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We consider the Maxwell equations with anisotropic coefficients and non-trivial 
conductivity in a domain with finitely many cylindrical ends. We assume that the 
conductivity vanishes at infinity and that the permittivity and permeability tensors 
converge to non-constant matrices at infinity, which coincide with a positive real 
multiple of the identity matrix in each of the cylindrical ends. We establish that 
the essential spectrum of Maxwell system can be decomposed as the union of the 
essential spectrum of a bounded multiplication operator acting on gradient fields, 
and the union of the essential spectra of the Maxwell systems obtained by freezing 
the coefficients to their different limiting values along the several different cylindrical 
ends of the domain.
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under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The aim of this article is to analyse the spectrum of the following dissipative Maxwell system with 
anisotropic permittivity ε and permeability μ, and conductivity σ �= 0 in a unbounded domain Ω having 
multiple cylindrical ends:

⎧⎪⎪⎨⎪⎪⎩
−iσE + i curlH = ωεE + Je, in Ω,

−i curlE = ωμH + Jm in Ω,

ν × E = 0, on ∂Ω.

(1.1)
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Fig. 1. The domain Ω obtained by gluing three cylindrical ends Ci to the domain Ω0.

Here ω ∈ C is the spectral parameter, ν is the outer normal vector to ∂Ω, E, H are, respectively, the electric 
and the magnetic vector fields, and Je ∈ L2(Ω), Jm ∈ L2(Ω) are the current sources. More precisely, we 
wish to study the spectrum of the linear operator pencil V (·) defined by

V (ω) :=
(
−iσ − ωε i curl
−i curl −ωμ

)
(1.2)

on the domain dom(V ) := H0(curl, Ω) ⊗ H(curl, Ω). The equation (1.1) is then V (ω)(E, H)t = (Je, Jm)t. 
Our main interest will be the essential spectrum1 of V , i.e.

σess(V ) = {ω ∈ C : 0 ∈ σess(V (ω))}
= {ω ∈ C : ∃un ∈ dom(V ), ‖un‖ = 1, un ⇀ 0, ‖V (ω)un‖ → 0}.

The unbounded Lipschitz open set Ω ⊂ R3 is assumed to be the gluing of a bounded Lipschitz domain Ω0
with the disjoint cylindrical ends Ci, see Fig. 1.

Ω = Ω0 	
(

M	
i=1

Ci

)
(1.3)

Up to a rigid motion, each cylindrical end has the form

Ci = {x ∈ R3 : x1 ∈ (0,+∞), (x2, x3) ∈ Ci}

where the cross-sections Ci are bounded Lipschitz domains, possibly not simply connected.
For the selfadjoint case σ ≡ 0, the Maxwell system on a domain with several cylindrical ends was 

considered in [26,27]. However the determination of the essential spectrum for the Maxwell system is a 
great deal more difficult in the non-selfadjoint case. Even for bounded domains it was first considered only 
as recently as 1997 [22]. Starting with [3], several authors studied the spectrum of Maxwell’s equations in 
unbounded dispersive media, see for instance [4] for the case of the full-space, with general dependence on 
the spectral parameter; [8] and [9] for the interface between vacuum and a metamaterial.

Compared to [3,6], the novelty of this article lies in allowing both anisotropic conductivities σ, and 
anisotropic ε, μ, with ε, μ, σ ∈ L∞(Ω, Sym3(R)), which are non-constant at infinity in the precise sense that 
there exist real constants εi > 0, μi > 0, i = 1, . . . , M , such that, for all δ > 0, one has decompositions

ε(x) = εc(x) + εδ(x) +
M∑
i=1

εiχCi
(x)I, μ(x) = μc(x) + μδ(x) +

M∑
i=1

μiχCi
(x)I, (1.4)

1 The essential spectrum σess(T ), for an operator T , is σe2(T ) in the taxonomy of [15].
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where ‖εδ‖L∞ , ‖μδ‖L∞ < δ, and εc, μc are compactly supported. This assumption ensures that

lim
R→∞

sup
x∈Ci,|x|>R

‖ε(x) − εiI‖ = 0, lim
R→∞

sup
x∈Ci,|x|>R

‖μ(x) − μiI‖ = 0,

for i = 1, . . . , M . There then exist isotropic tensors ε∞, μ∞ in C∞(Ω, R3×3) such that

ε∞(x) = εiI, μ∞(x) = μiI for x ∈ Ci, (1.5)

and

lim
R→∞

sup
|x|>R

‖ε(x) − ε∞(x)‖ = 0, lim
R→∞

sup
|x|>R

‖μ(x) − μ∞(x)‖ = 0. (1.6)

We also assume that

lim
R→∞

sup
|x|>R

‖σ(x)‖ = 0. (1.7)

Together, (1.6), (1.7) constitute one of the simplest possible forms of inhomogeneity at infinity.
It was established in [3,6] that the essential spectrum of the Maxwell pencil V (·), in the case where ε∞, 

μ∞ are constant real multiples of the identity matrix, can be expressed as

σess(V ) = σess(P∇W(ω)P∇) ∪ σess(V∞) (1.8)

where W(ω) = ω(ωε + iσ), P∇ is the orthogonal projection in L2(Ω)3 onto the closed subspace of gradient 
fields ∇H1

0 (Ω), and V∞ is defined by

V∞(ω) =
(

−ωε∞ i curl
−i curl −ωμ∞

)
; dom(V∞) = H0(curl,Ω) ⊗H(curl,Ω). (1.9)

A similar result holds for more general dependence of the coefficients upon the frequency ω, see [17]. However 
it is easy to check that the proofs in all of [3,6,17] break down as soon as ε∞ and μ∞ are not constant, 
indeed even under the simplest form of inhomogeneity considered here, namely (1.4).

The present article deals with this problem. Our main result is the following

Theorem 1.1. The essential spectrum of the pencil V (·) is given by

σess(V ) = σess(P∇W(ω)P∇) ∪
(

M⋃
i=1

σess(V∞,i)
)

(1.10)

where V∞,i is the selfadjoint pencil (1.9) with ε∞,i in place of ε∞, μ∞,i in place of μ∞, and Ci in place of 
Ω. In particular,

M⋃
i=1

σess(V∞,i) ⊆ R,

and all non-real parts of the essential spectrum σess(V ) arise from the bordered multiplication pencil 
P∇W(ω)P∇.
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Remark 1.2. Since all the operators appearing here are J-selfadjoint with respect to a suitable conjugation 
J , the σess in Theorem 1.1 coincides with all the σek for k = 1, 2, 3, 4 [15].

The proof of Theorem 1.1 requires a sequence of completely non-trivial arguments and is achieved by 
establishing two ‘Decomposition and Simplification’ theorems, Theorem 4.8 and Theorem 5.3.

Theorem 4.8 shows that (1.8) continues to hold in the case of non-constant coefficients at infinity. The 
difficulty here is to prove that the operator P∇ε∞Pker(div) is compact; note that if instead ε∞ is constant,

P∇ε∞Pker(div) = ε∞P∇Pker(div) ≡ 0

is identically zero. The required compactness property will be a consequence of an auxiliary Glazman 
decomposition argument and of the compactness of

(−ΔΩ − λ)−1 : L2(B) ⊂ L2
comp(Ω) → H1(Ω)

where B is any bounded Lipschitz domain, B ⊂ Ω, see Proposition (3.3). Although probably not new, these 
results do not seem to be explicitly stated in the literature. They use in a substantial way the celebrated 1995 
compactness result of Jerison and Kenig [19], which became pivotal in the regularity theory for Maxwell’s 
equations after the important H1/2-regularity theorem of Costabel [13]. Note that Glazman decomposition 
cannot be applied directly to the original Maxwell system, as the term σess(P∇W(ω)P∇) appearing in (1.10)
depends on local behaviour of the coefficients and not on behaviour at infinity.

Theorem 5.3 guarantees that

σess(V∞) =
M⋃
i=1

σess(V∞,i). (1.11)

In the literature results of this kind were established for the Laplace operator by using domain decomposition 
and Dirichlet-to-Neumann maps across an artificial boundary, see e.g., [23]. We mention that the Dirichlet-
to-Neumann map (and the corresponding Glazman decomposition [18]) is widely used in the context of 
scattering theory, see e.g., [1,10–12,24,25], in order to establish spectral asymptotics or upper bounds on 
the number or resonances. However, the analogues of the Dirichlet-to-Neumann map for Maxwell would 
be the impedance map (also called Calderón map or electric-to-magnetic map) which in general does not 
have compact resolvent, see the recent articles [7,16]; the consequent presence of essential spectrum of the 
impedance map disrupts the main arguments in the proof of the decomposition of the essential spectrum. 
These additional hurdles are due to our weak assumptions on ε, μ and σ, which are just L∞-matrix valued 
functions. For instance, in the case of constant coefficients, and provided that the geometry of Ω is not 
too complex, other techniques such as TE-TM mode decompositions allow one to explicitly define the 
electric-to-magnetic map, see e.g., [20]; however, essential spectrum might arise also in this case, see [7].

Therefore, to establish (1.11) we use instead a direct argument based on singular sequences, see 
Theorem 5.3. The proof of the latter exploits in a substantial way the compactness of the embedding 
H0(curl, B) ∩H(div, B) into L2(B) for bounded Lipschitz domains B ⊂ Ω, the specific geometry of the set 
Ω, and a novel interpolation inequality of independent interest, see Lemma 6.8.

As a final aside, we mention that although the results on essential spectrum in [6] do not cover the situation 
of the present paper, the enclosures for the whole spectrum presented there remain valid. Moreover, for a 
domain Ω with multiple cylindrical ends of the kind we consider, the Dirichlet Laplacian on Ω has a strictly 
positive infimum λ(Ω) (see (2.3) in Section 2 below); the results in [6] immediately allow us to deduce that 
ω = 0 is the centre of a slit disc which does not contain any spectrum of V (·).

This article is structured in the following way. In Section 2 we collect some basic facts about system (1.1)
and the associated functional spaces. Section 3 contains some auxiliary results about the local compactness 
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of the resolvent of the Dirichlet Laplacian in a unbounded Lipschitz domain; these facts are needed in 
the proof of Theorem 4.8. Section 4 and Section 5 contain respectively the two main steps in the proof of 
(1.10): the first step involves applying a Helmholtz-type decomposition to a curl curl-type pencil L having 
the same spectrum as the Maxwell pencil V defined in (1.2), see Theorem 4.8. The second step is the 
Glazman decomposition applied to the constant-coefficient pencil L∞ obtained from the previous step, see 
Theorem 5.3. The proof of the latter requires a subtle estimate on the Jacobian of some vector fields in 
terms of a suitable curl curl-graph norm. We provide this proof in the Appendix A.

2. Preliminaries and notation

We recall here some basic facts about system (1.1), mainly to fix the notation. The natural domain of 
the operator V (ω) defined in (1.2) acting in the Hilbert space of couples of square-integrable vector fields 
L2(Ω) × L2(Ω) ≡ L2(Ω; C3) × L2(Ω; C3) is the union of all the couples (E, H) ∈ L2(Ω) × L2(Ω) such that

((−iσ − ωε)E + i curlH) ∈ L2(Ω) and (−i curlE − ωμH) ∈ L2(Ω);

equivalently,

curlE ∈ L2(Ω), curlH ∈ L2(Ω), ν ×E|∂Ω = 0.

Therefore, E, H belong to Sobolev spaces of L2(Ω)-functions having distributional curl in L2(Ω). More 
precisely, the magnetic field H and the electric field E lie respectively in

H(curl,Ω) := {u ∈ L2(Ω) : curlu ∈ L2(Ω)},

H0(curl,Ω) := {u ∈ H(curl,Ω) : ν × u|∂Ω = 0},

endowed with the standard norm ‖u‖H(curl,Ω) :=(‖u‖2+‖curlu‖2)1/2.
Functions u ∈ H(curl, Ω) have a well-defined tangential trace ν × u ∈ H−1/2(∂Ω), see [14, Thm. 2, Chp. 

IX]; the subspace H0(curl, Ω) of H(curl, Ω) is then identified by the condition ν×u = 0 on ∂Ω. Equivalently, 
H0(curl, Ω) can be defined as the closure of C∞

c (Ω) vector fields with respect to the H(curl, Ω)-norm. Due 
to the integration by parts formula∫

Ω

curluΦ −
∫
Ω

u curl Φ =
∫
∂Ω

(ν × u) Φ (2.1)

valid for all smooth vector fields u and Φ, we deduce that u ∈ H0(curl, Ω) if and only if∫
Ω

(curluΦ − u curl Φ) = 0, for all Φ ∈ C∞(Ω).

The symmetric differential expression curl in L2(Ω) is associated with two different operators. With an 
abuse of notation, we denote by curl the operator given by the differential expression curl on the ‘maximal 
domain’ dom(curl) :=H(curl, Ω). Its adjoint curl0 =curl∗ is given by the differential expression curl on the 
smaller domain dom(curl0) :=H0(curl, Ω).

One defines analogously the space H(div, Ω) = {u ∈ L2(Ω) : div u ∈ L2(Ω)} of square integrable 
vector fields u ∈ L2(Ω) having distributional divergence divu in L2(Ω), endowed with the canonical norm 
‖u‖ := (‖u‖2 + ‖div u‖2)1/2. In this case, the analogue of formula (2.1) is the more familiar formula
H(div,Ω)
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∫
Ω

div uϕ−
∫
Ω

u∇ϕ =
∫
∂Ω

(ν · u)ϕ

for all vector fields u ∈ H(div, Ω) and scalar functions ϕ ∈ H1(Ω). An important subspace of L2(Ω) (and 
of H(div, Ω)) is H(div 0, Ω), consisting of those L2(Ω)-vector fields u having null distributional divergence; 
more explicitly, u ∈ H(div 0, Ω) if and only if

∫
Ω

u · ∇ϕ = 0, for all ϕ ∈ C∞
c (Ω).

The space H(curl, Ω) ∩ H(div, Ω) is equipped with the norm ‖u‖H(curl,Ω)∩H(div,Ω) := ‖u‖H(curl,Ω) +
‖u‖H(div,Ω). It is important to recall that the space H0(curl, B) ∩ H(div, B) is compactly embedded in 
L2(B) whenever B is a bounded Lipschitz open set, see [29].

Throughout the paper we will constantly make use of the following orthogonal representation, often called 
Helmholtz decomposition:

L2(Ω) = ∇Ḣ1
0 (Ω) ⊕H(div 0,Ω), (2.2)

where the homogeneous Sobolev space Ḣ1
0 (Ω) is defined as the completion of C∞

c (Ω) with respect to the 
seminorm ‖u‖Ḣ1(Ω) :=‖∇u‖L2(Ω). The space ∇Ḣ1

0 (Ω) is therefore the image of Ḣ1
0 (Ω) under the gradient. 

There are two canonical orthogonal projections associated with the decomposition (2.2), given by

P∇ := P∇Ḣ1
0 (Ω) : L2(Ω) → ∇Ḣ1

0 (Ω), Pker div := PH(div 0,Ω) : L2(Ω) → H(div 0,Ω)

In the sequel we will often omit the dependence on the domain Ω of the projections P∇ and Pker div in 
L2(Ω); the domain of the projection operators will be clear from the context. Note also that P∇ admits the 
classical explicit representation

P∇F = ∇Δ−1
Ω divF

where we have denoted with ΔΩ the Dirichlet Laplacian acting from Ḣ1
0 (Ω) to Ḣ−1(Ω) =: (Ḣ1

0 (Ω))∗.
For a general unbounded domain Ω, H1

0 (Ω) � Ḣ1
0 (Ω); for instance, in R3, the vector field F = (1 + |x|)α

is not in L2(R3) for α ≥ −3/2, but ∇F ∈ L2(R3) for α < −1/2. Therefore, for α ∈ [−3/2, −1/2), F ∈
Ḣ1

0 (R3) \H1
0 (R3). However, for the domain with cylindrical ends defined in (1.3), one has Ḣ1

0 (Ω) = H1
0 (Ω). 

This identity follows from the Poincaré inequality

‖u‖L2(Ω) ≤ CΩ‖∇u‖L2(Ω), u ∈ Ḣ1
0 (Ω). (2.3)

Note that the best Poincaré constant is CΩ = λ(Ω)−1/2, λ(Ω) being the infimum of the spectrum of the 
Dirichlet Laplacian in Ω, and λ(Ω) > 0.

To see that λ(Ω) > 0, add artificial boundaries Γi, i = 1, . . . , M as in Fig. 2. Impose Neumann boundary 
conditions on Γi; this operation enlarges the energy space of −Δ in Ω and decomposes the problem into M+1
boundary value problems with mixed boundary conditions of Dirichlet-Neumann type in the domains Ω̃0 and 
C̃i, i = 1, . . . , M , see Fig. 2. In particular, λ(Ω) ≥ λ(Ω; Γ), where λ(Ω; Γ) := min{λ(Ω̃0); mini=1,...,M λ(C̃i)}. 
But this last number is strictly positive. Indeed, λ(Ω̃0) is the first eigenvalue of a mixed Neumann-Dirichlet 
problem in the Lipschitz bounded domain Ω̃0, and therefore it is strictly positive; and λ(C̃i) > 0 for every 
i = 1, . . . , M , as one can easily check by separation of variables. Altogether, λ(Ω) > 0.
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Fig. 2. Imposing Neumann boundary conditions on Γi, i = 1, . . . , 3, divides the domain Ω in 4 subdomains.

3. The resolvent of the Laplacian: Glazman decomposition and compactness properties

In this section we prove some properties of the resolvent of the Dirichlet Laplacian in possibly unbounded 
open sets of RN , which will be utilised in the proof of Theorem 4.8. These results are unlikely to be new, 
but we were not able to find them in the literature for the precise cases we require here. Related results can 
be found in [18,2].

Lemma 3.1. Let Ω be a (possibly unbounded) connected Lipschitz open set of RN and let B, U be Lipschitz 
open subsets of Ω such that:

(i) B is bounded and connected and B ∩ U = ∅;
(ii) Γ := B ∩ U is a Lipschitz N − 1 manifold;
(iii) B ∪ U ∪ Γ = Ω.

Assume that λ ∈ (−ΔΩ) ∩ (−ΔB) ∩ (−ΔU ), −ΔA being the Dirichlet Laplacian in L2(A). Then, with 
respect to the decomposition L2(Ω) = L2(B) ⊕ L2(U), the following Glazman resolvent decomposition holds

(−ΔΩ − λ)−1 =
((

I − PB(λ)Λ(λ)−1∂B
ν

)
(−ΔB − λ)−1 −PB(λ)Λ(λ)−1∂U

ν (−ΔU − λ)−1

−PU (λ)Λ(λ)−1∂B
ν (−ΔB − λ)−1 (

I − PU (λ)Λ(λ)−1∂U
ν

)
(−ΔU − λ)−1

)
(3.1)

where ∂A
ν is the normal derivative taken with respect to the outer normal to ∂A, Λ(λ) = MB(λ) +MU (λ) in 

which MB(λ) = ∂B
ν PB(λ) and MU (λ) = ∂U

ν PU (λ) are the Dirichlet to Neumann maps acting from H1/2(Γ)
to H−1/2(Γ), PB(λ), PU (λ) are the Poisson extension operators mapping h ∈ H1/2(Γ) to uB ∈ H1(B), 
uU ∈ H1(U), respectively, and uB, uU solve respectively⎧⎪⎪⎨⎪⎪⎩

−ΔuB − λuB = 0, in B,
uB = 0, on ∂B \ Γ,
uB = h, on Γ,

⎧⎪⎪⎨⎪⎪⎩
−ΔuU − λuU = 0, in U ,
uU = 0, on ∂U \ Γ,
uU = h, on Γ.

Proof. This classical result is a form of Glazman decomposition. Let f ∈ L2(Ω). We define w ∈ H1
0 (Ω) as 

the solution of {
−Δw − λw = f, in Ω,
w = 0, on ∂Ω,
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(−
and we set w|Γ = h ∈ H1/2(Γ). Let fB = f |B , fU = f |U . Define⎧⎪⎪⎨⎪⎪⎩
−ΔwB − λwB = fB , in B,
wB = 0, on ∂B \ Γ,
wB = h, on Γ,

⎧⎪⎪⎨⎪⎪⎩
−ΔwU − λwU = fU , in U ,
wU = 0, on ∂U \ Γ,
wU = h, on Γ.

We then write wB = PB(λ)h + vB , with vB ∈ H1(B) to be determined. Note that

(−Δ − λ)wB = (−Δ − λ)(PB(λ)h + vB) = (−Δ − λ)vB = fB , vB |∂B = 0,

so vB solves the Dirichlet problem on B with datum f |B . Similarly, one has wU = PU (λ)h + vU , with 
(−Δ − λ)vU = fU . Now, from the condition ∂B

ν wB + ∂U
ν wU = 0 on Γ and the identity MB(λ) + MU (λ) =

∂B
ν PB(λ) + ∂U

ν PU (λ), we deduce

0 = ∂B
ν (PB(λ)h + vB) + ∂U

ν (PU (λ)h + vU )

= ∂B
ν vB + ∂U

ν vU + (MB(λ) + MU (λ))h

= ∂B
ν vB + ∂U

ν vU + Λ(λ)h.

(3.2)

It is well known that, for λ ∈ (−ΔB) ∩ (−ΔU ), Λ(λ) is boundedly invertible as a map from H1/2(Γ) to 
H−1/2(Γ) if and only if λ /∈ σ(−ΔΩ); since λ ∈ (−ΔΩ) by assumption, Λ(λ) : H1/2(Γ) → H−1/2(Γ) is 
invertible, so (3.2) implies

h = −Λ(λ)−1(∂B
ν vB + ∂U

ν vU );

replacing h in the equalities wB = PB(λ)h + vB and wU = PU (λ)h + vU gives (3.1). �
Remark 3.2. The assumption that B and U are Lipschitz implies that either Γ ∩ ∂Ω = ∅, or Γ intersects ∂Ω
transversally.

Proposition 3.3. Let Ω be an open, connected Lipschitz domain in RN , and let Ω = B ∪Γ ∪U , with B, Γ, U
as in Lemma 3.1. Let λ ∈ (−ΔΩ) ∩ (−ΔB) ∩ (−ΔU ). Then

(−ΔΩ − λ)−1 : L2(B) ⊂ L2
comp(Ω) → H1(Ω)

is compact.

Proof. The claim of the theorem is equivalent to the statement that (−ΔΩ − λ)−1χB is compact as a map 
from L2(Ω) to H1(Ω). Equation (3.1) implies that

ΔΩ − λ)−1(χBf) = χB(I − PB(λ)Λ(λ)−1∂B
ν )(−ΔB − λ)−1(fχB)

− (1 − χB)PU (λ)Λ(λ)−1∂B
ν (−ΔB − λ)−1(fχB). (3.3)

First, we consider the term

χB(I − PB(λ)Λ(λ)−1∂B
ν )(−ΔB − λ)−1(fχB),

which lies in H1(B); the latter space coincides with the restriction to B of elements of H1(Ω), since B is 
Lipschitz. We split this term as
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χB(I − PB(λ)Λ(λ)−1∂B
ν )(−ΔB − λ)−1(fχB) = χB(−ΔB − λ)−1χBf

−χBPB(λ)Λ(λ)−1∂B
ν (−ΔB − λ)−1χBf.

Since B is a bounded Lipschitz domain, (−ΔB − λ)−1χBf ∈ H3/2(B) ∩ H1
0 (B), see e.g. [28, Eq.(4)], [19, 

[Theorem 0.3]. Therefore,

χB(−ΔB − λ)−1χBf ∈ (H3/2(B) ∩H1
0 (B)) ↪→ H1

0 (B) (3.4)

the embedding being compact. Next, we show that the operator

χBPB(λ)Λ(λ)−1∂B
ν (−ΔB − λ)−1χB

= χBPB(λ)Λ(λ)−1∂B
ν ιH3/2(B)→H1(B)(−ΔB − λ)−1χB : L2(Ω) → H1(B)

(3.5)

is compact. As observed above, (−ΔB − λ)−1 maps L2(B) to H3/2(B) ∩ H1
0 (B) and the embedding 

ιH3/2(B)→H1(B) is compact. Moreover, Λ(λ)−1∂B
ν is continuous as a map from H1(B) to H1/2(Γ), pro-

vided λ /∈ (σ(−ΔΩ) ∪ σ(−ΔB) ∪ σ(−ΔU )). The map PB(λ) is continuous from H1/2(Γ) to H1(B). [To 
see this, let λ ∈ (−ΔB) be fixed and let h ∈ H1/2(Γ). By definition, there exists ϕ ∈ H1(B) such that 
TrΓϕ = h. We find u ∈ H1

0 (B) by solving

−Δu− λu = −Δϕ− λϕ ∈ (H1(B))′ ⊂ H−1(B), u|∂B = 0.

Then PB(λ)h = ϕ − u, therefore implying that PB(λ)h ∈ H1(B).] Thus the compactness of the operator 
χBPB(λ)Λ(λ)−1∂B

ν ιH3/2(B)→H1(B)(−ΔB−λ)−1χB has been established. Combining this with the compact-
ness of the map in (3.4) we see that χB(I − PB(λ)Λ(λ)−1∂B

ν )(−ΔB − λ)−1χB is compact from L2(Ω) to 
H1(B).

Finally, we observe that (1 −χB)PU (λ)Λ(λ)−1∂B
ν (−ΔB−λ)−1χB is compact. This follows in a completely 

analogous way to the previous step, since the composition

(1 − χB)PU (λ)Λ(λ)−1∂B
ν ιH3/2(B)→H1(B)(−ΔB − λ)−1χB

is compact, the embedding ιH3/2(B)→H1(B) being compact. �
Remark 3.4. Let the assumptions of Proposition 3.3 hold, and let B be a bounded Lipschitz subdomain 
of Ω. Let E be the extension-by-zero operator, mapping a function f ∈ L2(B) to Ef(x) = f(x) if x ∈ B, 
Ef(x) = 0 if x ∈ RN \ B. Let χB be the characteristic function of B. A consequence of Proposition 3.3 is 
that

P∇|H(div,B) := ∇Δ−1
Ω χBE div : H(div, B) → L2(Ω)3 (3.6)

is compact if and only if 0 ∈ (ΔΩ), as the composition of the continuous operators E div |H(div,B) and 
∇|H1

0 (Ω) with the compact operator Δ−1
Ω χB : L2(Ω) → H1(Ω) (which is compact due to Proposition (3.3)). 

In particular, whenever U is quasi-conical in the sense of [15, Definition 6.1], 0 ∈ σ(ΔΩ), hence formula (3.6)
is no longer valid; therefore, the proof of Theorem 4.8 fails if the cylindrical ends are replaced by infinite 
cones of arbitrarily small aperture. Note that the compactness result in Proposition 3.3 is in stark contrast 
with the lack of compactness of the operator P∇ := ∇Δ−1

Ω div : L2(B) → L2(B), where ΔΩ denotes the 
Dirichlet Laplacian acting from H1

0 (Ω) to H−1(Ω), which is the standard projection on ∇H1
0 (B), having 

essential spectrum σess(P∇) = {0, 1}.
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4. First step: Helmholtz-type decomposition

Let 0 < εmin ≤ εmax, 0 < μmin ≤ μmax and 0 ≤ σmax be real constants. We assume the following 
ellipticity-type conditions on ε, μ and σ: for almost all x ∈ Ω,

0<εmin≤η ·ε(x)η≤εmax, 0<μmin≤η ·μ(x)η≤μmax, 0≤η ·σ(x)η≤σmax, η∈R3, |η|=1 (4.1)

We emphasise that εmin > 0, μmin > 0, while the minimal value of η · ση might be zero.

Definition 4.1. Let ω ∈ C. We define

L(ω) = curlμ−1 curl0 −ω(ωε + iσ) (4.2)

with dom(L(ω)) = {u ∈ H0(curl, Ω) : L(ω)u ∈ L2(Ω)}.

Note that dom(L(ω)) is independent of ω, since the conditions (4.1) ensure that it is equal to {u ∈
H0(curl, Ω) : curlμ−1 curlu ∈ L2(Ω)}.

Before stating our first ‘Decomposition and Simplification’ theorem, we recall some results from [6] that 
link the spectrum of the Maxwell pencil V to the spectrum of the pencil L.

Theorem 4.2 ([6], Thm 4.5). The Maxwell pencil V (·) in (1.2) and the quadratic pencil L in (4.2) satisfy

(V ) \ {0} = (L) \ {0}, σ(V ) \ {0} = σ(L) \ {0}, (4.3)

and the resolvent of V (·) is given by

V (ω)−1=
(

ωL(ω)−1 iL(ω)−1curlμ−1

−iμ−1curl0 L(ω)−1 ω−1(−μ−1+μ−1curl0 L(ω)−1 curlμ−1)

)
(4.4)

for ω ∈ (V ), in which A denotes the closure of an operator A. Moreover the point spectra σp, continuous 
spectra σc and residual spectra σr satisfy

σp(V ) \ {0} = σp(L) \ {0}, σc(V ) \ {0} = σc(L) \ {0}, σr(V ) = σr(L) = ∅,

and the essential spectra σek [15] satisfy

σe1(V ) = σe2(V ) = σe3(V ) = σe4(V ) = σe1(L) = σe2(L) = σe3(L) = σe4(L).

The operator M(ω) = ((ωε + iσ) −ωε∞)Pker(div) is compact from H(curl, Ω) to L2(Ω), as a consequence 
of the following.

Proposition 4.3 ([6], Prop. 5.1). Let m : Ω → C3×3 be a locally bounded, tensor-valued function with

lim
R→∞

sup
‖x‖>R

‖m(x)‖ = 0. (4.5)

Then mPker(div) is compact from (H(curl, Ω), ‖·‖H(curl,Ω)) to L2(Ω).

Lemma 4.4. Let ε∞ be as in (1.5). Then P∇ε∞Pker div is compact from H(curl, Ω) to L2(Ω).
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Proof. To see this, recall that P∇ = ∇(−ΔH1
0→H−1)−1 div, where −ΔH1

0→H−1 is the Dirichlet Laplacian 
seen as a bounded operator from H1

0(Ω) to H−1(Ω). Note also that −ΔH1
0→H−1 is invertible. Let χR be 

the characteristic function of B(0, R). Choose R so large that ε∞(x) is constant in x ∈ Ci ∩ B(0, R)c, 
i = 1, . . . , M . Then,

(1 − χR) div(ε∞Pker divF ) = (1 − χR)∇ε∞ · Pker divF

= (1 − χR)χR∇ε∞ · Pker divF = 0

for any F ∈ H(curl, Ω). Thus, supp(div ε∞Pker divF ) ⊂ B(0, R) is compact in Ω, for every F ∈ H(curl, Ω). 
Recall that since ε∞(x) = f(x)I3×3, for a smooth real-valued function f , we have div ε∞Pker divF = ∇f ·
Pker divF ∈ L2(Ω). Observe that

∇(−ΔH1
0→H−1)−1χR div ε∞Pker divF = ∇(−Δdom(−Δ)→L2(Ω))−1χR div ε∞Pker divF. (4.6)

It is worth remarking that (−Δdom(−Δ)→L2(Ω))−1 = (−ΔΩ)−1 exists as a bounded operator in L2(Ω) because 
the first eigenvalue of −ΔΩ is strictly positive; it can be computed as the minimum of the first eigenvalues 
of the Laplace operators in the cross-sections of the cylindrical ends, see (2.3). Now (4.6) is an immediate 
consequence of the fact that a weak solution of the Poisson equation with datum in L2(Ω) lies not only in 
H1

0 (Ω) but in the domain of the Dirichlet Laplacian −ΔΩ. As a consequence of Proposition 3.3, the operator

P∇ε∞Pker div = ∇ [(−ΔΩ)−1χR] div ε∞Pker div

is compact from H(curl, Ω) to L2(Ω) as the composition of the compact operator (−ΔΩ)−1χR from 
L2(B(0, R) ∩Ω) to H1(Ω) and the continuous operators ∇ from H1(Ω) to L2(Ω), div ε∞Pker div from L2(Ω)
to L2(Ω). �
Definition 4.5. We define quadratic pencils of closed operators acting in the Hilbert space H(div 0, Ω)
equipped with the L2(Ω)3-norm

Lμ(ω) :=curlμ−1 curl0 −Pker divε∞ω2 id,
dom(Lμ(ω)) :={u ∈ H0(curl,Ω)∩H(div 0,Ω) : μ−1 curlu∈H(curl,Ω)},

ω∈C,

and

L∞(ω) :=curlμ−1
∞ curl0 −Pker divε∞ω2 id,

dom(L∞(ω)) :={u ∈ H0(curl,Ω)∩H(div 0,Ω) : curlu∈H(curl,Ω)};
ω∈C.

Note that L∞ can be regarded as a special case of Lμ, namely when μ =μ∞id.

Lemma 4.6 (Lemma 5.3, [6]). The following are true.

(i) The operator Lμ(ω)−1 curl is closable and bounded from L2(Ω)3 to H(div 0, Ω).
(ii) For ω=it with t ≥ε

−1/2
min , the operator curl0 L∞(ω)−1 is bounded in H(div 0, Ω), and also as an operator 

from H(div 0, Ω) to H(curl, Ω) with

‖ curl0 L∞(ω)−1‖B(H(div 0,Ω),H(curl,Ω)) ≤
( ‖μ∞‖L∞

(infx∈Ω ε∞(x))|ω|2 + ‖μ∞‖2
L∞

)1/2

. (4.7)

Proposition 4.7 (Similar to [6], Prop. 5.4). If μ satisfies the limiting assumption (1.6) and Lμ, L∞ are as 
in Definition 4.5, then the essential spectra σek [15] satisfy σek(Lμ) =σek(L∞) ⊂ R for k = 1, 2, 3, 4, 5.
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Proof. This proof is similar to the proof of [6, Prop. 5.4]. First note that Lμ and L∞ define self-adjoint 
pencils of operators (that is, Lμ(ω) = Lμ(ω)∗, for all ω ∈ C; similarly for L∞); hence, σek(Lμ) and σek(L∞)
are subsets of R. It remains to establish the identity σek(Lμ) =σek(L∞). The latter is a consequence of

Lμ(ω)−1 − L∞(ω)−1 = (curl0(Lμ(ω)∗)−1)∗(μ−1
∞ − μ−1) curl0(L∞(ω))−1 (4.8)

valid for all ω ∈ C \ R, which can be proved exactly as in the proof of [6, Prop. 5.4]. Note that the right 
hand side of (4.8) can be rewritten as

(curl0(Lμ(ω)∗)−1)∗(μ−1
∞ − μ−1) curl0(L∞(ω))−1

= (curl0(Lμ(ω)∗)−1)∗ (μ−1
∞ − μ−1)Pker div︸ ︷︷ ︸

compact due to Proposition 4.3

curl0(L∞(ω))−1;

therefore, the difference of resolvents Lμ(ω)−1 −L∞(ω)−1 is compact, for all ω ∈ C \R. Theorem IX.2.4 in 
[15] now implies that σek(Lμ) = σek(L∞), k = 1, 2, 3, 4, 5. �

We are now ready to state and prove our first ‘Decomposition and Simplification’ result for the Maxwell 
essential spectrum in a domain with cylindrical ends.

Theorem 4.8 (Decomposition and Simplification I). Suppose that σ, ε and μ satisfy the limiting assumptions 
(1.6), (1.7). Let P∇ := id−Pker div be the orthogonal projection from L2(Ω)3 =∇Ḣ1

0 (Ω) ⊕H(div 0, Ω) onto 
∇Ḣ1

0 (Ω) and recall that W(ω) := −ω(ωε + iσ), ω∈C, in L2(Ω)3. Then

σek(L) = σek(L∞) ∪ σek(P∇W(·)|∇Ḣ1
0 (Ω)), k = 1, 2, 3, 4,

with σek(L∞) ⊂R and σek(P∇W(·)|∇Ḣ1
0 (Ω)) ⊂ i[−σmax

εmin
, 0].

Proof. Let ω∈C. By Proposition 4.3 and the limiting assumptions (1.6), (1.7), the operator M(ω) :=(ω(ωε +
iσ) −ω2)Pker(div) in L2(Ω)3 is curl0-compact. This means that if (En)n ⊂ dom(curl0) = H0(curl, Ω) with 
curl0-graph-norm bounded (that is, supn‖En‖H(curl,Ω) < ∞), then (M(ω)En)n is precompact in L2(Ω)3. 
Then it is also T0-compact with T0 = μ−1/2 curl0. Since L(ω) = T ∗

0 T0 + W(ω), bounded sequences whose 
L(ω) graph norms are bounded have bounded T0-graph norms. Hence M(ω) is L(ω)-compact which yields 
σek(L(ω)) = σek(L(ω) + M(ω)), k = 1, 2, 3, 4.

Since ∇Ḣ1
0 (Ω) ⊂ ker(curl0) = kerT0 and hence T0P∇ = P∇T ∗

0 = 0, ∇Ḣ1
0 (Ω) is a reducing subspace for 

T ∗
0 T0. Therefore the operator

T (ω) :=L(ω)+M(ω)=T ∗
0 T0−ω(ωε+iσ)(P∇+Pker div)+(ω(ωε+iσ)−ε∞ω2)Pker(div)

=T ∗
0 T0−ω(ωε+iσ)P∇ − ω2ε∞Pker(div), (4.9)

which is a bounded perturbation of T ∗
0 T0, admits an operator matrix representation with respect to the 

decomposition L2(Ω)3 =∇Ḣ1
0 (Ω) ⊕H(div 0, Ω) given by

T (ω)=
(

P∇T (ω)|∇Ḣ1
0 (Ω) P∇T (ω)|H(div 0,Ω)

Pker divT (ω)|∇Ḣ1
0 (Ω) Pker divT (ω)|H(div 0,Ω)

)
=
(

P∇(−ω(ωε+iσ))|∇Ḣ1
0 (Ω) −ω2P∇ε∞|H(div 0,Ω)

Pker div(−ω(ωε+iσ))|∇Ḣ1
0 (Ω) Pker div(T ∗

0 T0−ω2ε∞)|H(div 0,Ω)

)
=
(

P∇W(ω)|∇Ḣ1
0 (Ω) −ω2P∇ε∞Pker(div)

Pker divW(ω)|∇Ḣ1
0 (Ω) Lμ(ω)

)
, (4.10)
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with domain dom(T (ω)) = ∇Ḣ1
0 (Ω) ⊕ dom(Lμ(ω)). Note that

Pker div(T ∗
0 T0−ω2ε∞)|H(div 0,Ω) = (T ∗

0 T0−ω2Pker divε∞)|H(div 0,Ω)

since the range of T ∗
0 T0 ⊂ H(div 0, Ω). Now, due to Lemma 4.4, P∇ε∞Pker(div) is compact.

Since compact perturbations do not change the essential spectra σek(T ) for k = 1, 2, 3, 4, we deduce that 
σek(T (ω)) coincides with the essential spectrum σek of

T̃ (ω)=
(

P∇W(ω)|∇Ḣ1
0 (Ω) 0

Pker divW(ω)|∇Ḣ1
0 (Ω) Lμ(ω)

)
.

Apart from Lμ(ω), the other two matrix entries in T̃ (ω) are bounded and everywhere defined, and 
σe2(Lμ(ω)) = σ∗

e2(Lμ(ω)). Thus [6, Theorem 8.1] implies that

σe2(T̃(ω))=σe2(Lμ(ω)) ∪ σe2(P∇W(ω)|∇Ḣ1
0 (Ω))=σe2(L∞(ω)) ∪ σe2(P∇W(ω)|∇Ḣ1

0 (Ω))

and hence, since ω ∈ C was arbitrary,

σe2(L) = σe2(L + M) = σe2(T ) = σe2(L∞) ∪ σe2(P∇W(·)|∇Ḣ1
0 (Ω)).

By Theorem 4.2 the σek(L), k = 1, 2, 3, 4, all coincide. The same is true of all the σek(L∞) and all the 
σek(P∇W(·)|∇Ḣ1

0 (Ω)), by J-selfadjointness of L∞ and P∇W(·)|∇Ḣ1
0 (Ω). Thus

σek(L) = σek(L∞) ∪ σek(P∇W(·)|∇Ḣ1
0 (Ω)), k = 1, 2, 3, 4. �

5. Second step: Glazman decomposition

Recall that in Definition 4.5 we introduced the pencil L∞ corresponding to the ‘limit at infinity’ of the 
pencil Lμ. In a similar way, now define pencils L∞,i, i = 1, . . . , M , obtained from L∞ by choosing ε∞ = εi, 
μ∞ = μi where εi, μi have been defined in (1.5).

Definition 5.1. We define quadratic pencils of closed operators acting in the Hilbert space H(div 0, Ci)
equipped with the L2(Ci)-norm, by

L∞,i(ω) := curlμ−1
i curl0 −εi ω

2 id,

dom(L∞,i(ω)) := {u ∈ H0(curl, Ci) ∩H(div 0, Ci) : curlu ∈ H(curl, Ci)},

for all ω∈C, i = 1, . . . , M .

We now investigate the relation between σess(L∞) and σess(L∞,i), i = 1, . . . , M . We first point out the 
following standard result.

Lemma 5.2. Let B be a Lipschitz bounded set. Let (un)n be a sequence in H0(curl, B) ∩H(div, B), un ⇀ 0, 
‖un‖L2(B) = 1, n ∈ N, supn‖div un‖L2(B) < ∞. Then ‖curlun‖L2(B) → ∞.

Proof. Assume for a contradiction that ‖curlun‖L2(B) < M , n ∈ N. Then the sequence (un)n ⊂
H0(curl, B) ∩H(div, B) is uniformly bounded with respect to the norm ‖·‖L2(B)+‖curl ·‖L2(B)+‖div ·‖L2(B). 
By compactness of the embedding
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Fig. 3. The domains Kr and Kr+δ in the proof of Theorem 5.3.

H0(curl, B) ∩H(div, B) ↪→ L2(B)

(see e.g. [29]) we conclude that un has a strongly convergent subsequence in L2(B). By assumption, un ⇀ 0, 
so the strongly convergent subsequence must converge to 0. This is impossible as ‖un‖L2(B) = 1 for all n. 
This contradiction proves the result. �
Theorem 5.3 (Decomposition and Simplification II). The selfadjoint pencils L∞ and L∞,i have essential 
spectra satisfying σess(L∞) =

⋃M
i=1 σess(L∞,i).

Remark 5.4. The σess appearing in Theorem 5.3 may be replaced by σek, k = 1, 2, 3, 4, 5, which are all 
equal in the selfadjoint case. In the proof below we use the singular-sequence characterisation of essential 
spectrum, associated with σe2 = σess.

Proof. For simplicity of exposition we assume that M = 2; the general case is similar. We first prove that 
σess(L∞) ⊂

⋃M
i=1 σess(L∞,i). If ω ∈ σess(L∞) there exist En ∈ dom(L∞) ⊂ H0(curl, Ω) ∩ H(div 0, Ω), 

‖En‖ = 1 ∀n ∈ N, En ⇀ 0, such that

(curlμ−1
∞ curl−Pker(div)ε∞ω2)En → 0, (5.1)

as n → ∞. Our strategy will be to construct a Weyl singular sequence Ψn for one of the operators L∞,i, by 
suitably truncating the vector fields En. However, this is not a trivial task since the truncation of a vector 
field in H(div 0, Ω) does not belong to H(div 0, Ci); for, div(Enχ) = (divEn)χ + En · ∇χ = En · ∇χ �= 0
for a general non-constant χ ∈ C∞(Ω). In order to implement our strategy, we first need to establish the 
following claim.

Claim. ‖En‖L2(K) → 0, ‖curlEn‖L2(K) → 0 and ‖curlμ−1
∞ curlEn‖L2(K) → 0 as n → ∞, for every 

bounded Lipschitz subdomain K of Ω.
To prove this Claim we first note that, by boundedness of K, there exists r > 0 such that K ⊂ Kr =

Ω0 	 C1,r 	 C2,r, where r ≥ 0, Ci,r is expressed in local coordinates as the set

Ci,r := {y ∈ Ci : y1 ∈ (0, r), (y2, y3) ∈ Ci}. (5.2)

Let δ > 0 and let R = r + δ. Let χr ∈ C∞(Ω) be such that 0 ≤ χr ≤ 1, χr(x) = 1 in Kr, χr(x) = 0 in 
Ω \KR, see Fig. 3. We may also assume that χr depends only on the first local coordinate y1 in the cylinders 
Ci.

Note then that for fixed n, Enχr ∈ H0(curl, KR) ∩ H(div, KR); indeed, since χr is smooth, Enχr ∈
H(curl, KR) ∩H(div, KR), hence we just need to check the boundary condition ν × (Enχr) = 0 on ∂KR. 
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But ∂KR = (∂Ω ∩ ∂KR) ∪ (∂KR \ ∂Ω); on (∂Ω ∩ ∂KR) we have ν × (Enχr) = χr(ν × En) = 0, while on 
∂KR \ ∂Ω we have χr = 0. Moreover Enχr ⇀ 0 as n → ∞ and

sup
n∈N

‖div(Enχr)‖L2(KR) ≤ sup
n∈N

‖En · ∇χr‖L2(KR) ≤ ‖∇χr‖L∞(KR).

Next we show that the sequence curl(Enχr) is uniformly bounded in n in the L2(KR)-norm. First note that

‖curl(Enχr)‖L2(KR) ≤ ‖curlEn‖L2(KR) + ‖En ×∇χr‖L2(KR\Kr). (5.3)

Now, (5.1) implies that (μ−1
∞ curlEn, curlEn) − ω2(Pker(div)ε∞En, En) =: hn → 0; therefore,

inf
x∈Ω

|μ−1
∞ (x)|‖curlEn‖2

L2(Ω) ≤ ‖μ−1/2
∞ curlEn‖2

L2(Ω) ≤ |ω|2‖ε∞‖∞ + |hn|,

from which the uniform boundedness of ‖curlEn‖2
L2(Ω) and of ‖curlEn‖L2(KR) follows. Inequality (5.3)

finally implies that supn‖curl(Enχr)‖L2(KR) < ∞.
Since (Enχr)n ⊂ H0(curl, KR) ∩ H(div, KR) has uniformly bounded H(curl)- and H(div)-norms, 

Lemma 5.2 implies that Enχr → 0 in L2(KR); in particular, En|K → 0. Therefore (5.1) implies that 
curlμ−1

∞ curlEn|K → 0.
We now prove that (curlEn)χr → 0 in L2(Ω), in particular, curlEn|K → 0 in L2.
Note that

(curlμ−1
∞ curlEn − ω2Pker(div)ε∞En)χr → 0 (5.4)

in L2(KR) and Enχr → 0 due to the previous part of the proof, so in particular ω2Pker(div)ε∞(Enχr) → 0. 
Taking scalar products with En in (5.4) and integrating by parts we obtain∫

KR

|μ−1/2
∞ curlEn|2χr +

∫
KR

(μ−1
∞ curlEn ×∇χr) · (Enχr) → 0.

Since Enχr → 0, μ−1/2
∞ curlEn → 0 in L2(KR); hence, (curlEn)χr → 0. This concludes the proof of the

Claim.
Because of the Claim we have ‖En‖L2(Kr) → 0 for any r > 0. If ‖En‖L2(C1) = 1 for n ≥ n0, then (En)n≥n0

is a Weyl singular sequence such that L∞,1(ω)En → 0, and the proof is finished. Otherwise, we assume 
that ‖En‖L2(C1) → c1, ‖En‖L2(C2) → c2 and c21 + c22 = 1, ci ∈ [0, 1]. Without loss of generality we may also 
assume that c1 > 0; otherwise just swap c1 with c2.

Working in local coordinates, we may assume that

C1 = {x ∈ R3 : x1 ∈ (0,+∞), (x2, x3) ∈ C1}.

Let R > 0 be large and let ΘR = (R, +∞) × C1. Let ξR ∈ C∞(C1), 0 ≤ ξR(x) ≤ 1, x ∈ C1, be such that 
ξR = 1 in ΘR, χR = 0 in KR/2, and ξR(x) = ξR(x1) for all x ∈ C1.

We claim that Ψn = EnξR − P∇(EnξR) ∈ H0(curl, C1) ∩H(div 0, C1) is a singular sequence for L∞,1(ω). 
We first note that div Ψn = 0 by construction. Moreover, curl Ψn = curl(EnξR) = (curlEn)ξR +En ×∇ξR, 
so Ψn ∈ H0(curl, C1) ∩H(div 0, C1) for every n. We now observe that

‖Ψn − En‖L2(C1) ≤ ‖EnξR − En‖L2(KR) + ‖P∇(EnξR)‖L2(C1)

≤ ‖EnξR − En‖L2(KR) +
(

1
−Δ

)1/2

‖En · ∇ξR‖L2(KR),
(5.5)
λ1 (C1)
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where in the last inequality of (5.5) we used the identity

P∇(EnξR) = ∇Δ−1
C1

div(EnξR),

Δ−1
C1

being the inverse Dirichlet Laplace operator acting from H−1(C1) to H1
0 (C1), the fact that

‖∇Δ−1‖2 = 1/(λ−Δ
1 (C1)),

and the fact that div(EnξR) = En · ∇ξR is supported in a bounded subdomain of KR. The right hand-side 
of (5.5) tends to zero due to the Claim, so ‖Ψn − En‖L2(C1) → 0. Thus ‖Ψn‖L2(C1) → c1 > 0 as n → ∞; 
moreover, from En ⇀ 0 we deduce that Ψn ⇀ 0 as n → ∞.

It is left to prove that μ−1
1 curl curl Ψn − ω2ε1Ψn → 0. We have

curl curl(EnξR) = (curl curlEn)ξR + ∇ξR × curlEn −∇En(∇ξR) − EnΔξR + divEn∇ξR + (D2ξR)(En)

Since ξR depends only on x1 and divEn = 0 we can further write

curl curl(EnξR) = (curl curlEn)ξR + ∇ξR × curlEn − ∂x1ξR∂x1En − ∂2
x1
ξR

⎛⎝ 0
E2

n

E3
n

⎞⎠ (5.6)

Apart from the first summand, all the terms on the right hand-side of (5.6) are supported in bounded 
subdomains of C1, and hence due to the previous Claim they tend to zero in L2(C1). This is clear for all the 
terms except perhaps ∂x1ξR∂x1E. We show in Lemma 6.8, that there exists a constant C > 0 such that the 
following interpolation inequality holds:

‖∇En(∇ξR)‖L2(KR) = ‖∂x1ξR∂x1En‖L2(KR)

≤ C

( ‖En‖L2(KR+δ)

δ2 + ‖curl curlEn‖L2(KR+δ)

)
‖∂x1ξR‖L∞(KR) → 0,

as n → ∞, with R/2 > δ > 0. We finally conclude that

μ−1
1 curl curl Ψn − ε1ω

2Ψn = (μ−1
1 curl curlEn − ε1ω

2En)ξR + o(1) → 0

as n → ∞. Hence the sequence (Ψn/‖Ψn‖)n∈N is the desired singular sequence for the operator L∞,1 acting 
in L2(C1).

Conversely, if ω ∈ σess(L∞,1), and (En) ⊂ H0(curl, C1) ∩ H(div 0, C1) is a Weyl singular sequence such 
that L∞,1(ω)En → 0 as n → ∞, define Ψn = E0EnξR − P∇(E0EnξR), where E0 is the extension by zero 
operator mapping H0(curl, C1) into H0(curl, Ω). With arguments similar to the previous part of the proof 
one can check that the sequence Ψn/‖Ψn‖ is a Weyl singular sequence for the operator L∞(ω) acting in 
L2(Ω). �
Proof of main Theorem 1.1

This follows from the two ‘Decomposition and Simplification’ theorems, Theorem 4.8 and Theo-
rem 5.3. �
Data availability

All data are included in the text.
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Appendix A. Estimates of the intermediate derivatives

Definition 6.1. Let Ω be an open set of R3. We define G(Ω) = {u ∈ H(div 0, Ω) : curl2 u ∈ L2(Ω)3}, endowed 
with the norm

‖u‖H(curl2,Ω) =
(
‖u‖2

L2(Ω) + ‖curl2 u‖2
L2(Ω)

)1/2
Remark 6.2. Note that G(Ω) ∩H0(curl, Ω) = dom(L∞).

Remark 6.3. Let W k,2(Ω) be the homogeneous Sobolev space of integrability exponent 2 and regularity 
index k, endowed with the norm

‖u‖Wk,l(Ω) =
(
‖u‖2 +

k∑
|α|=0

‖Dαu‖2
) 1

2

In general G(Ω) � W 2,2(Ω), G(Ω) � W 1,2(Ω). For instance, if Ω is a smooth bounded domain, with 0 ∈ ∂Ω, 
one can easily construct a counterexample by taking

u(x) = curl
(
ξY10(ξ)

|x|

)
= |x|−1∇Y10(ξ) × ξ

where Y10(ξ) = 1
2

√
3
2π cos(θ) is the real spherical harmonic of index (1, 0) and ξ = x/|x|. Then u ∈ L2(Ω), 

by definition one has divu = 0 and

curl2 u = Δ(|x|−1∇Y10(ξ) × ξ) = 0,

because |x|−1∇Y10(ξ) × ξ =
√

2
r2 A1(ξ), A1(ξ) being the first vector spherical harmonic [21, p.350], and

Δ
(√

2
r2 A1(ξ)

)
=

√
2

r2
∂

∂r

(
r2 ∂

∂r

(
1
r2

))
A1 −

√
2

r2
2
r2 A1 = 0.

However,

∂u1

∂xj
∼ xj

|x|3 (∇Y10(ξ) × ξ) /∈ L2(Ω), in a neighbourhood of x = 0

and similarly

∂2u1

∂xj∂xi
/∈ L2(Ω).

If Ω is unbounded one can argue in a similar way. It is sufficient to multiply u by a smooth cut-off η such 
that η(x) = 1 if |x| ≤ 1 and η(x) = 0 if |x| ≥ 2, and then take uη − P∇(uη).
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On the other hand, if u ∈ dom(L∞) = G(Ω) ∩H0(curl, Ω), and Ω is bounded and smooth (∂Ω ∈ C1,1 will 
do), then by Gaffney inequality

‖∇u‖L2(Ω) ≤ C(‖curlu‖L2(Ω) + ‖div u‖L2(Ω) + ‖u‖L2(Ω))

and therefore u ∈ H1(Ω).

Notation. Given δ > 0, let Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}. We call Ωδ the shrinking of Ω (of size δ).
The following statement is classical and can be proved by using mollifiers.

Lemma 6.4. There exists ηδ ∈ C∞(R3), 0 ≤ ηδ(x) ≤ 1, ηδ(x) = 1 in Ωδ, ηδ(x) = 0 in R3 \ Ωδ/2 and 
|(Dαηδ)(x)| ≤ Cα

δ|α| , for all x ∈ R3, α ∈ (N ∪ {0})3.

Lemma 6.5. For every open set Ω ⊂ R3, G(Ω) ⊂ W 1,2
loc (Ω), and there exists C > 0 such that

‖∇u‖L2(Ωδ) ≤
1√
2
‖u‖H(curl2,Ω) + C

δ
‖u‖L2(Ω\Ωδ)

for all u ∈ G(Ω).

Proof. This proof is classical in the case of the Laplace operator, see e.g. [5, §4.4].
Let first Ω be bounded and u ∈ C2(Ω) ∩ G(Ω). For such a function we immediately see that

∂ui

∂xj
,
∂2ui

∂x2
j

∈ L2(Ωδ),
∂ui

∂xj
ηδ,

∂2ui

∂x2
j

ηδ ∈ L2(Ω),

for all i, j ∈ {1, 2, 3}, where ηδ is the smooth cut-off function introduced in Lemma 6.4. We omit the 
superscript i in the following calculations. We have∥∥∥∥ ∂u

∂xj

∥∥∥∥2

L2(Ωδ)
≤

∫
Ω

∣∣∣∣ ∂u∂xj

∣∣∣∣2 ηδ = −
∫
Ω

u
∂2ū

∂x2
j

ηδ −
∫
Ω

u
∂ū

∂xj

∂ηδ
∂xj

and similarly ∥∥∥∥ ∂u

∂xj

∥∥∥∥2

L2(Ωδ)
≤

∫
Ω

∣∣∣∣ ∂u∂xj

∣∣∣∣2 ηδ = −
∫
Ω

ū
∂2u

∂x2
j

ηδ −
∫
Ω

ū
∂u

∂xj

∂ηδ
∂xj

.

We then deduce that ∥∥∥∥ ∂u

∂xj

∥∥∥∥2

L2(Ωδ)
≤ −1

2

∫
Ω

(
ū
∂2u

∂x2
j

+ u
∂2ū

∂x2
j

)
ηδ + 1

2

∫
Ω

|u|2 ∂
2ηδ
∂x2

j

≤ 1
2

∫
Ω

(|u|2 + | curl2 u|2) + C2

δ2

∫
Ω\Ωδ

|u|2.

Let now u ∈ G(Ω). Then there exists a sequence (uk)k ⊂ C∞
c (Ω) such that uk → u in G(Ω)loc. Let K be a 

compact subset of Ω, and let O be an open set, K ⊂ Oδ ⊂ O ⊂ Ω, where Oδ is the shrinking of O of size 
δ > 0. A standard Cauchy sequence argument and the previous part of the proof implies the validity of

‖∇u‖L2(K) ≤
1√ (‖u‖L2(O) + ‖curl2 u‖L2(O)) + C ‖u‖L2(O\Oδ).
2 δ
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Choose now O = Ωε ∩B(0, 1/ε) and let ε → 0. We deduce

‖∇u‖L2(K) ≤
1√
2
(‖u‖L2(Ω) + ‖curl2 u‖L2(Ω)) + C

δ
‖u‖L2(Ω\Ωδ)

and the result follows by allowing K to expand to fill Ωδ. �
Definition 6.6. Let V(Ω) = {u ∈ L2(Ω)3 : curl2 u ∈ L2(Ω)3} ⊃ G(Ω), equipped with the norm ‖·‖H(curl2,Ω).

Lemma 6.7. Given a bounded domain B, C∞(B) is dense in V(B) with respect to ‖·‖H(curl2,B), and conse-
quently C∞(B) ∩H(div 0, B) is dense in G(B) with respect to ‖·‖H(curl2,B).

Proof. Let u ∈ V(B) ∩ C∞(B)⊥. Then

(u, φ) + (curl2 u, curl2 φ) = 0, for all φ ∈ C∞(B).

Let u1 = curl2 u. Since

(u, φ) + (u1, curl2 φ) = 0, for all φ ∈ C∞(B),

u1 ∈ V(B) and curl2 u1 = −u. We then have

−(curl2 u1, φ) + (u1, curl2 φ) = 0, for all φ ∈ C∞(B).

By integration by parts we see that

−(curl2 u1, φ) + (u1, curl2 φ) = −
∫
∂B

[(curlu1 × ν) · φ− (u1 × ν) · curlφ] = 0

and since φ is arbitrary in C∞(B), hence by density in H2(curl, B), we deduce that (curlu1×ν) = (u1×ν) =
0 on ∂B, so u1 ∈ H2

0 (curl, B) and therefore there exist Φk ∈ C∞
c (B), Φk → u1 in H2(curl, B). We then 

deduce that

(u, φ) + (curl2 u, curl2 φ) = lim
k→∞

−(curl2 Φk, φ) + (Φk, curl2 φ) = 0, for all φ ∈ V(B),

hence u ∈ V(B) ∩ V(B)⊥ = {0}.
The density of C∞(B) ∩ H(div 0, B) in G(B) now follows by noting that if u0 ∈ G(Ω) ∩ (C∞(B) ∩

H(div 0, B))⊥ then

(u0, ϕ) + (curl2 u0, curl2 ϕ) = 0, for all ϕ ∈ C∞(B) ∩H(div 0, B).

Adding any element of ∇H1
0 (B) to ϕ does not change this orthogonality relation, hence the claim follows 

as in the proof of Lemma 6.3 in [6]. �
Lemma 6.8. Let Ω = Ω0 	 C1 	 C2. Let E ∈ G(Ω). Let R > 0 be fixed and let KR = Ω0 	 C1,r 	 C2,r with Ci,r
as in (5.2). Let 0 ≤ ξR ≤ 1 be a smooth function such that ξR = 0 in KR/2 and ξR = 1 in ΘR = Ω ∩Kc

R. 
Then

‖(∇ξR)T∇E‖L2(KR) ≤ C

( ‖E‖L2(KR+δ)
2 + ‖curl2 E‖L2(KR+δ)

)
‖∇ξR‖L∞(KR).
δ
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Proof. Upon a change of coordinates we may assume that the cylinder C1 coincides with (0, +∞) ×C1. Since 
ξR(x) = ξR(x1), we have (∇ξR)T∇E = ∂x1E∂x1ξR. Therefore it is sufficient to estimate ‖∂x1E‖L2(KR\KR/2). 
Let us assume for the moment that E ∈ C∞(KR) ∩ H(div 0, KR). Let ηδ a smooth cutoff function, as in 
Lemma 6.4, depending only on x1, such that ηδ = 1 in KR \KR/2, ηδ = 0 in (KR+δ \KR/2−δ)c. Then

∥∥∥∥ ∂E

∂x1

∥∥∥∥2

L2(KR∩supp∇ξR)
≤

∫
KR+δ\KR/2−δ

∣∣∣∣ ∂E∂x1

∣∣∣∣2 ηδ
= −

∫
KR+δ

E · ∂
2Ē

∂x2
1
ηδ −

∫
KR+δ

E · ∂Ē
∂x1

∂ηδ
∂x1

+
∫

∂Ω∩∂ supp ηδ

E
∂E

∂x1
ν1ηδ dσ

Now note that ∫
∂Ω∩∂ supp ηδ

E
∂E

∂x1
ν1ηδ dσ = 0

since either ν1 = 0 or ηδ = 0 on the boundary. We can then proceed as in Lemma 6.5 and deduce that∥∥∥∥ ∂E

∂x1

∥∥∥∥2

L2(KR∩supp∇ξR)
≤ 1

2

∫
KR+δ

(|E|2 + | curl2 E|2) + C2

δ2

∫
KR+δ\KR

|u|2

≤ 1
2

∫
KR+δ

(|E|2 + | curl2 E|2) + C2

δ2

∫
KR+δ\KR

|u|2.

If now E is just in G(Ω), due to Lemma 6.7 for fixed n there exists a sequence (Ψk)k∈N ⊂ C∞(KR+δ) ∩
H(div 0, KR+δ) such that Ψk → E and curl2 Ψk → curl2 E in L2(KR+δ). We then deduce from the previous 
part of the proof that for every ε > 0 there exists N ∈ N such that

∥∥∥∥∂Ψk

∂x1
− ∂Ψl

∂x1

∥∥∥∥2

L2(KR∩supp∇ξR)
≤ 1

2

∫
KR+δ

(|Ψk − Ψl|2 + | curl2(Ψk − Ψl)|2) + C2

δ2

∫
KR+δ

|Ψk − Ψl|2 < ε

for every k, l ≥ N . By completeness of L2(KR ∩ supp∇ξR) we deduce that there exists w ∈ L2(KR ∩
supp∇ξR) such that ∂x1Ψk → w. By closedness of the weak derivative ∂x1 it follows that w = ∂x1E. The 
first part of the proof implies that∥∥∥∥∂Ψk

∂x1

∥∥∥∥2

L2(KR∩supp∇ξR)
≤ 1

2

∫
KR+δ

(|Ψk|2 + | curl2 Ψk|2) + C2

δ2

∫
KR+δ

|Ψk|2

and passing to the limit as k → ∞ we deduce that∥∥∥∥ ∂E

∂x1

∥∥∥∥2

L2(KR∩supp∇ξR)
≤ 1

2

∫
KR+δ

(|E|2 + | curl2 E|2) + C2

δ2

∫
KR+δ

|E|2. �
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