
PHYSICAL REVIEW B 69, 195110 ~2004!
Embedding method for conductance of DNA
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Using a technique based on embedding in a local-orbital formalism, the electronic structure and electron
transmission properties of long biological molecules may be calculated. The electronic structure is found by
adding one structural unit at a time to the molecule, and calculating an embedding potential for adding the next
structural unit. At present an extended Hu¨ckel scheme is used to evaluate the matrix elements. The transmis-
sion is also calculated within the embedding scheme, taking the molecule-metal contacts into account. Results
for the density of states and transmission are presented for several structures of DNA. The transmission is
highly energy dependent, and is also greatly influenced by the orbitals to which contact is made. The impli-
cations of these calculations for conductance are discussed.
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I. INTRODUCTION

There is much interest at the moment in the possibility
using biological molecules as electrical conductors, for
ample, DNA as a molecular wire.1 The hope is to take ad
vantage of the self-assembling properties of these molecu
which may allow for the production of electronic devices
the nanometer scale. Electron transport is related to elec
transfer2—this is very important in many biological pro
cesses, such as photosynthesis,3 respiration4 and oxidative
damage.5 Further work is needed in this field to fully unde
stand the processes involved.

We have chosen to begin our study of large molecu
with a treatment of DNA. Eley and Spivey6 were the first to
suggest that DNA could be a conductor more than 40 ye
ago. However, the debate about the conductive propertie
DNA still rages on. Some experiments have shown that D
is an insulator,7 while others suggest that it can be a go
linear conductor,8 or a wide-band-gap semiconductor.1 Some
published data even claim that DNA can superconduct.9 It is
clear that further work is required in this area to reso
many differences in both the theoretical and experime
results and, in particular, to study the relationship betw
structure and conductance.

The DNA double helix is formed of two twisting, hydro
philic, sugar-phosphate backbones. Attached to each s
unit along the backbone is a hydrophobic base unit~adenine,
guanine, cytosine, thymine!, which is roughly perpendicula
to the axis of the helix. The two strands are bound toget
by hydrogen bonds between the bases. These bases
complimentary pairs—an adenine base will always bo
with a thymine and a cytosine base will always bond with
guanine.

It is generally believed that the pathway for electr
transport runs through the bases in the center of the dou
helix molecule.6 It has been suggested that delocalizedp
orbitals in consecutive bases overlap to form a channel
the movement of electrons through the center of
molecule.6 Several models have been proposed for the tra
port of carriers through the base-pair sequence—the do
nant mechanisms in the case of DNA are coherent trans
via extended molecular orbitals, and thermal hopping. In
0163-1829/2004/69~19!/195110~13!/$22.50 69 1951
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case of coherent transport, the carriers may tunnel thro
the potential barrier formed by certain base pairs, leading
an exponential decay of transmission with distance.10 Ther-
mal hopping is an incoherent mechanism in which the el
tron moves in a series of thermally activated steps betw
localized orbitals along the molecule. Over large distan
the thermal hopping mechanism dominates over cohe
tunneling.11 In this work we have not considered the effect
phonon interactions, therefore we only consider coher
electron transfer processes.

Extensive work has been done in this area, using a var
of approaches. Much of the work involves using mod
Hamiltonians to describe the molecule, including the work
Cuniberti et al.12 who study the origin of an energy gap i
the I -V characteristics of poly~G!-poly~C! DNA. Roche13

also uses a model Hamiltonian to study the effect of b
sequence, temperature, and length on transmission thro
the molecule. Hartree-Fock or density-functional theory p
vides a framework for treating the electronic structure of
molecule self-consistently. Amongst such studies is the w
of Adessiet al.14 who consider the effect of environment an
structure on DNA conduction, while Hjort and Stafstro¨m15

use a self-consistent approach to study poly~G!-poly~C!
DNA, including temperature-induced disorder, and fi
temperature-dependent semiconducting behavior. A gen
framework for studying nonequilibrium processes se
consistently has been given by Damleet al.16 and Xue
et al.17

Fundamental to all the models of electron transport is
nature of the one-electron states and the role of transmis
through these states. In this paper we present techniq
based on the embedding method,18 for calculating the one-
electron properties of large molecules. The embedd
method is used to partition the molecule into convenient s
units, each of which is treated separately, but with their m
tual interaction fully included via the embedding potenti
The interaction of the molecule with the contacts is a
treated in this way, which turns out to be identical to t
self-energy methods widely used in electron trans
calculations.19–21Embedding is described in Sec. II. Our ca
culations are done within a nonorthogonal, localized orb
formalism, given in Sec. III, and at this stage we use
©2004 The American Physical Society10-1
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extended Hu¨ckel method for determining the matrix ele
ments. The extended Hu¨ckel method has been extensive
used to describe the electronic structure of la
molecules,12,14,22but it is relatively straightforward to apply
our formalism in a self-consistent method. The methods
use for calculating transmission and conductance are
scribed in Sec. V, and results are given in Sec. VI for seve
structures of DNA. The efficiency of our method has enab
us to study the effect of many different contact geometries
transmission, and we shall describe the relationship betw
transmission and electronic structure. Our method is b
flexible and efficient, scaling linearly with the size of th
molecule, and with only minor changes it can be used
perform electronic structure calculations for many differe
types of biological molecules.

In this paper we use Hartree atomic units~a.u.!, in which
1 a.u. of energy is 27.21 eV and 1 a.u. of length is 0.529

II. GROWING MOLECULES BY EMBEDDING

Embedding was developed as a way of solving the Sch¨-
dinger equation in large systems that can be subdivided
smaller units.18 An embedding potential, added onto th
Hamiltonian for part of the system, allows the Schro¨dinger
equation to be solved for just this part, with the wave fun
tions correctly matched onto the surroundings. The met
was originally used to calculate electronic structure of s
faces and interfaces, within a plane-wave basis set. In
paper, we develop a method of embedding using a tig
binding formalism that can be applied to large molecul
Tight-binding embedding uses Dyson’s equation and Gre
functions~GF! to find the embedding potential. We can th
treat the molecule as a series of sections, adding a secti
a time to build up the entire chain, embedding as we
along. This method has the advantage that the computati
time for solving the Schro¨dinger equation scales linearl
with the size of the system, unlike traditional methods t
scale asO(N3). There are other order-N methods for solving
these sorts of problems, such as the localized orbi
method,23 and density-matrix methods;24 however, our
method directly yields the GF and seems well suited
conductance problems. The ability to perform order-N calcu-
lations allows us to treat larger systems than would otherw
be feasible. An analogous method to ours was applied
Crampinet al.25 to ‘‘grow’’ large interface systems, addin
atomic layer by atomic layer.

A schematic diagram of embedding one Sec. of the m
ecule onto another is shown in Fig. 1. What we aim to do
to find a term to be added to the Hamiltonian of each sect
which replaces the effect of the rest of the system. Figur
shows three sections–in the case of DNA we split the
base-pair molecule into 12 such sections, each containi
base pair plus the associated sugar-phosphate backbone
shaded areas in Fig. 1 represent the regions of each secti
which orbital overlap occurs, within some cutoff~this is
taken to be 8 a.u. in our extended Hu¨ckel calculation!. Let us
assume that we have already calculated the GF for sectio
we can now find an embedding potential for section 2 wh
contains all the interactions with 1. From the GF for sect
19511
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2 embedded onto 1 we can find an embedding potential fo
onto 2, allowing us to find the GF for 3 embedded onto t
entire system to the left, and so on.

To find the embedding potential in a tight-binding syste
we use Dyson’s equation. The GF of an unperturbed sys
is given by

~H2ES!G05I , ~1!

whereE is the energy, andH andS are the Hamiltonian and
overlap matrices, respectively. When we include a pertur
tion d to the system the equation becomes

~H1d2ES!G5I . ~2!

Let us first consider embedding section 2 onto section 1
the left, in which case the unperturbed Hamiltonian matrix
the two sections consists ofH11 andH22, which do not in-
teract with each other. The two sections are coupled toge
by H12,H21 from the interacting region represented by th
shaded region in Fig. 1, and we treat these as the perturba
d.

If we multiply Eq. ~1! with G and multiply Eq.~2! with
G0, and then subtract these two equations, we obtain D
on’s equation,

G5G02G0dG. ~3!

Expanding Eq.~3! gives

G5G02G0dG01G0dG0dG. ~4!

Applying Eq. ~4! directly to our problem we obtain

G̃225G22
0 1G22

0 d21G11
0 d12G̃22, ~5!

whereG̃ is the GF of a section embedded only on the le
andG11

0 is the unperturbed GF in section 1. The second te
in Eq. ~4! goes to zero sinceG12

0 is zero, because there are n
links between regions 1 and 2 in the unperturbed syst
Comparing Eq.~5! with Eq. ~3! we can see that the series
the same as if we take the perturbationd in Eq. ~3! to be
2d21G11

0 d12 acting entirely within the space of region 2
Hence, we take the perturbation to be given by

S l
252~H212ES21!G11

0 ~H122ES12!, ~6!

FIG. 1. Schematic representation showing three sections of
DNA molecule, with embedding potentialsS l andS r which embed
to the left and right.
0-2
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EMBEDDING METHOD FOR CONDUCTANCE OF DNA PHYSICAL REVIEW B69, 195110 ~2004!
which is the embedding potential, embedding section 2 o
1. The overlap matrixS in Eq. ~6! has to be taken into ac
count due to the nonorthogonality of the basis set. This p
turbation is then added to the unperturbed Hamiltonian m
trix of section 2 to give an effective Hamiltonian,Heff , and
then the GF for this section, embedded to the left, can
calculated from

G̃225~Heff2ES!21. ~7!

We note that our result~6! for the embedding potential ha
been given previously,14 described as a self-energy.

In this way we proceed to build up the chain from left
right so that the interaction between sections 2 and 3 is g
by

S l
352~H322ES32!G̃22~H232ES23!. ~8!

Using G̃22 in Eq. ~8! includes the effects of all the previou
sections. Once we have finished adding units to the right,
have obtained the GF for each subunit with the effect of
the sections to the left accounted for. We now repeat
above process, but this time building up the molecule fr
right to left, so that

S r
252~H232ES23!G33

0 ~H322ES32! ~9!

and

S r
152~H122ES12!Ḡ22~H212ES21!, ~10!

whereḠ is the GF of a section embedded on the right. On
we have finished adding subunits to the left, we now ha
the left and right embedding potentials for all sections.
then simply add these embedding potentials to the un
turbed Hamiltonian for each section, and in this way we
able to calculate the GF for each section of DNA, no ma
where it lies in the chain, with the effect of all the oth
sections in the molecule taken into account.

This gives us a method of obtaining the GF, which sca
linearly with the size of the system. Our method can be
plied directly to all molecules that have a linear sequen
with the assumption that only neighboring sections have
rect orbital overlap. This method of ‘‘growing’’ molecule
can be related to methods of diagonalizing tridiagonal blo
matrices.26 In Sec. V we describe how we embed metal co
tacts onto the molecule in the same way. Of course, m
biological molecules such as proteins, though of underly
linear structure, are folded back on themselves. We inten
work on including the extra interactions which this foldin
causes.

III. THEORETICAL MODEL

The molecules of DNA we investigate are 12 base-p
long, consisting of 760–780 atoms, and we include all of
base and backbone atoms in our model. These fairly la
molecules have been studied previously using first-princip
methods, such as density-functional theory27,28 and quantum
chemistry techniques.29 However, for simplicity we use a
tight-binding formalism to represent the electronic wa
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functions, which is a more approximate, but quicker, meth
of solving the Schro¨dinger equation. This will allow us
greater flexibility for testing our embedding method a
readily exploring the effect of structure and molecule-me
contact on transmission and conductance.

In the tight-binding method the wave functions are e
panded in terms of a linear combination of localized orbita
taken to be atomiclike functionsx i , centered on each atom
in the system,

cn~r !5(
i

cn,ix i~r !. ~11!

As the atomic orbitals on one site are not orthogonal to
orbitals on other sites, we have a nonunit overlap matriS
giving the secular equation for the eigenvaluesEn of the
form

uHi j 2EnSi j u50, ~12!

where the Hamiltonian matrix elements are given by

Hi j 5E drx i* ~r !Hx j~r ! ~13!

and the overlap matrix elements are given by

Si j 5E drx i* ~r !x j~r !. ~14!

Such a localized orbital basis set can be used in a fi
principles approach, but the method we choose to use is
semiempirical extended Hu¨ckel theory, in whichHi j is pro-
portional toSi j .30 The basis functions in Eq.~14! are taken
as Slater orbitals with parameters taken from the literatur31

and the Hu¨ckel parameters relatingH to Sare taken from the
work of Cerda.32 Extended Hu¨ckel was mainly chosen due t
its simplicity, which is advantageous when considering la
molecules, but it is well established in its application to
wide range of organic molecules.33–35

In this paper we present calculations performed on th
DNA molecules. The first is a 12 base-pairB-DNA molecule,
d~CGTAGATCTACG!. The spatial coordinates of the atom
were obtained from single-crystal x-ray-diffraction expe
ments, performed at 15 °C with 2.25 Å resolution.36 Hydro-
gen atoms were then added using the computer prog
VIEWERLITE,37 as H atoms are not detected by x-ra
diffraction experiments.

To investigate the effects of a more ordered structure
DNA, the second molecule we choose to study has the s
12 base-pair sequence as the first molecule. However, ins
of using the x-ray-diffraction structure, the new molecule
constructed using the computer packageHYPERCHEM,38 in
which the Amber force field is used to produce the struct
with a minimum energy. In the minimization, the Coulom
interactions between the atoms were modeled to fall off
1/r 2 rather than 1/r to simulate the screening effect of
solvent.

The last molecule we investigate is poly~G!-poly~C!
DNA, since both experiment1 and theory15 suggest that this
sequence of base-pairs gives the highest conductivity.
0-3
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O. R. DAVIES AND J. E. INGLESFIELD PHYSICAL REVIEW B69, 195110 ~2004!
again useHYPERCHEM as before to simulate a 12 base-p
molecule of poly~G!-poly~C! DNA and minimize its energy
with the Amber force field.

IV. DENSITY OF STATES

A. Embedding approach

The density of states~DOS! is the most basic quantity o
electronic structure, and is fundamental for determining
properties of a material. We now show how it can be cal
lated in our tight-binding embedding formalism.

The DOS is given by

N~E!5(
n

d~E2En!, ~15!

wheren runs over all the states in the system. We can re
this to the full GFG(r,r 8;E) using

N~E!5
1

pE dr Im G~r,r ;E1 i e!. ~16!

ExpandingG in terms of the basis functions we have

G~r ,r ;E!5(
i , j

Gi j ~E!x i~r !x j~r !, ~17!

and substituting Eq.~17! into Eq. ~16! gives the DOS as

N~E!5
1

p
Im Tr~GS!. ~18!

The trace of this product matrix can be written as

Tr~GS!5 (
(n,i ),(m, j )

G(n,i ),(m, j )S(m, j ),(n,i ) , ~19!

wheren andm label neighboring sections of DNA~as in Fig.
1!, with i and j labeling the orbitals inn andm, respectively.
The sum in Eq.~19! runs over all sections. However, the
are only contributions to the sum whenm5n,(n21), or
(n11), due to the short range of the overlap. Therefore,
can rewrite the trace as

Tr~GS!5(
n

S (
i , j ;m5n

G(n,i ),(m, j )S(m, j ),(n,i )

1 (
i , j ;m5n21

G(n,i ),(m, j )S(m, j ),(n,i )

1 (
i , j ;m5n11

G(n,i ),(m, j )S(m, j ),(n,i )D , ~20!

wherei is an orbital in sectionn andj is an orbital in section
m.

We find the first term in Eq.~20! directly from our em-
bedding procedure~section 2!. In the second term
G(n,i ),(m, j ) , which is the GF between orbitals in one secti
with those in the preceding section, can be derived us
Dyson’s equation, and is given by
19511
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G(n,i ),(m, j )52( G̃(n,i ),(n,k)d (n,k)(m,l )G(m,l ),(m, j ) , ~21!

whered (n,k)(m,l ) in Eq. ~21! is given by

d (n,k)(m,l )5H (n,k)(m,l )2ES(n,k)(m,l ) . ~22!

G̃(n,i ),(n,k) is the GF of thenth section embedded only on th
left.

The third term in Eq.~20! counts the contributions be
tween the current section and the next. However, these s
contributions have already been calculated whenm5n21,
therefore we need not calculate them again and can sim
drop the third term in Eq.~20!, multiplying the second term
by a factor of 2.

In this way, the total DOS of the molecule can be calc
lated by inverting and diagonalizing the Hamiltonian a
overlap matrices for each section, without having to inv
the Hamiltonian matrix of the entire molecule.

B. Density of states of DNA

We now apply this method to calculate the DOS of t
different structures of DNA. In our calculation the overla
between orbitals is cut off beyond 8 a.u., and there is o
significant overlap between neighboring sections, due to
localization of the Slater-type orbitals. A small imagina
part of 0.005 a.u. is added to the energy, broadening thd
functions that represent the discrete electronic states of
molecule @Eq. ~15!#. The results for DNA taken from the
x-ray structure are shown in Fig. 2; the DOS of the ener
minimized structure of this molecule is essentially the sam
and therefore not given. The DOS of poly~G!-poly~C! DNA
is plotted in Fig. 3.

For the x-ray-diffraction DNA, we calculate the energ
of the highest occupied molecular orbital~HOMO! to be
20.43 a.u., and the lowest unoccupied molecular orb
~LUMO! to be at20.32 a.u., giving a band gap of 0.11 a.
When considering the transport properties of the molec
the most important states are those on either side of the b
gap, as these will dominate conduction through the molec
in the limit of small applied voltages. We find that states ne
the HOMO and LUMO are all located on atoms in the bas
in agreement with the generally accepted theory that cond
tion through DNA occurs via thep orbitals in the bases.14

Comparing the DOS for the poly~G!-poly~C! DNA mol-
ecule shown in Fig. 3 with the results for the x-ra
diffraction DNA with different base pairs, Fig. 2, it can b
seen that the results are surprisingly similar, with only min
changes in the fine detail. The band gap remains 0.11 a.u~3
eV!.

Most literature values for the band gap of poly~G!-
poly~C! DNA vary between 1.12 eV and 3.2 eV for a varie
of methods.13,15,39,40We conclude therefore that our value
3 eV for the band gap agrees very well with published da

The band gap we calculate for a single GC pair is actua
the same as for the whole molecule. This contrasts with
density-functional theory ~DFT! calculations of Lewis
et al.40 who find a band gap of 3.37 eV for a single G
section, and a narrower band gap of 1.40 eV for a ten-b
0-4
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FIG. 2. DOS of mixed base DNA dodecamer obtained from x-ray-diffraction structure. HOMO is at20.43 a.u. and LUMO at
20.32 a.u.
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system. So, although our results compare very well for
single-base case, we do not find the same band gap nar
ing when the whole molecule is considered. Lewiset al.also
report a valence-band width of 1.1 a.u. in good agreem
with our result of 0.9 a.u. Their conduction-band width
smaller by a factor of 2, an effect in extended Hu¨ckel theory
that we have also encountered when dealing with small m
ecules. Apart from this discrepancy, the overall DOS in
extended Hu¨ckel scheme is in relatively good agreement.

V. CONDUCTANCE AND TRANSMISSION

A. Green’s functions and transmission

There has been a great deal of theoretical work perform
on calculating the conductance of microscopic systems s
19511
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as molecules. This shows that the conductance can be fo
lated in terms of the transmission coefficientsTi j between
electron channelsi, j in the contacts at each end of th
molecule.41 These channels usually correspond to the in
dent and transmitted Bloch states at a particular energy. If
consider electrons incident on the molecule from each s
the current in each channel contains velocity and DOS f
tors which cancel out, giving the net current as

I 5
e

hEEF ,l

EF ,r

T~E!dE, ~23!

where the integral is between the Fermi energies in the
and right contacts, andT is the transmission summed over a
left and right channels,T5( i , jTi j .41 In the limit of small
FIG. 3. DOS for poly~G!-poly~C! DNA dodecamer. HOMO is at20.43 a.u. and LUMO at20.32 a.u.
0-5
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O. R. DAVIES AND J. E. INGLESFIELD PHYSICAL REVIEW B69, 195110 ~2004!
voltages V across the molecule, taking the difference
Fermi functions, and dividing byV, gives the Landauer
Büttiker formula for the conductance,

G5
e2

h
T~EF!. ~24!

The total transmission is evaluated at the Fermi energy
can be written concisely in terms of the GF between
contacts as42,43

T54 Tr~Ĝlr Im S r Ĝrl* Im S l !. ~25!

Here,Ĝlr is the GF for the molecule connected to the co
tacts, between the left-hand and right-hand contacting or
als; S l and S r are the embedding potentials which coup
these orbitals to the corresponding contacts. The trace
tains the sums over channels, and as this is independe
representation, we need not worry about the explicit form
the channels. This result has been known in a local-orb
representation for several years,44,45 though, as we remarke
in Sec. II, in this contextS is usually called the self-energy.14

This is exactly the same as our embedding potential.
Recently, the same result has been derived and used i

framework of embedding theory, in which the embeddi
potential is defined over an embedding plane separating
embedded region from the substrate.42 It can be used to find
for example, the conductance of an interface between me
ThenĜlr is the GF for the whole system between the left a
right embedding planes, andS l /r are the embedding poten
tials on those planes. This was applied by Wortmannet al.42

to study spin-polarized transmission through a ferromagn
Co monolayer sandwiched between Cu.

B. Embedding approach to transmission

In this preliminary application we couple a single orbit
on the DNA to a single orbital on the metallic contact. Th
means that there is only one channel available for transm
sion at each end of the molecule. This is an approximatio
the usual experimental arrangement where the metal-D
contact extends over several orbitals,8 but the extension to
multi-orbital contact is straightforward. However, we no
that single-atom contact experiments are indeed possible
shown in the work of Agraı¨t et al.46 This makes our assump
tion of a single contact orbital more plausible.

If we are to calculate the transmission between two or
als using Eq.~25!, we must first find the GFĜlr linking these
orbitals, which may be located anywhere on the DNA cha
The GF coupling the two orbitals embedded onto the lea
Ĝlr , can be derived from Dyson’s equation,

Ĝlr 5Glr 2Gll S l Ĝlr 2Glr S r Ĝrr . ~26!

HereGlr is the unperturbed GF linking orbitall to orbital r,
without the metal contacts.S l and S r are the embedding
potentials linking the left and right metal reservoirs to t
molecule on these orbitals. However, we do not know
quantityĜrr , which is the GF of the right-hand orbital con
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nected to the metal contact. We can, however, writeĜrr in
terms of other quantities that we do know,

Ĝrr 5Grr 2Grl S l Ĝlr 2Grr S r Ĝrr . ~27!

Rearranging Eq.~27! for Ĝrr and substituting into Eq.~26!
we obtain the GF linking the two orbitals as

Ĝlr 5@11Gll S l2Glr S r~11Grr S r !
21Grl S l #

21

3@Glr 2Glr S r~11Grr S r !
21Grr #. ~28!

This GF formula takes into account the effect of the me
contacts on both ends of the molecule. This effect has a
been included in the work of Cunibertiet al.12 and Damle
et al.,16 though in a somewhat different form. In our mod
we choose to use two Cu reservoirs to make contact with
DNA molecule. The embedding potentialS l , Eq. ~6!, em-
bedding the molecule onto the left reservoir is given by

S l52~Hl Cu2ESlCu!GCuCu
0 ~HCul2ESCul !, ~29!

whereGCuCu
0 is the unperturbed GF in the left Cu lead, wi

a similar expression forS r .
Equation ~28! may be used immediately to describe

multiorbital contact between the metal and the molecule
which case the GF’s and embedding potentials are given
matrices. However, for simplicity we consider a single Cus
orbital, which makes contact with a single orbital on t
DNA molecule. This single contact between the metal a
molecule allows for only one conduction channel in and o
of the molecule. The coupling terms in Eq.~29! are evaluated
using the extended Hu¨ckel method, assuming realistic Cu
molecule distances,47 but with an arbitrary angle between th
molecule and the Cu surface. To describe the Cu contac
use a full electronic structure calculation for the surface
semi-infinite Cu~001!. This uses the embedded linearize
augmented plane-wave method,48 which gives very accurate
results for the density of states on the surface atoms.

As we are using only a single Cus orbital at this stage of
our treatment of the metal-molecule contact, we project
total surface density of states of the Cu onto the orbi
From this, the imaginary part of the GF is given by

Im GCuCu
0 ~E!5pnCu~E!, ~30!

wherenCu is the total surface density of states on the Cus
orbital. The real part of the GF can then be found from t
Kramers-Kronig relation, and is given by

ReGCuCu
0 ~E!5E

2`

`

dE8
nCu~E8!

E82E
. ~31!

The GFGCuCu
0 is evaluated at the Fermi energy of Cu, a

we use this value to determineS l , S r , Ĝlr , and hence the
transmission of the molecule over the energy range of
molecular DOS.
0-6
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FIG. 4. End-to-end transmission~solid line! and scaled DOS~dashed line! of a chain of 12 carbon atoms.
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VI. TRANSMISSION RESULTS

A. Carbon chain

Before applying our embedding method to DNA, we te
it on a model system of a linear chain of 12 C atoms align
along thex direction, spaced by 1.53 Å. A Cu reservoir
attached to thepx orbitals on either end of the chain, and th
total end-to-end transmission of the carbon chain is ca
lated as a function of energy. We choose this simple sys
to test our method because we know that the orbitals
overlap well to give good transmission. The results
shown in Fig. 4, along with the DOS of the C chain u
coupled to the Cu contacts. The DOS was calculated with
imaginary part of 0.005 a.u. added to the energy to broa
the discrete states. It can be seen that the transmission is
peaky, with only a few states contributing to the conducta
19511
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e

between the end atoms. The maximum possible total tra
mission in this case is 1, as there is only one channel at in
and output, and it can be seen from Fig. 4 that the transm
sion through the carbon chain at the peak energies is v
close to 1. This is as we would expect, since we have id
tical px orbitals aligned along the chain, providing a goo
pathway for conduction, with no reflection within the chai

It can be seen from Fig. 4 that there are fewer transm
sion peaks than DOS peaks—this happens since transmis
is only appreciable at energies that correspond to those w
functions extending from one end of the chain to the oth
with appreciable weight at each end.

When we compare the transmission peaks with the D
peaks in Fig. 4, we see that they do not align. However
Fig. 5 the same transmission peaks are shown to line
exactly with the total density of states when we include
oir.
FIG. 5. End-to-end transmission~solid line!, and scaled total DOS~dashed line! of a chain of 12 carbon atoms attached to Cu reserv
0-7
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FIG. 6. End-to-end transmission of x-ray-diffraction DNA for varying energy.
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effects of the Cu reservoirs. This energy shift of the state
a result of the coupling of the Cu contacts with the C cha
via Eq.~28!. Different states are shifted by varying amoun
and it can be seen that the shift is the largest in the middl
the conduction band, near 0.5 a.u. Also, we note that
more a state is shifted, the wider the transmission peak,
to the interaction with the Cu contact. This example sho
that the effects of the metal contacts must be taken into
count when describing the relationship between the DOS
the transmission of relatively short molecules. On the ot
hand, while investigating the DOS of DNA we find th
states are not noticeably shifted when coupled to the
contacts. This is due to the length of the DNA compared w
the C chain—the states are much more extended and
contact provides a relatively smaller perturbation.

B. X-Ray-Diffraction DNA

We now turn from the short model molecule to the mo
complex DNA double helix. As with the C chain, we a
interested in the end-to-end transmission. First, we calcu
the transmission between two fixed contacts in the base
either end of the molecule, and vary the energy over
energy range of the DOS. The results are shown in Fig
and it can immediately be seen that the transmission is v
peaky. Only a few states give appreciable transmission,
the maximum transmission is 0.44. The rest of the ene
range gives transmission too low to register on Fig. 6. T
large transmission peaks around20.5 a.u. in Fig. 6 lie in the
large peak in the DOS below the HOMO. There is a sm
peak near the LUMO at20.32 a.u. and another slightl
larger one high in the conduction band at 1.33 a.u. Theo
ical and experimental work by de Pabloet al.49 shows poor
conductivity for DNA with a random base-pair sequenc
consistent with this work.

While investigating the transmission through the DN
we find that the values of transmission, and the energie
which it is significant, greatly depend on which orbitals a
19511
is
,
,
of
e

ue
s
c-
d
r

u
h
he

te
at
e
6,
ry
nd
y
e

ll

t-

,

,
at

attached to the Cu contacts—this effect is also seen b
experimentally by Kushmericket al.33 and theoretically by
Damleet al.16 In order to investigate the contact orbital d
pendence, we fix the energy at that of a particular state
calculate the transmission between all 32 000 combinati
of orbitals in the two end sections of the molecule.

We apply this to states near the band gap, which are
most important for conduction.14 In Fig. 7 the transmission
of the HOMO state is investigated, and we see that the tra
mission is very small for all orbital combinations, with
maximum value of 2.231026. The other states near th
HOMO all gave extremely low transmissions, in the order
10214. However, we find a series of relatively large transm
sion peaks for a state just above the LUMO in the conduct
band~Fig. 8! (LUMO16). We see that for this state there
a very large number of combinations of contact orbitals g
ing an appreciable transmission, with a maximum value
0.04, which is reasonably large for transmission in this m
ecule. This implies that the corresponding wave function
well distributed over these orbitals. This contrasts with t
transmission shown in Fig. 7 for the HOMO state, whe
significant transmission only occurs for a few orbital com
nations.

To investigate this further we look at the distribution
charge density along the molecule. Figures 9 and 10 sh
the distribution of charge along the molecule for the HOM
and the LUMO16, respectively. Comparing the two graph
it can be seen that for the LUMO16 state, the charge is
distributed more evenly along the molecule, allowing f
electron transfer along the chain. However for the HOM
state, there are large gaps between regions of high ch
density, corresponding to a more localized state, hence
ducing the probability of electron transport from one end
the molecule to the other. This is clear why there is such
enormous difference in the transmission of the two sta
~Figs. 7 and 8!.

The low transmission in this DNA molecule for nearly a
energies is partly a consequence of the potential bar
0-8
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FIG. 7. End-to-end transmission of x-ray-diffraction DNA for all combinations of orbitals in sections 1 and 12 for HOMO.
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formed by the AT base pairs,11 but also of disorder in the
molecule. As well as the disorder in the sequence of the b
pairs, there is also disorder in the twist and tilt of success
base pairs. Disorder in one-dimensional systems leads to
tremely peaky transmission as a function of energy,50 consis-
tent with the results of Fig. 6.

We now consider the results from our energy-minimiz
molecule of DNA. This molecule has the same sequenc
the one previously considered. However, the conforma
has been manipulated usingHYPERCHEM to yield the mini-
mum potential energy. We consider this model in order
investigate the effect of changes in structure on transmiss
The transmission of the valence states near the HOMO is
very small, of the order of 10212 for all the end-to-end or-
bital combinations, much the same as for the x-ra
diffraction DNA. However, there are several more states w
large transmission in the conduction band, just above
19511
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LUMO. Figure 11 shows the transmission of the LUM
11 state, for which the maximum transmission is 0.64—t
is comparable to that of the carbon chain~Fig. 5!. This is a
consequence of the optimized structure having better orb
overlap than the x-ray-diffraction structure, and being le
disordered. However, the transmission still has huge fluc
tions when varying the contact orbitals. These great chan
in transmission in going from the x-ray-diffraction DNA t
the energy-minimized structure show how small changes
structure can dramatically affect transmission.

C. Energy-minimized poly„G…-poly„C… DNA

The last molecule we investigate is poly~G!-poly~C!
DNA. We have minimized its energy using the Amber for
field within HYPERCHEM.38 This ordered system, consistin
FIG. 8. End-to-end transmission of x-ray-diffraction DNA for all combinations of orbitals in sections 1 and 12 for LUMO16.
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FIG. 9. Distribution of charge density along x-ray-diffraction DNA molecule for HOMO; the atom number describes the position
the chain.
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of the same repeated bases, is known to have greatly
proved transmission over mixed base-pair DNA.49

Fixing the metal-DNA contact orbitals on bases at eith
end of the molecule, and varying the energy at which
transmission is calculated, gives us the peaky graph show
Fig. 12. It can be seen that there are a number of peaks
remarkably good transmission, many more than for
x-ray-diffraction DNA ~Fig. 6!. However, for nearly all en-
ergies the transmission still remains effectively zero, thou
there are groups of states around the HOMO and LUM
with large transmission between the metal contacts at
ends of the molecule.

The results in Fig. 12 can be compared with previo
studies of transmission of poly~G!-poly~C! DNA, all of
which show peaky transmission, though there are signific
19511
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nt

differences with our work. Adessiet al.,14 in their DFT stud-
ies of poly~G! DNA without a backbone, find discrete narro
blocks of complete transmission, presumably a result of
formation of narrow bands due to the infinite structure. T
large fluctuations in transmission as a function of ene
result from the structure of our system—although the str
ture has been determined by energy minimization it is
completely ordered, leading to the fluctuations, characteri
of a one-dimensional disordered systems.50 Similar large
fluctuations are seen in the work of Roche13 using a model
Hamiltonian to show the effect of temperature on transm
sion through poly~G!-poly~C! DNA. The transmission peak
in our results are very narrow, of the order of 1026 a.u. in
width—the peak width comes from the interaction of t
DNA with the continuum of states in the electrodes. A rece
on
FIG. 10. Distribution of charge density along x-ray-diffraction DNA molecule for LUMO16; the atom number describes the positi
along the chain.
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FIG. 11. End-to-end transmission of energy-minimized DNA for all combinations of orbitals in sections 1 and 12 for LUMO11.
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extended Hu¨ckel study of (AT)12 DNA ~Ref. 34! gives very
small transmission, again peaky, but with broader peaks
we find. This is a consequence, we believe, of their mu
orbital contacts between the metal and the DNA molecul

Once again we study the effect of contact orbitals on
transmission of our molecule. For several states near
HOMO, many orbital combinations give almost comple
transmission. Figure 13 shows the transmission for
HOMO-2 state at energy20.4368 a.u., with a maximum
transmission of 0.96, compared with 1026 for the peak trans-
mission shown in Fig. 7 for the x-ray-diffraction DNA. How
ever, we see for Fig. 13 that again there is an extreme
pendence on orbital combination, and the same holds
states near the LUMO.

It is clear from our results that poly~G!-poly~C! DNA has
completely different behavior from the mixed base DN
19511
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and with its much higher transmission for states near b
the HOMO and LUMO, will be a much better electrical co
ductor. This is in agreement with previous theoretical wor15

and experiment.51

VII. CONCLUSIONS

The embedding method we have used in this work e
ciently produces the electronic structure of DNA molecu
within a tight-binding scheme. We have also shown h
transmission and conductance can be calculated within
same scheme. Our results show that the transmission thro
the DNA molecules has a very peaky energy depende
and is also extremely sensitive to the choice of contact
bital. This energy dependence means that experiments w
measure the conductance of DNA will show a non-unifo
FIG. 12. End-to-end transmission of poly~G!-poly~C! DNA for varying energy.
0-11



O. R. DAVIES AND J. E. INGLESFIELD PHYSICAL REVIEW B69, 195110 ~2004!
FIG. 13. End-to-end transmission of poly~G!-poly~C! DNA for all combinations of orbitals in sections 1 and 12 for HOMO-2.
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increase in current, as the potential across the molecu
increased, and more transmission states are included in
conduction process@Eq. ~23!#. This indeed seems to be th
case.15

The transmission increases when we energy-minimize
system by increasing the overlap between orbitals and re
ing disorder, allowing electrons to move more freely throu
the molecule. We also find poly~G!-poly~C! to be a much
better electrical conductor than mixed base DNA, with ma
mum transmission similar to that of a short carbon cha
The importance of base sequence on conduction has
reported by Hjort and Stafstro¨m,15 and an explanation for the
improved conduction of poly~G!-poly~C! has been given by
Dekker and Ratner11—an AT base pair acts as a potent
barrier, reducing conduction.

These calculations correspond to coherent transportT
50 K, with no dynamic fluctuations of the molecule an
neglecting inelastic and vibronic effects in th
transmission.45 The validity of this approach will depend o
the dwell time of the charge carriers in the molecule, co
v.
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pared with the typical vibrational frequencies. The width
our transmission peaks, coming from the coupling of t
molecule to the continuum of states in the electrodes, co
sponds via the uncertainty principle toDt56310212 s;
whether this is relevant to the dwell time for comparing w
the period of the important twist mode of 10211210212 s
~Ref. 52! is the subject of debate.53

In the future we will be applying this method to invest
gate the effect of order and sequence more thoroughly on
conductance of DNA. We intend to replace the extend
Hückel theory with the more rigorous treatment of se
consistent DFT in a local basis set. After further develo
ments in methodology we will also tackle different biologic
molecules, such as cytochrome and oligo~phenylene ethy-
nylene!.
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