier transforms: the corre-
spondence would be exact if we had instantaneous obser-
vations evenly spaced in time and equally weighted. The
normalization factor o(M(A,,y)) is calculated using 500
simulations and ensures that 7', (f) is distributed approx-
imately as chi-squared with 2 degrees of freedom. This is
because N (Ap,) and I(A,yy) are both distributed approx-
imately as Gaussians with the same variance and zero
mean. We do not rely on these analytic distributions since

TABLE 1. The five null test PTE values used in the pass
criteria #1.

PTE statistic Description PTE
max, ¢ Ty Spurious axion signal 0.032
>rf Toun Total chi-square 0.062
max; » ¢ T Bad test 0.060
max; y o, Ty Bad frequency 0.246
max; Ty (f = 0) Mean angle offset 0.192

we compare the results to simulations, but we do rely on the
normalization to allow for fair comparison across different
tests and frequencies.

We calculate 7', at f = O for the 10 tests out of 15 that
have associated periods within the frequency range of this
search. This statistic is simply the difference in the
weighted mean angles between the two splits. We include
it because differences in mean angle between two splits
could cause a spurious signal with a period associated with
the split: for example, a difference in angle caused by the
moon distance could generate a signal aligned with the
~28 days synodic cycle. Five tests are omitted from
the f =0 analysis. “Ist vs. 2nd season” and “lst vs.
2nd half of dataset” are excluded because the associated
period is much longer than our maximum period of
50 days. The “left- vs. right-going scans,” “left vs. right
side of the focal plane,” and “pixel polarization type” are
excluded because both splits contain all observations, so a
difference in mean angle would not generate a time-
dependent signal. In total, there are 22390 T, values:
1492 frequencies from Sec. Il F 1 for each of the 15 tests,
and f = 0 for 10 tests.

B. Pass criteria

There are two pass criteria that need to be satisfied in
order to pass the null tests. The first, “pass criteria #1,”
assesses failure in individual parts of the null test suite. The
second, “pass criteria #2,” uses Kolmogorov-Smirnov (KS)
tests to assess uniformity of all null suite probabilities.

Using T, five probability-to-exceed (PTE) values are
computed. The lowest PTE among the five, PjL, is
compared to a distribution generated from 500 simulations
to calculate a global significance value, PTE(P{L ). Pass
criteria #1 requires more than 5% of simulations to have a
lower “lowest of five PTEs” value than Pl : ie. 1-
PTE(P{!)) > 0.05.

The five PTE values are shown in Table I, and are

(1) max, ; Ty;: The maximum T, value across all

tests and nonzero frequencies. This tests for the
presence of a systematic sinusoidal signal.

@ >, # Thun: The total chi-square value over all tests

and nonzero frequencies, which assesses noise mis-

estimation.
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TABLE II. The three null test PTE values used in the pass
criteria #2.

Axion KS Number

Test inputs Description of inputs PTE
PTE; (T ) Overall 22380 0.128
PTE; (>, Toun) Per frequency 1492 0.122
PTE, (3 Toun) Per test 15 0.190

(3) max, Zf Tpu: The maximum per-test total chi-
square value, which assesses issues with an individ-
ual test.

(4) max; ), Ty The maximum per-frequency total
chi-square value, which assesses issues with an
individual frequency.

(5) max, Ty (f =0). The maximum difference in
mean angle offset over the ten f = 0 null tests.

The first four PTEs are calculated using only nonzero
frequencies.

Three PTE values are computed using KS tests, and pass
criteria #2 is satisfied if more than 5% of simulations have a
lower value than P{2 : ie. 1 —PTE(P}% ) > 0.05. Here
Pﬁfw is the lowest of the three PTEs. These tests assess
whether the probabilities of getting various T, values
follow a uniform distribution. The KS test inputs and
PTE results are shown in Table II. The probability value
returned by the KS test cannot be used to assess signifi-
cance, since correlations between null tests result in a
slightly non-uniform distribution of individual probabil-
ities. Instead, the value of the KS statistic itself is
compared to simulations.

C. Null test results

For pass criteria #1, 1 — PTE(P}} ) = 0.124. For pass
criteria #2, 1 — PTE(P2 ) = 0.148. Both are greater than
0.05, and so the null tests pass.

While the null tests pass our stated criteria, all of the PTE
values are relatively low. This is potentially indicative of a
systematic issue, which we investigated. The low PTEs do
not appear to be caused by particular null splits or
frequency ranges. Two of the PTEs in Table I (“bad test”
and “bad frequency”) explicitly look for the worst test and
frequency, and were not discrepant enough to fail pass
criteria #1. Pass criteria #2 is sensitive to non-uniformities
in the 7' distribution and also passed. In addition to these
summary statistics, visual inspection of the full set of T,
values plotted for each test and frequency do not reveal
large asymmetries between different null splits and fre-
quency ranges. A set of correlated, low PTEs is not
surprising given a high total chi-square value. The real
data has a total chi-square value 20% larger than the
simulation average. This is larger than all but 6% of
simulations as shown in Table I. Simulations with such

a large total chi-square value have the overwhelming
majority of their PTE values less than 0.2.

A high total chi-square value could indicate a problem
with the noise model. The noise model is based on Monte-
Carlo simulations of white noise timestreams, as described
in PB17. It was validated on the full coadded spectra, so we
do not expect it to be a source of error. However, to check
for noise misestimation, we computed a set of angles using
a different 100 realizations of sign flip noise B-mode maps,
which are created by randomly reversing the sign of the
maps made for each 15 minute CES. This cancels out the
true signal but maintains the noise properties of the real
data. We compared o(0(A,,;)) from sign flip simulations
to those computed using Monte-Carlo noise simulations,
and found they agreed to within 5%, and in the wrong
direction to alleviate the total chi-square tension. Having
found no obvious discrepancy under a different noise
model, and with the null tests having passed our pre-
determined criteria, we decided that a somewhat elevated
total chi-square value would not prevent us from unblinding
the data.

V. SYSTEMATIC ERRORS

In this section we examine the impact of several sources
of systematic error, including uncertainty in the position of
the HWP, any differences in average angle between the
three observing patches, and foregrounds. Although we
rely on some of the systematic pipeline used in PB17, our
analysis is fundamentally different because we are looking
for time-dependent sources of error. Systematics that
provide a constant CEB offset are irrelevant. Therefore
many of the PB17 systematics are of no concern, while two
others, the HWP and differences between patches, require
careful consideration. The typical maximum likelihood
sinusoid amplitude generated by statistical noise alone is
0.26°. Therefore any oscillatory systematic that generates
an amplitude much less than 0.26° should have negligible
impact on the limits in this work.

A. HWP position uncertainty

As discussed in Sec. II, angle errors that are introduced
by the stepped rotation of the HWP during the first
observing season are a significant source of time-dependent
uncertainty. The HWP angle was changed about 60 times
during the first half of the first season, 4 times during the
second half of the first season, and was then fixed for the
second season. During each rotation the HWP was com-
manded to rotate in increments of 11.25°. However, when
examining the polarization angles derived from an alter-
native calibration source, the Crab Nebula (Tau A), it
became clear that the angles during the first season
exhibited larger variance than during the second season.
Furthermore, there was an offset in angle between the two
seasons. Both phenomena could be explained if the HWP
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FIG. 2. The estimated typical maximum likelihood amplitude
signal of the HWP angle offsets. 500 simulations containing only
random offset angles were generated and run through the like-
lihood. The median recovered amplitude is shown here. The
HWP step cadence begins to generate larger systematic issues at
periods > 50 days. Based on these results, the maximum period
used in this analysis is 50 days.

did not step exactly to the commanded position each time.
While the exact HWP-induced offset at each step is
unknown due to statistical error on the Tau A measure-
ments, PB17 found that the discrepancy could be explained
by adding a systematic error of 0.56° for each step,
corresponding to a typical HWP offset of 0.28°, in quad-
rature with the statistical error.

This systematic is highly important for this analysis
because it corresponds to a unknown time-dependent shift
in the instrument polarization angle, which could mimic an
axion-generated birefringence signal. The HWP-induced
offset between the first and second seasons, for example, is
degenerate with a signal with a period of one year. To assess
the impact at higher frequencies, we ran 500 simulations
where a random angle offset, drawn from a Gaussian
distribution with ¢ = 0.56°, was assigned to each HWP
angle. Then we generated timestreams where each obser-
vation’s CMB angle corresponded to the offset given by the
HWP angle. The maximum likelihood sinusoid amplitude
was then estimated at each axion frequency.

The result is shown in Fig. 2. At high frequencies the
HWP rotation cadence does not correspond to any specific
frequency. Since observations have a statistical error of at
least 2° and the typical HWP offset is 0.56°, the impact at
high frequencies is minimal. On average these offsets cause
only a 1%-2% increase in the maximum likelihood
amplitude estimate at a given frequency relative to stat-
istical noise alone, and so we ignore the impact of this HWP
offset noise in our likelihood. At low frequencies, however,
the last few HWP steps in the first season and the offset
between the first and second seasons begin to translate into
larger sinusoidal signals. We emphasize that because the

exact HWP-induced offset at each step is unknown, the
numbers shown in Fig. 2 are only indicative of the average
effect we expect, not the true effect present in our data.
Because the HWP step cadence begins to generate larger
systematic issues at periods > 50 days, there is a higher
potential to generate a signal that would cause false
detection. Based on these results, we chose to set 50 days
as the longest period we analyze.

It is possible that the HWP offsets follow a more
pathological model than what we assume and mimic a
sinusoidal signal at some frequency in our domain. The
“Ist half vs 2nd half” null test described in Sec. IV tests for
this, because the time periods align with when the HWP
was stepped vs. fixed. As stated in that section, there is no
signal observed in this null test.

B. Differences in patch mean angle

Since a typical day involves observing all three patches
sequentially, any differences in the mean angle of each of
the three patches could generate a oscillatory signal with a
period of one day. However, as explained in Sec. III F 1, our
upper frequency bound is 0.45 days™' and so we are not
sensitive to this signal. However, variations in the observ-
ing sequence can generate signals at other frequencies, and
simulations of patch mean angle offsets reveal a transfer of
<12% of any offset into any frequency in domain we do
observe. Fortunately, our null tests directly calculate the
difference in mean angle between patches. Since they are
consistent with simulations, which do not contain fore-
ground power, we do not see evidence for any foreground
or systematic patch mean angle differences.

One known effect that will cause offsets between the
patch mean angles is sample variance, because each patch
has an independent sample-variance-induced CZ# signal.
This effect is included in the ACDM simulations, but if it
were large we would need to correct for its effects. It can be
calculated both analytically and through simulations, and in
each patch, the error from sample variance is o ~ 0.12°.
This is 3 x smaller than the statistical error alone on each
patch mean angle. Furthermore, since the patch mean angle
offsets transfer < 12% into any given frequency, the typical
A™e generated by cosmic variance is a negligible <0.01°.

C. Foregrounds and other instrumental systematics

Any CE® contribution from dust and synchrotron radi-
ation should be time-independent and simply contribute to
the patch mean angle differences. These differences were
addressed in Sec. V B. Point sources may be variable in
time, but the strongest are masked as discussed in PB17.

PB17 also makes many other estimates related to the
calibration, analysis effects, and known instrumental sys-
tematics. We expect the multiplicative effects to have a
similar impact on the C£® spectrum as they do on the C58
spectrum, which PB17 determined was 6%. Since the angle
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estimates are linear in C£8, we would then roughly expect a
overall 6% uncertainty on amplitude estimation. Since this
is relatively small and does not bias our results, this is
negligible uncertainty in our reported results.

The other instrumental systematics deal with effects that
could potentially cause spurious additive CZB, including
differential gain, gain drift, differential beam size, differ-
ential ellipticity, differential pointing, boresight pointing,
and electrical crosstalk. These can impact our analysis if
they generate a time-dependent CZ8. An analysis of CEB
bias was done in PB14, which noted that all sources
provided <0.02° bias in the coadded spectra. Using a
combination of analytic estimates [46] and simulations, we
modified the analysis to account for per-observation C£8
and determined that all such sources were either time-
independent or provided a negligibly small time-dependent
contribution as compared to the statistical noise.

VI. RESULTS

We search for the presence of a sinusoidal signal, and
finding no statistically significant indication, place appro-
priate bounds over the frequency range of the search. By
accounting for the axion field amplitude at the telescope,
these translate to bounds on the axion-photon coupling over
a range of axion masses.

A. Search for a signal

In order to detect a signal, we form a test statistic Ay”
which is large in the presence of a sinusoidal signal above the
background. For each frequency in the discrete frequency
domain, the MLE phase and amplitude are found, and the
difference relative to the > with no signal is calculated:

AP (f) =22 (A = 0) = 2(A™C(f). f£.0™(f)).  (19)
The test statistic is the largest Ay?(f) among all frequencies:
Ay? = max;(Ar*(f)). (20)

This statistic is optimal in the Neyman-Pearson sense in
that it maximizes the probability of rejecting the no-signal
hypothesis if the alternative hypothesis of a sinusoidal
signal is true [47]. The distribution of the statistic is
approximately chi-squared, but we do not rely on this,
instead comparing to a distribution of test statistics com-
puted from 500 ACDM + noise simulations. The p-value is
the fraction of background simulation test statistic values
that exceed that of the real data.

The selection of Ay? and its location relative to the
distribution is shown in Fig. 3. The real data has a p-value
of 0.048, corresponding to 1.7¢ significance. While this p-
value is relatively small, it is not significant enough to claim
detection of a signal above the noise background. Future
analysis of the remaining three seasons of POLARBEAR

204 ---—- Ax?=20.95

15

0.0 0.1 0.2 0.3 0.4
Frequency (days™!)

601  mom Real data: PTE=0.05
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Ax?

FIG. 3. The significance test for the presence of an axion signal.
Top: the calculation of Ay?. For each frequency in the discrete
frequency domain, the MLE phase and amplitude are found, and
Ay*(f) is calculated. Ay? is the largest among these. Bottom: the
significance of Ay? as compared to a set of 500 simulations.

will aid in determining if this result is simply a statistical
fluctuation.

When assessing the significance of a result with
many trials, in this case discrete frequencies, it is often
useful to report the experimental sensitivity. This is
defined as the signal amplitude which would produce a
detection at some significance level. We can approximate
the Ay? required for any significance level by applying a
fit to the distribution shown in the bottom of Fig. 3. A 3¢
detection (PTE = 0.0013) would require Ay”> = 28.5,
yielding an experimental sensitivity of A(3c) = 1.15°
The 56 (PTE =2.8x1077) experimental sensitivity
is A(50) = 1.43°.

B. Upper limit

As we do not detect a globally significant axion-like
oscillation, at each frequency we compute a frequentist
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FIG. 4. A 95% upper confidence limit on the presence of a
sinusoidal signal at each frequency. The lo and 2o regions
contain approximately 68% and 95% of the upper bounds
calculated from 500 simulations at each frequency. The median
values for these regions are indicated with dashed lines. Many
individual frequencies exceed the 2¢ threshold, which is to be
expected based on the large number of test frequencies, and does
not necessarily indicate a detection.

upper limit on the signal amplitude at 95% confidence
level. The likelihood for the amplitude as a function of
frequency is

La(Af) = / TdoL(A £.OPO). (1)

0

with a uniform probability distribution for the phase
0<60<2x. (22)

We construct confidence intervals following the Neyman
procedure [47] with the following ordering: intervals [0,
A%(f)] are defined with an upper limit A%(f) at each
frequency f such that

P(A™e < AmE|A9)(f) = 0.05. (23)

Here AT is the observed maximum likelihood amplitude
calculated from the data using £4. P(A™¢|A)(f) is the
probability of calculating A™® given a true signal amplitude
A plus background noise. Therefore P(A . < A™C|A)(f)
represents the probability that, given a true signal of
amplitude A, A™¢ would be less than or equal to the value
observed. This probability is a monotonically decreasing
function of A, and so it is less than 0.05 for all A-values
above the upper limit. In other words, signal amplitudes
that would generate an A™® as low or lower less than 5% of
the time are excluded from the confidence interval. The

limits calculated by this procedure are shown in Fig. 4. The
median upper bound is 0.65°. The bound varies over
frequencies as expected, in analogy to the typical behavior
of a Fourier transform.

The probability distribution P(A™¢|A)(f) is generated
by calculating A™® from 500 simulated angle timestreams
of background noise with an injected signal of amplitude A,
frequency f, and random phase between O and 2z. This is
done for all frequencies and discretized array of A-values,
which are smoothed to create a continuous probability
distribution. The results are checked for convergence of
the median upper limit to the < 1% level. P(A™¢|A)(f) is
almost the same for each frequency. The primary differ-
ence comes from the finite duration of each observation,
which reduces the strength of the bounds at higher
frequencies according to the sinc function in Eq. (15).
We can approximate the impact of this by calculating
sinc(zfAt), where At = 6.4 hours is the weighted mean
observation duration. The maximum amplitude reduction
occurs at the largest frequency and is < 2.5%. While this
effect is included in the constraint we place, it is small
enough that we still report the median bound over the full
frequency range.

C. Constraints

The median angle bound A% represents a search for a
sinusoidal signal in the CMB data independent of any axion
model. Translating this into a constraint on the axion-
photon coupling constant g,, requires specifying model
parameters. In F19, BK22, and SPT22, this was done by
simply requiring that the local axion energy density equal
the average Milky Way dark matter energy density, which
we will call the “deterministic” case, following Ref. [22].
This means the axion field has amplitude ¢py;, where
dimmy/2 = po and py is the local density of dark matter.

This gives the relation

A
gy, = (1.6 x 107" GeV™!) x (F)

~1/2
X _"21145 X K> o 3 . (24)
107" eV 0.3 GeV/cm

Here A is the rotation amplitude, m,, is the axion mass, and
k is the fraction of the dark matter that the axion constitutes.
Using k =1, py = 0.3 GeV/cm?, and A% = 0.65°, this
constraint is

- - my
g¢7 < (11 x 10 1 GeV 1) X (10_216\/) (25)

Reference [22], however, has recently pointed out that
this constraint is inappropriate when the timescale of the
experiment is much less than the axion field coherence
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FIG. 5.

Bounds on the axion-photon coupling as a function of axion mass. Shown in solid red is the 95% upper limit obtained in this

work using a stochastic local axion field amplitude and assuming the axion constitutes all the dark matter (see Sec. VI). The lighter
oscillating result is the exact bound, and the median result, g5, < (2.4 x 10711 GeV~") x (m,/107! V), is shown in darker red. The
median deterministic bounds for POLARBEAR, BICEP, and SPT are the dashed lines: these are the published results in [19] and [20].
The green “washout” bound was calculated in F19 from the lack of CMB polarization suppression. Lower bounds on the axion mass
come from Milky Way satellites [33] and the Lyman-a forest [31]. Upper bounds on the axion-photon coupling from CAST [35] are

also shown.

time, as it is in our case. When considering the local axion
field as the sum of many individual wave modes, each with
random phase, the amplitude ¢, at any given time
is a Rayleigh-distributed stochastic variable centered on
¢pm that varies with time on the coherence timescale
Teoherence ~ (fVirw/c?)™!, where the virial velocity is
vmw =~ 1073¢. We will call this the “stochastic” case. This
random phase model has been shown to roughly agree
with simulations of fuzzy dark matter [10]. The largest
frequency we consider in our analysis is f . = 0.45 days™,
yielding a minimum coherence time of about 6000 years:
therefore, for the purposes of our experiment we can
approximate ¢, as a fixed random variable. The phase is
treated in the same manner with a uniform probability
distribution. To form the likelihood for g,, we integrate over
these two parameters:

o) 2
Ly ()= [ i [ d0L gy 0/2..0)P ) P(O).
(26)
Here P(¢y) is a Rayleigh distribution centered on ¢py:
%

P(¢o) = L%e_ﬁ-

27
P @)

The resulting median 95% upper limit in this stochastic
case is calculated in the same manner as Sec. VI B, and is

_ _ my
g{/)}, < (24 x 10 u GeV 1) X <m) (28)
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This is 2.2x larger than the deterministic case." The
increase is due to the possibility that we happen to be
observing at an unlucky time when ¢y < ¢ppy, Which
generates a smaller signal amplitude at a given gy, .

We briefly comment on the choice between frequentist
and Bayesian statistics in this analysis. In the frequentist
approach adopted here, we generate confidence intervals
according to Eq. (23). In a Bayesian approach, we would
instead generate a posterior probability distribution for g,,,
which requires choosing a prior P(g,, ).

In the deterministic case, or equivalently when placing
limits on the sinusoid amplitude A, the results roughly
agree for several choices of prior. With a uniform prior on
A, the median Bayesian upper limit is 0.60°. If we had
instead chosen to parametrize the signal [Eq. (3)] as

Pems (1) = Bsin(2zft) + Ccos(2xf1), (29)

applying uniform priors on B and C give a median upper
limit of 0.71°. Both of these results are close to the median
frequentist 0.65° upper limit we report in Sec. VIB.

In the stochastic case there is a large dependence on the
choice of prior and parameterization. We must integrate
over P(¢y), and the nonzero probability of small ¢py < ppy
values means that the posterior for g,, has a long tail at
large g,4,- A uniform prior on g, results in a Bayesian
upper limit 10x greater than the deterministic case, much
larger than the frequentist result. Futhermore, applying
uniform priors in the sine-cosine parametrization [Eq. (29)]
causes the upper bound to diverge. To resolve these issues,
Ref. [22] advocates choosing a Berger-Bernardo prior for
9gy» Which like the Jeffreys’s prior is parameterization-
invariant, and in their analysis agrees with the frequentist
result to within 3%. Unfortunately, for our likelihood we
found no simple analytic form for this prior and it is
difficult to accurately compute numerically. Due to issues
with defining a Bayesian prior in the stochastic case, we
choose to report a frequentist limit.

This limit is shown in Fig. 5, along with a selection of
other constraints. Our primary result is the constraint on g,,
assuming that the axion field amplitude is a Rayleigh-
distributed stochastic variable. It is shown in full detail
along with the median limit from Eq. (28). The median
deterministic constraint, Eq. (25), is also shown. The
published results from BK22 and SPT22 are deterministic
Bayesian upper bounds with a uniform prior on P(g,,).
None of the other bounds shown in Fig. 5 come from

'Reference [22] reports an increase of 2.7x when using the
frequentist approach. The difference possibly stems from the use
of a different likelihood (they assume that the data is uniformly
spaced in time) and/or differences between individual realizations
of the noise. When comparing the Bayesian deterministic
approach and the Bayesian stochastic approach with a uniform
amplitude prior we see a 10x increase, in agreement with [22].

assuming a value for the axion field in a dark matter halo.
We emphasize that this is the first CMB analysis of this
effect that we are aware of to include the local stochastic
nature of ¢.

In both the stochastic and deterministic cases, the bounds
apply over the frequency range presented in Eq. (16), which
corresponds to the axion mass range

9.6x 1072 eV <m; <22x107% eV.  (30)

VII. CONCLUSION

We have used POLARBEAR data to search for a coherent,
all-sky, sinusoidal oscillation of the CMB polarization angle
in time. We do not detect such a signal, and place a
median 95% upper limit of 0.65° on the sinusoid amplitude
over oscillation frequencies between 0.02 days™' and
0.45 days~'. We use these results to constrain the coupling
between electromagnetism and an axion, here defined as an
ultralight pseudoscalar field, under the assumption that the
axion constitutes all of the dark matter. The signal depends on
the value of the axion field at the telescope, and under
the assumption that the field amplitude is a Rayleigh-
distributed stochastic variable, we set the limit g,, < (2.4 x
107" GeV™') x (m;/1072" eV) over the mass range
9.6 x 1072 eV <m,; <22x 1072 eV.

Three additional seasons of POLARBEAR data have
been collected in addition to the two seasons analyzed
here, and we anticipate that analyzing them will improve
our data volume by a factor of ~ 2-3, with a correspond-
ing ~60% improvement in the constraints. This data will
also possibly allow us to probe lower frequencies (smaller
axion masses), because these seasons are not affected by
the HWP position uncertainty that restricted the frequency
range in this analysis. A promising avenue for placing
constraints several times better than this with
POLARBEAR data lies with measurements of Tau A,
which was used as a polarization calibration source, and
was precisely measured during the five observing seasons
between 2012 and 2016. These measurements present a
different challenge than the CMB because the axion field
at the source needs to be carefully considered, whereas in
our analysis the O(10°) year duration of recombination
allowed for ignoring the source term. Nonetheless, this
additional data provides another avenue to search for the
presence of axions using POLARBEAR data.

Several future CMB experiments, including the Simons
Array [48], Simons Observatory [49], and CMB-S4 [50],
should be able to perform a similar analysis with improved
constraints. This analysis imposes no additional require-
ments on the design or operation of these experiments, it
simply requires making many measurements of the CMB
over an extended period of time. The sensitivity is not
fundamentally limited by anything other than the precision
of the polarization measurements, unlike the CMB washout
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effect, which is limited by cosmic variance [17]. The
unknown amplitude of the axion field at the telescope is
the chief source of model-dependence, but it is well
described by a probability distribution that can be treated
statistically when placing bounds. Unlike many other
astrophysical measurements, this analysis does not suffer
from significant modeling uncertainty at the polarization
source due to the well-understood nature of the CMB. In the
rapidly growing field of axion searches, this should allow
future CMB experiments to provide increasingly competi-
tive measurements of the axion-photon coupling constant.
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