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Embedding method for conductance of DNA
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Using a technique based on embedding in a local-orbital formalism, the electronic structure and electron
transmission properties of long biological molecules may be calculated. The electronic structure is found by
adding one structural unit at a time to the molecule, and calculating an embedding potential for adding the next
structural unit. At present an extendeddkal scheme is used to evaluate the matrix elements. The transmis-
sion is also calculated within the embedding scheme, taking the molecule-metal contacts into account. Results
for the density of states and transmission are presented for several structures of DNA. The transmission is
highly energy dependent, and is also greatly influenced by the orbitals to which contact is made. The impli-
cations of these calculations for conductance are discussed.
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[. INTRODUCTION case of coherent transport, the carriers may tunnel through
the potential barrier formed by certain base pairs, leading to
There is much interest at the moment in the possibility ofan exponential decay of transmission with distatfc€her-
using biological molecules as electrical conductors, for eximal hopping is an incoherent mechanism in which the elec-
ample, DNA as a molecular wireThe hope is to take ad- tron moves in a series of thermally activated steps between
vantage of the self-assembling properties of these moleculelcalized orbitals along the molecule. Over large distances
which may allow for the production of electronic devices onthe thermal hopping mechanism dominates over coherent
the nanometer scale. Electron transport is related to electramnneling®! In this work we have not considered the effect of
transfef—this is very important in many biological pro- phonon interactions, therefore we only consider coherent
cesses, such as photosynthésisspiratiof and oxidative electron transfer processes.
damage. Further work is needed in this field to fully under-  Extensive work has been done in this area, using a variety
stand the processes involved. of approaches. Much of the work involves using model
We have chosen to begin our study of large moleculesdamiltonians to describe the molecule, including the work of
with a treatment of DNA. Eley and SpivByere the first to  Cunibertiet al!? who study the origin of an energy gap in
suggest that DNA could be a conductor more than 40 yearthe |-V characteristics of pol)-poly(C) DNA. Roché?
ago. However, the debate about the conductive properties @flso uses a model Hamiltonian to study the effect of base
DNA still rages on. Some experiments have shown that DNAsequence, temperature, and length on transmission through
is an insulatof, while others suggest that it can be a goodthe molecule. Hartree-Fock or density-functional theory pro-
linear conductof,or a wide-band-gap semiconductdBome  vides a framework for treating the electronic structure of the
published data even claim that DNA can supercondiicts molecule self-consistently. Amongst such studies is the work
clear that further work is required in this area to resolveof Adessiet al'* who consider the effect of environment and
many differences in both the theoretical and experimentastructure on DNA conduction, while Hjort and Stafst’s
results and, in particular, to study the relationship betweemse a self-consistent approach to study (@Jypoly(C)
structure and conductance. DNA, including temperature-induced disorder, and find
The DNA double helix is formed of two twisting, hydro- temperature-dependent semiconducting behavior. A general
philic, sugar-phosphate backbones. Attached to each sugdamework for studying nonequilibrium processes self-
unit along the backbone is a hydrophobic base (adenine, consistently has been given by Damét all® and Xue
guanine, cytosine, thyminewhich is roughly perpendicular et all’
to the axis of the helix. The two strands are bound together Fundamental to all the models of electron transport is the
by hydrogen bonds between the bases. These bases fomature of the one-electron states and the role of transmission
complimentary pairs—an adenine base will always bondhrough these states. In this paper we present techniques,
with a thymine and a cytosine base will always bond with abased on the embedding meth8dor calculating the one-
guanine. electron properties of large molecules. The embedding
It is generally believed that the pathway for electronmethod is used to partition the molecule into convenient sub-
transport runs through the bases in the center of the doublemits, each of which is treated separately, but with their mu-
helix molecule® It has been suggested that delocalized tual interaction fully included via the embedding potential.
orbitals in consecutive bases overlap to form a channel folThe interaction of the molecule with the contacts is also
the movement of electrons through the center of thdreated in this way, which turns out to be identical to the
molecule® Several models have been proposed for the transself-energy methods widely used in electron transfer
port of carriers through the base-pair sequence—the domgalculationst®~2*Embedding is described in Sec. II. Our cal-
nant mechanisms in the case of DNA are coherent transpoculations are done within a nonorthogonal, localized orbital
via extended molecular orbitals, and thermal hopping. In thdormalism, given in Sec. Ill, and at this stage we use the
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extended Huokel method for determining the matrix ele- ZZ 23
ments. The extended ldkel method has been extensively ! !
used to describe the electronic structure of large — N

moleculest?'*22put it is relatively straightforward to apply

our formalism in a self-consistent method. The methods wx«

use for calculating transmission and conductance are d 1 2 3
scribed in Sec. V, and results are given in Sec. VI for severa
structures of DNA. The efficiency of our method has enablec
us to study the effect of many different contact geometries ol
transmission, and we shall describe the relationship betwee
transmission and electronic structure. Our method is botl Zl Z 2
flexible and efficient, scaling linearly with the size of the r r

molecule, and with only minor changes it can be used to FIG. 1. Schematic representation showing three sections of the

perform electronic structure calculations for many differentpna molecule, with embedding potentiats and,, which embed
types of biological molecules. to the left and right.

In this paper we use Hartree atomic urf@su), in which

1 a.u. of energy is 27.21 eV and 1 a.u. of length is 0.529 A2 embedded onto 1 we can find an embedding potential for 3
onto 2, allowing us to find the GF for 3 embedded onto the
entire system to the left, and so on.
To find the embedding potential in a tight-binding system,
Embedding was developed as a way of solving the Schrowe use Dyson’s equation. The GF of an unperturbed system
dinger equation in large systems that can be subdivided intts given by
smaller units® An embedding potential, added onto the
Hamiltonian for part of the system, allows the Satirger (H=ES9Gy=1, @
equation to be solved for just this part, with the wave func-whereE is the energy, ané andS are the Hamiltonian and

tions correctly matched onto the surroundings. The methogverlap matrices, respectively. When we include a perturba-
was originally used to calculate electronic structure of surtion § to the system the equation becomes

faces and interfaces, within a plane-wave basis set. In this
paper, we develop a method of embedding using a tight- (H+6—ESG=I. (2)
binding formalism that can be applied to large molecules

II. GROWING MOLECULES BY EMBEDDING

Tight-bindina embedding uses Dvson's equation and Greenset US first consider embedding section 2 onto section 1 on
9 9 9 Y q the left, in which case the unperturbed Hamiltonian matrix of

functions(GF) to find the embedding potential. We can thenthe tWo sections consists f,, andH,, which do not in-

treat the molecule as a series of sections, adding a section at . .
; - ) - . teract with each other. The two sections are coupled together
a time to build up the entire chain, embedding as we g

along. This method has the advantage that the computationS a';é%’ ';';ﬂgﬁ?} It:?e Ttg:]?jc\txlvlgtrfzgtl(t)k?egipeﬁstﬁgtegrt?J 3;;2;)0”
time for solving the Schuiinger equation scales linearly 9 9.4 P

with the size of the system, unlike traditional methods that‘s'

scale a®D(N?). There are other ordéd-methods for solving
these sorts of problems, such as the localized orbital
method®® and density-matrix methodé; however, our
method directly yields the GF_ _and seems well suited for G=Gy— GydG. 3)
conductance problems. The ability to perform orblecalcu-

lations allows us to treat larger systems than would otherwis&xpanding Eq(3) gives

be feasible. An analogous method to ours was applied by

If we multiply Eq. (1) with G and multiply Eq.(2) with
90, and then subtract these two equations, we obtain Dys-
on’s equation,

Crampinet al?® to “grow” large interface systems, adding G=Gp= GG+ GGG, (4)
atomic |ayer by atomic |ayer_ Applylng Eqg. (4) directly to our problem we obtain

A schematic diagram of embedding one Sec. of the mol- - 0 o 0. =
ecule onto another is shown in Fig. 1. What we aim to do is G2p=G3ot G22021G11615G22, 5

to find a term to be added to the Hamiltonian of each section,

which replaces the effect of the rest of the system. Figure j{vhereOG. is the GF of a section embedded only on the left
shows three sections—in the case of DNA we split the 12_’:1ndG11 is the unperturb_ed (;?)F_ln section 1. The second term
base-pair molecule into 12 such sections, each containing i Ed. (4) goes to zero sinc€y; is zero, because there are no
base pair plus the associated sugar-phosphate backbone. Tks between regions 1 and 2 in the unperturbed system.
shaded areas in Fig. 1 represent the regions of each section@®mparing Eq(5) with Eq. (3) we can see that the series is
which orbital overlap occurs, within some cutdfthis is  the same as if we take the perturbatiénn Eg. (3) to be
taken to be 8 a.u. in our extended ¢kel calculation. Letus — — 8,1G3,181, acting entirely within the space of region 2.
assume that we have already calculated the GF for section kHence, we take the perturbation to be given by

we can now find an embedding potential for section 2 which ) 0

contains all the interactions with 1. From the GF for section 2=~ (Hxn—ES;)Gi(H1—ESp), (6)
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which is the embedding potential, embedding section 2 ontéunctions, which is a more approximate, but quicker, method
1. The overlap matrixS in Eqg. (6) has to be taken into ac- of solving the Schrdinger equation. This will allow us
count due to the nonorthogonality of the basis set. This pergreater flexibility for testing our embedding method and
turbation is then added to the unperturbed Hamiltonian mareadily exploring the effect of structure and molecule-metal
trix of section 2 to give an effective HamiltoniaH,., and  contact on transmission and conductance.

then the GF for this section, embedded to the left, can be In the tight-binding method the wave functions are ex-

calculated from panded in terms of a linear combination of localized orbitals,
_ taken to be atomiclike functiong;, centered on each atom
Goo=(Hes—ES9 ™% (7)  in the system,
We note that our resul6) for the embedding potential has
been given previousl# described as a self-energy. wn(r)=2 Cnixi(r). (11
1

In this way we proceed to build up the chain from left to
right so that the interaction between sections 2 and 3 is giveps the atomic orbitals on one site are not orthogonal to the

by orbitals on other sites, we have a nonunit overlap méafrix
3 - giving the secular equation for the eigenvalugs of the
37=—(H3~ ESy) G Hoz— ESyg). ®  form
Using G, in Eq. (8) includes the effects of all the previous |Hij—E\S;| =0, (12

sections. Once we have finished adding units to the right, we o ) )

have obtained the GF for each subunit with the effect of alihere the Hamiltonian matrix elements are given by
the sections to the left accounted for. We now repeat the

a}bove process, but this time building up the molecule from Hij:f drx* (r)Hx;(r) (13)
right to left, so that

322 — (H,y5— ESy;5) Gl Hap— ESp) 9) and the overlap matrix elements are given by

and

S,:f drx{ (r)x;(r). (14

1_ _ ~ _
2=~ (H12m ES)GaoHa1~ ESp), (10 Such a localized orbital basis set can be used in a first-

whereG is the GF of a section embedded on the right. OncéPrinciples approach, but the method we choose to use is the
we have finished adding subunits to the left, we now havé€miempirical extended Hkel theory, in whichHj; is pro-
the left and right embedding potentials for all sections. WePortional toS;;.*" The basis functions in Eq14) are taken
then simply add these embedding potentials to the unpe@S Slater__orbltals with paramete_rs taken from the literatire,
turbed Hamiltonian for each section, and in this way we areind the Hikel parameters relatirig to Sare taken from the
able to calculate the GF for each section of DNA, no matteiVork of Cerda’” Extended Hokel was mainly chosen due to
where it lies in the chain, with the effect of all the other its simplicity, which is advantageous when considering large
sections in the molecule taken into account. molecules, but it is well established in its application to a
This gives us a method of obtaining the GF, which scaledvide range of organic moleculé:>
linearly with the size of the system. Our method can be ap- N this paper we present calculations performed on three
plied directly to all molecules that have a linear sequenceDNA molecules. The firstis a 12 base-pBHDNA molecule,
with the assumption that only neighboring sections have did{CGTAGATCTACG). The spatial coordinates of the atoms
rect orbital overlap. This method of “growing” molecules Were obtained from single-crystal x-ray-diffraction experi-
can be related to methods of diagonalizing tridiagonal blocknents, performed at 15 °C with 2.25 A resolutfHydro-
matrices?® In Sec. V we describe how we embed metal con-9en atoms were then added using the computer program
tacts onto the molecule in the same way. Of course, many!EWER_UTE:37 as H atoms are not detected by x-ray-
biological molecules such as proteins, though of underlyindliffraction experiments.

linear structure, are folded back on themselves. We intend to T0 investigate the effects of a more ordered structure of
work on including the extra interactions which this folding DNA, the second molecule we choose to study has the same

causes. 12 base-pair sequence as the first molecule. However, instead
of using the x-ray-diffraction structure, the new molecule is
IIl. THEORETICAL MODEL constructed using the computer packagerERCHEME in
which the Amber force field is used to produce the structure
The molecules of DNA we investigate are 12 base-paiwith a minimum energy. In the minimization, the Coulomb
long, consisting of 760—780 atoms, and we include all of thanteractions between the atoms were modeled to fall off as
base and backbone atoms in our model. These fairly largg/r? rather than ¥/ to simulate the screening effect of a
molecules have been studied previously using first-principlesolvent.
methods, such as density-functional théd®} and quantum The last molecule we investigate is p@B)-poly(C)
chemistry technique®. However, for simplicity we use a DNA, since both experimehtand theory® suggest that this
tight-binding formalism to represent the electronic wavesequence of base-pairs gives the highest conductivity. We

195110-3



O. R. DAVIES AND J. E. INGLESFIELD

again useHYPERCHEM as before to simulate a 12 base-pair
molecule of polyG)-poly(C) DNA and minimize its energy

with the Amber force field.

IV. DENSITY OF STATES
A. Embedding approach

The density of state©OS) is the most basic quantity of
electronic structure, and is fundamental for determining the
properties of a material. We now show how it can be calcu—t

lated in our tight-binding embedding formalism.
The DOS is given by

N(E)=2, 8(E-E,),

n

(15

wheren runs over all the states in the system. We can relat

this to the full GFG(r,r ';E) using

N(E)=%f drimG(rr;E+ie). (16

ExpandingG in terms of the basis functions we have

G(r,r;E>=iEj Gij(E)xi(Nx;(r), (17)

and substituting Eq(17) into Eq. (16) gives the DOS as

1
N(E)= ;Im Tr(GY). (19
The trace of this product matrix can be written as
T(GS)= 2 Gy m))Simiyni) (19
(n.i),(m.j)

wheren andm label neighboring sections of DNéas in Fig.
1), with i andj labeling the orbitals im andm, respectively.

PHYSICAL REVIEW B9, 195110(2004

Gniymi)= 2 Cn.iy. o mgmhCmiy.miy» (2D
where ¢, 1y m,1) in EQ. (21) is given by

Sen,iy(m )= Hnm = ESnkym1y - (22

é(n,i),(n,k) is the GF of thenth section embedded only on the

The third term in Eq.(20) counts the contributions be-
ween the current section and the next. However, these same
contributions have already been calculated whean—1,
therefore we need not calculate them again and can simply
drop the third term in Eq(20), multiplying the second term
by a factor of 2.

In this way, the total DOS of the molecule can be calcu-

éated by inverting and diagonalizing the Hamiltonian and

overlap matrices for each section, without having to invert
the Hamiltonian matrix of the entire molecule.

B. Density of states of DNA

We now apply this method to calculate the DOS of the
different structures of DNA. In our calculation the overlap
between orbitals is cut off beyond 8 a.u., and there is only
significant overlap between neighboring sections, due to the
localization of the Slater-type orbitals. A small imaginary
part of 0.005 a.u. is added to the energy, broadeningsthe
functions that represent the discrete electronic states of the
molecule[Eg. (15)]. The results for DNA taken from the
x-ray structure are shown in Fig. 2; the DOS of the energy-
minimized structure of this molecule is essentially the same,
and therefore not given. The DOS of p@B)-poly(C) DNA
is plotted in Fig. 3.

For the x-ray-diffraction DNA, we calculate the energy
of the highest occupied molecular orbitdiOMO) to be
—0.43 a.u., and the lowest unoccupied molecular orbital
(LUMO) to be at—0.32 a.u., giving a band gap of 0.11 a.u.
When considering the transport properties of the molecule,

The sum in Eq(19) runs over all sections. However, there the most important states are those on either side of the band

are only contributions to the sum when=n,(n—1), or

gap, as these will dominate conduction through the molecule

(n+1), due to the short range of the overlap. Therefore, wen the limit of small applied voltages. We find that states near

can rewrite the trace as

TMGY=> | >

i.jim=n

G(n,iy, (m,j)S(m,), (n,i)

+ >

i,jym=n—-1

+ X

i,jym=n+

G(n,iy, (m,j)S(m,), (n,i)

L ConmpSmp.ei | (20

wherei is an orbital in sectiom andj is an orbital in section
m

.We find the first term in Eq(20) directly from our em-
bedding procedure(section 2. In the second term,

the HOMO and LUMO are all located on atoms in the bases,
in agreement with the generally accepted theory that conduc-
tion through DNA occurs via ther orbitals in the base¥.

Comparing the DOS for the pdi§)-poly(C) DNA mol-
ecule shown in Fig. 3 with the results for the x-ray-
diffraction DNA with different base pairs, Fig. 2, it can be
seen that the results are surprisingly similar, with only minor
changes in the fine detail. The band gap remains 0.11(&.u.
evV).

Most literature values for the band gap of p@-
poly(C) DNA vary between 1.12 eV and 3.2 eV for a variety
of methods->1*34\e conclude therefore that our value of
3 eV for the band gap agrees very well with published data.

The band gap we calculate for a single GC pair is actually
the same as for the whole molecule. This contrasts with the

G(n.iy.(m.j)» Which is the GF between orbitals in one sectiondensity-functional theory(DFT) calculations of Lewis

with those in the preceding section, can be derived usingt a

Dyson’s equation, and is given by

14% who find a band gap of 3.37 eV for a single GC

section, and a narrower band gap of 1.40 eV for a ten-base
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FIG. 2. DOS of mixed base DNA dodecamer obtained from x-ray-diffraction structure. HOMO 4s0at3 a.u. and LUMO at
-0.32 a.u.

system. So, although our results compare very well for thess molecules. This shows that the conductance can be formu-
single-base case, we do not find the same band gap narrovated in terms of the transmission coefficieftg between

ing when the whole molecule is considered. Leeiial.also  electron channels$, j in the contacts at each end of the
report a valence-band width of 1.1 a.u. in good agreemenmolecule?' These channels usually correspond to the inci-
with our result of 0.9 a.u. Their conduction-band width is dent and transmitted Bloch states at a particular energy. If we
smaller by a factor of 2, an effect in extendeddkel theory  consider electrons incident on the molecule from each side,
that we have also encountered when dealing with small molthe current in each channel contains velocity and DOS fac-
ecules. Apart from this discrepancy, the overall DOS in thetors which cancel out, giving the net current as

extended Hakel scheme is in relatively good agreement.

e (Eg.r
= ,J T(E)dE, (23
V. CONDUCTANCE AND TRANSMISSION h Eg .l

A. Green's functions and transmission where the integral is between the Fermi energies in the left
There has been a great deal of theoretical work performednd right contacts, anflis the transmission summed over all

on calculating the conductance of microscopic systems sucleft and right channelsT=2; ;T;; A In the limit of small

12000 T T T T T T T

10000 1

8000 | E

6000 [ E

transmission

4000

O 1 1! LA_NIA -M.
5 0 0.5 1 1.5

-1.5 -1 -0. 2 25

energy (au)

FIG. 3. DOS for polyG)-poly(C) DNA dodecamer. HOMO is at-0.43 a.u. and LUMO at-0.32 a.u.
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VOltageSV across the molecule, taklng the difference in nected to the metal contact. We can, however, V\@Fe in

Fermi fUnCtionS, and dIVIdIng bw, giveS the Landauer- terms of other quantities that we do knOW,
Buttiker formula for the conductance,

e? Gr=G—Gn2G, —G 3Gy, . (27)
[=+T(Ep). (24) A
Rearranging Eq(27) for G,, and substituting into E¢(26)
The total transmission is evaluated at the Fermi energy an@e obtain the GF linking the two orbitals as
can be written concisely in terms of the GF between the

contacts & é‘lr:[]—"_GIIEI_Glrzr(l"_Grrzr)_lGrIEI]_1
T=4 TG, Im3,GXIms,)). (25) X[Gir =Gy X (1+Gy %) "Gy . (28)

tacts, between the left-hand and right-hand contacting orbitcontacts on both ends of the molecule. Thl|zs effect has also
als; >, and X, are the embedding potentials which couplebee“l'ﬁndu‘jed in the work of Cunibertit al.”* and Damle
these orbitals to the corresponding contacts. The trace cof§f @l.~ though in a somewhat different form. In our model
tains the sums over channels, and as this is independent $€ choose to use two Cu reservoirs to make contact with the
representation, we need not worry about the explicit form oPNA molecule. The embedding potential . Eq.(6), em-
the channels. This result has been known in a local-orbitaP€dding the molecule onto the left reservoir is given by
representation for several yedf<?though, as we remarked
in Sec. I1, in this contex® is usually called the self-enerd$. S=—(H e EScWGcfHeu—ESw), (29
This is exactly the same as our embedding potential.

Recently, the same result has been derived and used in thehereG2 ., is the unperturbed GF in the left Cu lead, with
framework of embedding theory, in which the embeddinga similar expression fok, .
potential is defined over an embedding plane separating the Equation (28) may be used immediately to describe a
embedded region from the substratét can be used to find, multiorbital contact between the metal and the molecule, in
for example, the conductance of an interface between metalshich case the GF's and embedding potentials are given by

ThenG,, is the GF for the whole system between the left andmatrices. However, for simplicity we consider a single €u
right embedding planes, ar¥),, are the embedding poten- Orbital, which makes contact with a single orbital on the
tials on those planes. This was applied by Wortmanal*? DNA molecule. This single contact between the metal and
to study spin-polarized transmission through a ferromagnetigholecule allows for only one conduction channel in and out
Co monolayer sandwiched between Cu. of the molecule. Thepoupling terms in EQ9) are evaluated
using the extended Hkel method, assuming realistic Cu-
molecule distance¥,but with an arbitrary angle between the
molecule and the Cu surface. To describe the Cu contact we
In this preliminary application we couple a single orbital yse a full electronic structure calculation for the surface of
on the DNA to a single orbital on the metallic contact. This semi-infinite Cu(001). This uses the embedded linearized
means that there is only one channel available for transmi%ugmented p|ane_Wa\/e meth@d{vmch gives very accurate
sion at each end of the molecule. This is an approximation t@esults for the density of states on the surface atoms.
the usual eXperimental arrangement where the metal-DNA As we are using on|y a Sing|e Cuorbital at this Stage of
contact extends over several orbitilbut the extension to our treatment of the metal-molecule contact, we project the
multi-orbital contact is straightforward. However, we note total surface density of states of the Cu onto the orbital.

that single-atom contact experiments are indeed possible, #&om this, the imaginary part of the GF is given by
shown in the work of Agraiet al*® This makes our assump-

tion of a single contact orbital more plausible. Im G° _
e . mG E)=mnc(E), 30
If we are to calculate the transmission between two orbit- cucd B) =N E) (30

als using Eq(25), we must first find the GI5, linking these  wherenc, is the total surface density of states on the €u

orbitals, which may be located anywhere on the DNA chaingrpital. The real part of the GF can then be found from the
The GF coupling the two orbitals embedded onto the leads<ramers-Kronig relation, and is given by

Gy, , can be derived from Dyson's equation,

B. Embedding approach to transmission

ney(E")

Gir=Gi—G;%G,—G;, 3,6y, . (26) ReeguCL(E)zL dE’ ;“_E (3D)

HereG,, is the unperturbed GF linking orbitalto orbital r,

without the metal contacts, and S, are the embedding The GFG2 ., is evaluated at the Fermi energy of Cu, and
potentials linking the left and right metal reservoirs to thewe use this value to determi, 3,, G,,, and hence the
molecule on these orbitals. However, we do not know th&ransmission of the molecule over the energy range of the
quantityG,, , which is the GF of the right-hand orbital con- molecular DOS.
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08 [ q

transmission

energy (au)

FIG. 4. End-to-end transmissidsolid line) and scaled DO%dashed ling of a chain of 12 carbon atoms.

VI. TRANSMISSION RESULTS between the end atoms. The maximum possible total trans-
mission in this case is 1, as there is only one channel at input
and output, and it can be seen from Fig. 4 that the transmis-
Before applying our embedding method to DNA, we testsion through the carbon chain at the peak energies is very
it on a model system of a linear chain of 12 C atoms alignectlose to 1. This is as we would expect, since we have iden-
along thex direction, spaced by 1.53 A. A Cu reservoir is tical p, orbitals aligned along the chain, providing a good
attached to the, orbitals on either end of the chain, and the pathway for conduction, with no reflection within the chain.
total end-to-end transmission of the carbon chain is calcu- It can be seen from Fig. 4 that there are fewer transmis-
lated as a function of energy. We choose this simple systersion peaks than DOS peaks—this happens since transmission
to test our method because we know that the orbitals wilis only appreciable at energies that correspond to those wave
overlap well to give good transmission. The results arefunctions extending from one end of the chain to the other,
shown in Fig. 4, along with the DOS of the C chain un- with appreciable weight at each end.
coupled to the Cu contacts. The DOS was calculated with an When we compare the transmission peaks with the DOS
imaginary part of 0.005 a.u. added to the energy to broadepeaks in Fig. 4, we see that they do not align. However, in
the discrete states. It can be seen that the transmission is vejg. 5 the same transmission peaks are shown to line up
peaky, with only a few states contributing to the conductancexactly with the total density of states when we include the

A. Carbon chain

1 |! T
09

08 [

0.7 q

0.6

0.5

transmission

0.4

0.3

0.2

0.1

1
0
energy (au)

FIG. 5. End-to-end transmissidgolid line), and scaled total DO8lashed lingof a chain of 12 carbon atoms attached to Cu reservoir.
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FIG. 6. End-to-end transmission of x-ray-diffraction DNA for varying energy.

effects of the Cu reservoirs. This energy shift of the states iattached to the Cu contacts—this effect is also seen both
a result of the coupling of the Cu contacts with the C chaingexperimentally by Kushmerickt al®® and theoretically by
via Eq.(28). Different states are shifted by varying amounts,Damle et al*® In order to investigate the contact orbital de-
and it can be seen that the shift is the largest in the middle dpendence, we fix the energy at that of a particular state and
the conduction band, near 0.5 a.u. Also, we note that th€alculate the transmission between all 32000 combinations
more a state is shifted, the wider the transmission peak, du@f orbitals in the two end sections of the molecule.
to the interaction with the Cu contact. This example shows We apply this to states near the band gap, which are the
that the effects of the metal contacts must be taken into adnost important for conductiotf. In Fig. 7 the transmission
count when describing the relationship between the DOS an@f the HOMO state is investigated, and we see that the trans-
the transmission of relatively short molecules. On the othefnission is very small for all orbital combinations, with a
hand, while investigating the DOS of DNA we find that maximum value of 2.210°°. The other states near the
states are not noticeably shifted when coupled to the C#lfOMO all gave extremely low transmissions, in the order of
contacts. This is due to the length of the DNA compared withl0~ “. However, we find a series of relatively large transmis-
the C chain—the states are much more extended and tH#on peaks for a state just above the LUMO in the conduction
contact provides a relatively smaller perturbation. band(Fig. 8) (LUMO +6). We see that for this state there is
a very large number of combinations of contact orbitals giv-
ing an appreciable transmission, with a maximum value of
0.04, which is reasonably large for transmission in this mol-
We now turn from the short model molecule to the moreecule. This implies that the corresponding wave function is
complex DNA double helix. As with the C chain, we are well distributed over these orbitals. This contrasts with the
interested in the end-to-end transmission. First, we calculatgansmission shown in Fig. 7 for the HOMO state, where
the transmission between two fixed contacts in the bases, aignificant transmission only occurs for a few orbital combi-
either end of the molecule, and vary the energy over theaations.
energy range of the DOS. The results are shown in Fig. 6, To investigate this further we look at the distribution of
and it can immediately be seen that the transmission is vergharge density along the molecule. Figures 9 and 10 show
peaky. Only a few states give appreciable transmission, angthe distribution of charge along the molecule for the HOMO
the maximum transmission is 0.44. The rest of the energynd the LUMOH6, respectively. Comparing the two graphs
range gives transmission too low to register on Fig. 6. Thét can be seen that for the LUMO6 state, the charge is
large transmission peaks arourd.5 a.u. in Fig. 6 lie in the distributed more evenly along the molecule, allowing for
large peak in the DOS below the HOMO. There is a smallelectron transfer along the chain. However for the HOMO
peak near the LUMO at-0.32 a.u. and another slightly state, there are large gaps between regions of high charge
larger one high in the conduction band at 1.33 a.u. Theoretdensity, corresponding to a more localized state, hence, re-
ical and experimental work by de Pabg al*® shows poor  ducing the probability of electron transport from one end of
conductivity for DNA with a random base-pair sequence,the molecule to the other. This is clear why there is such an
consistent with this work. enormous difference in the transmission of the two states
While investigating the transmission through the DNA, (Figs. 7 and 8
we find that the values of transmission, and the energies at The low transmission in this DNA molecule for nearly all
which it is significant, greatly depend on which orbitals areenergies is partly a consequence of the potential barrier

B. X-Ray-Diffraction DNA
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FIG. 7. End-to-end transmission of x-ray-diffraction DNA for all combinations of orbitals in sections 1 and 12 for HOMO.

formed by the AT base paifs,but also of disorder in the LUMO. Figure 11 shows the transmission of the LUMO
molecule. As well as the disorder in the sequence of the base 1 state, for which the maximum transmission is 0.64—this
pairs, there is_ also disorder in the twist and tilt of successivgg comparable to that of the carbon chéfig. 5). This is a
base pairs. Disorder in one-dimensional systems leads to exynsequence of the optimized structure having better orbital
tremely peaky transmission as a function of enéfgyonsis- overlap than the x-ray-diffraction structure, and being less
tent with the results of Fig. 6. disordered. However, the transmission still has huge fluctua-

We now consider the results from our energy—m|n|m|zedtions when varying the contact orbitals. These great changes

molecule of [.)NA' This m0|eCUIe has the same SEAUENCE Jg 44 nsmission in going from the x-ray-diffraction DNA to
the one previously considered. However, the conformation

has been manipulated usimyPERCHEM to yield the mini- the energy-minimizeq structure show hc')w'small changes in
mum potential energy. We consider this model in order tostructure can dramatically affect transmission.

investigate the effect of changes in structure on transmission.
The transmission of the valence states near the HOMO is still
very small, of the order of 10" for all the end-to-end or-
bital combinations, much the same as for the x-ray- The last molecule we investigate is p@B)-poly(C)
diffraction DNA. However, there are several more states withDNA. We have minimized its energy using the Amber force
large transmission in the conduction band, just above théield within HyPERCHEM®® This ordered system, consisting

C. Energy-minimized poly(G)-poly(C) DNA
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FIG. 8. End-to-end transmission of x-ray-diffraction DNA for all combinations of orbitals in sections 1 and 12 for HEMO
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FIG. 9. Distribution of charge density along x-ray-diffraction DNA molecule for HOMO; the atom number describes the position along
the chain.

of the same repeated bases, is known to have greatly indifferences with our work. Adessit al.* in their DFT stud-
proved transmission over mixed base-pair DNA. ies of polyG) DNA without a backbone, find discrete narrow
Fixing the metal-DNA contact orbitals on bases at eitherblocks of complete transmission, presumably a result of the
end of the molecule, and varying the energy at which thdormation of narrow bands due to the infinite structure. The
transmission is calculated, gives us the peaky graph shown ilarge fluctuations in transmission as a function of energy
Fig. 12. It can be seen that there are a number of peaks wittesult from the structure of our system—although the struc-
remarkably good transmission, many more than for theure has been determined by energy minimization it is not
x-ray-diffraction DNA (Fig. 6). However, for nearly all en- completely ordered, leading to the fluctuations, characteristic
ergies the transmission still remains effectively zero, thougtof a one-dimensional disordered systethsSimilar large
there are groups of states around the HOMO and LUMOfluctuations are seen in the work of Rothesing a model
with large transmission between the metal contacts at thelamiltonian to show the effect of temperature on transmis-
ends of the molecule. sion through polyG)-poly(C) DNA. The transmission peaks
The results in Fig. 12 can be compared with previousin our results are very narrow, of the order of £0a.u. in
studies of transmission of pdi@)-poly(C) DNA, all of  width—the peak width comes from the interaction of the
which show peaky transmission, though there are significanDNA with the continuum of states in the electrodes. A recent
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FIG. 10. Distribution of charge density along x-ray-diffraction DNA molecule for LUME, the atom number describes the position
along the chain.
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FIG. 11. End-to-end transmission of energy-minimized DNA for all combinations of orbitals in sections 1 and 12 for-£tUMO

extended Hakel study of (AT), DNA (Ref. 39 gives very and with its much higher transmission for states near both
small transmission, again peaky, but with broader peaks thaifie HOMO and LUMO, will be a much better electrical con-
we find. This is a consequence, we believe, of their multi-ductor. This is in agreement with previous theoretical work
orbital contacts between the metal and the DNA molecule. and experiment!
Once again we study the effect of contact orbitals on the
transmission of our molecule. For several states near the
HOMO, many orbital combinations give almost complete
transmission. Figure 13 shows the transmission for the The embedding method we have used in this work effi-
HOMO-2 state at energy-0.4368 a.u., with a maximum ciently produces the electronic structure of DNA molecules
transmission of 0.96, compared with 10for the peak trans-  within a tight-binding scheme. We have also shown how
mission shown in Fig. 7 for the x-ray-diffraction DNA. How- transmission and conductance can be calculated within the
ever, we see for Fig. 13 that again there is an extreme desame scheme. Our results show that the transmission through
pendence on orbital combination, and the same holds fothe DNA molecules has a very peaky energy dependence,
states near the LUMO. and is also extremely sensitive to the choice of contact or-
It is clear from our results that pal§)-poly(C) DNA has  bital. This energy dependence means that experiments which
completely different behavior from the mixed base DNA, measure the conductance of DNA will show a non-uniform

VII. CONCLUSIONS
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FIG. 12. End-to-end transmission of p@B)-poly(C) DNA for varying energy.
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FIG. 13. End-to-end transmission of paB)-poly(C) DNA for all combinations of orbitals in sections 1 and 12 for HOMO-2.

increase in current, as the potential across the molecule

{gared with the typical vibrational frequencies. The width of

increased, and more transmission states are included in tlir transmission peaks, coming from the coupling of the

conduction proceskEq. (23)]. This indeed seems to be the
caser®

molecule to the continuum of states in the electrodes, corre-
sponds via the uncertainty principle tht=6x10 *?s;

The transmission increases when we energy-minimize thehether this is relevant to the dwell time for compar_ir119 with
system by increasing the overlap between orbitals and reduébe period of the important twist mode of 18-10"*s
ing disorder, allowing electrons to move more freely through(Ref. 52 is the subject of debafé.

the molecule. We also find pdi@)-poly(C) to be a much

better electrical conductor than mixed base DNA, with maxi-

mum transmission similar to that of a short carbon chain
The importance of base sequence on conduction has be
reported by Hjort and Stafstno'® and an explanation for the
improved conduction of poly)-poly(C) has been given by
Dekker and Ratnék—an AT base pair acts as a potential
barrier, reducing conduction.

These calculations correspond to coherent transport at
=0 K, with no dynamic fluctuations of the molecule and
neglecting inelastic and vibronic effects in the
transmissiof® The validity of this approach will depend on

In the future we will be applying this method to investi-
gate the effect of order and sequence more thoroughly on the
conductance of DNA. We intend to replace the extended

Lickel theory with the more rigorous treatment of self-
consistent DFT in a local basis set. After further develop-
ments in methodology we will also tackle different biological
molecules, such as cytochrome and ol@@nylene ethy-

n

ylene.
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