
A multi-fidelity approach to predict stress
fields in elastic structures with random
pores through Bayesian deep learning

Vasileios Krokos

Supervisors: Pierre Kerfriden

Viet Bui Xuan

Stéphane P. A. Bordas

A thesis submitted to the graduate school
in fulfilment of the requirements for the degree of

Doctor of Philosophy

Cardiff School of Engineering

June, 2023

Summary

Multiscale structures, although being prevalent in engineering applications, are chal-

lenging to analyse due to the high computational cost involved in simulating them using

direct numerical simulations. This increased cost is the result of the very fine mesh that

needs to be used to capture the effect of the smallest geometrical features. Common

approaches to tackle multiscale problems fall either in the homogenisation or domain

decomposition techniques. Homogenisation, that is computationally less expensive, as-

sumes that the macroscale displacement gradients vary slowly over the structure. That

assumption is commonly violated in real world applications, thus it is necessary to em-

ploy domain decomposition techniques, which are computationally more expensive and

practically more intrusive.

The objective of this study is to develop a multiscale surrogate modelling technique that

can be used to perform fast stress predictions in structures exhibiting spatially random

microscopic features. The proposed approach does not assume separation of scales and

it does not require prior geometrical parametrisation of the multiscale problem. The

input to the developed framework is an inexpensively calculated macroscale solution

obtained using a coarse finite element mesh that ignores the microscale features. The

framework outputs corrections to the macroscale field that take into account the exis-

tence of the microscale features. A Neural Network (NN) is utilised to perform these

fine scale corrections. As opposed to classical surrogate models like Gaussian Processes,

NNs can efficiently learn and operate on image and graph data. In contrast to the rel-

evant literature, in this thesis we are primarily interested in cases where multiple fine

scale features are interacting with each other and/or the boundaries of the structure.

ii

Another area of focus is the exploration of Bayesian NNs (BNNs). As opposed to deter-

ministic NNs, BNNs can be used to provide uncertainty information for their prediction,

which is crucial in engineering applications. Nonetheless, most of the works found in

the relevant literature are deterministic. In this thesis we use the Bayes By Backprop

method to convert the developed NNs to BNNs. Additionally, we show how this un-

certainty can be utilised to solve problems reported by NN practitioners. Firstly, using

efficient Bayesian conditioning algorithms we impose physics-based corrections to the

output of the network, leading to improved performance in cases where training data

are sparse. Additionally, we adopt selective learning which is commonly used to reduce

the need for labelled data in segmentation tasks. In this work we show how it can be

used in the context of regression tasks.

Lastly, we adopt two techniques from the computer vision domain to reduce the train-

ing data requirements. To this end, we use mechanically consistent rotations as data

augmentation technique and transfer learning to efficiently train models with limited

number of data.

The conducted experiments show that the proposed approach manages to accurately

predict both the stress distribution and the maximum equivalent stress in the examined

structures, as long as these lay inside the training data distribution. Additionally, the

uncertainty of the prediction is quantified and shown to positively correlate with the

prediction error. Finally, in terms of data requirements we show that with a dataset of

reasonable size, below 500 FE simulations, the performance of the networks is satisfac-

tory.

iii

Acknowledgements

TL;DR: This journey with all its moments from the very bad to the very good ones

changed me both as a researcher and as a person. I thank all those who were part of it

and helped me in any way!

For the rest of you, here is the outline of the section:

\begin{enumerate}

\item Supervisors

\item RAINBOW

\item Synopsys

\item Family, Friends and More

\end{enumerate}

% Supervisors

I would like to acknowledge my supervisors Pierre, Viet, Stéphane and my former su-

pervisor Philippe for trusting me and treating me like a researcher whose opinion was

not less important than theirs. Pierre, your deep understanding of science in multiple

levels, was a real inspiration to me. Your guidance was invaluable, suggesting meaning-

ful directions to explore, helping me get out of the many pitfalls that, so annoyingly,

appeared along the way but also making me understand the value and potential of our

work. I appreciate your honesty and I believe our interaction really made me a better

researcher, able to defend my work but also being more open to, constructive, criticism.

Viet, first and foremost thank you for always being there and genuinely caring. You

provided an objective view and helped me to keep an eye on the greater picture. Thank

iv

you for all your guidance, advice, and help, that definitely did not stop where your “du-

ties” as my PhD supervisor did. Our interaction helped me to grow as a person, become

a useful member of a scientific/professional team that can efficiently communicate with

the other members, ask for help, be open, and be able to share his “expertise” with

both experts and non-experts in the field.

% RAINBOW

I had the privilege to be a part of the RAINBOW, Marie Sklodowska-Curie European

Training Network, founded by European Union’s Horizon 2020 research and innova-

tion program (grant agreement No. 764644). I thank RAINBOW and all the people

involved in it for giving me the opportunity to travel and live in different countries in

Europe, meeting so many different people from around the world, and giving me a great

insight in both academic and industrial environments. In this context I want to take

the opportunity to thank Christine Sarah Andersen and Kenny Erleben for planning

the RAINBOW events and coordinating the project.

% Synopsys

I also want to thank Synopsys-Simpleware for providing a friendly and social working

environment. I specifically want to thank David Raymont for his help in my many

technical questions and our lunch breaks :) , Mike Richardson for his advice on one of

the most challenging parts of this thesis, and Rita for helping me with all the necessary

paperwork for my PhD and most importantly for doing so while bringing her positive

and joyful attitude with her.

% Family, Friends and More

Many other people contributed to different degrees to the completion of this chapter

of my life. Antoine, I wasn’t sure in which section to include you, but I decided that

you belong in the friends and family section. Sharing our PhD journeys and supporting

each other through all the ups and downs was something invaluable to me. I believe

we had a few too many beers, a few too many times, but who is counting! My expe-

rience in Paris wouldn’t be nearly as good if it weren’t for you. See you in Greece!

PS: Thank you for letting me know that I apparently like cycling now :P. Elena, thank

v

you for your constant support throughout this journey. Thanks for putting up with

all my spreadsheets and my extremely complicated and yet surprisingly(?) inefficient

decision-making process. Sorry that my PhD is so closely related to Neural Networks,

I vow to commit myself to raise awareness of the dangers linked to them, including but

not limited to: world domination, the Matrix and Skynet. Moreover, I would like to

thank all of my friends who made this journey so enjoyable! Last but not least, I’d

like to wholeheartedly thank my family, for their continuous emotional support and for

believing in me and supporting my decisions even when it wasn’t easy for them.

Cheers,

Vasilis, Vasileios, Vasilios

vi

Contents

1 Introduction 1

1.1 Motivation and strategies . 1

1.2 Aims and contributions of this thesis 4

1.2.1 Multiscale Neural Networks . 4

1.2.2 Bayesian Neural Networks . 5

1.2.3 Data requirements and generalisation ability 5

1.3 Thesis structure . 7

1.4 Publications . 8

1.4.1 International journals . 8

1.4.2 Conference papers, presentations and workshops 8

2 Machine Learning 10

2.1 Introduction . 10

2.2 Linear regression . 11

2.3 Fully connected Neural Networks . 12

2.3.1 Single hidden layer NNs . 13

2.3.2 Multi-layer NNs . 16

2.4 Convolutional Neural Networks . 17

2.4.1 Introduction . 17

2.4.2 Convolution operation . 18

2.4.3 Pooling . 20

2.4.4 Upsampling . 20

2.4.5 Simple CNN . 21

2.4.6 Example of a CNN . 22

2.4.7 Comparison with fully connected layers 23

2.5 Graph Neural Networks . 24

vii

2.5.1 Introduction . 24

2.5.2 Literature review . 24

2.5.3 Graph convolutions . 26

2.6 Bayesian Neural Networks . 30

2.6.1 Introduction . 30

2.6.2 Bayesian modelling . 31

2.6.3 Variational Inference . 33

2.6.4 Bayesian linear layer . 34

2.6.5 Example of a Bayesian NN . 35

2.6.6 Extension to CNNs and GNNs 35

2.7 Optimiser . 37

2.8 Conclusions of the chapter . 40

3 Finite Element surrogate models 41

3.1 Introduction . 41

3.2 Classical surrogate models . 41

3.3 PDEs and Machine Learning . 42

3.3.1 NNs with fully connected layers 42

3.3.2 CNNs . 43

3.3.3 GNNs . 45

3.3.4 PINNs . 49

3.4 Multiscale methods . 51

3.4.1 Homogenisation . 51

3.4.2 Concurrent multiscale modelling 54

3.5 ML assisted multiscale methods . 54

3.6 Conclusions of the chapter . 56

4 Multiscale problem formulation, structures of interest and accuracy

metric 57

4.1 Introduction . 57

4.2 Elasticity . 57

4.3 Equivalent stress . 59

4.4 Porous medium . 59

4.5 Multiscale problem . 59

4.6 Accuracy . 60

viii

4.7 Conclusions of the chapter . 61

5 Convolutional Neural Networks for the prediction of equivalent stress

in 2D porous structures 63

5.1 Introduction . 63

5.2 Convolutional Neural Network . 64

5.2.1 Input-Output . 64

5.2.2 Loss function . 66

5.2.3 Architecture . 66

5.3 Numerical examples . 68

5.3.1 Linear elasticity . 68

5.3.2 Nonlinear elasticity . 86

5.3.3 Selective learning . 92

5.3.4 Out of distribution study . 95

5.4 Comparison to homogenisation . 99

5.5 Assumptions and limitations . 103

5.6 Conclusion and perspectives of this chapter 104

6 Graph Neural Networks for the prediction of stress in 3D porous

structures 105

6.1 Introduction . 105

6.2 Geometric learning for multiscale stress analysis 106

6.2.1 Assumptions and justifications 106

6.2.2 Graph construction . 108

6.2.3 Input-Output . 110

6.2.4 Loss function . 112

6.2.5 GNN model . 112

6.3 Physics-based corrections of the NN predictions: enforcing Neumann

conditions online via an ensemble Kalman approach 115

6.4 Numerical examples . 117

6.4.1 Numerical example with cubical heterogeneous material 117

6.4.2 Online stress correction . 125

6.4.3 Numerical example with dogbone data 130

6.4.4 Variable dimension dogbone . 139

6.5 Conclusion and perspectives of this chapter 145

ix

7 Centroid Graph Neural Network for the prediction of equivalent stress

in 3D porous structures 147

7.1 Introduction . 147

7.2 Input-Output . 148

7.3 Loss function . 149

7.4 Architecture . 150

7.5 Bayesian Optimisation . 152

7.6 Numerical examples . 154

7.6.1 Numerical examples with deterministic GNN 154

7.6.2 Numerical examples with probabilistic GNN 156

7.6.3 Transfer Learning . 158

7.6.4 Bayesian Optimisation . 159

7.7 Conclusion and perspectives of this chapter 167

8 Conclusions 168

8.1 Problem statement . 168

8.2 Proposed approach and contribution to state of the art 168

8.3 Results . 170

8.3.1 Neural Networks for fast stress predictions in multiscale structures170

8.3.2 Reliable Neural Network stress predictions 171

8.3.3 Data requirements and generalisation ability 172

8.4 Limitations . 173

8.5 Future work . 173

A Volume and surface mesh 187

B GNN parameters and architectural choices 188

B.1 Skip connection . 188

B.2 Number of filters . 190

B.3 Independent decoder . 191

B.4 Number of GN blocks . 192

B.5 Number of neighbours . 193

B.6 Geodesic and Euclidean convolutions 194

B.7 Full stress field VS maximum stress . 195

B.8 Patches VS full structure . 196

x

C Ensemble Kalman method: Observation matrix free implementation 198

xi

Chapter 1

Introduction

1.1 Motivation and strategies

Multiscale structural analyses are prominent in mechanical and bio-mechanical engi-

neering (e.g. composite materials such as carbon-reinforced polymers or concrete,

porous materials such as bones). Typically, there is a large ratio between the scale

of the structure and the scale of the features that create excessive stress concentrations

(microscale features). Consequently, analysing these structures using full Finite Ele-

ment Analyses (FEA) is highly inefficient since the mesh needs to locally be very dense

to capture the effect of the microscale features.

Common approaches to tackle multiscale problems usually fall either in the ho-

mogenisation or domain decomposition techniques. In both cases the multiscale prob-

lem is split into a macroscale and a microscale problem. In homogenisation [Évariste

Sanchez-Palencia, 1987; Zohdi and Wriggers, 2005] the aim is to find a homogeneous

material that has an equivalent behaviour to the original heterogeneous material. In ho-

mogenisation the microscale computations are performed over a representative volume

element (RVE), assuming that the macroscale displacement gradients vary slowly over

the structure. If that is not the case, for instance due to sharp macroscale geometrical

features, domain decomposition methods are employed where the results of homogeni-

sation are applied to the boundary of regions of interest for concurrent microscale

corrections to be performed, which are typically computationally more expensive and

practically more intrusive than methods based on RVEs [Raghavan and Ghosh, 2004;

Oden et al., 2006; Kerfriden et al., 2009; Hesthaven et al., 2015; Paladim et al., 2016].

In this work we propose a multiscale surrogate modelling technique to tackle multi-

1

scale problems and specifically we focus on porous media with no separation of scales.

The proposed technique is a Neural Network (NN) based concurrent scale coupling

method. NNs possess a number of characteristics that make them ideal candidates for

FE surrogate models while having clear advantages over traditional surrogate models

like Gaussian Processes surrogates (GPs) or polynomial chaos surrogates. Classical

surrogate models are usually limited to small parameter dimensions, typically 1 to 5,

so in practice they cannot accept images and graphs as inputs, which are typical ways

to represent the geometry and the FE solution. Two common approaches are used to

reduce the dimensionality of the input. First approach is to use handcrafted features

[Al-Dirini et al., 2020]. This approach is problem specific, requires expert knowledge

and does not yield optimum results. Another approach is to use a linear dimensionality

reduction technique, such as Principal Component Analysis (PCA) [Liang et al., 2018;

Ziaeipoor et al., 2020]. For the types of random geometries studied in this thesis, linear

dimensionality reduction techniques fail to capture attractive spaces of small dimen-

sion. Consequently, both these approaches introduce an error in the geometry encoding

stage, and thus to the input of the classical surrogate models. A deep NN could be

used to perform the geometry encoding prior to using a classical surrogate modelling

technique but in this work we choose to explore end-to-end deep NN based surrogate

models. We will explore NNs designed to specifically process image and graph data,

namely Convolutional (CNN) and Graph (GNN) NNs respectively.

Multiple works that use NNs as FE surrogates can be found in the literature over the

last couple of years. A three-step procedure is typically followed. The first step is the

training dataset generation step, where many expensive FE simulations are performed

in advance, subject to parameter variations (such as geometry, boundary conditions,

etc.). The second step is the training step, where a NN is trained to approximate the

family of generated solutions. The final step is the inference step, where the trained

NN is used online to almost instantly make predictions on unseen data.

We make a distinction between the image-based and graph-based works found in

literature. That distinction reflects the structure of this thesis but also the chrono-

logical trend in the literature. Firstly, we refer to the image-based works [Nie et al.,

2019; Mendizabal et al., 2020a; Sun et al., 2020; Jiang et al., 2021; Wang et al., 2021;

Deshpande et al., 2022b]. We have a dedicated section where we discuss them in-depth,

[section 3.3.2], but we want to highlight here the work from [Nie et al., 2019]. The

authors developed a CNN model, StressNet, for stress field prediction in 2D linear

elastic cantilevered structures subjected to external static loads. The 2D CNN based

2

framework we develop in [section 5] is an adaption of StressNet to multiscale problems.

The CNN based works are typically limited to 2D problems due to the increased

computational cost of 3D CNNs. Consequently, the literature dedicated to physics-

based simulations using 3D CNNs is rather limited [Mendizabal et al., 2020b; Rao and

Liu, 2020]. In this thesis, we propose to follow a different approach, that of geomet-

ric learning. Geometric learning can be seen as an extension of previously established

NN techniques from Euclidean, grid structures to non-Euclidean, graph and manifold

structures. Specifically, in order to circumvent the increased computational cost as-

sociate with 3D voxel-based CNNs, we employ GNNs [Sanchez-Gonzalez et al., 2020;

Pfaff et al., 2021; Deshpande et al., 2022a] to perform geometric learning on a graph

representing the manifold of interest. The porous materials examined in this thesis

can be fully described by the surface mesh of the structure without using any bulk

information. Thus, the manifold of interest is the surface mesh of the material. In

cases where volume information is needed, for instance structures with heterogeneous

material properties, GNNs can still be used by operating on the volume mesh, but this

might not have the same gain compared to standard voxel-based CNNs. In this case,

the computational gain is attributed to the fact that GNNs are more versatile and can

operate on variable resolution unstructured meshes in contrast to CNNs that require a

constant resolution structured mesh. We discuss in-depth the GNN literature in [sec-

tion 3.3.3]. The 3D GNN based framework we develop in [section 6] is using the GN

Block from [Battaglia et al., 2018] as a convolution block.

There are multiple challenges involved in using NNs to solve engineering problems.

The two main ones are described here. First of all, NNs typically require a large num-

ber of training data, which in practice is not available in realistic engineering problems

since one simulation can take multiple hours or even days. Moreover, in engineering

applications the confidence in the prediction is key. The performance of NNs deterio-

rates quickly when data outside the training data distribution is provided (as we show

in [section 2.6]), and classical NN methods do not inform the user of the uncertainty of

the prediction. These two problems add additional obstacles to the already challenging

task of incorporating NN techniques in real engineering workflows.

3

1.2 Aims and contributions of this thesis

The aim of this thesis is to create NN based FE surrogate models to make fast and

reliable predictions on multiscale problems, by using an as limited as possible training

dataset. The contributions of the thesis along with comparison with the state-of-the-art

works can be found in detail below.

1.2.1 Multiscale Neural Networks

The first contribution of this thesis is the development of a NN based domain decom-

position surrogate model to circumvent the need for direct numerical analysis of stress

simulations in porous materials and structures. This NN will take as input an inexpen-

sively computed macroscopic approximation of the stress field, where the pore network

is ignored, and a fine scale representation of the geometry of the structure and of the

network of microscale pores. The NN will output a corrected stress field that emulates

the output of the direct numerical simulation. We produce three such networks, one

that operates on pixel based 2D problems, one that operates directly on the 3D mesh

used to perform FE simulations, and finally a lightweight network that operates on the

centroids of the microscale features.

Most of the CNN and GNN based FE surrogate models in literature do not deal

with multiscale problems, like in the works of [Mendizabal et al., 2020a; Pfaff et al.,

2021; Deshpande et al., 2022b,a]. Some works do exist where geometrical features are

taken into account but the examined cases are of low complexity [Nie et al., 2019; Jiang

et al., 2021], where the size of the geometrical features is comparable with the size of the

structure and only a few geometrical features are interacting with the boundaries of the

structures. In other works, as for instance in [Sun et al., 2020], a complex microstructure

exists but the training dataset is generated from a single specimen and with a single

FE simulation implying low generalisation ability both in terms of different structures

and boundary conditions. Most of the GNN works that take into account geometrical

features are focused on cracks [Mylonas et al., 2022; Perera et al., 2022] while in this

thesis we focus on spherical inclusions. In [Perera et al., 2022], the examined cases

include up to 19 cracks, of the same size, and with only 3 different orientations. In this

thesis, we examine cases where multiple fine scale features are interacting with each

other, with the boundaries of the structure or both while both the structure and the

boundary conditions change from one FE simulation to another, leading to improved

4

generalisation.

1.2.2 Bayesian Neural Networks

The second contribution of this thesis is the conversion of the developed NNs to Bayesian

NNs. To this end, we use the Bayes by Backprop method [Blundell et al., 2015] to

convert the deterministic NNs to probabilistic NNs, that can output Credible Intervals

(CIs) along with a mean prediction. The CIs are broad for cases where the network is

uncertain of the prediction and thus the user is aware that the prediction is less reliable.

Existing works on FE surrogate models are focused on deterministic networks that

do not provide any uncertainty information for their prediction [Nie et al., 2019; Men-

dizabal et al., 2020a; Sun et al., 2020; Guo and Buehler, 2020; Jiang et al., 2021; Wang

et al., 2021; Pfaff et al., 2021; Perera et al., 2022; Deshpande et al., 2022a, 2023].

Nonetheless, NNs are notorious for their lack of sensible extrapolation ability when

faced with data outside the training data distribution. This might lead to dire con-

sequences in engineering applications. Limited works can be found in the literature

where Bayesian NNs are being used as FE surrogates. A good example is the work

of [Deshpande et al., 2022b], where the authors employ a similar strategy as the one

followed in this thesis. Nonetheless, we highlight that our work in probabilistic CNNs

[Krokos et al., 2021] precedes this work. An example from the GNN literature is the

work of [Mylonas et al., 2022] where they use the local reparameterisation trick [Kingma

et al., 2015] to create a Bayesian GNN. In this thesis we use a generalisation of the

Gaussian reparameterisation trick [Opper and Archambeau, 2009; Kingma and Welling,

2014; Rezende et al., 2014] as described by [Blundell et al., 2015] which we find to yield

better results.

1.2.3 Data requirements and generalisation ability

Limited data availability is one of the main reasons NN techniques are not being used in

real engineering applications today. This is being reported by many Machine Learning

(ML) practitioners like for instance in [Rajender and Samanta, 2023], where the authors

state that researchers have been trying to use ML techniques in diverse fields like

structural performance, structural health monitoring, and concrete mechanics but a

major drawback is the lack of training datasets. Another example is the work of [Niu

et al., 2023] where the authors mention that an optimally trained ML model could be

5

used to decipher crack characteristics, but lack of labelled datasets is a major limitation.

This commonly leads to one of the two following problems. If synthetically generated

data can be used, then researchers have to create very large datasets like for instance

in [Croom et al., 2022] where a dataset consisting of 100,000 random microstructure

images was generated. In cases where this is not possible, researchers train their ML

models using the available data, but the resulting model suffers from low generalisation

capacity [Penido et al., 2022].

In the computer vision field, data augmentation techniques are standard practice to

increase the performance of CNNs by artificially increasing the size of the dataset. The

most common data augmentation techniques are shifting, flipping, rotating and zoom-

ing. Although some of these techniques have successfully been applied to engineering

problems like microstructure segmentation [Goetz et al., 2022], they have not yet been

adopted for regression tasks. This can be attributed to the fact that their extension

to regression NNs is not straightforward. In this thesis we attempt to bridge this gap.

To this end, we demonstrate the use of mechanically consistent rotation as a data

augmentation step, for the developed regression CNN. We show how introducing this

step helps the network to increase its generalisation ability in cases where the training

dataset is not sufficiently large. Another common technique from the computer vision

field that could be used to reduce the training data requirements is transfer learning.

Examples can be found in the literature where transfer learning has successfully been

employed to train CNNs for material microstructure segmentation [Goetz et al., 2022;

Stuckner et al., 2022]. In this thesis, we extend the use of transfer learning from CNN

segmentation tasks to GNN regression tasks.

Two more techniques are being studied in this thesis to reduce the size of the training

dataset. Both of these techniques are based on the uncertainty extracted from the

Bayesian NNs. The first technique is selective learning, which is extensively studied in

[Islam, 2016; Gal et al., 2017]. This technique allows the ML researcher to train an initial

NN with a small dataset and then based on the uncertainty of the network to select a

small subset of the unlabelled data to label. We highlight here, that labelling data can

be very challenging either computationally or in terms of time or financial resources.

This technique is commonly used in medical segmentation networks [Ozdemir et al.,

2021], and it is implemented in popular open-source ML platforms [Cardoso et al., 2022].

Also in fields like material science, researchers have used selective learning to accelerate

the search and discovery of new materials [Lookman et al., 2019]. The literature in

regression tasks is very scarce and not focused on engineering applications [Tsymbalov

6

et al., 2018]. Consequently, in this thesis we apply selective learning in a regression

CNN with the aim to reduce the labelled data requirements and thus the computational

cost of creating the training dataset. Lastly, we propose to use the Ensemble Kalman

method to apply online stress corrections in cases where the accuracy of the NN is

low because of the lack of appropriate training data. We stress that this is different

to Physics Informed Neural Networks (PINNs) where physical constraints are enforced

during training [Raissi et al., 2019, 2020; Hennigh et al., 2021]. In this work we do not

explore PINNs, although it is an interesting future direction.

1.3 Thesis structure

• Chapter [2], is dedicated to Machine Learning and specifically Neural Networks.

We explain the basic principles behind different types of NNs starting from the

most basic ones and we put emphasis on the ones we use in this thesis.

• In Chapter [3], we provide a literature review of different NN based techniques

used to tackle engineering problems. We also review two common approaches

to solve multiscale problems, namely homogenisation and concurrent scale mod-

elling. Lastly, we discuss works from the literature that utilise NN assisted meth-

ods for the solution of multiscale problems.

• In Chapter [4], we introduce the proposed multiscale approach along with typical

structures of interest. We also refer to key concepts like the equations whose

solution we try to reproduce and the Quantity of Interest used in this thesis.

• In Chapter [5], we apply the developed multiscale framework to a 2D image-based

problem, using a CNN. We study the network’s performance and compare it to

homogenisation. We also evaluate the quality of the uncertainty extracted from

the network and we demonstrate how to use it in a selective learning framework to

reduce the number of fine scale simulations needed to train the model. Lastly, we

demonstrate how to use mechanically consistent rotations as a data augmentation

technique to reduce the training data requirements.

• In Chapter [6], we extend the 2D CNN to a 3D GNN, and we apply it to 3D

mesh-based multiscale problems. We study the network’s performance using prob-

lems of different complexity. We also evaluate the extracted uncertainty and we

7

demonstrate how to use it in an online stress correction technique to improve the

network’s prediction.

• In Chapter [7], we modify the 3D GNN to operate on the centroids of the mi-

croscale features, creating a lightweight model that we call centroid GNN. We

study the network’s performance using both synthetic and real data. Addition-

ally, we employ a transfer learning technique to take advantage of the knowledge

gained from one dataset, to reduce the training data needed to make predictions

on a different dataset. Lastly, we evaluate the quality of the uncertainty ex-

tracted from the network and we demonstrate how to use this uncertainty in a

Bayesian optimisation framework to identify microscale features associated with

the maximum stress in a dataset.

1.4 Publications

Part of the work contained in this thesis has also appeared in the following papers,

presentations, and workshops:

1.4.1 International journals

• Vasilis Krokos, Stéphane P.A. Bordas, Pierre Kerfriden: A graph-based proba-

bilistic geometric deep learning framework with online enforcement of physical

constraints to predict the criticality of defects in porous materials, International

Journal of Solids and Structures, 2023

• Vasilis Krokos, Viet Bui Xuan, Stéphane P.A. Bordas, Philippe Young, Pierre

Kerfriden: A Bayesian multiscale CNN framework to predict local stress fields in

structures with microscale features, Computational Mechanics, 2022

1.4.2 Conference papers, presentations and workshops

• Vasilis Krokos, Viet Bui Xuan, Pierre Kerfriden: A 3D Bayesian Multiscale Graph

Neural Network Framework To Predict Local Stress Fields In Structures With

Microscale Features. Presentation in the 18th European Mechanics of Materials

Conference, 4-6 April 2022 (ORCA entry)

8

https://orca.cardiff.ac.uk/id/eprint/150026/

• Vasilis Krokos, Viet Bui Xuan, Pierre Kerfriden: Probabilistic predictions of

equivalent stress fields in heterogeneous materials using GraphCNNs and varia-

tional dropout. Workshop attendance and presentation in the Physics and Image

workshop at Mines ParisTech, 15th of June 2021

• Vasilis Krokos, Pierre Kerfriden, Philippe Young, Viet Bui Xuan, Stéphane Bor-

das: Data-Driven Multiscale Computational Modelling in Biomechanics using

Convolutional Neural Networks. Paper submitted at WCCM 2020 planned for

Paris, 19-24 July 2020 (rescheduled to virtual format 11-15 January 2021) (ORCA

entry)

• Vasilis Krokos, Viet Bui Xuan, Stéphane Bordas, Philippe Young, Pierre Ker-

friden: Bayesian convolutional neural network as probabilistic surrogates for the

fast prediction of excess stress in structures with microscale patterns, local fea-

tures or defects. Workshop attendance and presentation on Model Order Reduc-

tion and Probabilistic Model Learning Workshop @ Centre des Matériaux, 17th

of September 2020

9

https://orca.cardiff.ac.uk/id/eprint/150069/
https://orca.cardiff.ac.uk/id/eprint/150069/

Chapter 2

Machine Learning

In this chapter we introduce Neural Networks (NNs) using linear regression. By high-

lighting the fundamental components of linear regression, we get the opportunity to

see similarities with NNs. Specifically, we refer to key concepts like the type of NN

(fully connected, convolutional, etc.), the loss function, the activation function and the

optimiser.

2.1 Introduction

In the last decade, Machine Learning (ML) and specifically Deep Learning has at-

tracted tremendous attention and an increasing number of researchers are working

actively in applying and improving the state-of-the-art techniques. Nevertheless, the

theory behind NNs exists from the early 1950s, and it was mostly the lack of appropri-

ate computational resources and realistic expectations that hindered the exponential

growth of the field that we see nowadays. Specifically, in terms of Artificial Intelligence

(AI), the 1970s is known as “AI winter” (an analogy to nuclear winter), because of the

reduced funding and interest in the field caused by pessimism about ML effectiveness.

In contrast to that, we are now in the era of “AI spring” attributed to a number of

successful AI projects. Some examples include, language translation (Google Transla-

tion), image recognition (The ImageNet competition [Russakovsky et al., 2015]), various

game-playing ML models such as AlphaZero [Silver et al., 2017] (chess) and AlphaGO

(Go) [Silver et al., 2016] both developed by DeepMind, and most recently tackling the

Protein Structure Prediction problem [Tunyasuvunakool et al., 2021].

In the next sections we will explore the basics of NNs by reviewing the basic types

10

of NNs with emphasis on the 2 types we use in this PhD work.

2.2 Linear regression

A common way to introduce NNs is through linear regression, which can be seen as a NN

with fully connected layers under specific conditions. Given a set of N 1-dimensional

pairs of input/output data points [(x1, y1), ..., (xN , yN)] we try to “train” a linear model,

f(x), to map the inputs, x, to the outputs y. This model has parameters W and b and

is of the form

f(x) = xW + b (2.1)

Training the model means to find the parameters θ = (W, b) so that the model “best”

fits the data. How well the model fits the data is determined through an error function

that needs to be minimised. The error function used in the case of linear regression is

the sum of the squared errors between the data and the model prediction divided by

the number of data points

L(θ) =
1

N

N∑
i=1

∥yi − f(xi)∥2 (2.2)

In the context of NNs the error function is called the “loss function”, and the specific

loss function introduced in equation [2.2] is called the Mean Squared Error (MSE).

For the linear model introduced above, the minimisation problem of equation [2.2] has

an analytical solution

W opt =

N∑
i=1

(xi − x̄)(yi − ȳ)

N∑
i=1

(xi − x̄)2

(2.3a)

bopt = ȳ −W optx̄ (2.3b)

where x̄ and ȳ are the mean values for x and y respectively.

As can be seen in the code snippet below in a few lines of code we can create a

simple dataset and fit a linear function to it. Visualisation of the results can be found

11

in [Fig 2.1]

import numpy as np

from sklearn import linear_model

def create_dataset(N, e=1):

x = np.linspace(-1, 1, num=N)

y = 10*x + 3

add random noise to the data

y += np.random.normal(0, e, x.shape[0])

return x.reshape(-1,1), y.reshape(-1,1)

create dataset

x, y = create_dataset(N)

Create linear regression object

regr = linear_model.LinearRegression ()

Train the model

regr.fit(x, y)

Make predictions

y_pred = regr.predict(x)

After introducing this simple linear regression problem we will now move to regres-

sion problems in terms of neural networks.

2.3 Fully connected Neural Networks

NNs with fully connected layers is the most basic and easy to explain type of NNs. We

choose to start with them since we can easily compare them with the linear regression

model we saw in the previous section but also because other types of NNs, as for

instance Convolutional and Graph NNs, tend to use fully connected layers as part of

their architecture.

12

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

5

0

5

10

15

y

real equation (without noise): y = 10*x + 3
 equation determined by least square regression: y = 10.20*x + 2.97

 R2 = 0.9750
best line
data

Figure 2.1: In this figure we can observe the line that best fits a set of data points.

2.3.1 Single hidden layer NNs

Given N pairs of input/output data points [(x1,y1), ..., (xN ,yN)] where xi ∈ RQ and

yi ∈ RD we try to find a function, f(x), to map the inputs x , commonly referred to as

input layer in the NN terminology, to the outputs y. This function will be a NN with

a single hidden layer, a sketch of which can be seen in [Fig 2.2] 1, where Q = 3, D = 2

and the hidden layer has K = 6 neurons. The single hidden layer NN is composed of

the input layer, a hidden layer and finally the output layer.

The output of the hidden layer is called activation of the layer and can be calculated

as follows

z = σ(xW1 + b1) (2.4)

whereW1 is the weight matrix of size Q×K, b1 is the bias vector that holdsK elements

and finally σ(·) is an element-wise non-linearity that is called activation function in

the context of neural networks. Here we use the Rectified Linear (ReLU) activation

function, ReLU(x) = max(0,x), but other options exist such as the hyperbolic tangent

function (tanh(x)) and the sigmoid (1
1+e−x).

Currently the activation of the hidden layer is a matrix of size N × K, which is

1The NN is drawn using the free online tool “NN-SVG” [LeNail, 2019]

13

Input Layer ∈ ℝ³ Hidden Layer ∈ ℝ⁶ Output Layer ∈ ℝ²

Figure 2.2: We can see a sketch of a single hidden layer fully connected NN. The input
is of dimension 3, the hidden layer has 6 dimensions and finally the output layer has 2
dimensions

inconsistent with the output matrix that needs to be of size N ×D. The output layer

transforms the activation in the following way

ŷ = zW2 + b2 (2.5)

where ŷ = f(x) is the output of the network, W2 is the weight matrix of the output

layer of size K ×D and b2 is the bias vector holding D elements.

We ultimately want to find the parameters, θ = (W1,b1,W2,b2), so that the NN

fits the data. To this end we need to formulate a loss function that depends on these

parameters and minimise it. The MSE is usually a sensible choice of a loss function

in regression tasks. The loss function is minimised using an iterative method. In the

NN terminology this iterative method is called optimiser. For the optimiser let us

assume that we use standard Stochastic Gradient Descend (SGD), which is a well-

known algorithm in the field of computational sciences. We further discuss optimisers

in section [2.7].

This single hidden layer NN is equivalent to the linear regression model we analysed

in section [2.2], under one condition. The activation function has to be the linear

activation function, which is basically the identity function. In fact, a NN with any

number of fully connected layers, is exactly equivalent to the linear regression model as

long as it only uses linear activation functions. The equation of the single hidden layer

NN becomes

14

ŷ = xW∗ + b∗ (2.6a)

W∗ = W1W2 (2.6b)

b∗ = b1W2 + b2 (2.6c)

Below we show the few lines of code required to train a NN with a single hidden

layer to solve the same problem posed for the linear model in section [2.2] and compare

the 2 solutions. From [Fig 2.3] we can see that the 2 solutions are indeed the same. If

we repeat the same procedure with any number of layers we will get the same results

because without non-linearities (introduced by the activation functions) the fully con-

nected NN is just a linear model.

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

get shape of input output and define neurons in hiddel layer

input_shape = x.shape[-1]

output_shape = y.shape[-1]

hidden_dim = 3

build model

model = Sequential ()

model.add(Dense(hidden_dim , input_dim=input_shape))

model.add(Dense(output_shape))

compile model; define loss function and optimiser

model.compile(loss=’MSE’, optimizer=’SGD’)

fit the keras model on the dataset

model.fit(x, y, epochs=100 , batch_size=10)

make predictions with the model

y_NN = model.predict(x)

15

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

5

0

5

10

15

y

NN prediction
linear regression
data

Figure 2.3: In this figure we compare the fitting of a linear model and a NN with the
linear activation functions on the dataset introduced in [2.2].

2.3.2 Multi-layer NNs

It is very straight forward to extend the single layer architecture to a neural network

of any number of hidden layers - although training a very deep model is a challenging

task for numerical reasons. For an input x, the output, f(x), of a multi-layer NN with

P hidden layers is given by the following equations

f(x) = σP+1(zPWP+1 + bP+1) (2.7a)

zp = σp(zp−1Wp + bp) (2.7b)

z1 = σ1(xW1 + b1) (2.7c)

where zp is the activation of a hidden layer p, σp is the activation function of the

hidden layer p and finally Wp and bp are the weights and biases of the hidden layer p

respectively, the subscript P + 1 refers to the output layer.

16

2.4 Convolutional Neural Networks

In this section we will explain the basics of Convolutional Neural Networks (CNNs),

NNs specifically designed to process image data. We will start from a brief historical

review demonstrating how CNNs helped advance the field of deep learning in general

and we mention the main contributions that are still considered standard practice in

deep learning today.

2.4.1 Introduction

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) played a key role in

advancing the area of computer vision and deep learning. In 2012, AlextNet [Krizhevsky

et al., 2012] won the ILSVRC competition and became one of the most influential works

in the field of CNNs. The most important innovations were the use of ReLU activation

function, in contrast to more traditional tanh and hyperbolic tangent, and the use of

GPUs for training. Two years later, Google’s GoogLeNet [Szegedy et al., 2015], intro-

duced the concept of Inception blocks in an attempt to train deeper NNs. Inception

blocks leverage feature detection at different scales to approximate an optimal local

sparse structure in a CNN. In 2015, Microsoft’s ResNet [He et al., 2016] was the next

breakthrough introducing the concept of residual connections that allows the training

of very deep neural networks of hundreds of layers. Residual connections are necessary

because even though in theory the interpolation ability of the network should increase

with the number of layers, in practice training deep NNs is very challenging due to prob-

lems like vanishing or exploding gradients causing the NN to not be able to learn simple

functions like the identity function between input and output [Hochreiter et al., 2001;

Sussillo and Abbott, 2015]. Residual connections allow the NN itself to choose its depth

by skipping the training of a few layers [Kim et al., 2016; Zagoruyko and Komodakis,

2016; Lim et al., 2017]. Lastly, in 2017 the SENet network [Hu et al., 2018] introduced

the Squeeze-and-Excitation (SE) block that can adaptively recalibrate channel-wise fea-

ture responses by explicitly modelling interdependencies between channels resulting in

improved generalization across datasets and improvement in the performance [Cheng

et al., 2018; Li et al., 2018].

17

2.4.2 Convolution operation

One of the main characteristics of CNNs is the convolution operation. We can see an

example of a convolution between an image and a filter in [Fig 2.4]. In the figure, the

filter is applied on the top left corner of the image. In reality we can imagine the filter

sliding along both the horizontal and vertical direction to iteratively cover the entire

original image, although this is omitted for simplicity. Filters can be used to detect

features in images. For example in [Fig 2.5] we show the effect of applying 2 filters in

the original image. These 2 filters are known as Sobel filters and can be used to detect

horizontal and vertical edges. Other filters, or more commonly a lot of filters applied

one after the other, can be used to detect more complex features as for instance faces.

Filters of different size detect different sized features. A common choice for the size of

the filters is 3× 3 but also 5× 5 and 7× 7 are used for larger images.

The main idea behind CNNs is that the parameters of the filters do not have to

be defined by hand but they should be considered as parameters that the network will

optimise in order to minimise the loss function. Training the network ultimately results

in defining these parameters. Typically, in CNNs with multiple convolutional layers, the

first layers of the CNN detect low level features, like horizontal and vertical lines, and

as we go further in the network the filters detect higher level features, as for example

faces.

As we show in the previous paragraph, the image size before and after the convo-

lution with a filter of size f 3 is not the same. In the simplest case, for an image with

input size ain and output size aout we have aout = ain − f + 1. In more realistic cases

the relationship between input and output size is governed by two hyperparameters,

namely padding p, and stride s

aout = ⌊ain + 2p− f

s
+ 1⌋ (2.8)

• padding(p): Due to the nature of the convolution operation the output image

reduces in size. This leads to problems with very deep neural networks because

after applying a lot of convolutional layers the image will get too small. Addition-

ally, the pixels on the boundary of the image and especially the corner pixels are

visited less times by the filters compared to the rest of the pixels. To tackle both

2Photo of capybara provided by Karen Lau on Unsplash.
3From now on we will assume that all images and filters have the same pixel number along both

directions for simplicity, nevertheless all the equations directly extend to non-square images and filters.

18

8

1

5

2

8

9

7

3
5

1 1

1

1

1

1

1

1

5

5

5

5

5
5

5

5

2
2

2

2

9

9

9
9

9

8

8 8

8

3

3

3

7

7

7
7

1*9 + 5*1 + 2*8 + 8*8 + 3*3 + 1*5 + 2*5 + 5*7 + 1*2 = 155

155

Image of
capybara

Matrix representation
of image Filter Output image

Figure 2.4: In this figure we can see a schematic representation of a convolution opera-
tion. The input image is of size 6× 6, the filter is of size 3× 3 and the output image is
of size 4× 4. We note that the RGB images have 3 channels with values from 0 to 255
but in this figure, we consider a 1 channel representation of the image (as for instance
greyscale) with values from 1 to 9, for simplicity reasons. 2

these problems padding was introduced. Padding adds a layer of pixels around

the image, usually with value zero. The “thickness” of this layer is determined

by the padding size. A common padding strategy is called “same padding” in the

NN literature. This strategy chooses the padding size so that the image before

and after the convolution has the same size. Using [Eq 2.8] and by setting s = 1
4 and ain = aout we find that p = f−1

2
in the case of “same padding”.

• stride(s): Another hyperparameter that affects the convolution is the size of the

step taken when sliding the filter across the image. Until now it was implied,

although never explicitly stated, that the filters move one pixel along the vertical

and horizontal direction. This is not necessarily true and the step size is deter-

mined by the stride parameter. Most commonly the stride is set to 1, although

it can be set to higher numbers which results in downsampling the image, and

focusing on the higher level features, which will lead to a computationally cheaper

problem but might affect performance.

4Stride is set to one since it is only used when we explicitly want to reduce the size of the image so
it makes no sense to use s > 1 with “same padding”.

19

horizontal edge
detection filter

vertical edge
detection filter

1 2 1

0 0 0

-1 -1-2

1 0 -1

2 0 -2

1 -10

=

=

convolution

Figure 2.5: In this figure we can observe the effect of applying 2 filters, one for vertical
and one for horizontal edge detection, on an image

2.4.3 Pooling

Another type of layer that is used in CNNs is the pooling layer. This layer has no

parameters to be learned. It is used to downsample the image to reduce the computa-

tional cost and it also makes the network more robust to changes in the position of the

features in the image. This is a step towards translation invariance which can also be

achieved through data pre-processing by randomly translating the original images. In

tasks where the exact position of the objects is not important, like in object recogni-

tion tasks, translation invariance is highly desirable. On the other hand, in tasks where

the exact position of the pixels is important, like in segmentation tasks, translation

invariance is not desirable. The most common type of pooling used in practice is max

pooling, an example of which can be found in [Fig 2.6], and less frequently average

pooling may be used by ML practitioners. We note that pooling can take place in a

sliding window fashion, same as for the convolution operation, by defining a filter size,

a stride and padding.

2.4.4 Upsampling

So far, we have introduced 2 operations, both of which can be used to downsample an

image. As we will see in the next chapters of this thesis, some architectures require

image upsampling. There are a lot of different ways to upsample an image, some

20

1

1

1

11

1

1

1

5 5

5

5

5

5

5 5

2

2

2

2

9

4 2

5

9

8

8

4

2

3 3

3

2 7

7 7

75

8 9

max()

max pooling

Original Image Pooled Image

Figure 2.6: Max pooling on a 6× 6 image, with f = 3, s = 3 and p = 0

of which have no learnable parameters and thus are data agnostic while others use

learnable filters whose values can be determined during network training. Two examples

of data agnostic operations are “Nearest Neighbour” [Fig 2.7] and “Bed of Nails” [2.8].

On the other hand, we can combine a convolution and upsampling layer to create a

transposed convolution layer that has learnable parameters [Fig 2.9]. This operation

can be viewed as a convolution with a fractional stride.

nearest neighbour
upsampling

Original Image
2 x 2

Upsampled Image
 4 x 4

75

8 9

8

9

7

7

8 9

75

9

9

5

5

8

7

8

5

Figure 2.7: Upsampling a 2x2 image to a 4x4 image using nearest neighbour upsampling

2.4.5 Simple CNN

Below we provide the equations for a CNN with P convolutional layers. Assuming an

image A and filters fp we have

21

bed of nails
upsampling

Original Image
2 x 2

Upsampled Image
 4 x 4

75

8 9

8

0

7

0

0 0

00

9

0

5

0

0

0

0

0

Figure 2.8: Upsampling a 2x2 image to a 4x4 image using bed of nails upsampling

Upsampled Image
 3 x 3=

8

0

0

8

0

0

0

8 8

0

9

0

9

0

9

0

0 9

8

16

7

17

12

9

5

13 29=+
0

0

0

0

5

0

5

5 5+
0

7

7

0

7

0

0

0 7+

Original Image
2 x 2

75

8 9

11

1 1

Filter
2 x 2Transposed

convolution

Figure 2.9: Upsampling a 2x2 image to a 3x3 using transposed convolution

f(x) = σP+1(zP ∗ fP+1 + bP+1) (2.9a)

zp = σp(zp−1 ∗ fp + bp) (2.9b)

z1 = σ1(A ∗ f1 + b1) (2.9c)

where ∗ denotes the convolution operation.

2.4.6 Example of a CNN

Below we see a CNN that can be used for a 10-class classification problem [Fig 2.10]. The

CNN uses convolutional layers for feature extraction and in the end some fully connected

layers for the classification. The activation of the last layer is called “softmax” and it

will output 10 numbers summing to 1. Each number corresponds to the probability

that the input image belongs to one of the classes. In table [2.1] we show how the shape

of the image changes inside the network and also the number of trainable parameters.

22

Convolution max-pooling Convolution max-pooling Convolution

max-pooling

3@164x164
8@80x80

8@40x40

16@40x40
16@20x20

32@18x18 32@9x9

1x64
1x10

Fully Connected

Fully Connected

Figure 2.10: Sketch of a multilayer CNN with Convolutional, Pooling and Fully Con-
nected layers

output shape number of parameters

Input 164× 164× 3 0
Conv(f=5, padding=0,

filters = 8, s=2)
80× 80× 8 608

Max Pooling(f=2, s=2) 40× 40× 8 0
Conv(f=3,

padding=same, filters =
16, s=1)

40× 40× 16 1,168

Max Pooling(f=2, s=2) 20× 20× 16 0
Conv(f=3, padding=0,

filters = 32, s=1)
18× 18× 32 4,640

Max Pooling(f=2, s=2) 9× 9× 32 0
Flatten 2,592 0

FC(neurons = 64) 64 165,952
FC(neurons = 10) 10 650

Table 2.1: Image shape and number of parameters in the layers of a CNN.

2.4.7 Comparison with fully connected layers

As already mentioned, CNNs were developed to work with images, but one may wonder

why not use the standard fully connected layers to do that. Indeed an image of any size

can be flattened and each pixel can be considered as an input feature. Let us discuss

why this seemingly natural approach leads to both theoretical and practical problems.

Let us consider a single channel 128×128 image, which for today’s standards is a very

low-resolution image. 5 If we apply 100 3× 3 filters on this image, because the weights

are shared, we end up with 100×3×3 = 900 weights. On the other hand, if we connect

5For comparison I will mention that the original capybara image used in section [2.4.3] was of
resolution 3066× 4599 and a mid-range smartphone can take 4032× 3024 photos.

23

this input layer with a single hidden layer of 100 neurons we end up with 128× 128×
100 = 1, 638, 400 weights! The difference is striking. We note that training networks

with large number of parameters is associated with increased memory requirements,

slower training times and difficulties for the optimiser to converge. Additionally, in

order to avoid overfitting, training requires a very large training dataset.

The advantage of convolutional layers over fully connected ones is amplified if we

consider that the number of weights in the CNN remains the same regardless of the

size of the image, while in the fully connected layers it scales linearly.

Even in the case where computational resources and data availability is not a prob-

lem, we could argue that convolutional layers are more suited for dealing with images.

In contrast to fully connected layers, convolutional layers take advantage of locality and

translation equivariance. Locality means that pixels which are closer to one another

more strongly affect each other compared to pixels that are far away. In the context of

CNNs, translation equivariance means that an object can be detected regardless of its

position in the image. This is achieved through weight sharing in convolutional layers.

2.5 Graph Neural Networks

In this section we will introduce Graph Neural Networks (GNNs), NNs that are designed

to operate on graph structures in contrast to images. We start by giving a few examples

of problems that can be tackled with GNNs, continue with a literature review of GNNs

and lastly we give examples of graph convolutions.

2.5.1 Introduction

As demonstrated in the previous section CNNs have advantages over NNs with fully

connected layers in cases where the input is an image. Nevertheless, there is a great

variety of data that cannot be represented using images but instead have a graph

structure. Examples include molecules [Fig 2.11a] and social networks [Fig 2.11b]. In

order to analyse data with underlying graph structure researchers developed GNNs.

2.5.2 Literature review

GNNs have been massively developed over the last years with various works on seg-

mentation [Hanocka et al., 2019; Schult et al., 2020; Lei et al., 2021] and shape corre-

24

(a) (b)

Figure 2.11: On the left (a), a sketch of a caffeine molecule and on the right (b) a sketch
of a social network. Images by OpenClipart-Vectors (a) and Gordon Johnson (b) from
Pixabay.

spondence or retrieval tasks [Masci et al., 2015; Gong et al., 2020].

One of the first works on deep learning applied to Non-Euclidean data is described in

[Qi et al., 2017a]. The proposed network, PointNet, operates on point clouds. PointNet

has a simple architecture where the input point cloud is first processed through 2 shared

multi-layer perceptrons (MLPs) that map the three-dimensional input to a latent space

of 1024 dimensions. After that, a max pooling layer is used to create global features

and finally a NN with 3 fully connected layers is used to predict the classification scores.

PointNet is applied to unordered point clouds and thus it is permutation and translation

invariant. This is achieved by the use of a symmetric aggregation function, max pooling,

and pose normalisation respectively. PointNet is followed by PointNet++ [Qi et al.,

2017b] which is better in capturing local structures and thus in recognising fine-grained

patterns resulting in increased generalisability in complex scenes. PointNet++ builds a

hierarchical grouping of points that are then processed with PointNet. Another network

inspired from PointNet is called EdgeConv [Wang et al., 2019]. EdgeConv operates

on point clouds and it successfully captures local geometry information while at the

same time achieves permutation invariance. In contrast to the previous approaches,

EdgeConv creates edge features between points and their neighbours. The edge features

are created through an edge function that takes as input the node features of the node

and its neighbours. The edge function drives the behaviour of the network since it

defines how information is diffused between points and their neighbours. The most

common edge function, referred to as asymmetric edge function in the original work,

25

explicitly combines the global shape structure with local neighbourhood information.

The edge features are then passed through an MLP to update their values. Lastly, a

channel wise symmetric aggregation function is applied to the updated features resulting

in a permutation invariant network.

Apart from point clouds, a more informative way to represent 3D objects is through

meshes. An early attempt for geometric learning on meshes is introduced by [Hanocka

et al., 2019]. The proposed network is called MeshCNN and can be used for classification

and segmentation tasks. Because MeshCNN operates directly on the mesh it can take

advantage of the connectivity of the mesh which offers increased topological information

compared to operating on a point cloud. MeshCNN defines convolution and pooling

operations directly on the edges of mesh. The most interesting feature of MeshCNN

is the goal oriented pooling operation that it introduces, that gradually drops edges of

the initial mesh and results in a new mesh with only the most informative edges for

the given task. For the mesh convolution the authors define 5 features on the edges

of the mesh (the dihedral angle, two inner angles and two edge-length ratios for each

face) and then use symmetric functions to process pairs of opposing edges and thus the

convolution is invariant to edge order. MeshCNN result in better accuracy compared

to PointNet++.

2.5.3 Graph convolutions

As seen in the previous sections, an image convolution is defined as a mathematical

operation that involves sliding a small matrix, filter, over each local region of the im-

age, and computing a dot product between the values of the filter and the pixels in

the local region. On the other hand, in graph data the neighbourhood is not uniform

and varies based on the underlying graph structure. Researchers use different math-

ematical operations to define convolution on graphs. In general, these operations can

be divided in spectral and spatial methods. Spectral methods make use of the graph

Laplacian matrix and its eigendecomposition to define convolution operations, while

spatial methods are based on directly applying convolution on the nodes, edges or the

neighbourhood of the graph.

• Spectral methods: These methods operate on the frequency instead of the spa-

tial domain. According to the convolution theorem, image convolution on the

spatial domain is equivalent to matrix multiplication in the frequency domain.

26

This is achieved using Discrete Fourier Transformations, which unfortunately re-

quires a regular grid (which is compatible to image but not graph structures). In

order to extend this idea from images to graphs we need to define a more generic

basis, namely the eigenvectors of the graph Laplacian.

The Laplacian, L, is a matrix representation of the graph. It can be calculated

using the Adjacency matrix, A, and the Degree matrix, Deg, of the graph as

L = Deg − A. An example can be found in [Fig 2.12].

0

1

2

3
4

5

6

Laplacian Degree Matrix Adjacency Matrix

= -
3 -1 -1 -1
-1
-1
-1 -1 -1 -1

-1-1
-1 -1 -1

-1-1
3

1
1

4
2

20

0

0000
0 0 0 0 0

000

000
0 0 0

000
0 0
0 000

0 0 0
000

000
0 0 0

000 0 0
00

0 0
00

0 0
00

0 0
00

000
0 0 0

000
000

0 0 0
000

000
0 0 0

000
0

0

0
00

0

0

3
2

2

2

2
3 0

4

1 1 1
1
1
1 1 1 1

11
1 1 1

11

0

0 0
0

0 0

Graph

Figure 2.12: Calculation of the Laplacian matrix. The diagonal elements of the Degree
matrix can be calculated by per row summation of the Adjacency matrix.

To perform convolution on the spectral domain we need to calculate the eigen-

vectors of the Laplacian and in practice it is enough to calculate only a few of

them, specifically the ones that correspond to the smallest eigenvalues.

Now we can define mathematically the convolution in the spectral domain

Xp+1 = V (V TXp ⊙ V TW spectral
p) (2.10)

27

Where Xp is the node features before the convolution (assumed to be one dimen-

sional), for the graph of [Fig 2.12] it would be of size [7× 1]. V is the eigenvector

matrix of size [7× 5] (we choose to use 5 eigenvectors), W spectral
p is the filter that

we try to learn which is of size [7 × 5] (5 filters), and Xp+1 is the updated node

features of size [7× 5]. Finally, ⊙ denotes element-wise multiplication. To extend

the convolution to a case where the input feature has multiple dimensions, we

repeat the same procedure for each dimension, and then sum the results over all

dimensions, similar to how convolution is performed on multi-channel images.

Spectral methods have the disadvantage of having to decompose the Laplacian

matrix which has a computational complexity of O(n3). Additionally, as we

showed the size of the filters depends on the structure of the graph. These 2

facts result in increased computational difficulty of applying this method to large

graphs. Several methods have been developed to overcome these problems like

[Bruna et al., 2014; Defferrard et al., 2016] but this is outside of the scope of this

work.

• Spatial methods: These methods do not require storing or decomposing a Lapla-

cian matrix. In the context of this thesis we primarily focus on these methods.

After seeing an extensive literature review about spatial methods (section [2.5.2])

we explain in more detail the “EdgeConv” method [Wang et al., 2019]. Formally

the “EdgeConv” can be described as

x∗
i = AGG

k=1:K
[hΘ(xi,x

k
j)] (2.11)

where xi refers to the node features of the central node in the input of the convo-

lution and x∗
i refers to the node features of the central node in the output of the

convolution. The central node has K neighbours with node features xk
j . AGG

refers to a symmetric aggregation function as for instance max or mean, making

this convolution invariant to permutations of the input. Finally hΘ refers to a

nonlinear function with parameters Θ.

We see an example of an “EdgeConv” in [Fig 2.13]. In (A) we have extracted

a subgraph from a larger graph. The subgraph is composed of the central node,

whose value we want to update, and its neighbours. The central node has node

features xi and its 5 neighbours have node features [x1
j ,x

2
j ,x

3
j ,x

4
j ,x

5
j]. In (B) we

encode features from the nodes of the graph to the edges of the graph. The edge

28

features are defined as ei,j = [xi,xi − xj]. This choice leads to a convolution that

is not translation invariant. If translation invariance is of interest, different edge

features can be used such as ei,j = [xi − xj]. In (C) we pass the edge features

through an MLP, that is a NN with 2 fully connected layers and a ReLU activation

function. This implies that in this case we choose hΘ = MLP([xi,xi−xj]), where

Θ are the weights and biases of the MLP that will be optimised. In (D) we see

the updated edge features on the graph. Finally, in (E) we have used a max

aggregation function to aggregate the updated edge features and update the node

features of the central node.

xi

xj
1

xj
2

xj
3xj

4

xj
5

Calculate edge features

eij = [xi, xi - xj]

FC
+
LN

FC
+
LN

ReLU

MLP

xi

xj
1

xj
2

xj
3xj

4

xj
5

xi

xj
1

xj
2

xj
3xj

4

xj
5

xi*

xj
1

xj
2

xj
3xj

4

xj
5

MAX

(A)

(B) (C) (D)

(E)

Figure 2.13: Example of an EdgeConv with AGG = max, and hΘ = MLP([xi,xi−xj]).
The node features of the central node are denoted with xi before the convolution and
the updated ones with x∗

i .

To sum up, we have seen two examples of graph convolutions. In the context of this

29

PhD thesis we focus only on the spatial graph convolutions. We explained in detail how

to perform an “EdgeConv”, which we believe is a simple introduction to the convolution

we use, namely “GN Block” [Battaglia et al., 2018], for which we will give more details

in [6.2.5].

2.6 Bayesian Neural Networks

In this section we demonstrate the importance of getting uncertainty estimation from

the NN. We give a brief literature review of techniques commonly used to convert

a deterministic NN to a Bayesian NN, that can quantify the uncertainty of its own

prediction, and we discuss their advantages and disadvantages. Lastly, we give more

details on the method we use in this thesis to extract uncertainty from the NN.

2.6.1 Introduction

Even though NNs are being used today in a variety of tasks, they usually lack a key

property, namely quantifying the uncertainty of their predictions. The extrapolation

ability of NNs is rather poor, thus making predictions on data outside the training

domain can lead to dire consequences. For example in [Fig 2.14] we see a simple 2 layer

fully connected NN that is forced to make a prediction outside of the training data

range. We notice that it manages to fit the data very well but outside the training

range the behaviour is very unpredictable. On the left, it predicts 0 for all the values,

while on the right the prediction keeps decreasing almost linearly with a very steep

slope. Consequently, we see that the NNs are rather unreliable in applications that

they might face input data very different from the training data.

A well understood and widely used method that can be used to solve this problem is

the Gaussian Process (GP). A GP is a stochastic regression model that outputs a mean

prediction along with credible intervals. It requires a covariance (or kernel) function,

which is a measure of similarity between 2 data points. A common choice is the Squared

Exponential kernel

K(xi,xj) = exp(−∥xi − xj∥2

2l2
) (2.12)

where xi,xj are two data points and l is called length-scale which is a hyperparameter

that defines how close 2 points have to be to interact with each other. Commonly 2

30

1.5 1.0 0.5 0.0 0.5 1.0 1.5

400

300

200

100

0

100 Truth
Training data
Prediction

Figure 2.14: Prediction of a NN for values inside and outside the training range. The
NN has 2 hidden fully connected layers, a ReLU activation function for all the layers
apart from the last one where a linear activation function is applied and it is trained
with the Adam optimiser.

more hyperparameters are added to the model, namely the variance, σ, and the noise ϵ.

The variance controls how much the prediction is allowed to deviate from the mean and

the noise represents the noise in the data. These 3 hyperparameters can be optimised

by minimising the negative marginal log likelihood. An example of a GP can be seen

in [Fig 2.15] for the same dataset as in [Fig 2.14]. We can observe that the GP not only

fits the data, but it is also able to output very broad Credible Intervals (CIs) outside

the training data range expressing the uncertainty of its prediction.

Unfortunately, the computational complexity of GPs is cubic with the number of

data points which makes its application very expensive on large datasets. Additionally,

GPs lose efficiency in high dimensional spaces and lastly, they are not designed to

operate on image and graph data representations like CNNs and GNNs do. For these

reasons, in this thesis we try to combine the advantages of NNs with the probabilistic

nature of GPs and thus we use Bayesian NNs (BNNs) that are able to output a mean

prediction and CIs.

2.6.2 Bayesian modelling

In order to get a probabilistic output from the NN we have to replace the constant

parameters of the NN with distributions over the parameters [Fig 2.16]. Following

a standard Bayesian logic we define a prior distribution of parameters, p(ωωω), that

31

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

150

100

50

0

50

100

150

200

f(x
)

Initial: 100**2 * RBF(length_scale=1) + WhiteKernel(noise_level=1)
Optimum: 79**2 * RBF(length_scale=0.212) + WhiteKernel(noise_level=64.4)

Log-Marginal-Likelihood: -129.5917133837856
Truth
Training data
Prediction
95% credible interval

Figure 2.15: Prediction of a GP for values inside and outside the training range. On the
title of the figure we can observe the initial and optimised values for the hyper param-
eters. Specifically the original values are [100, 1, 1] and the optimised [79, 0.212, 64.4]
for the variance, length scale and noise level respectively.

reflects our prior beliefs for the parameters of the network. Given some data D =

[(x1,y1), ..., (xN ,yN)] where we denote the input of the network with X = [x1, ..,xN]

and the output with Y = [y1, ..,yN], we can update the prior and get the posterior

distribution, that better fits the data. Based on the Bayes rule the posterior can be

rewritten as

p(ωωω|X,Y) =
p(Y|X,ωωω)p(ωωω)

p(Y|X)
(2.13)

where the denominator, called model evidence, can be calculated by marginalising over

ωωω

p(Y|X) =

∫
p(Y|X,ωωω)p(ωωω)dωωω (2.14)

for linear models this can be calculated analytically but is intractable for NNs. Conse-

quently, we cannot calculate the posterior this way but as we show in the next section

we can approximate it by a variational distribution.

32

Figure 2.16: On the left we have a sketch of a plain Neural Network with constant
weights and on the right a Bayesian Neural Network where the weights are replaced by
distributions. In both sketches the biases have been omitted for simplicity.

2.6.3 Variational Inference

As seen in the previous section the posterior distribution of the parameters of the BNN

cannot be calculated analytically. A common approach to circumvent this problem is

to perform Variational Inference (VI), which consists in approximating the posterior

density by a variational distribution q(ωωω|θ) [Hinton and van Camp, 1993; Graves, 2011]

parameterised by a set of learnable parameters θ. The approximate distribution needs

to be as close as possible to the real one. To this end, the loss function that needs to

be minimised is the Kullback-Leibler (KL) divergence between the 2 that can be more

practically written as

θopt = arg min
θ

KL[q(ωωω|θ)||p(ωωω|D)]

= arg min
θ

∫
q(ωωω|θ)log q(ωωω|θ)

p(ωωω)p(D|ωωω)
dωωω

= arg min
θ
[KL[q(ωωω|θ)||p(ωωω)]− Eq(ωωω|θ)[logp(D|ωωω)]]

(2.15)

33

This loss is known as the evidence lower bound (ELBO) and it consists of a data

free and a data dependent term. The data free term is the KL divergence between the

approximate posterior and the prior that acts as a regularisation term. The KL term

may or may not be able to be calculated analytically depending on the choice of prior

and posterior. The data dependent term is the negative log likelihood that encourages

the BNN to fit the data.

Several techniques have been proposed to perform variational inference and quantify

the uncertainty in BNNs [Hinton and van Camp, 1993; Graves, 2011; Kingma and

Welling, 2014; Blundell et al., 2015]. These techniques are computationally expensive,

for instance in [Blundell et al., 2015] choosing Gaussian distributions as approximate

posterior distributions for the weights results in doubling the NN parameters without

substantially increasing NN’s capacity.

To tackle this problem Stochastic Regularisation Techniques (SRTs) are employed

to approximate variational inference. Examples of SRTs include dropout [Hinton et al.,

2012], dropConnect [Wan et al., 2013] and multiplicative Gaussian noise [Srivastava

et al., 2014]. These techniques regularise NNs by injecting random noise. By far the

most common SRT used for extracting uncertainty from a NN is Bernoulli dropout [Gal

and Ghahramani, 2016], where the output of each layer is multiplied with a random

variable ϵ sampled from a Bernoulli distribution ϵ ∼ Bernoulli(1 − p), where p is the

zero-out probability.

Nevertheless, we opt for better uncertainty quality over reduced computational cost

and thus we use the Bayes by Backprop method as described by [Blundell et al., 2015],

instead of an SRT. In the next section we provide more details about the method.

2.6.4 Bayesian linear layer

In this section we explain how a Bayesian linear layer works. In reality the procedure

is very similar to a simple linear layer but the weights and biases instead of being

constant are being sampled from the (approximate) posterior distribution. We consider

the approximate posterior to be a fully factorised Gaussian [Graves, 2011]. The prior is

also a Gaussian distribution corresponding to L2 regularization [Blundell et al., 2015].

All weights within one layer share the same prior mean, µ, and the same prior standard

deviation, σ.

In a forward pass of the BNN the weights are sampled from the posterior distribu-

tion, and gradients are evaluated using a generalisation of the Gaussian reparametri-

34

sation trick [Kingma and Welling, 2014], as described in [Blundell et al., 2015]. The

sampling from the variational posterior distribution is performed by sampling from a

unit Gaussian scaled by the posterior standard deviation, σ∗, and shifted by the pos-

terior mean, µ∗. To ensure its positivity, the standard deviation is parameterised as

σ∗ = log(1 + exp(ρ∗)). Consequently, the variational parameters to be optimised are

θ = (µ̂, ρ̂), where µ̂ = (µ, µ∗) and ρ̂ = (ρ, ρ∗).

2.6.5 Example of a Bayesian NN

In this section we will demonstrate the use of a BNN in the dataset introduced in [Fig

2.14]. Specifically, we convert the deterministic NN used to obtain the aforementioned

figure to a BNN. To this end we replace the standard linear layers of the NN with

Bayesian ones (as explained in section [2.6.4]). Lastly, we need to replace the “MSE”

loss function with the “ELBO” loss function, introduced in [Eq. 2.15]. No change needs

to be made to the optimiser compared to the deterministic case. The results can be

found in [Fig 2.17] where we can observe that the BNN was able both to fit the data

and also to provide broad CIs far from the training dataset.

2.6.6 Extension to CNNs and GNNs

So far we have only referred to Bayesian linear layers. Nevertheless, the same logic can

be directly applied to convolutional layers where instead of weights we have filters. As

for the spatial GNNs, we have already seen in [2.5] that they are basically composed of

MLPs. Replacing the linear layers in the MLPs with Bayesian linear layers results in a

Bayesian GNN.

35

1.5 1.0 0.5 0.0 0.5 1.0 1.5

100

50

0

50

100

training data
mean prediction
Truth
95% CI

Figure 2.17: Prediction of a BNN for values inside and outside the training range. The
mean prediction fits the data while the CIs are broad outside the training data range.

36

2.7 Optimiser

A common point in all the sections above, regardless of the type of the NN or if it is

Bayesian or deterministic, is the optimiser. With the term optimiser we refer to the

algorithm that we use to solve the minimisation problem that we formulate so that the

output of the network matches the available data. The optimiser iteratively changes the

value of the network parameters, θ, in order to minimise the value of the loss function.

Every iteration of the optimiser is called “epoch” in the NN terminology.

All the popular frameworks for ML offer efficient and robust implementations of

all the major optimisers. Consequently, in practice although ML practitioners spend a

lot of time deciding on the structure of the network (type of architecture, number of

layers, number of neurons, etc.) they do not focus their energy on the optimiser where

typically a few experiments are enough to choose the algorithm and the value of the

hyperparameters. Nevertheless, we believe that it is important in the context of this

thesis to explain the basic ideas behind the most common optimisers starting from the

most basic optimisers such as Gradient Descent to more sophisticated examples such

as the Adam optimiser. A non-exhaustive list can be found below.

• Gradient Descent: This is the most basic first-order optimization algorithm. It

is easy to implement but it may get trapped to local minima, it requires a lot of

memory and it updates the parameters only after calculating the gradient on the

whole dataset, which is inefficient for large datasets.

θt+1 = θt − a · ∇L(θt) (2.16)

where θt+1 is the parameters for epoch t+1, θt is the parameters for epoch t and

a is called learning rate. The learning rate is a hyperparameter that determines

the step size at each epoch. At every epoch, the parameters are updated towards

the direction dictated by the gradient and with a step size given by the learning

rate.

• Stochastic Gradient Descent (SGD): This algorithm was developed to tackle

the infrequent parameter updates of the classical gradient descend algorithm.

Specifically it updates the model parameters after calculating the gradients for

each training example, (xi,yi). This results in lower memory requirements, faster

convergence and improved ability to find the global minimum. Nevertheless, the

37

frequent parameter update results in increased variance in the model parameters

and requires reduction of the learning rate with the epochs otherwise it results in

overshooting even if it has located the global minimum.

θt+1 = θt − a · ∇L(θt;x
i;yj) (2.17)

In practice SGD is employed in a mini-batch optimisation procedure. This implies

that the dataset is divided in batches of size n, (xi:i+n,yi:i+n). The parameter

update in this case happens after calculating the gradients for each batch. This

results in higher memory requirements but reduced parameter variance.

θt+1 = θt − a · ∇L(θt;x
i:i+n;yi:i+n) (2.18)

From now on we will omit the parameters xi:i+n and yi:i+n in the calculation of

gradients for simplicity.

Another trick that can be used to help the SGD to converge faster is momentum.

With the cost of having one more hyperparameter, γ, momentum reduces the

fluctuation to irrelevant directions. This is achieved by adding a fraction of the

previous update vector to the current update vector. This favours paths whose

gradients point to the same direction.

θt+1 = θt −mt (2.19a)

mt = γmt−1 + a · ∇L(θt−1) (2.19b)

• Adaptive Gradient Algorithm (AdaGrad): This optimiser aims at removing

a key drawback of the aforementioned methods, namely the need to manually

choose the learning rate. AdaGrad not only automatically determines the learning

rate but it does so for each parameter and each epoch separately. Apart from being

easier to use, AdaGrad is also more suited for dealing with sparse data since it

allows parameters associated with infrequently occurring features to have larger

learning rates compared to the ones associated with more frequently occurring

features.

38

θt+1,i = θt,i −
ai√

Gt,ii + ϵ
· gt,i (2.20a)

Gt,i =
t∑

τ=1

gτ,ig
T
τ,i (2.20b)

gt,i = ∇L(θt,i) (2.20c)

where Gt is a diagonal matrix where every diagonal element, Gt,ii, is equal to

the sum of the squares of the gradients with respect to θi up to the given time

step t. gt,i is the derivative of the loss function for the parameter θi, at a given

time t. ϵ is a small term added for numerical stability, usually close to 1e-8. For

simplicity, and since the update of all the parameters can be vectorised, we will

drop the second subscript and refer to all the parameters together as θt, although

each parameter can be updated separately with its own learning rate.

• Root Mean Squared Propagation (RMSProp): RMSProp is one of the most

commonly used optimisers and it can be seen as an extension of AdaGrad. Ada-

Grad has the disadvantage of excessively reducing the learning rate resulting in

slower training times. This stems from the fact that AdaGrad scales the learning

rate using the entire history of gradients. RMSProp, introduces a more efficient

strategy where instead of the entire history an exponentially decaying average of

the partial derivatives for the current epoch is used, ut. This allows the optimiser

to take decisions based on the most current shape of the search space. This comes

with the cost of introducing a new hyperparameter, λ, usually set to 0.9.

θt+1 = θt −
a√

ut + ϵ
· gt (2.21a)

ut = λut−1 + (1− λ)g2t (2.21b)

• Adaptive Moment Estimation (Adam): Adam, which is the most popular

optimiser, is a combination of RMSProp and AdaGrad. It works by storing an

exponentially decaying average of both past gradients, m̃, and squared gradients,

ũ.

39

θt+1 = θt −
a√

ũt + ϵ
· m̃t (2.22a)

m̃t =
mt

1− βt
1

(2.22b)

ũt =
ut

1− βt
2

(2.22c)

mt = β1mt−1 + (1− β1)gt (2.22d)

ut = β2ut−1 + (1− β2)g
2
t (2.22e)

All the optimisers have a common characteristic, which is the calculation of partial

derivatives of the loss with respect to the model parameters. This in practice gives us

the sensitivity of the loss function with respect to the network parameters. The partial

derivatives are calculated using the chain rule. This calculation is called backpropaga-

tion in the NN terminology.

2.8 Conclusions of the chapter

In summary, this chapter covered the fundamentals of the various types of Neural

Networks (NNs) utilised in this thesis, namely fully connected, convolutional, graph and

Bayesian NNs along with main concepts common to all of them such as the activation

function, loss function and optimiser.

40

Chapter 3

Finite Element surrogate models

3.1 Introduction

In the first two sections of this chapter we discuss about different surrogate modelling

techniques to reproduce the solution of Finite Element solvers. We refer to both classical

surrogate models and state-of-the-art Neural Network (NN) based models. We focus on

the latter and we discuss different types of NNs, their architectures, building blocks and

application domains. In the last two sections we review two common strategies to tackle

multiscale problems, namely homogenisation and concurrent multiscale modelling, and

we discuss works from the literature that utilise NN assisted methods for the solution

of multiscale problems.

3.2 Classical surrogate models

Two common classical surrogate modelling techniques are polynomial chaos expansion

(PCE) and Gaussian Processes (GPs) [Ghanem and Spanos, 1991; Xiao et al., 2009].

We have already discussed GPs in detail in section [2.6.1]. PCE is a method used to

approximate the output, Y, of a function, which is usually expensive to evaluate, using

a polynomial function of random input variables, X. These polynomials are constructed

to be orthogonal to the distribution of the input random variables. Mathematically,

PCE can be expressed as

Y =
∑
i∈N

ciΨi(X) (3.1)

41

where ci is a coefficient and Ψi a polynomial basis function.

Both these techniques are limited to small parameter dimensions, typically 1 to 5,

and thus are not compatible with input images or graphs representing structures with

random distributions of pores. Consequently, in this thesis we investigate NN based

surrogate models that can efficiently work with arbitrarily images and graphs.

3.3 PDEs and Machine Learning

Machine Learning techniques have been investigated widely in the last years as FE

surrogates that can reproduce the solution of PDEs. A variety of different NNs can be

found in literature for that purpose. Below we give a literature review and discuss the

state-of-the-art in 4 types of NNs, namely Fully Connected Networks, CNNs, GNNs,

and Physics Informed Neural Networks (PINNs).

3.3.1 NNs with fully connected layers

In the context of this PhD thesis we do not focus on NNs with fully connected lay-

ers. Nevertheless, we give two examples of works using such networks in engineering

applications. An early work that uses simple fully connected layers to replace expen-

sive patient-specific FEA models is described in [Liang et al., 2018]. The methodology

can be dissected in three distinct parts, namely shape encoding, nonlinear mapping

and stress decoding. In the first step, shape encoding, Principal Component Analysis

(PCA) is used to encode the geometry into a latent dimension, where it can be rep-

resented by a small number of parameters. We note that in the cases we examine in

this thesis PCA typically does not yield in a latent space of small dimensions, due to

the existence of random distributions of microscale geometrical features. In the second

step, nonlinear mapping, a NN is used to map the encoded geometry to the target stress

distribution encoded in a low dimensional space. Lastly, in the stress decoding stage,

the stress is mapped from the low dimensional space to the output space. Other NNs

with fully connected layers have then been used for deformation predictions in beam

structures for non-linear, time dependent problems as shown by [Meister et al., 2018].

In this work a NN was used to predict vertex-wise accelerations for a large time step

based on the current state of the system.

42

3.3.2 CNNs

Various CNN based surrogate models can be found in the literature, which are bet-

ter suited to deal with image data. Firstly, [Nie et al., 2019] deployed a CNN model

for stress prediction on cantilevered structures. They used an Encoder Decoder ar-

chitecture. The encoder gradually transforms the input space into a low-dimensional

representation, then a number of residual blocks are applied and lastly the decoder

gradually upscales the data to the original resolution. An example of an Encoder De-

coder CNN can be found in [Fig 3.1]. Encoder Decoder networks are very popular,

their success is in a great degree attributed to the so called “bottleneck” layer where

the network is forced to summarise all the information in a small number of variables

that should be informative enough for the network to be able to reconstruct the output

from. The authors use residual blocks in the bottleneck layer. A general structure for

a Residual Block can be found in [Fig 3.2]. As we can see, even if the NN chooses

to ignore some layers (F (X) = 0) it will learn to map the input of the block to the

output of the block. In this case the expression of the output would be simplified to:

F (X) +X = 0 +X = X. This way we can use a large number of residual blocks and

the network will simply ignore the ones it does not need. The name residual comes

from the fact that the network tries to learn the residual, F (X), or in other words

the difference between the true output, F (X) +X, and the input, X. Lastly, the au-

thors make use of another novel layer, namely the Batch Normalisation (BN) layer. In

deep neural networks the distribution of each layer’s inputs changes during training, as

the parameters of the previous layers change. This phenomenon is known as internal

covariate shift. This slows down the training by requiring lower learning rates and

careful parameter initialisation [Ioffe and Szegedy, 2015]. BN aims at reaching a stable

distribution of activation values throughout training. To achieve that, BN normalises

the output of a previous activation layer by subtracting the batch mean and dividing

by the batch standard deviation. After the normalisation, BN tries to scale and shift

the normalised output by adding two trainable parameters to each layer. [Ioffe and

Szegedy, 2015; Santurkar et al., 2019]. Additionally, BN makes the optimization land-

scape significantly smoother. This smoothness induces a more predictive and stable

behaviour of the gradients, allowing for faster training [Santurkar et al., 2019].

Additionally, [Sun et al., 2020] extended the work of [Nie et al., 2019] to non-linear

elastic FE problems. They created an Encoder-Decoder CNN for the prediction of

stress fields on Fibre-reinforced Polymers. They predict the z component of the stress

43

Figure 3.1: Sketch of an Encoder-Decoder CNN. Diagram created using “draw.io”.

Figure 3.2: Structure of a generic residual block with input X and output F (X) +X.

tensor and they report a value of about 70% for the coefficient of determination in the

test set.

Later, [Mendizabal et al., 2020a] used a U-Net for the prediction of soft tissue defor-

mations. The U-Net is a network initially built for precise medical image segmentation

[Ronneberger et al., 2015]. U-Net has an encoder decoder architecture but the notable

advantage is the existence of skip connections that directly transfer information from

the encoder to the decoder. An example of a U-Net can be found in [Fig 3.3]. The

authors demonstrated their method on models of livers where the input of the network

was the forces on the livers and the output was the nonlinear soft tissue deformation.

They underlined the great potential of similar methods for real time biomechanics sim-

ulations.

44

Figure 3.3: Example of a U-Net used for image segmentation

Moreover, [Jiang et al., 2021] used a conditional Generative Adversarial Network

(GAN) for predicting the Von Mises stress on 2D structures. GANs, are generative

models composed of a generator and a discriminator that are trained together. The

generator generates samples that are then mixed with real examples from the training

dataset and the discriminator tries to classify them as real or fake. During training, the

two parts are competing against each other, which results in a generator that creates

increasingly realistic samples, to the point that they are indistinguishable from the

samples found in the training set. An example of a GAN can be found in [Fig 3.4]. The

authors, compare this approach with their previous work, [Nie et al., 2019], and find

that the GAN model outperforms the simple CNN model.

Lastly, [Wang et al., 2021] used a Convolutional Aided Bidirectional Long Short-

term Memory Network to predict the sequence of maximum internal stress until ma-

terial failure. Long Short-term Memory Networks (LSTMs) are a type of recurrent

NN suitable for processing instead of single data entire sequences of data. Common

applications involve handwriting recognition and speech recognition.

3.3.3 GNNs

In this section we briefly review geometric learning methods reported in literature in-

cluding the one we use in this work.

GNNs have shown very promising results in solving computational engineering prob-

lems. An early example can be found in the work of [Guo and Buehler, 2020], where

45

7 5 0

Training Data

Random Noise Generator

Discriminator

Real

Fake

Figure 3.4: Example of a GAN for digit generation

the authors developed a semi-supervised approach to design architected materials us-

ing a binary classification GNN. The input to the GNN is the load levels for 1% of the

nodes and the output is the load levels for the rest of the nodes. The load level is a

binary label, where the two possible values are the low stress and high stress area. The

framework requires experimental data at test time (the load levels for 1% of the nodes).

The authors mention that such data can be obtained from embedded sparse tensors.

In the same year, [Vlassis et al., 2020] used a GNN for modelling anisotropic hyper-

elastic materials, where polycrystals are modelled using a graph of monocrystals. The

nodes represent the monocrystals and the edges their connectivity. This allowed the

authors to fully take advantage of all the microstructure information instead of being

dependent on classical hand-crafted descriptors like density and porosity. The GNN

uses the graph convolution layers introduced in [Kipf and Welling, 2017], that take as

input a symmetric normalised graph Laplacian matrix, computed through the graph

connectivity, and the node features.

zp+1 = σp+1(L
symzpWp+1 + bp+1) (3.2a)

z1 = σ1(L
symXW1 + b1) (3.2b)

where zp is the activation of the layer p, Lsym is the symmetric normalised graph

Laplacian, X is a matrix created by stacking together all the node features, σ is an

46

element-wise non-linearity, and finally Wp and bp are the weights and biases of the

layer p.

Another type of engineering application where GNNs can naturally be applied to,

is particle-based dynamic systems. A great example is the work by [Sanchez-Gonzalez

et al., 2020], where GNNs are used to simulate systems of interacting particles, with one

or more types of particles as for instance water and sand. The graph of the system is

constructed by considering each particle as a node and by building connections (edges)

with their closest neighbours. The physics is predicted by message passing through

the nodes (particles) of this graph. The GNN has an encoder - processor - decoder

structure. The encoder embeds the physical particle-based state into a latent graph,

the processor is used to pass messages between the nodes of the graph and finally the

decoder extracts dynamics information from the nodes of the latent graph.

Later, [Pfaff et al., 2021] used GNNs for mesh-based dynamic simulations. In con-

trast to particle-based problems, mesh-based problems allowed the authors to use the

connectivity dictated by the mesh to define the edges of the graph. They used a similar

architecture as in [Sanchez-Gonzalez et al., 2020]. They provided a variety of examples

ranging from deformable bodies to fluid and air flow. Most importantly they make

a comparison between a GNN and a CNN architecture where they conclude that the

GNN had superior performance since it was able to make good predictions both on the

large and fine scale, in contrast to the CNN whose prediction was only good in the large

scale.

Additionally, [Mylonas et al., 2022] used a Bayesian GNN to infer the position

and shape of an unknown crack via patterns of dynamic strain field measurements at

discrete locations. A graph is constructed with nodes corresponding to the positions of

sensors used to measure the strain tensors. The connectivity of the graph is constructed

by creating edge connections between nodes that are closer to each other. Features

are encoded both on the nodes and edges of the graph. Strain tensors are encoded

on the nodes and relative positions on the edges. The node and edge features are

updated through a number of GN blocks [Battaglia et al., 2018] and finally aggregated

through a mean function to produce global features that correspond to the position

and orientation of the crack. The uncertainty of the prediction is calculated through

Variational Inference using the local reparametrisation trick [Kingma et al., 2015].

Moreover, [Lino et al., 2021] developed a multiscale GNN that efficiently diffuses in-

formation across different scales making it ideal for tackling strongly nonlocal problems

such as advection and incompressible fluid dynamics.

47

Furthermore, in [Perera et al., 2022] the authors develop a GNN based framework to

simulate fracture and stress evolution in brittle materials due to multiple microcracks’

interaction. The GNN predicts the future crack-tip positions and coalescence, crack-

tip stress intensity factors, and the stress distribution throughout the domain at each

future time-step.

Lastly, [Deshpande et al., 2022a] introduced MAgNET, a U-Net based GNN with

mesh pooling and unpooling operations, in accordance with the U-Net architecture for

CNNs, that efficiently scales with the size of the problem. MAgNET is used to predict

nonlinear force-displacement mappings and the authors provided examples of applying

MAgNET in real-world geometries such as those arising in biomechanics. In their latest

work, [Deshpande et al., 2023], the authors compared MAgNET with a novel attention-

based architecture called Perceiver IO, proposed by [Jaegle et al., 2022]. Perceiver IO

was developed with the goal to easily integrate and transform arbitrary information for

arbitrary tasks, so the authors use it without adding information about the underlying

data structure (such as the mesh connectivity). In terms of training, Perceiver IO

requires less parameters but much more training time. Nonetheless, it is much faster in

the inference stage. In terms of results, for inputs of small size, the Perceiver IO slightly

outperforms MAgNET, but as the size and complexity of the mesh increases it becomes

less robust and fails to learn efficiently, which is attributed to the fact that the mesh

connectivity is not provided so it has to implicitly learn the nodal data dependencies.

A lot of the aforementioned GNNs, and the ones we use in this PhD thesis, use one

of the graph convolutions introduced by [Battaglia et al., 2018], that we will refer to

from now on as “GN Block”. This formulation allows encoding information both on

the nodes and the edges of the mesh. Node information is treated as absolute infor-

mation, for instance material properties, while edge information is treated as relative

information, for instance relative position between the nodes. The edge and node fea-

tures are updated using MLPs. To update the edge features of an edge connecting two

nodes, both the edge and node information are taken into account. Specifically, the

edge features of the edge and the node features of the two aforementioned nodes are

concatenated and passed through an MLP to get the updated edge features. The up-

dated edge features are referred to as “messages” in the GNN terminology. To update

the node features, firstly, the messages (updated edge features) are aggregated using a

symmetric aggregation function. Then, the aggregated messages are concatenated with

the central node features. Finally, the updated node features are calculated by passing

this concatenation through an MLP [Fig 3.5b].

48

xi

xj1

xj2

e1

e2

xj1

e1

xi

xj2

e2

xi
MLP xi

xj1

xj2

m1

m2

(a) Edge update

MLP xi

xj
1

xj
2

m1

m2

xi

xj
1

xj
2

m1

m2

m* = AGG(m1, m2)
m*
xi

*

(b) Node update

Figure 3.5: This figure summarises the procedure followed by a GN block to update the
node and edge features of a graph. On the top (a), we see a sketch of the edge update
step of the GN block. xi are the node features of the central node, (x

1
j , x

2
j) are the node

features of the neighbouring nodes, (e1, e2) are the edge features of the edges that are
connected to the central node and (m1, m2) are the calculated messages, that can also
be interpreted as the updated edge features. On the bottom (b), we see a sketch of the
node update step of the GN block. AGG denotes a symmetric aggregation function, m∗

are the aggregated messages and finally x∗
i are the updated node features of the central

node.

3.3.4 PINNs

Another branch of Machine Learning that is very promising for engineering applications

is that of Physics Informed Neural Networks (PINNs) [Raissi et al., 2019]. PINNs

are able to incorporate the physics laws in their training process, greatly reducing the

amount of data needed and simultaneously increasing the generalisation of the network.

We note two interesting applications of PINNs.

Firstly, PINNs are able to learn from incomplete data, for instance in the work by

[Raissi et al., 2020], the authors manage to extract velocity and pressure fields by only

using concentration as labelled data, for 3D physiologic blood flow in a patient-specific

intracranial aneurysm (ICA). That is of great significance, for instance in biomechanics

simulations, because by measuring the value of a passive scalar, for instance dye or

49

smoke, which is easy to measure, one can infer more interesting quantities that are

much harder to measure. Additionally, performing standard FE simulations in this

case is rather cumbersome since the geometry and the Boundary Conditions (BCs) are

not easy to define. PINNs can overcome this problem since this information is indirectly

encoded in the passive scalar data. The aforementioned procedure for a 2D case can

be found in [Fig 3.6]. We can see that the loss function has two terms, one forces

the predicted concentration to match the measured concentration and the second term

forces the network to respect the constitutive law.

x

y

p

u

v

c

I I
t

e1 = ct + ucx + vcy - Pe-1 (cxx + cyy)

e2 = ut + uux + vuy + px - Re-1 (uxx + uyy)

e3 = vt + uvx + vvy + py - Re-1 (vxx + vyy)

e4 = ux + vy

Navier-Stokes Equations

t
x
y
c*

Data Loss = mean |c - c*|2

Physics Loss = mean (|e1|2 + |e2|2 + |e3|2 + |e4|2)

PINN Loss = Data Loss + Physics Loss
training data

Figure 3.6: Sketch of a PINN. The input of the PINN is points in space-time where the
validity of the constitutive law will be evaluated, (x, y, t), along with measured data
of concentration, c∗. The constitutive law can be evaluated and thus enforced in any
point in the computational domain.

Secondly, PINNs can be very efficient in design space exploration problems. That

has captured the attention of the industry, for instance NVIDIA created SIMNET™[Hennigh
et al., 2021] which uses a variant of PINNs that uses no data at all to perform multi-

physics simulation. This is easily derived from the loss shown in [Fig 3.6] if we set the

“Data Loss” term to zero. This approach can be seen as NN based solver, but in con-

trast to traditional solvers it can be trained with multiple design parameters in a single

run. For the inverse problem of optimising the geometry of a heat sink parameterised

by 12 parameters, SimNet accelerates the design by a factor of 45,000 compared to a

commercial solver and by a factor of 135,000 compared to OpenFOAM.

50

3.4 Multiscale methods

Multiscale structural analyses are prominent in mechanical and bio-mechanical en-

gineering (e.g., composite materials such as carbon-reinforced polymers or concrete,

porous materials such as bones). Full Finite Element Analysis (FEA) for stress predic-

tion is usually prohibitively expensive for those structures, as the finite element mesh

needs to be very dense to capture the effect of the fine scale features. Therefore, a

common approach is to split the problem into a macroscale mechanical problem, and

local microscale computations. The macroscale problem diffuses the overall stress field

in the entire structure without fully resolving the material, while the local microscale

computations are needed to correct the macroscale fields and characterise the consti-

tutive law to be used at the macroscale. Multiscale computational modelling can be

approached in two ways, namely homogenisation and concurrent multiscale modelling.

In this section we briefly discuss these 2 strategies.

3.4.1 Homogenisation

In homogenisation [Évariste Sanchez-Palencia, 1987; Zohdi and Wriggers, 2005], the

aim is to find a homogeneous material that has an equivalent behaviour to the original

heterogeneous material. To this end, the purpose is to find homogeneous governing

equations in the macroscale by knowing the governing equations in the microscale. In

homogenisation we perform all microscale computations over an RVE. The RVE needs

to be large enough compared to the size of the heterogeneities so that different RVEs

have very similar microscale statistics but at the same time it should be small enough

so that macroscale displacement gradients do not vary over the material sample [Fig

3.7].

Let us see an example where we consider a linear elastic heterogeneous material [Fig

3.8]. We consider a body force fff and a macroscopic displacement uM, thus we have the

following macroscopic equations.

51

Homogenisation

Heterogeneous Material

Equivalent Homogeneous Material

RVE

Figure 3.7: The top figure corresponds to a heterogeneous material where we can see
an RVE. The bottom figure corresponds to the same structure but for a homogeneous
material whose behaviour is equivalent to the heterogeneous material.

∇σσσM + fff = 0 (3.3a)

σσσM · n = 0 (3.3b)

ϵϵϵM =
1

2
(∇uM + (∇uM)⊤) (3.3c)

(3.3d)

where σσσM is the macroscale stress, n the unit normal vector, and finally ϵϵϵM is the

macroscale strain. The unknown constitutive relation can be expressed as

σσσM = D̂ : ϵϵϵM (3.4)

and can be rewritten asσσσM
11

σσσM
22

σσσM
12

 =

D̂1111 D̂1122 D̂1112

D̂2211 D̂2222 D̂2212

D̂1211 D̂1222 D̂1212

 ϵϵϵM11

ϵϵϵM22

2ϵϵϵM12

 (3.5)

52

microscale
problem

macroscale structure

macroscale strain microscale stress

RVE

Figure 3.8: Sketch of the homogenisation procedure. A macroscopic strain is prescribed
in the RVE. After solving the FE problem the microscopic stress is calculated in the
RVE that is later averaged to get the macroscopic stress.

The purpose of homogenisation is to find the matrix D̂. To this end we perform

calculations on the RVE, given some microscale strain ϵϵϵm we have

∇σσσm = 0 (3.6a)

σσσm = D : ϵϵϵm (3.6b)

where the constitutive relation is known and thus we can calculate the microscale

stress, σσσm. To connect the microscale and macroscale we perform scale bridging by

averaging

σσσM = ⟨σσσm⟩ (3.7a)

ϵϵϵM = ⟨ϵϵϵm⟩ (3.7b)

where ⟨·⟩ denotes the mean operation.

Performing this procedure 3 times for 3 different micro strain tensors will fully define

D̂. For instance, setting

ϵϵϵM = ⟨ϵϵϵm⟩ =

(
1 0

0 0

)
(3.8)

53

we get from [Eq 3.5]⟨σσσm
11⟩

⟨σσσm
22⟩

⟨σσσm
12⟩

 =

D̂1111 D̂1122 D̂1112

D̂2211 D̂2222 D̂2212

D̂1211 D̂1222 D̂1212

1

0

0

⇒

D̂1111

D̂2211

D̂1211

 =

⟨σσσm
11⟩

⟨σσσm
22⟩

⟨σσσm
12⟩

 (3.9)

and if we repeat the same procedure for

ϵϵϵM =

(
0 0

0 1

)
, ϵϵϵM =

(
0 1

1 0

)
(3.10)

we can define the other 6 components of D̂

3.4.2 Concurrent multiscale modelling

When the scales cannot be separated, scientists resort to domain decomposition-based

approaches. The results of homogenisation are applied to the boundary of regions of

interest for concurrent microscale corrections to be performed [Raghavan and Ghosh,

2004; Oden et al., 2006; Kerfriden et al., 2009; Hesthaven et al., 2015; Paladim et al.,

2016]. An example can be found in [Fig 3.9]. We can see that the concurrent model is

composed of the coarse and fine scale models. In the coarse scale the heterogeneities

are represented on average through homogenisation, while on the fine scale the het-

erogeneities are represented explicitly. In contrast to homogenisation the 2 models are

coupled directly.

These approaches are computationally more expensive and practically more intru-

sive than methods based on RVEs. However, their deployment is necessary when pre-

dicting the microscale response to fast macroscale gradients, for instance due to sharp

macroscale geometrical features (cracks, notches, sharp corners). The work done in

this PhD falls in this category of multiscale methods and will be explained in detail in

section [4.5].

3.5 ML assisted multiscale methods

Multiscale computational modelling may be coupled to offline/online acceleration meth-

ods such as model order reduction (MOR) techniques [Barrault et al., 2004; Ryckelynck,

2009; Goury et al., 2016] and surrogate models [Ghanem and Spanos, 1991; Xiao et al.,

54

Coarse scale model

Fine scale model

Heterogeneous Material

Model

Concurrent Scale Modeling

Figure 3.9: Sketch of the concurrent scale modelling procedure. The top image cor-
responds to the heterogeneous material. The bottom image corresponds to the model
that is composed of the coarse and fine scale.

2009]. The idea is to realise many expensive computations in advance, subject to pa-

rameter variations, approximate the family of generated solutions using statistical re-

gression, and use the statistical model online to produce solutions inexpensively. This

is the approach followed in this PhD where a NN based surrogate modelling approach is

developed to inexpensively generate microscale mechanical corrections given the result

of coarse scale simulations.

An early work coupling machine learning and multiscale mechanics can be found in

[Goury et al., 2016] where the authors want to perform computational homogenisation

in multiscale elastic-damageable particulate composites. In order to reduce the compu-

tational cost they develop an online/offline reduced basis strategy. Later, [Bessa et al.,

2017] created a dataset involving plasticity and damage calculations on RVEs, using the

reduced order modelling technique described in [Liu et al., 2016] which uses a k-means

clustering algorithm offline and introduces a method called self-consistent clustering

analysis for the online stage. The dataset is created by sampling different microstruc-

tures, phase properties and external conditions. Two machine learning frameworks are

being studied, depending on the size of the dataset, namely kriging and NNs. Moreover,

55

[Li et al., 2019] developed a topology optimisation framework for multiscale structures

where a NN is used to compute the non-linear material responses, replacing the consti-

tutive law used for the macroscale with a homogenised response of the microstructure

for each point in the macroscale. Recently, [Saha et al., 2020] developed a multilevel NN

approach to solve a variety of computational science and engineering problems, includ-

ing homogenisation in multiscale problems. The offline stage deals with the microscale

where a NN is trained to map the average micro stress in the RVE given the macro

strain and material parameters, while the macroscale is solved online using a PINN.

3.6 Conclusions of the chapter

In this section we presented different surrogate models to reproduce the output of

Finite Element (FE) solvers. We discussed why classical surrogate models like Gaussian

Process and Polynomial Chaos Expansion cannot be used in the kind of problems

examined in this thesis. Additionally, we gave examples from the literature of how

Neural Networks can efficiently be used as FE surrogates in a variety of engineering

fields. Furthermore, we presented two common approaches to solve multiscale problems,

namely homogenisation and concurrent scale modelling. Lastly, works utilising Neural

Network assisted methods to solve multiscale problems were presented.

56

Chapter 4

Multiscale problem formulation,

structures of interest and accuracy

metric

4.1 Introduction

In this chapter, we introduce the fundamental ideas that underlie the proposed ap-

proach. We present the structures of interest and describe the proposed multiscale

framework. Moreover, we provide the mathematical equations that the NN is designed

to approximate. Lastly, we explain the different quantities of interest being used and

the accuracy metric employed to evaluate the performance of the NN.

4.2 Elasticity

We consider a 3D body occupying domain Ω0 ∈ R3 with a boundary ∂Ω0 = S0. The

body is subjected to prescribed displacements UD on its boundary ∂Ωu,0 and prescribed

tractions TD on the complementary boundary ∂ΩT,0 = ∂Ω\∂Ωu,0. We consider a body

force fff and a displacement u : Ω0 → R3 and the associated deformed configuration

Ω = {X ∈ Ω0, X̂ = X + u(X)}. The boundary value problem of hyperelasticity

consists in finding u(X) = arg min
u∗

Ep(u
∗) where the potential energy is defined as

Ep(u) =

∫
Ω0

W (EEE) dΩ0 −
∫
Ω0

f0f0f0u dΩ0 +

∫
∂ΩT,0

T0T0T0u dS0 (4.1)

57

We consider a linear Saint-Venant–Kirchhoff material model defined by its strain energy

density

W (EEE) =
1

2
λ[tr(EEE)]2 + µtr(EEE2) (4.2)

where the Green-Lagrange strain tensor EEE is defined by

EEE =
1

2
(FFF TFFF − I) (4.3)

with the definition of the deformation tensor

FFF =
∂X̂

∂X
(4.4)

In the equations above, λ and µ are the Lamé elasticity parameters and I denotes

the identity tensor.

The Cauchy stress tensor σσσ may be calculated as follows:

σσσ =
1

J
FFF
∂W

∂EEE
FFF T (4.5)

where the Jacobian of the deformation tensor reads as

J = det(FFF) (4.6)

The prescribed volume force f0f0f0 and prescribed surface tractions T0T0T0 expressed in the

reference configuration may be expressed as a function of their counterparts fff and TTT

in the deformed configuration, as

f0f0f0 = Jfff (4.7)

T0T0T0 = J
∥∥FFF−Tn0n0n0

∥∥TTT (4.8)

where n0n0n0 is the unit normal vector in the reference configuration.

for the special case of linear elasticity, the Green-Lagrange strain tensor is replaced

by the linearised strain tensor ϵϵϵ:

EEE ≈ ϵϵϵ =
1

2
(∇u+ (∇u)⊤) (4.9)

σσσ =
∂W (ϵϵϵ)

∂ϵϵϵ
(4.10)

58

4.3 Equivalent stress

We are interested in predicting mechanical quantities that indicate potential crack ini-

tiation sites. Two possible choices that we use in this thesis are the Tresca and Von

Mises stress.

• Tresca : σT = 1
2
(σmax − σmin)

• VonMises: σVM =
√

1
2
[(σxx − σyy)2 + (σxx − σzz)2 + (σyy − σzz)2] + 3(σ2

xy + σ2
xz + σ2

yz)

where σmax and σmin are the maximum and minimum principal stress respectively.

4.4 Porous medium

Here we give an example of a typical multiscale structure that we examine in this thesis.

An example of the structure, that we will refer to from now on as “dogbone”, can be

found in [Fig 4.1]. The dogbone specimen has a cylindrical hole as a macroscale feature.

The material is porous, made of randomly distributed spherical pores as microscale

features.

4.5 Multiscale problem

All the examples presented in this thesis correspond to porous media made of a homo-

geneous matrix with a random distribution of spherical voids. At the coarse scale level,

the voids are ignored, and the fine scale constitutive law is used as a homogeneous

material model for the entire structure, without further adjustment of the elasticity

coefficients. We could have used various homogenisation schemes to obtain macroscop-

ically accurate homogenised coefficients, but the approach followed in this thesis does

not require the use of such a finely tuned homogenisation model.

We surmise that there exists a function F that takes as input the geometry of the

microscale features and the local macroscale solution in a window B ⊂ Ω, which we call

patch, and outputs the microscale stress field in a sub-region of B namely B̂ ⊂ B that

we call Region of Interest (RoI) [Fig 4.2]. Essentially, the role of the NN developed in

this thesis is to learn the function F .

Finally, we note that F is a function to be learned by examples, which is why we

do not expect the choice of the homogenised model to have a significant impact on the

59

Figure 4.1: In the top subfigure, we can see a realisation of the dogbone structure.
The dogbone is porous and it has a cylindrical hole in the middle. The porous phase
is geometrically defined as the union of randomly distributed spheres. In the bottom
subfigure, we see the mesh of the dogbone. We observe that the mesh is denser in the
middle of the structure, where the porous phase is present, and coarser everywhere else.

quality of the result. The NN will be given sufficient amount of macro/micro stress

pairs to compensate for systematic macroscale inaccuracies.

4.6 Accuracy

In this thesis we will define accuracy in a way that serves the purpose of accurately

predicting the maximum equivalent stress in the RoI of the patches. We consider that

the maximum equivalent stress is accurately calculated in the ROI of the patch if it is

predicted with a relative error less than the threshold of 10%, unless stated otherwise.

Given a set of patches, accuracy is defined as the percentage of patches for which the

maximum equivalent stress is accurately predicted in the ROI of the patches. This

procedure is summarised in [Algorithm 1] where QoI refers to either Von Mises or

Tresca stress.

60

dogbone surface

Patch 1 Patch n

ROI 1 ROI n

Figure 4.2: Porous material, Ω, with patches, B. We can observe a dogbone structure
where we have extracted 2 patches. With green we can see the ROI of the patches, B̂.

4.7 Conclusions of the chapter

In conclusion, this chapter acted as an introduction to the main concepts that the

reader needs to be aware of to understand the topic of the thesis. Specifically, the types

of examined structures were discussed along with the multiscale framework that will be

used to analyse them. Additionally, we have provided an overview of the mathematical

equations that the neural network is trying to approximate. Lastly, we explained the

quantities of interest and the accuracy metric being used to evaluate the performance

of the NN.

61

Algorithm 1 Compute accuracy

1: function acc(datapoints, threshold = 0.1)
2:

3: N = length(datapoints)
4: accepted = zeros(N)
5:

6: for patch in datapoints do
7:

8: SNN = patch.prediction ▷ get predicted stress tensor for the current patch
9: SFE = patch.ground truth ▷ get real stress tensor for the current patch

10:

11: SNN ROI = SNN[patch.ROI] ▷ extract predicted stress values from the ROI
12: SFE ROI = SFE[patch.ROI] ▷ extract real stress values from the ROI
13:

14: yNN = QoI(SNN ROI) ▷ calculate the QoI for the predicted stress tensor
15: yFE = QoI(SFE ROI) ▷ calculate the QoI for the real stress tensor
16:

17: yNN max = max(yNN) ▷ get the maximum QoI for the predicted stress tensor
18: yFE max = max(yFE) ▷ get the maximum QoI for the real stress tensor
19:

20: error = |yNN max − yFE max|/yFE max ▷ calculate the relative error
21:

22: if error ≤ threshold then ▷ decide if the error is acceptable
23: accepted[patch.ROI] = 1

24:

25: accuracy = sum(accepted)/N
26:

27: return accuracy

62

Chapter 5

Convolutional Neural Networks for

the prediction of equivalent stress

in 2D porous structures

5.1 Introduction

Multiscale computational modelling is challenging due to the high computational cost

of direct numerical simulation by finite elements. In this chapter we propose a Con-

volutional Neural Network (CNN) based multiscale surrogate methodology, which can

be used to perform fast stress predictions in 2D structures exhibiting spatially random

microscopic features. In contrast to classical surrogate modelling techniques like Gaus-

sian Processes or Polynomial Chaos Expansion, CNNs can efficiently operate on image

data. The proposed method does not assume scale separability, and does not require

prior parametrisation of the multiscale problem.

The idea of starting from a 2D case before applying the methodology to more

realistic 3D cases emerged organically in the course of this PhD since the computational

cost associated with 2D problems is much smaller compared to 3D cases, while all the

concepts can be directly extended to 3D structures. The purpose of this chapter is to

show that

• The coarse scale stress information in the patch along with the geometry infor-

mation are sufficient for a NN model to make a fine scale prediction in the ROI.

• A CNN can be used as the aforementioned NN model, which operates on Finite

63

Element results converted to images, and in contrast to the relevant literature is

able to make predictions in cases where multiple microscale features are interact-

ing with each other and the macroscale features.

• Mechanically consistent rotations can be used as a data augmentation technique

to reduce the training data requirements of the model, which is one of the main

problems reported by researchers in their attempts to apply NNs to realistic en-

gineering applications.

• The Bayes by Backprop method can be used to extract meaningful uncertainty

information from the network, thus converting a deterministic CNN to a proba-

bilistic one. In contrast to the NNs found in the relevant literature, this proba-

bilistic CNN is able to provide reliable predictions, which is of crucial importance

in engineering applications.

• The uncertainty information extracted from the CNN can be used in a Selective

Learning framework to reduce the number of labelled data required for training,

which tends to be the most expensive part of the training data generation.

5.2 Convolutional Neural Network

In this section we analyse the CNN we use to reproduce the FE result of the 2D problem.

We explain the input and output of the network as well as its architecture.

5.2.1 Input-Output

As already discussed, the input of the network is patches extracted from the structure

and not the entire structure. An example of a 2D structure used in this chapter along

with patches extracted from it can be found in [Fig 5.1]. The input of the CNN are the

3 independent components of the macro stress tensor along with the geometry of the

patch and the output is the micro Tresca stress, as can be seen in [Fig 5.2]. Specifically,

the input of the CNN is a 3D array of size [Nx ×Ny ×NC] where: Nx and Ny are the

size of the input image along the x and y direction respectively and NC is the number of

channels of every data point. Each data point has 4 channels namely σxx, σyy, τxy and

Geometry corresponding to the xx, yy, xy component of the macro stress tensor and

a binary image of the geometry respectively. The output of the model is an [Nx ×Ny]

64

image corresponding to the micro Tresca stress. Note that we are only interested in the

ROI of the patch so all the statistics during training and inference are calculated there.

Because we want to identify the effect of microscale features on the macroscale stress,

we will scale the output with a number that reflects the intensity of the macro stress

field. This number is the sum of the absolute principal stresses of the macro stress

tensor |σmax| + |σmin|. The micro stress in areas away from microscale features should

be the same as the macroscale stress because these features only have a local effect.

This suggests that the output should be constant away from the microscale features

and change rapidly very close to them. That is clearly visible in [Fig 5.2].

Figure 5.1: On the left the original structure and 4 patches that correspond to the red
squares. On the right the extracted patches that will be fed to the Neural Network.

Figure 5.2: On the left, the input of the CNN (the three components of the macroscopic
stress fields, converted into images, plus the binary image corresponding to the indicator
function of the microstructure) and on the right the output, which is the microscale
Tresca stress.

65

5.2.2 Loss function

The loss function used for the training of the deterministic networks in this chapter is

the Mean Squared Error (MSE) between the scaled micro Tresca stress predicted by the

CNN and the one calculated using direct microscale FEA. For the Bayesian networks

the ELBO loss is used, as described in equation [2.15].

5.2.3 Architecture

The architecture of the network is inspired by the “StressNet”, proposed by [Nie et al.,

2019]. The network is an encoder decoder network. Three convolution blocks with

increasing number of filters will downsample the input, after that five residual blocks

are applied to the resulting array before using 3 deconvolution layers with a decreasing

number of filters to upsample to the original dimension but with 1 channel instead of

4 [Fig 5.3].

Figure 5.3: Structure of the CNN. σxx, σyy and τxy are the stress components on the x,
y and xy direction respectively.

The residual blocks we will use in this work consist of two convolution layers, followed

by a BN layer and a ReLU activation function each, and a Squeeze and Excitation block

(SE) in the end [Fig 5.4]. The input and output of this block has exactly the same size

as we choose the number of filters for the convolution layers to be the same as the

number of filters at the input of the residual block.

66

Figure 5.4: Structure of the residual block we are using with input u and output
F (u) + u.

The SE block can adaptively recalibrate channel-wise feature responses by explic-

itly modelling interdependencies between channels resulting in improved generalization

across datasets and improvement in the performance [Cheng et al., 2018; Li et al., 2018;

Hu et al., 2018]. The input of the SE block has C channels, height H and width W ,

[H×W×C]. The input decreases in size using a global-averaging pooling layer resulting

in a linear array of size [1×C]. After that, two fully connected layers downsample and

then upsample the linear array. Firstly the linear array is downsampled by a factor of

16, [1× C/16], as this is indicated to result in optimum performance [Hu et al., 2018],

then a ReLU activation function is applied before upsampling again using a factor of

16 [C/16 · 16 = 1× C] and in the end a Sigmoid activation function is applied. Lastly,

the linear array is reshaped to size [1× 1×C] and multiplied with the input of the SE

block [Fig 5.5].

Figure 5.5: Structure of a generic SE block with input e and output G(e) × e. FC
stands for Fully Connected layer

67

5.3 Numerical examples

In this section we will present results for linear and nonlinear models both for deter-

ministic and probabilistic CNNs. We will compare the CNN prediction with the FE

prediction in the ROI level where we will be able to compare the 2 stress distributions

and we will also compare the maximum values in all the ROIs in the test set. Ad-

ditionally, we will introduce a framework that can be used to reduce the amount of

labelled data, namely selective learning. We demonstrate that selective learning can

lead to a 50% reduction in the labelled data requirement. Lastly, we demonstrate how

mechanically consistent rotations can be used to reduce the training data requirements

of the model.

5.3.1 Linear elasticity

Training dataset

For the purpose of training our model we have assumed a distribution of elliptical pores

as macroscale features. We consider all the microscale features as disks with the same

radius, R. The Young’s modulus and the Poisson ratio of the structure are 1 and

0.3 respectively. We consider the linear elastic case and we will discuss the non-linear

elasticity in [section 5.3.2]. We assume that for a distance larger than 4 radii from the

centre of the microscale features the micro effect on the global stress field is negligible,

for instance in the case of an infinite plate under uniaxial loading the maximum stress

at r = 4R is 1.04 times the macro stress [Pilkey and Pilkey, 2008]. It is assumed that

the micro feature length is 2R, and the interaction length is equal to 3R. Given those

2 parameters we conclude that the patch length should be 18R and the ROI should be

a [8R × 8R] window in the middle of the patch as shown in [Fig 5.6]. We chose R = 4

so the input is of size [72× 72× 4], the output is of size [72× 72] and the ROI is of size

[32× 32].

In this example we want to study the interaction between elliptical macroscale fea-

tures and spherical microscale pores in an infinite domain. In order to achieve this,

the boundary conditions are applied to a buffer area where the mesh is much coarser,

as can be seen in [Fig 5.7]. The buffer area allows us to apply boundary conditions

without introducing boundary effects on the fine mesh area. Additionally, because the

mesh in the buffer area is very coarse the computational cost remains practically the

same. We apply displacement as boundary conditions [Eq. 5.1].

68

Figure 5.6: A sketch of the patch. In grey we see the patch, in green the region of
interest and in blue we can see disks of radius equal to that of the microscopic pores.

u =

[
Exx Exy

Exy Eyy

]
(X −X0)

⊤ (5.1)

where Exx is the far field displacement along the x direction, Exy is the far field

displacement along the xy direction, Eyy is the far field displacement along the y direc-

tion, X is the position of a point in R2 and X0 is the initial position of the centre of

the body in R2.

Scaling

Differences in the scales across input variables may increase the difficulty to model the

problem, for example increased difficulty for the optimizer to converge to a local mini-

mum or unstable behaviour of the network, thus a standard practice is to pre-process

the input data usually with a simple linear rescaling [Bishop, 1995]. In our case we will

scale the data not only to improve the model but also to restrict the space we have to

explore. The space that we have to cover is infinite because the input can take any

real value. Fortunately, Tresca stress scales linearly with the components of the stress

tensor. This becomes obvious if we consider how the Tresca stress is calculated:

69

6 units

6
 u

n
it

s

2 units

6 units

6
u

n
it

s

2
 u

n
it

s

(a) (b)

Figure 5.7: On the left (a), a sketch of the buffer zone in grey and on the right (b) an
example where the mesh and buffer area are visible.

The stress tensor can be rotated

σ′ = Q · σ ·Q⊤ (5.2)

using rotation matrix

Q =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
(5.3)

The components of the stress tensor obtained after rotation are as follows

σ′
xx = σxx cos

2 θ + σyy sin2 θ + 2 τxy sin θ cos θ (5.4a)

σ′
yy = σxx sin

2 θ + σyy cos2 θ − 2 τxy sin θ cos θ (5.4b)

τ ′xy = (σyy − σxx) sin θ cos θ + τxy(cos
2 θ − sin2 θ) (5.4c)

From [Eq. 5.4c] we can find that there must be an angle θp such that the shear stress

after rotation is zero:

tan(2θP) =
2τxy

σxx − σyy

(5.5)

70

After inserting θp into [Eq. 5.4a, 5.4b], the 2 principal stress components can be ob-

tained:

σmax, σmin =
σxx + σyy

2
±

√(
σxx − σyy

2

)2

+ τ 2xy (5.6)

The Tresca stress σT is equal to σT = 1
2
(σmax-σmin). From [Eq. 5.6] it is trivial to

show that if we replace σxx, τxy, σyy to k ·σxx, k ·τxy, k ·σyy where k is a scaling factor,

then σ′
max = k · σmax and σ′

min = k · σmin where σ′
max and σ′

min are the new principal

stresses after scaling the input and thus σ′
T = 1

2
(σ′

max − σ′
min) = 1

2
(kσmax − kσmin) =

k ·σT where σ′
T is the Tresca stress after scaling. Additionally, because we model linear

elastic problems scaling the load terms with a scaling factor k will result in a local and

global stress field multiplied by k as well. Here k−1 is the maximum stress value present

in all the 3 stress components over the patch. This scaling of the input values allows us

to make predictions on input data of any possible scale. We just have to calculate k,

multiply the input by k to transfer it to the desired scale and then multiply the output

by k−1 to get the true output.

Numerical example with 1 ellipse

Firstly, we created an initial dataset with simple examples [Fig 5.8]. A single ellipse in

the middle playing the role of the macroscale feature, creating a diverse macroscopic

stress field. Also, a few micro features are randomly positioned around the ellipse, ac-

counting for the microscale features that will affect the macro stress field. All the micro

features have a circular shape and the same radius, R = 4 units. Additionally, regarding

the boundary conditions, the far field displacements are sampled independently from a

unit Gaussian. This strategy contributes to improving the generalisation ability of the

network since it further diversifies the macroscopic stress field in the training dataset.

From 500 examples, generated in 43 hours on an Intel® Core™ i7-6820HQ CPU, we

extracted 33,000 patches, 5,000 of which were used as a validation set. The patches

were extracted such that the union of all the ROIs is equal to the entire domain Ω.

Specifically, the ROI of the first patch is aligned with the top right corner of the domain

and the rest of the patches are created using a sliding window and a stride equal to

half the length of the ROI in each dimension. The patches that do not contain any

microscale or macroscale features are discarded.

Experiments on this dataset showed very positive results. Training with 28,000

patches and validating on 5,000 unseen patches resulted in a validation accuracy of

71

Figure 5.8: Nine examples from the “1 ellipse” dataset

96% when training with the Adam optimizer for 600 epochs, which required about 6

hours on a NVIDIA T4 GPU. Below, we can observe a diagram that shows the accuracy

as a function of the relative error threshold [Fig 5.9].

We present results from 2 random patches [Fig 5.10] and then a result on the whole

structure [Fig 5.11]. For the whole image the true Tresca stress is displayed and not

the scaled version of it. The prediction is made again on the patch level and then the

original image is reconstructed by stitching together the ROIs of the patches. This is

possible if we align one corner of the ROI with a corner of the image and use a sliding

window equal to the size of the ROI as can be seen in [Fig 5.12]. We can see that in

all cases the CNN was able to accurately reconstruct the full micro stress field and it

was also able to predict the maximum values with a very small error. Specifically, it is

clear that away from the microscale features the microscale field is constant. We can

also see that very close to the microscale features we have a very steep rise of the micro

Tresca stress. The micro stress field is accurately predicted even in complicated cases

where more than one micro features are interacting or micro features and macroscale

features are interacting.

Lastly, we will investigate the effect of training with less data on the CNN accuracy.

We randomly chose 10,000 patches, almost 30% of the available data, and train the

NN with exactly the same settings. We make a prediction with both CNNs on the

72

Figure 5.9: Accuracy as function of the threshold. Here, accuracy is defined as the
percentage of patches in the test dataset for which the relative error between the max-
imum NN prediction and the maximum FE result in the ROI is less than a predefined
threshold. This threshold corresponds to the x-axis of the diagram.

same patch. The results can be found in [Fig 5.13], where we can see that the CNN

trained with more data better approximates the maximum stress value calculated by

FEA compared to the CNN trained with less data. Additional experiments show that

for the 10% threshold the accuracy is 6% higher for the large dataset even though

we used almost 3 times as much data. This may look like a small increase, but it

means that the mispredicted cases climbed from 4% to 10%. In reality most of the

data that we rejected when we created the smaller training dataset (10,000 patches)

were very similar to the ones accepted in the smaller dataset. A small portion of them

contained new interactions that our network would have learned from. These cases

are exactly the cases we are interested in because they contain complex examples that

create strong interactions and sharp increase in the micro stress field. In section [5.3.3]

we will demonstrate a Selective Learning framework that will allow us to identify these

cases and train our network only on them. This way we keep the computational cost

to the minimum while preserving the same level of accuracy.

73

(a) (b)

Figure 5.10: Evaluation of the Neural Network performance on 2 patches. On the
top left of each example we see the scaled Tresca stress field computed by FEA and
converted into an image for the whole patch and on the top right the NN prediction
for the whole patch. On the second row we see the same but for the ROI.

FE prediction
 max value = 17.25

NN prediction
 max value = 17.85

0.00
1.27
2.55
3.82
5.10
6.37
7.65
8.92
10.20
11.47
12.75
14.02
15.30
16.57
17.85

Figure 5.11: Comparison between the Tresca stress field computed by FEA and con-
verted into an image, on the left, and an image reconstructed using the NN predictions
on the patch level, on the right.

74

Figure 5.12: Patch generation for full image prediction. The corner of the ROI is aligned
to the corner of the image and then a sliding window of size equal to the size of the
ROI is used.

(a) (b)

Figure 5.13: A prediction for the same input for 2 identical NNs trained with 10,000
patches (a) and 28,000 (b). The two ROI predictions look very similar but we can
observe that the maximum predicted value from the NN that was trained with the
larger dataset is closer to the real value compared to the maximum predicted value
from the NN that was trained with the smaller dataset.

75

Numerical example with 3 ellipses

Even though the CNN we trained seems to work well for the data it was trained on we

do not expect the same level of accuracy as we depart from this dataset, although the

method is fully non-parametric and the trained NN can make prediction for any unseen

micro and macro geometries. Specifically, we would expect a decrease in accuracy in

the following cases:

1. Spatially fast varying macroscale stress field, generated by macroscale features

not present in the training dataset.

2. Microscale features not present in the training dataset, for instance non-circular

holes.

3. Patterns of microscale features not present in the training dataset, for instance

different distribution of circular holes.

To tackle this problem we created a new, more interesting, family of data with the

expectation that this would add more complexity. As can be seen from [Fig 5.14] this

new family of data has 3 ellipses as macroscale features and more disks as microscale

features. At first, we used the old CNN to make predictions on the new dataset. We

observed that the accuracy dropped from 96% to 72%. This implies two things. Firstly,

the drop in accuracy means that the new dataset contains information that the network

had never seen before or was unable to learn from (due to the sparsity of the examples),

thus we can assume that training in this dataset will help the CNN to generalise better.

Lastly, the concept of making the knowledge transferable seems to be working as we

were able to make reasonable, but not perfect, predictions on a new family of data.

This suggests that we managed to learn interactions between microscale features and

the macro stress field and not just the structures themselves.

Training a CNN with the new dataset proved to be more challenging. By using

23,000 patches as training set (almost as many as with the original case) and 5,000

patches as a validation set, we obtained, with the same settings, a validation accuracy

of 74% in contrast to the 96% in the first case. We believe that this happens not only

because more microscale features are present in each case but also because the 3 ellipses

are creating a much more complicated macro stress field. From experiments we found

out that, as more and more new patches are added, the accuracy tends to increase

76

Figure 5.14: Nine random examples from the “3 ellipses” dataset

slower and slower. This happens because the new patches added tend to contain less

and less new information.

When we tried to use this CNN to make predictions on the 1 Ellipse dataset the

accuracy slightly improved, compared to the CNN trained with the 1 Ellipse dataset,

from 96% to 96.7%. This small increase was expected since this CNN is trained with a

dataset that contains all the necessary information to make predictions on the 1 Ellipse

dataset and even more information that may or may not be useful. The very small

increase in accuracy implies that the mispredicted cases are underrepresented in both

datasets.

A common technique used to improve the performance of CNNs is data augmen-

tation. Common data augmentation techniques for image data are shifting, flipping,

rotating and zooming. Here we use rotation as data augmentation technique. We rotate

mechanically the stress tensor [Eq. 5.2] and we use standard rotations for the images

that represent the geometry.

We started from an initial training set of 5,000 patches (≈ 1/4 of the full set) and we

randomly rotated the dataset 6 and 12 times. After training with the same settings for

all the cases, a validation accuracy of 62%, 80% and 82% was achieved for the 0, 6, 12

rotations dataset respectively for the 10% threshold [Fig 5.15]. Firstly, this means that

we managed to outperform by 8% the model trained with the full dataset and secondly,

77

we realised that rotating from 6 to 12 times did not add a significant amount of new

information even though the data is doubled. Once more, that was the motivation to

start working with Selective Learning. We can see an example of a prediction with all

3 CNNs on the same input [Fig 5.16], where the prediction improves with the number

of rotations. We can also see a prediction of the CNN trained with 6 rotations on 4

random patches [Fig 5.17].

0 10 20 30 40 50
% acceptable error

0

20

40

60

80

100

%
 o
f d

at
a
co
rre

ct
ly
 p
re
di
ct
ed

Comparison
rot = 0
rot = 6
rot = 12

Figure 5.15: Comparison between 3 CNNs trained with the same settings but different
datasets. Blue line corresponds to the original dataset with no rotation, orange line to
a dataset with 6 rotations and finally the green line to a dataset with 12 rotations. We
can observe that the accuracy increases as the number of rotations increases.

Moreover, we compare 2 CNNs with and without SE blocks. The 2 CNNs were

trained with 27,000 training examples and validated on 3,000 validation examples. The

CNN with the SE block reported accuracy of 78.98% while the CNN without the SE

Block 68.39%. This clearly shows that adding the SE block in the Residual Blocks of

the CNN substantially improves the performance.

Additionally, we investigate the smoothness of the solution. We compare the CNN

prediction in 2 ROIs that share a common area. In [Fig 5.18] we have highlighted with

orange dashed lines the CNN prediction in the common area of the 2 ROIs and we can

see that it is the same in both of them.

Lastly, we perform a cross-validation study to confirm that the accuracy is not

dependent on our choice of test dataset. Specifically, we used a dataset of 30,000

patches and we divided it in 5 subsamples of size 6,000 patches. We run 5 tests. Each

time we used 1 of these 5 subsamples as a validation set and the rest as training test.

78

0 Rota�ons 6 Rota�ons 12 Rota�ons

Geometry FE

Figure 5.16: Top left corner the structure, the patch (with light brown) and the ROI
(with green) for the prediction. Top right corner the scaled Tresca stress field in the ROI
computed by FEA and converted into an image. Bottom from left to right, prediction
in the ROI from a NN trained with a dataset with 0, 6 and 12 rotations respectively. We
observe that even though those 3 images look quantitatively very similar, the predicted
maximum value approaches the one calculated by the FE simulation as the number of
rotations increases.

The mean accuracy for the validation set is 0.7813 (78.13%) and the standard deviation

is 0.0174. The small value of the standard deviation implies that the CNN is stable

and gives consistent results independent of the choice of test set, as long as the test set

is large enough.

79

FE prediction
 max value = 3.448

NN prediction
 max value = 3.256

ROI FE prediction
 max value = 3.018

ROI NN prediction
 max value = 3.023

0.000
0.246
0.493
0.739
0.985
1.231
1.478
1.724
1.970
2.216
2.463
2.709
2.955
3.201
3.448

0.000
0.216
0.432
0.648
0.864
1.080
1.296
1.512
1.728
1.944
2.160
2.375
2.591
2.807
3.023

(a)

FE prediction
 max value = 4.761

NN prediction
 max value = 3.781

ROI FE prediction
 max value = 3.273

ROI NN prediction
 max value = 3.427

0.000
0.340
0.680
1.020
1.360
1.700
2.041
2.381
2.721
3.061
3.401
3.741
4.081
4.421
4.761

0.000
0.245
0.490
0.734
0.979
1.224
1.469
1.714
1.958
2.203
2.448
2.693
2.937
3.182
3.427

(b)

FE prediction
 max value = 4.729

NN prediction
 max value = 4.807

ROI FE prediction
 max value = 4.729

ROI NN prediction
 max value = 4.807

0.000
0.343
0.687
1.030
1.373
1.717
2.060
2.404
2.747
3.090
3.434
3.777
4.120
4.464
4.807

0.000
0.343
0.687
1.030
1.373
1.717
2.060
2.404
2.747
3.090
3.434
3.777
4.120
4.464
4.807

(c)

FE prediction
 max value = 4.261

NN prediction
 max value = 4.225

ROI FE prediction
 max value = 4.261

ROI NN prediction
 max value = 4.225

0.000
0.304
0.609
0.913
1.217
1.522
1.826
2.131
2.435
2.739
3.044
3.348
3.652
3.957
4.261

0.000
0.304
0.609
0.913
1.217
1.522
1.826
2.131
2.435
2.739
3.044
3.348
3.652
3.957
4.261

(d)

Figure 5.17: Evaluation of the performance of the CNN trained on the 6 rotation dataset
on 4 patches. In each of the 4 images, on the first row we can see the scaled Tresca
stress field for the entire patch computed by FEA and converted into an image on the
left and the NN prediction for the entire patch on the right. On the second row we can
see a zoom in the ROI of the above images.

80

patch 1 patch 2

patch 1 ROI patch 2 ROI

0.000

0.288

0.577

0.865

1.154

1.442

1.731

2.019

2.308

2.596

2.885

3.173

3.462

3.750

4.038

0.000

0.279

0.558

0.837

1.115

1.394

1.673

1.952

2.231

2.510

2.788

3.067

3.346

3.625

3.904

Figure 5.18: Prediction of the CNN in two patches with overlapping ROIs. On the left
we see the geometry where we solve the FE problem on and we can also see the patch
and the ROI. For clarity we only show 1 of the 2 patches. The second patch will be
created by sliding to the right a sliding window with size half the size of the ROI. On
the right we see 4 plots, the 2 top plots are the CNN prediction on the entire patch
and the 2 bottom plots the CNN prediction in the ROI. The orange discontinues boxes
correspond to the common area of the 2 ROIs. The CNN prediction in both boxes is
the same.

81

Numerical example using a Bayesian Neural Network

Until now we have used a deterministic neural network for the predictions. In this

section we will present results corresponding to the use of the Bayesian NN. We trained

the BNN with the same 5,000 patches as in section [5.3.1] for 600 epochs and validated

on 10,000 patches. That requires 2.1 times more computational time compared to

the deterministic case. The accuracy of the prediction is 72% for the 10% threshold

compared to 62% for the deterministic case. In the Bayesian CNN case the accuracy is

calculated using the mean network prediction. The mean and the variance of the BNN

prediction are calculated by drawing the weights of the network from the posterior

distribution 100 times and performing inference for every input.

The results for a BNN where the prior was optimised during training can be found

in [Fig 5.19]. We can see from the first image, [Fig 5.19a], that the mean prediction is

very close to the real value. We can also observe that for higher values we get higher

absolute error. This is expected because those cases are represented to a lesser extent

in the dataset. In the second image, [Fig 5.19b], we can observe that the y = x line

is almost always, and specifically for 92% of the patches, between the upper and lower

95% CIs. This means that the true solution is bounded by the 95% CIs for 92% of the

patches.

Lastly, we trained a BNN where the prior parameters were not optimised during

training. From [Fig 5.20a] we can see that the mean prediction is very good, a slight

decrease of 2% is observed in the accuracy compared to the optimised prior BNN.

Nevertheless, from [Fig 5.20b] and [Fig 5.20c] we can see that the uncertainty fails to

explain the error as there are many cases where the y = x line is either above the upper

95% CI or below the lower 95% CI. Specifically, the true value is bounded by the 95%

CIs in 82% of the cases, a decrease of 10% compared to the optimised prior BNN.

Results from the uncertainty estimation on image level can be found in [Fig 5.21]. On

the top 2 cases [Fig 5.21a, 5.21b] we can see some examples of good mean predictions

where there are clear interactions between multiple microscale features. The middle

images [Fig 5.21c, 5.21d] are examples of good mean predictions where interactions

between multiple microscale features and a macroscale feature can be seen. We can

observe that the uncertainty, expressed as 1.96 × standard deviation, is higher in the

vicinity of the higher error pixels indicating that the BNN has successfully identified

the unseen interactions (interactions that where not in the training dataset or were

underrepresented). [Fig 5.21e] is an example of a case where the maximum value is

82

0 1 2 3 4 5 6
FE result

0

1

2

3

4

5

6

m
ea

n
pr

ed
ict

io
n

y = x

(a)

0 1 2 3 4 5 6
FE result

0

1

2

3

4

5

6

95
%

 C
I upper bound

lower bound

y = x

(b)

Figure 5.19: In these 2 figures we see point densities where darker colours correspond
to higher point density. On the left (a), a diagram showing the relationship between
BNNs’ mean prediction and FE results for the maximum value in the ROI. We can
clearly see that most of the points are on or near the y = x line. On the right (b), a
diagram showing the upper and lower 95% CIs for the prediction. We can observe that
for most of the points the y = x line is between the upper and lower 95% CIs.

mispredicted with a large error of about 1 unit. Fortunately, we can observe that the

uncertainty is also very large, specifically 1.96 × standard deviation has a value of

about 1.5 unit meaning that the true maximum value is between the mean prediction

and the 95% CI. Image [Fig 5.21f] is an example of a case with low uncertainty and

low error. This means that the CIs are very tight and the BNN is very confident about

the prediction. That was an expectable result in the sense that this is a very simple

case, 2 circular microscale features are weakly interacting, and we would expect from

the BNN to handle it without a problem because the training dataset contains a very

large number of these examples.

83

0 1 2 3 4 5 6
FE result

0

1

2

3

4

5

6

m
ea

n
pr

ed
ict

io
n

y = x

(a) Mean prediction

0 1 2 3 4 5 6
FE result

0

1

2

3

4

5

6

95
%

 C
I

upper bound

y = x

(b) Upper 95% CI

0 1 2 3 4 5 6
FE result

0

1

2

3

4

5

6

95
%

 C
I

lower bound

y = x

(c) Lower 95% CI

Figure 5.20: Three diagrams, depicting point densities where darker colours correspond
to higher point density, corresponding to a BNN where the prior was not optimised
during training. The prior distributions are Gaussian initialised as: N(0, 1). First
diagram (a) is the BNNs’ mean prediction against the FE results for the maximum
value in the ROI. Most of the points are on or near the y = x line so the NN was able
to provide good mean estimations. The next two diagrams correspond to the upper
95% CI (b) and the lower 95% CI (c). Ideally the point densities should not intersect
with the y = x line. The high percentage of points below the y = x line for (b) and
above the y = x line for (c) indicates that the network was not able to successfully
quantify the uncertainty.

84

mean prediction
 max value = 3.238

real
 max value = 2.996

1.96 * std
 max value = 0.703

absolute error
 max value = 0.626

0.000
0.231
0.463
0.694
0.925
1.156
1.388
1.619
1.850
2.081
2.313
2.544
2.775
3.006
3.238

0.0000
0.0502
0.1005
0.1507
0.2010
0.2512
0.3015
0.3517
0.4019
0.4522
0.5024
0.5527
0.6029
0.6532
0.7034

(a)

mean prediction
 max value = 2.693

real
 max value = 2.641

1.96 * std
 max value = 0.807

absolute error
 max value = 0.741

0.000
0.192
0.385
0.577
0.769
0.962
1.154
1.346
1.539
1.731
1.923
2.116
2.308
2.500
2.693

0.0000
0.0576
0.1153
0.1729
0.2305
0.2882
0.3458
0.4034
0.4610
0.5187
0.5763
0.6339
0.6916
0.7492
0.8068

(b)
mean prediction

 max value = 3.582
real

 max value = 3.885

1.96 * std
 max value = 0.976

absolute error
 max value = 0.906

0.000
0.278
0.555
0.833
1.110
1.388
1.665
1.943
2.220
2.498
2.775
3.053
3.330
3.608
3.885

0.0000
0.0697
0.1394
0.2091
0.2788
0.3485
0.4182
0.4879
0.5576
0.6273
0.6970
0.7666
0.8363
0.9060
0.9757

(c)

mean prediction
 max value = 2.428

real
 max value = 2.614

1.96 * std
 max value = 0.757

absolute error
 max value = 0.688

0.000
0.187
0.373
0.560
0.747
0.933
1.120
1.307
1.494
1.680
1.867
2.054
2.240
2.427
2.614

0.0000
0.0541
0.1082
0.1622
0.2163
0.2704
0.3245
0.3785
0.4326
0.4867
0.5408
0.5949
0.6489
0.7030
0.7571

(d)
mean prediction

 max value = 3.079
real

 max value = 3.913

1.96 * std
 max value = 1.403

absolute error
 max value = 1.418

0.000
0.280
0.559
0.839
1.118
1.398
1.677
1.957
2.236
2.516
2.795
3.075
3.354
3.634
3.913

0.000
0.101
0.203
0.304
0.405
0.507
0.608
0.709
0.810
0.912
1.013
1.114
1.216
1.317
1.418

(e)

mean prediction
 max value = 1.815

real
 max value = 1.802

1.96 * std
 max value = 0.467

absolute error
 max value = 0.339

0.000
0.130
0.259
0.389
0.518
0.648
0.778
0.907
1.037
1.166
1.296
1.426
1.555
1.685
1.815

0.0000
0.0334
0.0667
0.1001
0.1334
0.1668
0.2002
0.2335
0.2669
0.3002
0.3336
0.3670
0.4003
0.4337
0.4671

(f)

Figure 5.21: Examples of BNN predictions. All images correspond to the ROI of the
patches. For each of the 6 images the first row corresponds to the NN mean prediction
on the left and to the scaled Tresca stress field computed by FEA and converted into
an image on the right. The second row corresponds to the NN uncertainty, expressed
as 1.96 × standard deviation, on the left and to the absolute error between the NN
mean prediction and the FE results on the right.

85

5.3.2 Nonlinear elasticity

In this section we demonstrate the applicability of our method for multiscale problems

in finite strain elasticity. Compared to the previous section, the macroscale geometry

of the dataset is constrained. This example can be used to showcase the ability of the

framework to tackle microscale-informed stress analysis during the macroscale design

of an engineering component.

Training dataset

The structure that we study in this section is rectangular with one macroscale geomet-

rical feature and a distribution of disks as microscale features. The macroscale feature

whose parameters can be optimised is composed of 2 disks with random radii and cen-

tres connected by their common external tangents [Fig 5.22]. Multiple instances of this

structure are created by randomly choosing values for the macroscale parameters and

changing the distribution of the microscale features. After training, the CNN will be

able to evaluate the micro stress distribution in different macroscale geometries (of the

same family) under any realisation of the microscale random texture.

To create the training dataset we choose length 5 and height 1 as overall dimensions

for the structure. For the boundary conditions, the structure is clamped at x = 0 and

a random displacement along the −y direction ranging from 0 to 2 is applied to the

other end, at x = 5, while the displacement along the x direction is zero. An example

of the deformed structure for a displacement of size -1.93 can be found in [Fig 5.23].

The radius of the disks is 0.02 units or 4 pixels as in the linear elasticity case.

The FE solution is mapped into an image of size [80 × 400]. The patch and the

ROI have the same size as the linear elasticity case [72 × 72] and [32 × 23] respectively.

L1

R1

L2

R2

H
1

H
2

Figure 5.22: Structure in the reference (undeformed) configuration. L1 = 0.76, R1 =
0.06, L2 = 2.45, R2 = 0.035, the width of the structure is 5 and the height 1

86

Figure 5.23: Structure in the deformed configuration (Finite Strain elasticity theory)

Numerical results in finite strain elasticity

We performed 200 FE simulations, which took 16 hours on an Intel® Core™ i7-6820HQ

CPU, and we extracted 12,000 patches. Of those, 1,200 were used as a test set and

10,800 as a training set. We trained the same CNN as in the linear elastic case, [section

5.3.1], without scaling the data as a pre-processing step. Training with the Adam

optimizer for 300 epochs required 3 hours on an NVIDIA T4 GPU. The results can be

found in [Fig 5.24]. The accuracy for the 10% threshold is 73%.

Firstly, in [Fig 5.25] we show the difference between a structure modelled with

linear elasticity and the same structure modelled with non-linear elasticity as has been

calculated with FE simulations for the structure described in [Fig 5.23]. We observe

that in general the 2 predictions are different and specifically that the linear elastic

model underestimates the stress magnitude in regions of very large deformations.

Additionally, in [Fig 5.26] we see the prediction of the CNN in 4 patches. The

two top rows include interactions between macroscale and microscale features. In both

cases the maximum values are computed with a relative error less than 10% and the

stress distribution is also correctly predicted. The two bottom rows include interactions

between microscale features. In both cases the maximum values are computed with an

error of less than 10% and the stress distribution is also correctly predicted.

87

0 10 20 30 40 50
% acceptable error

0

20

40

60

80

100

%
 o

f d
at

a
co

rre
ct

ly
 p

re
di

ct
ed

5% error bound
 acc = 40.62 %

10% error bound
 acc = 73.05 %

15% error bound
 acc = 88.19 %

Accuracy

Figure 5.24: Accuracy as function of the threshold. The accuracy is defined as the per-
centage of patches in the dataset for which the relative error between the maximum NN
prediction and the maximum FE result in the ROI is less than a predefined threshold.
The accuracy for threshold values 5%, 10% and 15% is 40%, 73% and 88% respectively.
For threshold values higher than 20% the accuracy is more than 95%.

Lastly, we show a comparison between the CNN prediction and the FE prediction

in the entire structure. We remind the reader that the CNN prediction happens at

patch level and then the patches are rearranged to create the entire solution field as has

already been described in [Fig 5.12]. In [Fig 5.27] we show the comparison between the

CNN prediction and the FE prediction for the non-linear elasticity case. We observe

that the maximum values are very close with a relative error between the maximum

values less than 4% and also that the stress distribution is correctly predicted. We also

see the same comparison for another structure in [Fig 5.28] where we can observe a

similar behaviour.

88

Large Deformation
 max value = 0.831

Small Deformation
 max value = 0.491

0.0000

0.0593

0.1187

0.1780

0.2373

0.2967

0.3560

0.4153

0.4747

0.5340

0.5934

0.6527

0.7120

0.7714

0.8307

Figure 5.25: Comparison between the Tresca stress field computed by FEA and con-
verted into an image for the nonlinear elasticity case, on top, and the Tresca stress field
computed by FEA and converted into an image for the linear elasticity case, on the
bottom, for the structure described in [Fig 5.23].

89

FE prediction
 max value = 6.259

NN prediction
 max value = 5.358

ROI FE prediction
 max value = 5.233

ROI NN prediction
 max value = 5.358

0.000
0.447
0.894
1.341
1.788
2.235
2.682
3.129
3.576
4.024
4.471
4.918
5.365
5.812
6.259

0.000
0.383
0.765
1.148
1.531
1.914
2.296
2.679
3.062
3.445
3.827
4.210
4.593
4.976
5.358

(a)

FE prediction
 max value = 3.746

NN prediction
 max value = 2.536

ROI FE prediction
 max value = 2.508

ROI NN prediction
 max value = 2.536

0.000
0.268
0.535
0.803
1.070
1.338
1.605
1.873
2.141
2.408
2.676
2.943
3.211
3.479
3.746

0.000
0.181
0.362
0.543
0.725
0.906
1.087
1.268
1.449
1.630
1.811
1.993
2.174
2.355
2.536

(b)

FE prediction
 max value = 4.331

NN prediction
 max value = 4.187

ROI FE prediction
 max value = 3.464

ROI NN prediction
 max value = 3.352

0.000
0.309
0.619
0.928
1.238
1.547
1.856
2.166
2.475
2.784
3.094
3.403
3.713
4.022
4.331

0.000
0.247
0.495
0.742
0.990
1.237
1.485
1.732
1.979
2.227
2.474
2.722
2.969
3.217
3.464

(c)

FE prediction
 max value = 3.448

NN prediction
 max value = 3.706

ROI FE prediction
 max value = 3.448

ROI NN prediction
 max value = 3.232

0.000
0.265
0.529
0.794
1.059
1.323
1.588
1.853
2.117
2.382
2.647
2.911
3.176
3.441
3.706

0.000
0.246
0.493
0.739
0.985
1.231
1.478
1.724
1.970
2.216
2.463
2.709
2.955
3.202
3.448

(d)

Figure 5.26: Comparison between CNN and FE prediction in 4 patches. In each of the
4 images the first row from left to right corresponds to the scaled Tresca stress field in
the patch computed by FEA and converted into an image and the CNN prediction in
the patch. The second row from left to right is the scaled Tresca stress field in the ROI
computed by FEA and converted into an image and the CNN prediction in the ROI.

90

FE prediction
 max value = 0.831

CNN prediction
 max value = 0.862

0.0000

0.0616

0.1231

0.1847

0.2462

0.3078

0.3693

0.4309

0.4924

0.5540

0.6155

0.6771

0.7386

0.8002

0.8617

Figure 5.27: Comparison between the Tresca stress field computed by FEA and con-
verted into an image, on the top, and an image reconstructed using the CNN predictions,
on the bottom, for the structure described in [Fig 5.23].

FE prediction
 max value = 0.165

CNN prediction
 max value = 0.163

0.0000

0.0118

0.0235

0.0353

0.0471

0.0589

0.0706

0.0824

0.0942

0.1059

0.1177

0.1295

0.1413

0.1530

0.1648

Figure 5.28: Comparison between the Tresca stress field computed by FEA and con-
verted into an image, on the top, and an image reconstructed using the CNN predictions,
on the bottom.

91

5.3.3 Selective learning

As already discussed in [section 5.3.1] not all the training data provide useful informa-

tion for the network to learn. As the size of the training dataset increases, the training

time increases proportionally, while the gain for the network is disproportionally small.

Consequently, in this section we investigate the idea of Selective Learning to reduce

the labelled data requirements for training the BNN by selecting only the data that

contain new information for the network to learn. We need an initial dataset with

labelled data so we can initially train the BNN, a larger dataset with only unlabelled

data and finally a validation set with labelled data. The principles of this framework

are described below.

1. We use an acquisition function to select small batches from the unlabelled dataset

2. We label the selected data points and “move” them to the training set

3. We train the BNN with the new training dataset

4. We measure the accuracy of the BNN using the validation set

5. We repeat the same process until the accuracy converges or we label the entire

unlabelled set.

The data that will be used in this section come from the linear elasticity problem

[5.3.1]. We designed a small experiment to validate our approach, inspired by [Gal et al.,

2017]. Here we make a comparison between a network trained using the maximum

uncertainty acquisition function, choosing first the patches with higher uncertainty,

and a second one trained using the random acquisition function, that chooses patches

randomly. For the random selection approach, we repeated the experiments 5 times

and presented the mean and the 95% confidence interval. We used the following setup:

2,500 patches for the initial set, 2,500 patches as the unlabelled set and 11,000 patches

as validation set. We trained each network for 50 epochs, we performed 50 forward

passes for the uncertainty estimation and we added 500 patches in the labelled set at

each iteration. The number of data added in each iteration is called query rate, so in

this case the query rate = 500. The accuracy is calculated from the mean prediction

of the network. The results can be found in [Fig 5.29]. We observe that the results

produced by using the maximum uncertainty acquisition function, to select the training

samples, consistently present higher accuracy. Specifically, with this unlabelled data

92

set we can reach an accuracy of about 75%. This can be achieved using 1,500 patches

with the maximum uncertainty acquisition function but requires all the 2,500 patches if

we choose them randomly. This means that we reduced the labelled data requirement

by 40%.

500 750 1000 1250 1500 1750 2000 2250 2500
Number of new data

0.71

0.72

0.73

0.74

0.75
ac
cu

ra
cy

acc
max_uncertainty
Random

Figure 5.29: Results of Selective Learning for an initial set of 2,500 patches. 50 epochs
per training, 50 forward passes for the uncertainty quantification and 500 added data
in each iteration. The orange line corresponds to the maximum uncertainty acquisition
function and the blue to the random acquisition function. For the random acquisition
function we repeated the experiment five times and reported the mean values and the
95% confidence interval.

Now we will use a larger unlabelled dataset consisting of 10,000 patches. We compare

again the maximum uncertainty acquisition function and a random acquisition function.

The initial training set has 5,000 patches. We train for 150 epochs every network.

We perform 100 forward passes for the uncertainty quantification and we label 2,000

unlabelled patches at each iteration (we calculate the microscale stress field for them),

query rate = 2,000. The results can be found in [Fig 5.30]. The accuracy increases

faster for the maximum uncertainty acquisition function and also the loss function

is decreasing faster until it reaches 6,000 new patches. At this point the accuracy

practically stops increasing and the loss gradually approaches the same value as with

the random acquisition function. Using the maximum uncertainty acquisition function

we can reach the maximum accuracy using 6,000 patches while we need all the 10,000

patches when randomly choosing new data. Again we have a decrease of 40% in the

labelled data requirement.

93

Figure 5.30: Demonstration of the selective learning framework for an unlabelled set of
size 10,000 patches. On the left a diagram depicting the accuracy and on the right a
diagram depicting the loss. The orange line corresponds to the maximum uncertainty
acquisition function and the blue to the random acquisition function. For the random
acquisition function we repeated the experiment five times and reported the mean values
and the 95% confidence interval.

This time we want to perform a similar experiment but we are interested in exam-

ining the effect of query rate on the results. Specifically, we will use an initial set of

5,000 patches and we will perform Selective Learning on an unlabelled dataset of 4,000

patches. We will repeat the experiment 3 times, with query rates 500, 1,000 and 2,000.

A similar experiment was conducted by [Islam, 2016], where he concluded that using

very small query rates results in sub-optimal performance, higher simulation times and

noisy behaviour. This can be attributed to the following two reasons. Firstly, adding

only a few patches compared to the size of the initial dataset might result in overfitting

and secondly, these patches might get smoothed out in the loss function. The simula-

tion time increases because the network needs to be retrained a considerable number

of times. On the other hand using too large query rates also results in worse results

because the weights of the network are not updated frequently enough so new informa-

tion is rarely incorporated in the network and we end up again labelling and training

on patches that do not contain new information. The results of our experiment can be

found at [Fig 5.31]. We have reached the same conclusions. When query rate is 1,000

we have the optimal behaviour, when we double it we observe slower convergence and

when we use a small query rate we observe noisy sub-optimal behaviour.

After validating the Selective Learning framework we will now use it without the

94

0 500 1000 1500 2000 2500 3000 3500 4000
Number of new data

0.70

0.72

0.74

0.76

ac
cu
ra
cy

500
1000
2000

Figure 5.31: Selective learning with query rates of different sizes. The green line corre-
sponds to a large query rate (of size 2,000 patches), the orange line to a medium query
rate (of size 1,000 patches) and the blue line to a small query rate (of size 500 patches).
The small and larger query rates result in sub-optimal behaviour and specifically small
query rates result in noisy results.

random acquisition function as baseline. We will use all the 30,000 available data to

train the network. As an initial set we will use again 5,000 patches. We will query

5,000 unlabelled patches at each iteration chosen by the maximum uncertainty acqui-

sition function. We will train for 300 epochs and perform 100 forward passes for the

uncertainty quantification. The results can be found in [Fig 5.32]. It is clear that the

accuracy is not improving after the third iteration, 15,000 patches, but we continued

labelling points only for demonstration reasons. The mean squared error decreases for

the first 3 iterations and then stops decreasing as well. In this example we could reach

the maximum accuracy using 15,000 out of the 30,000 patches, so we managed to reduce

the labelled data requirements by 50%.

5.3.4 Out of distribution study

Lastly, we test the BNN in data outside of the training set. One way to realise this

study is to keep the same microscale features but create new distributions of them.

That could be done using the “1 Ellipse Dataset” from section [5.3.1] and drawing

patches from the “3 Ellipses Dataset” from section [5.3.1], to obtain out-of-distribution

samples. Instead, we choose to completely change the microscale features as we believe

that this will be more challenging for the network to predict.

95

0 5000 10000 15000 20000 25000 30000
Number of new data

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

ac
cu
ra
cy

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

m
se

Figure 5.32: Accuracy and mean squared error plots with respect to train data chosen
by a maximum uncertainty acquisition function. The blue line corresponds to the
accuracy and the orange one to the MSE.

In this study we will use ellipses as micro features to get out of distribution samples.

Neural Networks are notoriously bad at extrapolating. What we are hoping for is that

the BNN will understand that the ellipses are not in the training dataset and will assign

high variance to most of the patches.

We solve the same linear elastic problem we solved in the linear elasticity section

[5.3.1] with the same BCs. We created 500 patches and made a prediction with the

BNN from [5.3.3]. The results can be found in [Fig 5.33]. From the first plot [Fig

5.33a] we can see that the mean prediction from the BNN for the maximum values in

the patch is not close to the real maximum value for a substantial percentage of the

data, accuracy ≈ 50%, but is not unreasonable. On the other hand, the second plot

[Fig 5.33b] shows that in most cases, ≈ 80%, the true maximum value is indeed inside

the 95% CI. Even more encouraging is the fact that higher uncertainty corresponds to

higher error as can be seen from [Fig 5.34]. This also implies that selective learning is

very promising in this case.

We can also see examples of predictions in 6 patches of this new dataset. In [Fig

5.35a, 5.35b] we can see 2 examples of cases where the error in maximum values is

relatively high and even though the 95% CIs are very broad they fail to contain the real

value. In [Fig 5.35c, 5.35d] we can see 2 examples of cases where the error is high but

inside the 95% CI. Lastly in [Fig 5.35e, 5.35f] we can see 2 examples where the mean

prediction of the BNN is very close to the real value. Some error is present in other

areas of the patch but this error is captured by the uncertainty of the BNN.

96

0 1 2 3 4 5 6
FE result

0

1

2

3

4

5

6
m

ea
n

pr
ed

ict
io

n
y = x

(a)

0 1 2 3 4 5 6
FE result

0

1

2

3

4

5

6

95
%

 C
I

upper bound

lower bound

y = x

(b)

Figure 5.33: In these 2 figures we see point densities where darker colours correspond to
higher point density. On the left a diagram (a) showing the relationship between NNs’
mean prediction and FE results for the maximum value in the ROI. We can observe
that the maximum value is underestimated in a lot of patches from the BNN. On the
right (b) a diagram showing the upper and lower 95% CIs. We can observe that in
most cases the real maximum value is inside the 95% CIs of the prediction.

0.0 0.5 1.0 1.5 2.0 2.5
abs max error

0.0

0.5

1.0

1.5

2.0

2.5

1.
96

 *
st

d

y = x

Figure 5.34: A diagram where the x axis is the absolute error between the real maximum
value in the ROI and the predicted one and the y axis is 1.96 × the standard deviation.
We can observe a correlation between high uncertainty and high error.

97

mean prediction
 max value = 3.326

real
 max value = 5.258

1.96 * std
 max value = 1.728

absolute error
 max value = 2.270

0.000
0.376
0.751
1.127
1.502
1.878
2.253
2.629
3.004
3.380
3.755
4.131
4.507
4.882
5.258

0.000
0.162
0.324
0.486
0.649
0.811
0.973
1.135
1.297
1.459
1.622
1.784
1.946
2.108
2.270

(a)

mean prediction
 max value = 3.250

real
 max value = 5.352

1.96 * std
 max value = 1.829

absolute error
 max value = 2.256

0.000
0.382
0.765
1.147
1.529
1.911
2.294
2.676
3.058
3.441
3.823
4.205
4.588
4.970
5.352

0.000
0.161
0.322
0.483
0.645
0.806
0.967
1.128
1.289
1.450
1.611
1.772
1.934
2.095
2.256

(b)
mean prediction

 max value = 2.216
real

 max value = 2.730

1.96 * std
 max value = 1.019

absolute error
 max value = 0.977

0.000
0.195
0.390
0.585
0.780
0.975
1.170
1.365
1.560
1.755
1.950
2.145
2.340
2.535
2.730

0.000
0.073
0.146
0.218
0.291
0.364
0.437
0.510
0.582
0.655
0.728
0.801
0.874
0.946
1.019

(c)

mean prediction
 max value = 2.274

real
 max value = 2.990

1.96 * std
 max value = 1.444

absolute error
 max value = 1.227

0.000
0.214
0.427
0.641
0.854
1.068
1.281
1.495
1.709
1.922
2.136
2.349
2.563
2.776
2.990

0.000
0.103
0.206
0.310
0.413
0.516
0.619
0.722
0.825
0.929
1.032
1.135
1.238
1.341
1.444

(d)
mean prediction

 max value = 2.304
real

 max value = 2.367

1.96 * std
 max value = 1.499

absolute error
 max value = 1.491

0.000
0.169
0.338
0.507
0.676
0.845
1.014
1.183
1.352
1.521
1.691
1.860
2.029
2.198
2.367

0.000
0.107
0.214
0.321
0.428
0.536
0.643
0.750
0.857
0.964
1.071
1.178
1.285
1.392
1.499

(e)

mean prediction
 max value = 2.236

real
 max value = 2.343

1.96 * std
 max value = 1.373

absolute error
 max value = 1.469

0.000
0.167
0.335
0.502
0.669
0.837
1.004
1.171
1.339
1.506
1.673
1.841
2.008
2.175
2.343

0.000
0.105
0.210
0.315
0.420
0.525
0.629
0.734
0.839
0.944
1.049
1.154
1.259
1.364
1.469

(f)

Figure 5.35: BNN predictions on out of distribution examples. All images correspond
to the ROI of the patches. In all of the 6 images the first row corresponds to the NN
mean prediction on the left and to the scaled Tresca stress field computed by FEA
and converted into an image on the right. The second row corresponds to the NN
uncertainty, expressed as 1.96 × standard deviation, on the left and to the absolute
error between the NN mean prediction and the FE results on the right.

98

5.4 Comparison to homogenisation

In elasticity, homogenisation works well if the size of the microscale features is much

smaller than the size of macroscale stress concentrators. This is clearly not the case

in the examples proposed in this thesis. Conversely, our method is only useful in cases

where scales are not well separated, as it will be bettered by homogenisation-based

approaches when they are applicable.

We propose to illustrate the qualitative point made above. To this end, we train a

CNN that takes as input the average stress field over the patch and not the entire stress

field, hence mimicking the effect of spatial averaging commonly found in homogenisation

schemes. We call this network a homogenisation CNN. We compare this CNN with the

CNN we proposed earlier in this chapter. Our goal is to show that our CNN outperforms

the homogenisation CNN and specifically that this happens in patches where there are

interactions between microscale and macroscale features. We trained the 2 CNNs with

the same architecture and training dataset, 27,000 training data and 3,000 validation

data. In [Fig 5.36] we see that the first CNN achieves higher accuracy, specifically for

the 10% threshold our CNN achieves 79% accuracy while the homogenisation CNN

42%. Additionally, in Fig [Fig 5.37] we compare the prediction of the 2 CNNs in a

patch where the macro stress field is not constant. We see that in contrast to our CNN

the homogenisation CNN fails to predict the correct stress field. We can also see that

the higher absolute error between the homogenisation CNN and both our CNN and the

FE solution is close to the ellipse where the macro stress field varies faster. Lastly, in

Fig [Fig 5.38] we compare the prediction of the 2 CNNs in a patch where the macro

stress field is constant. We see that both CNNs manage to predict the correct stress

field.

99

0 10 20 30 40 50
% acceptable error

0

20

40

60

80

100

%
 o

f d
at

a
co

rre
ct

ly
 p

re
di

ct
ed

Comparison

homogenization CNN
our CNN

Figure 5.36: Comparison between 2 CNNs trained with the same architecture and
dataset but one takes as input the average stress in the patch and the other the entire
stress field. Blue line corresponds to the CNN with the average stress as input and the
orange line to the CNN trained with the full stress as input. The x-axis of the diagram
corresponds to the threshold level used to define the accuracy and the y-axis to the
accuracy.

100

homogenization CNN prediction
 max value = 2.855

our CNN prediction
 max value = 3.805

FE prediction
 max value = 3.720

abs(homogenization CNN - FE)
 max value = 2.334

abs(our CNN - FE)
 max value = 0.768

abs(homogenization CNN - our CNN)
 max value = 2.281

Sxx Sxy Syy

1.000
0.857
0.714
0.571
0.429
0.286
0.143

0.000
0.143
0.286
0.429
0.571
0.714
0.857
1.000

0.000
0.272
0.544
0.815
1.087
1.359
1.631
1.902
2.174
2.446
2.718
2.990
3.261
3.533
3.805

0.000
0.167
0.333
0.500
0.667
0.834
1.000
1.167
1.334
1.501
1.667
1.834
2.001
2.168
2.334

Figure 5.37: A figure where we compare the homogenisation CNN to our CNN for
a patch where the macro stress field is not constant. In the first row we see from
left to right, the homogenisation CNN prediction, our CNN prediction and the scaled
Tresca stress field computed by FEA and converted into an image. We observe that
the homogenisation CNN fails to predict the correct stress distribution in contrast
to our CNN. In the second row from left to right we see the absolute error between
the homogenisation CNN and the FE results, our CNN and the FE results, and the
homogenisation CNN and our CNN. In the last row from left to right we see the xx, xy
and yy components of the macro stress tensor.

101

homogenization CNN prediction
 max value = 3.595

our CNN prediction
 max value = 3.548

FE prediction
 max value = 3.476

abs(homogenization CNN - FE)
 max value = 1.661

abs(our CNN - FE)
 max value = 1.256

abs(homogenization CNN - our CNN)
 max value = 1.422

Sxx Sxy Syy

1.000
0.857
0.714
0.571
0.429
0.286
0.143

0.000
0.143
0.286
0.429
0.571
0.714
0.857
1.000

0.000
0.257
0.514
0.770
1.027
1.284
1.541
1.797
2.054
2.311
2.568
2.825
3.081
3.338
3.595

0.000
0.119
0.237
0.356
0.475
0.593
0.712
0.831
0.949
1.068
1.187
1.305
1.424
1.543
1.661

Figure 5.38: A figure where we compare the homogenisation CNN to our CNN for a
patch where the macro stress field is constant. In the first row we see from left to
right, the homogenisation CNN prediction, our CNN prediction and the scaled Tresca
stress field computed by FEA and converted into an image. We observe that both the
homogenisation CNN and our CNN manage to predict the correct stress distribution. In
the second row from left to right we see the absolute error between the homogenisation
CNN and the FE results, our CNN and the FE results, and the homogenisation CNN
and our CNN. In the last row from left to right we see the xx, xy and yy components
of the macro stress tensor.

102

5.5 Assumptions and limitations

In this section we aim to remind the reader of the assumptions that we made and also

highlight the limitations of the methodology that we developed.

Firstly, we assumed that the local macroscale fields that we use as input to our

CNN are sufficient to predict all the microscale features, for all the structural problems

over which training is performed. This is an assumption of locality that cannot in

general be used in the context of non-diffusive problems (e.g. wave propagation, crack

propagation).

A second limitation of the methodology is its rather poor extrapolation ability. In-

deed, when the CNN that was trained with disks as microscale features was used to

make predictions on data with elliptically-shaped pores as microscale features, the ac-

curacy decreased substantially. However, the uncertainty interval remained reasonably

accurate and could be used to indicate that the requested predictions are too far from

the training set, for instance in a selective learning framework. Additionally, when the

CNN that was trained on the one-ellipse dataset was used to make predictions on the

three-ellipses dataset, the accuracy also decreased, albeit not as sharply as in the former

case. To summarise, the method does not generalise well outside the set of examples

(microscale or macroscale) of the problem over which training was performed, which is

unsurprising. A corollary to the previous statement is that it is necessary to restrict

training to relatively narrow families of boundary value problems, as the space of het-

erogeneous structures with randomly distributed microscopic components is arbitrarily

vast.

Lastly, many problems arising in computational mechanics are history dependent,

for instance elastoplasticity or viscoelasticity. Unfortunately, our current multiscale

CNN architecture is not able to tackle all history dependent problems in general, but it

could be used for a limited set of problems where one-to-one mapping between the macro

stress and the microscale correction exists. For instance, in [Rocha et al., 2021], the au-

thors replaced constitutive relations in multiscale plasticity by instantaneous Gaussian

Processes, the strain history being discarded. If we want to address a broader set of

history dependent problems, we could add extra channels to the input that would cor-

respond to snapshots of the stress distribution from the past [Yan et al., 2020]. Another

common approach for time series prediction is the Long Short-term Memory Networks.

Recently [Wang et al., 2021] developed a convolutional-aided bidirectional Long Short-

Term Memory network to predict the sequence of maximum stress until material failure.

103

This architecture combines CNNs and LSTMs and leverages the advantages of both.

5.6 Conclusion and perspectives of this chapter

The goal of this chapter was to develop a CNN based multiscale surrogate modelling

technique that can be used to perform fast stress predictions in 2D structures exhibiting

spatially random microscopic features, without prior assumption of scale separability,

and without prior parametrisation of the multiscale problem.

We have shown that the CNN is able to predict how macroscale solution fields should

be corrected by taking into account the existence of microscale pores, interacting ar-

bitrarily with one another and with the boundary of the computational domain. The

framework is designed in such a way that it does not require any knowledge of the PDE

system to generate microscale corrections, and therefore is not intrusive. Moreover, the

methodology is not a priori limited to ad hoc parametrisations of the multiscale bound-

ary value problem, as it treats the geometry of the microscopic patterns as arbitrarily

large images. Incidentally, the method is Bayesian and provides credible intervals for

the microscale field predictions.

Experiments with data from linear elastic simulations with a variety of macroscale

structures, of the same family, with randomly distributed circular pores under different

boundary conditions showed good performance in terms of mean values and uncertainty

intervals. This suggests that the method generalises well in new realisations of known

macroscale structures and microscale distributions. We also proved that the method

readily extends to nonlinear elasticity.

Lastly, we investigated two other features of our framework. We addressed the

problem of limited labelled data using mechanically consistent rotations as data aug-

mentation technique. Furthermore, to reduce the large computational cost associated

with the creation of labelled data (i.e. multiscale FEA simulations) we used selec-

tive learning to choose and label only the data that contains new information for the

network.

104

Chapter 6

Graph Neural Networks for the

prediction of stress in 3D porous

structures

6.1 Introduction

Stress prediction in porous materials and structures is challenging due to the high com-

putational cost associated with direct numerical simulations. In the previous chapter

(Chapter [5]), we proposed Convolutional Neural Network (CNN) based architectures

as FE surrogate models to approximate the solution of 2D multiscale simulations. CNN

methodologies are usually limited to 2D problems due to the high computational cost of

3D voxel-based CNNs. In this chapter, we propose a novel geometric learning approach

based on Graph Neural Networks (GNNs) that efficiently deals with 3D problems by

performing convolutions over 2D surfaces only. The purpose of this chapter is to show

that

• A GNN can be used to automatically add local fine scale stress corrections to an

inexpensively computed coarse stress prediction in the porous structure of interest.

In contrast to the relevant literature, the examined structures have multiple fine

scale features, intersecting with each other, with the macroscale features and with

the boundaries of the structures.

• The Bayes by Backprop method can be used to convert the deterministic GNN

to a probabilistic one. In contrast to the GNNs found in the relevant literature,

105

this probabilistic GNN generates densities of stress fields, from which credible

intervals can be extracted. This increases the confidence in the prediction which

is crucial in realistic engineering applications.

• The uncertainty information extracted from the GNN can be utilised by an online

stress correction technique, namely Ensemble Kalman method, to update the out-

put distribution of the Bayesian GNN so that it respects the appropriate physical

laws. This methodology alleviates the effect of undesirable biases observed in the

outputs of the uncorrected GNN, and improves the accuracy of the predictions in

general.

6.2 Geometric learning for multiscale stress analy-

sis

In this section we outline the assumptions utilised to apply the proposed geometric

learning framework to multiscale stress analysis problems. Additionally, we analyse the

GNN we use to reproduce the FE results of the 3D problem. Lastly, we discuss the

input and output of the network as well as its architecture.

6.2.1 Assumptions and justifications

As can be seen from the literature review, researchers can take advantage of the flex-

ibility that GNNs offer, to reduce the computational cost by modelling their system

in more meaningful ways that stem from the physical understanding of the underlying

problem, as for example [Vlassis et al., 2020] who modelled the behaviour of a poly-

crystal by considering every crystal as a node of the graph instead of operating on the

volume mesh. Following this paradigm, for reasons we explain in the next paragraphs,

we choose to work only on the surface mesh of the porous medium and not the volume

mesh.

First of all, we try to evaluate to what degree the choice to work only on the surface

mesh is going to affect the maximum stress in the structure, which is the quantity

of interest. We conduct an experiment where we perform 100 FE simulations with

100 realisations of the dogbone structure. For the boundary conditions we apply a

displacement along the x and −x direction of the same magnitude but with opposite

direction. Afterwards, we extract from the volume mesh the surface mesh with the

106

stress tensors encoded on the nodes of the surface mesh (see Appendix A). Lastly, we

calculate the maximum Von Mises stress both on the volume and surface mesh and we

compare the two. From [Fig 6.1] we can conclude that indeed the maximum volume

stress is the same as the maximum surface stress. We do not claim that this would

be the case for every possible distribution of pores, for every sample geometry and for

every macroscale loading condition but we will make this assumption for computational

efficiency reasons.

Additionally, we hypothesise that the surface mesh is a comprehensive representa-

tion of the geometry of the specimen. Lastly, we assume that the macroscale stress over

the surface mesh is sufficient to inform the GNN of the macroscopic stress state over

the patch. We prove these 2 hypotheses numerically in the context of this thesis.

Consequently, we choose to work only on the surface mesh since we are primarily

interested in predicting the maximum stress. This greatly reduces the memory require-

ments and the training time.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

m
ax

 V
M

 s
tr

es
s

on
 t

he
 s

ki
n

of
 t

he
 p

or
ou

s
st

ru
ct

ur
e

max VM stress in the structure

R2 = 1.0000 | max Von Mises

Figure 6.1: The x axis corresponds to the maximum Von Mises stress on the volume
mesh and the y axis to the maximum Von Mises stress on the surface mesh for each of
the 100 performed simulations. The red line is the y = x line. We can observe that all
the points lay on this line and thus the maximum volume and surface stress values are
the same.

107

6.2.2 Graph construction

In our attempt to perform geometric learning on the surface mesh of a dogbone structure

we consider a graph G that can be described by a set of nodes VVV : {V1, V2, ...VN} where

N is the number of nodes of G and a set of edges EEE : {E1, E2, ...EM} where M is the

number of edges of G.

The nodes of the graph VVV coincide with the nodes of the surface mesh, since their

position is optimised by the mesh generation software to best describe the geometry

of the structure. The edges of the graph are used to pass messages between the nodes

and they define the connectivity of the graph. Specifically, the edges of the graph

should create connections between interacting areas of the surface mesh, that are not

necessarily connected. Consequently, the edges of the graph cannot coincide with the

edges of the surface mesh, since the surface mesh has disconnected areas. This means

that it is possible for areas of the surface mesh that are close to each other to not share

an edge, for example two interacting but non intersecting defects. This does not allow

passing of information between the two and thus their interaction cannot be modelled.

To overcome this problem a different approach to create the neighbourhood of a point

needs to be followed. Below, we define 2 different neighbourhoods [Fig 6.2].

• Geodesic: Given a node (that we refer to as central node), the Geodesic neigh-

bourhood, or 1-ring neighbourhood, includes the nodes that share an edge with

this central node. This is equivalent to the neighbourhood dictated by the surface

mesh connectivity.

• Euclidean: The Euclidean neighbourhood in this work is defined using the radius

neighbours. Every node Vi, is connected with every node that falls into a sphere

with a predefined radius r and with centre Vi. The predefined radius r that is

used for this work is 4 times the radius of the spherical voids as suggested in

[Krokos et al., 2021]. In practice that results in a very high number of neighbours

and thus into a very expensive computational problem. To tackle this problem we

need to restrict the number of neighbours for each node by setting a threshold and

randomly choosing neighbours so that the total number of neighbours is below

the threshold. In [Appendix B.5], we discuss the most appropriate value for this

threshold.

To overcome the problem of message passing between disconnected areas of the

surface mesh, in this work we use either Euclidean or a combination of Euclidean and

108

cross section of a surface mesh

Geodesic Neighbours
1 ring neighbourhood

Euclidean Neighbours
max = 3

convolutional

neighbourhood

Figure 6.2: On the left we show a cross section of the surface mesh depicting a rectangle
with 2 spherical features. With red with see the node that is considered the central node
for the convolutional neighbourhood. On the right we can see 2 possible neighbourhoods
for the central node. The Geodesic (1-ring) neighbourhood on top and the Euclidean
neighbourhood at the bottom with a threshold for the maximum number of neighbours
equal to 3. In the Geodesic neighbourhood there is no edge between the two spherical
features and thus message passing between the two is not possible.

Geodesic neighbours, as proposed by [Schult et al., 2020], both of which allow the

modelling of interactions between non-intersecting parts of the mesh.

The edges of the graph are bidirectional so that the information can be exchanged

both ways between two connected nodes. This means that for every edge Ek,l passing

a message from node Vk to Vl there exists the edge El,k passing a message from node

Vl to Vk.

109

6.2.3 Input-Output

The framework we use requires the input and output graphs to be isomorphic, meaning

they have the same number of nodes, edges, and the same edge connectivity. Con-

sequently, we will use the microscale mesh (mesh with spherical voids) as a graph to

represent both microscale and macroscale 3D FE solutions. For the macroscale solution,

the FE problem is solved using the macroscale mesh (mesh without spherical voids) and

then the solution is interpolated into the microscale mesh.

For the input of the GNN we encode node features, vi where i = 1, 2, . . . N , on

the nodes of the graph and edge features, ei,P (i) where P (i) is the neighbourhood of i,

on the edges of the graph. The input node features are the independent components

of the macroscale stress tensor along with the microscale feature indicator, a single

integer indicating if the node corresponds to a microscale feature or not. The input

edge features are the relative position between the 2 nodes that the edge is connecting

along with the distance between the 2 nodes. This is summarised in [Fig 6.3].

Figure 6.3: Example of input node features, uk and ul, and edge features, ekl. With
orange we see the nodes and with light blue the directed edge. f is the micro indicator,
a single integer that indicates if the node is a macroscale or microscale feature. σi,j

corresponds to the i, j component of the macroscale stress tensor. L is the distance
between the two nodes.

The output of the graph contains information only on the nodes of the mesh. Specif-

ically, the output node features are the components of the microscale stress tensor.

We sum up in [Fig 6.4] the input and output of the GNN. We have only included

the node features since the edge features are calculated as a pre-processing step from

the connectivity of the mesh.

110

Figure 6.4: In this figure we can see the input and output of the GNN. The input
consists of the 6 stress components of the macroscale stress tensor along with the micro
indicator, a single integer per node that determines if the node belongs to a microscale or
a macroscale geometrical feature. For the patch corresponding to the micro indicator
the FE mesh is visible. The output of the GNN is the 6 stress components of the
microscale stress tensor. At the top of the figure, we can see the full structures from
which the patches are extracted both for the input and the output. We stress that the
macro stress is computed without the pores, i.e. stress gradients in the gage section are
solely created by the cylindrical hole, before being projected onto the microscale mesh
to be provided as input to the GNN.

111

6.2.4 Loss function

The loss function used for the training of the deterministic networks in this chapter

is the Mean Squared Error (MSE) between the microscale stress tensor in the ROI of

every patch predicted by the GNN and the one calculated using direct FEA. For the

Bayesian networks the ELBO loss is used, as described in equation [2.15].

6.2.5 GNN model

GN Block

The GN block is the basic building block of the GNN and it is used to map an input

graph to an isomorphic output graph with updated node and edge features. The node

and edge features are jointly passed through an edge update MLP and a node update

MLP in a 2-step procedure described in [Battaglia et al., 2018] that sequentially updates

the edge features first and the node features later. A sketch of this procedure can be

found in [Fig 6.5].

For the edge update step, if we consider an edge Ek,l with edge features ekl that sends

a message from the sender node Vk with node features vk to the receiver node Vl with

node features vl then the updated edge feature, e∗kl, is calculated by passing through

the edge MLP the concatenation of these features, e∗kl = MLP(concatenate(ekl, vk, vl)).

If M is the number of edges of the graph, NNF is the number of node features and

NEF is the number of edge features then the input of the edge update MLP is of size

[M × (2NNF +NEF)].

For the node update step, the updated edge features, e∗, are aggregated per node. In

this work we use mean aggregation although elementwise summation, maximum or any

other symmetric operation can be used. After the aggregation step, we have a single

edge feature, e∗∗, corresponding to each node feature v. The updated node features, v∗,

are calculated using a node MLP. The input to this node MLP is the concatenation of

the original node features with the updated and aggregated edge features corresponding

to this node, v∗ = MLP(concatenate(v, e∗∗)). If N is the number of nodes of the graph,

NNF is the number of node features and F is the dimensionality of the updated edge

features then the input of the node update MLP is of size [N × (NNF + F)].

112

Node Update MLP

updated nodes

2

3

4

1

node features
e edge features
v

esender-->receiver

identify sender and receiver nodes

E
d

g
e
 U

p
d

a
te

N
o
d

e
 U

p
d

a
te

Edge Update MLP
sender

edge

receiver

+

+

updated edges

mean mean

Per node aggregated
and updated edges

mean

F
o
rm

u
la

ti
o
n

+

ReLU ReLU
FC
+
Dp
+

LN

FC
+
Dp

FC
+
Dp

ReLU ReLU
FC
+
Dp
+

LN

FC
+
Dp

FC
+
Dp

Figure 6.5: Structure of the GN block used in this work. The update of node and edge
features happens through a 2-step procedure as described in this figure. FC stands for
fully connected layer, Dp for dropout and LN for layer normalisation.

Architecture

In this work we deploy an Encode-Process-Decode GNN as described by [Battaglia

et al., 2018]. The encoder encodes the node and edge features in a latent space of

higher dimensions. The processor updates these node and edge features and finally the

decoder, decodes these features from the latent space to the output space.

• Encoder: The node and edge features are independently encoded into a latent

space of 128 dimensions using 2 distinct MLPs with the same structure. The MLP

has 3 hidden layers. Each hidden layer is followed by a Dropout layer [Hinton

et al., 2012] and a ReLU activation function. A Layer Normalisation layer is

placed after the output layer, which improves training stability and decreases

training time in recurrent NNs [Ba et al., 2016].

113

• Processor: The processor is composed of 5 residual GN Blocks. By using residual

blocks the NN itself can choose its depth by skipping the training of a few layers

using skip connections. This has been shown to be advantageous in training deep

NNs [He et al., 2016; Kim et al., 2016; Zagoruyko and Komodakis, 2016; Lim et al.,

2017] and it also applies to GNNs [Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021;

Mylonas et al., 2022]. The structure of the MLPs of the Processor is the same

as the structure of the encoder MLPs. The processor combines information from

edges and nodes and passes messages between nodes that share an edge.

• Decoder: The decoder operates only on the node features as the output of the

GNN is the microscale stress field on the nodes. A single MLP is used to decode

the node features from the latent space to the output space. The decoder MLP is

similar to the MLPs used in the encoder and the processor but there is no Layer

Normalisation layer applied after the output layer

There is a skip connection that connects the macroscale stress tensor, from the input,

with the output of the Decoder. That way the network can learn how the microscale

stress field diverges from the macroscale stress field. In [Appendix B.1], we demonstrate

that this leads to smoother and faster convergence. A sketch of the GNN can be found

below [Fig 6.6].

2

3

4

1

2

3

4

1encoder decoderGN
Block

GN
Block

f = 128

v = 7

e = 4

v = 128v = 128

e = 128

v = 128

e = 128e = 128

v = 6

e = 0

5 residual blocks

v = node features
v = [Macro Stress Components;
 Micro Indicator]

e = edge features
e = [Relative Position;
 Distance]

v = Micro Stress
 Components

f = 128

Figure 6.6: Architecture of the GNN

114

6.3 Physics-based corrections of the NN predictions:

enforcing Neumann conditions online via an en-

semble Kalman approach

In this section we introduce an online Bayesian method to constrain the prediction of

the GNN. This method allows us to improve the network prediction without creating

more data nor retraining the network. We impose Neumann conditions (which are

homogeneous in all our numerical examples), which are the only equations that may

be enforced on the stress field after restricting it to the surface of the porous structure.

These conditions are not imposed while training the network, even though the training

examples satisfy them up to the FE accuracy.

To apply this method, we require a statistical distribution for the GNN predictions,

and thus we use the output of the Bayesian GNN (BGNN). The posterior estimation

of the BGNN for the stress field over the surface of the structure will then serve as

a prior for the online correction step, which is formulated as a standard Bayesian

data assimilation problem. More precisely, the Neumann conditions are applied by

considering them as partial information of the stress field, yielding a Bayesian posterior

update.

The ensemble Kalman method is used to update the prior probability density of the

state of a system, represented by vector x ∈ Rn, taking into account noisy and partial

observations of that state. In the present context, the state vector corresponds to the

microscale stress components predicted by the BGNN at every node, j, of the surface

mesh. Those are concatenated in a vector of 6J components, where J is the number

of surface nodes of the inference mesh where Neumann boundary conditions are to be

enforced. The state vector reads as

x =
(
x̂1 ... x̂J

)T
(6.1)

where

x̂j =
(
Sj
xx Sj

yy Sj
zz Sj

yz Sj
xz Sj

xy

)
(6.2)

The Neumann boundary conditions are treated as linear observations of the state

vector, through the formal definition of observation operator H as

Hx =
(
S1 · n1 ... SJ · nJ

)
(6.3)

115

where Sj is the [3× 3] symmetric microscale stress tensor at node j and nj is the [3× 1]

unit normal vector

Sj =

Sj
xx Sj

xy Sj
xz

Sj
xy Sj

yy Sj
yz

Sj
xz Sj

yz Sj
zz

 , nj =

nj
x

nj
y

nj
z

 (6.4)

Following the standard Bayesian approach to data assimilation, random noise is added

to the observations so that a Gaussian likelihood is implicitly defined. The data reads

as

d = Hx+ ϵ ϵ ∼ N (0,Σϵ) (6.5)

If x were normally distributed then we would have an explicit formula, through Bayes’s

rule, for the posterior state vector, x⋆. In that case, the posterior state would be given

by

x⋆ = x+G(d−Hx) (6.6)

where G is the so-called Kalman gain defined as G = ΣHT (HΣHT +Σϵ)
−1, Σ being

the prior covariance matrix.

Our prior state density, which is the output of the BGNN, is of course non-Gaussian.

However, the idea of the Ensemble Kalman method, which is at the heart of the En-

semble Kalman filter, is to approximately sample the posterior density using the above

formula, i.e. claiming that the prior (and therefore the posterior density as well as the

observations are Gaussian-perturbed linear observations of the state) is Gaussian. This

is achieved by taking N samples from the BGNN posterior and creating an ensemble

of state vectors

X =
(
x1 ... xN

)
(6.7)

The formula for the posterior update can be rewritten in terms of the N samples as

X⋆ = X+ G̃(D−HX) (6.8)

where the perturbed data matrix reads as

116

D =
(
d1 ... dN

)
(6.9)

where di ∼ N (d,Σϵ), and the approximated Kalman gain matrix, G̃, is defined by

G̃ = Σ̃HT (HΣ̃HT +Σϵ)
−1 (6.10)

In the equations above, the prior covariance matrix used in the standard Gaussian case

has been substituted by the ensemble covariance matrix defined as

Σ̃ =
XXT

N − 1
(6.11)

We note that that the observation matrix H does not need explicit defining. Only

its action needs to be evaluated for every prior sample. For additional (and classical)

algorithmic details, the reader may refer to [Appendix C].

To summarize, the online stress correction procedure that we employ here can be

described using the following steps. A prior state ensemble is created by drawing N

samples from the BGNN posterior. Then, the Kalman update scheme described above

transforms the prior empirical distribution into an approximation of the posterior em-

pirical distribution that satisfies the homogeneous Neumann conditions up to a certain

tolerance encoded by the spherical covariance matrix Σϵ.

This tolerance may be interpreted as a discretisation error, i.e. the Neumann condi-

tions should not be exactly enforced as (A) the BGNN is trained on the output of finite

element code, which delivers stress fields that do not satisfy the Neumann conditions

exactly and (B) the normal vector at a vertex is not uniquely defined (we choose here

to calculate them for each triangle and then average them at shared points). These are

qualitative observations, which did not help us choose the level of noise. In practice,

we adjusted the level of noise (i.e. a scalar parameter) manually so that the posterior

update is of appropriate quality on a validation set.

6.4 Numerical examples

6.4.1 Numerical example with cubical heterogeneous material

In this section we want to test our methodology using a dataset containing samples

from a heterogeneous material. We will demonstrate how we can use our methodology

117

to

• predict the microscale stress distribution

• predict the maximum microscale Von Mises stress over the patches

• quantify the uncertainty of the prediction

• improve the BGNN prediction using the online correction technique introduced

in section [6.3]

FEA set-up and generation of the training dataset

For the purpose of training the model we will work with a synthetic heterogeneous mate-

rial from which we extract and examine cubical specimens. The size of each specimen is

2 units along each spatial dimension. The specimen has two macroscale elliptical pores,

with random position, size and orientation and a distribution of 50 to 100 microscale

spherical pores with the same radius, R = 0.08 units. The spherical and elliptical

pores are generated without intersecting. For the macroscale simulations, input of the

BGNN, only the elliptical pores are taken into account and the spheres are ignored.

The Young’s modulus and the Poisson ratio of the structure are 1 and 0.3 respectively.

Two realisations of the cubical specimen are shown in [Fig 6.7].

As already explained in [section 4.5], the input to the GNN is a patch of the geom-

etry, not the entire structure, and the prediction of the GNN happens in a sub region

of the patch that we called ROI. The patch and ROI size depend on the radius of in-

teraction of the microscale spherical pores. Following the same logic as in the 2D case

we choose a patch size of [18R × 18R × 18R] and a ROI size of [8R × 8R × 8R],

where R is the radius of the spherical voids, as can be seen in [Fig 5.6].

The patches that are extracted never intersect with the exterior boundaries of the

FE mesh. Additionally, we apply homogeneous Dirichlet boundary conditions away

from the material specimen, as represented in [Fig 6.8], [Eq. 6.12].

u =

Exx Exy Exz

Exy Eyy Eyz

Exz Eyz Ezz

 (X −X0)
⊤ (6.12)

118

Figure 6.7: Two realisations of a cubical specimen from a heterogeneous material with
a bimodal distribution of random pores: large elliptical pores and smaller equally-sized
spherical pores.

where Exx, Exy, Exz, Eyy, Eyz, Ezz are far-field load parameters, X is the position

of a point in R3 and X0 is the initial position of the centre of the body in R3.

For data pre-processing we use a simple linear rescaling by dividing the input stress

components with the maximum stress component in the training dataset.

The dataset we use consists of 200 FE simulations completed in 8.7 hours on 5 cores

on an Intel® Xeon® Gold 6148 CPU @ 2.40GHz CPU using the Hawk Supercomputer

located at Cardiff University. From every FE simulation we extract 5 patches, at

random locations in the cubic specimen, resulting in 1,000 data points, 900 for training

and 100 for testing.

Training parameters

For the training of the network we used a batch size of 2 and the Adam optimiser with

an initial learning rate of 1 · 10−4 decreasing by 5% every 50 epochs. Additionally,

we performed several tests to identify key parameters that affect the training and per-

formance of the GNN and determined their optimum values. We concluded that for

achieving optimum behaviour we will use a GNN with 5 GN blocks, residual connection,

independent encoder, 128 filters and a maximum of 10 neighbours per node. The total

number of trainable parameters for the network is 842,654. More details can be found

119

(a) (b)

Figure 6.8: On the left (a) we can see a volume mesh of the multiscale structure. The
buffer area where the mesh is coarse is visible. In the centre we can see the dense mesh
area from where we extract the patches. The shape of the dense mesh area is a cube,
but here only one face of this cube is visible. On the right (b) we can see a zoom in the
dense mesh region. We stress that the fine scale features visible are inside the dense
mesh area.

in [Appendix B].

In the GNN architecture examined in this chapter, there are two types of layers

that have learnable parameters, namely the linear and layer normalisation layer. For

both layers PyTorch Geometric’s default initialisation methods are being used. For the

linear layer, the weights are initialised using the Kaiming uniform method, as described

by [He et al., 2015], with the default parameters used by PyTorch, namely a =
√
5. The

biases are initialised using uniform initialisation, where values are drawn from a uniform

distribution between 0 and 1. For the layer normalisation the weights are initialised to

1 and the biases to 0. The same methods are applied to all the GNNs trained in this

work.

Training on 900 patches using the parameters identified above requires 6 hours on

an NVIDIA V100 GPU with 16GB of RAM with a maximum memory requirement of

4.3GB using the Hawk Supercomputer located at Cardiff University.

120

GNN graph

In this section we provide information about the graph used for the GNN training. The

graph is constructed using Euclidean edges as described in [Section 6.2.2]. An example

can be found in [Fig 6.9], where both the surface mesh and the graph can be seen. A

threshold of 10 neighbours per node is being used and a radius of 0.32 for the radius

neighbours. The patch has 20,113 points. The shortest path to connect 2 points of the

graph located on opposite corners is 24 steps.

(a) FE mesh of the patch (b) Graph of the patch used for GNN training

Figure 6.9: On the left (a) we can see the surface mesh of a patch. On the right (b) we
can see the graph of the same patch that will be used for the GNN training. The graph
connects the nodes of the surface mesh using Euclidean edges. With red we can see the
shortest path that connects two points of the graph located on opposite corners.

BGNN mean prediction

In this section we will examine the mean prediction provided by the BGNN, without

referring to the uncertainty estimation.

In [Fig 6.10a] we observe that the maximum stress components predicted by the

BGNN are in a good agreement with the ones calculated by the FEA. Specifically, the

coefficient of determination, R2, for all the 6 stress components is larger than 0.98. In

[Fig 6.10b] we observe similar results for the maximum Von Mises stress. Although

the points are more scattered and the coefficient of determination dropped to 0.84, the

accuracy is 96%.

121

1.0 0.5 0.0 0.5 1.0
real

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

pr
ed

ict
io

n

R2 = 0.9854 | xx_max

0.6 0.4 0.2 0.0 0.2 0.4 0.6
real

0.6

0.4

0.2

0.0

0.2

0.4

0.6

pr
ed

ict
io

n

R2 = 0.9914 | xy_max

0.4 0.2 0.0 0.2 0.4
real

0.4

0.2

0.0

0.2

0.4

pr
ed

ict
io

n

R2 = 0.9888 | xz_max

0.5 0.0 0.5 1.0
real

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

pr
ed

ict
io

n

R2 = 0.9829 | yy_max

0.6 0.4 0.2 0.0 0.2 0.4
real

0.6

0.4

0.2

0.0

0.2

0.4

pr
ed

ict
io

n

R2 = 0.9935 | yz_max

0.75 0.50 0.25 0.00 0.25 0.50 0.75
real

0.75

0.50

0.25

0.00

0.25

0.50

0.75

pr
ed

ict
io

n

R2 = 0.9911 | zz_max

(a) maximum microscale components

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
real

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

pr
ed

ict
io

n

R2 = 0.8438 | acc = 0.96 | VM_max

(b) maximum microscale Von Mises stress

Figure 6.10: In both subfigures the x-axis corresponds to the FE prediction in the ROI
of each patch and the y-axis to the BGNN prediction in the ROI of each patch. In
the top subfigure, (a), we observe 6 diagrams corresponding to each of the maximum
absolute microscale stress components. In the bottom subfigure, (b), we observe the
maximum Von Mises stress.

122

Additionally, we examine the stress distribution on the FE mesh. In [Fig 6.11] we

compare the microscale Von Mises stress in the ROI of a patch as predicted by the

GNN with the one calculated by FE simulations. We observe that the predicted stress

distribution is very close to the ground-truth.

Figure 6.11: Comparison between the Von Mises stress distribution as calculated by
FEA (right) and the Von Mises stress distribution as predicted by the GNN (left).

BGNN uncertainty estimation

After studying the quality of the mean predictions provided by the BGNN, here we

evaluate the ability of the BGNN to quantify the uncertainty of the prediction and

provide CIs that reflect the error in the prediction. From [Fig 6.12] we can see that the

percentage of points inside the 95% CIs is 92%, which is satisfactory.

123

0.6 0.8 1.0 1.2 1.4
FE results

0.4

0.6

0.8

1.0

1.2

1.4

95
%

 C
I

accuracy = 92.31 %
+ 1.96*stdv
- 1.96*stdv
y=x

Figure 6.12: In this figure we see the upper and lower 95% CIs for the maximum Von
Mises stress prediction, blue and orange points respectively.

124

6.4.2 Online stress correction

In this section we will demonstrate the use of the Ensemble Kalman method, [section

6.3], to improve the BGNN prediction using physics information. We will examine 2

realistic cases; the first case is to improve the prediction of an under trained network and

the second case is to improve the prediction of a network in an extrapolation regime.

Under trained GNN

With the phrase under trained we refer to a network for which we use a small dataset

for training. In [Fig 6.13] we show the accuracy plots for the mean BGNN prediction

as a function of the epochs for 2 GNNs trained with the same parameters but the one

on the left uses data from 32 FE simulations for training and the one on the right

uses data from 100 FE simulations for training. The BGNN trained with more data

performs better than the undertrained network.

0 100 200 300 400 500
epochs

0.5

0.6

0.7

0.8

0.9

ac
c

train acc
test acc

(a) 32 FE simulations

0 100 200 300 400 500
epochs

0.6

0.7

0.8

0.9

ac
c

train acc
test acc

(b) 100 FE simulations

Figure 6.13: In both diagrams we see accuracy curves defined using the mean BGNN
prediction for the maximum Von Mises stress. Specifically, we see the accuracy as
function of the training epochs for the training set (blue) and the test set (red). In the
diagram on the left (a) the GNN is trained with 32 FE simulations, 160 patches, and in
the diagram on the right (b) the GNN is trained with 100 FE simulations, 500 patches.

Using the Ensemble Kalman method we want to update the output distribution of

the BGNN, which we consider to be the prior, and obtain the posterior. In [Fig 6.14]

we can see the posterior and the prior for the prediction of the maximum Von Mises

stress. The coefficient of determination between the posterior and the FE results has a

value of 0.3074 which is larger than the coefficient of determination between the prior

125

and the FE results that has a value of 0.0176. Also, we can see that best line that fits

the posterior data is closer to the y = x line (ideal result) compared to the best line

that fits the prior data, i.e. the output of the BGNN, without the online correction.

Therefore, the posterior mean better fits the data compared to the prior mean and thus

the online stress correction resulted in an improvement of the mean BGNN prediction.

0.6 0.8 1.0 1.2 1.4

0.6

0.8

1.0

1.2

1.4

pr
ed

ic
tio

n

R2 pos te rior = 0 .3074 | R2 prior = 0 .0176

y=x
posterior
prior

real

Figure 6.14: A diagram showing the posterior (yellow points) maximum Von Mises
prediction and the prior (blue points) maximum Von Mises prediction. We observe
that the posterior, after the stress update, has a larger coefficient of determination
compared to the prior.

Furthermore, we want to examine the posterior distribution and not only the pos-

terior mean. In [Fig 6.15] we see the comparison between the prior 95% CIs (left) and

the posterior 95% CIs (right). Firstly, we observe that even in the prior case, where

we have only used 32 FE simulations, the 95% CIs give a good estimation of where the

real value is. We see that the percentage of points that are inside the 95% CIs is 79%.

Additionally, we see that this value climbs to 88% in the posterior case. By using the

online stress update we improved the BGNN prediction without adding more data to

the training dataset.

Lastly, in [Fig 6.16] we compare the mean Von Mises stress distribution on the mesh

before and after the stress update with the one calculated through FE simulations. We

can see that the posterior, middle image, is closer to the FE results, image on the left,

compared to the prior, image on the right.

126

0.6 0.8 1.0 1.2 1.4
FE results

0.4

0.6

0.8

1.0

1.2

1.4

1.6

9
5
%

 C
I

accuracy = 88.16 %

+ 1.96*stdv
- 1.96*stdv
y=x

B

0.6 0.8 1.0 1.2 1.4
FE results

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

9
5
%

 C
I

accuracy = 78.95 %

+ 1.96*stdv
- 1.96*stdv
y=x

(a) 95% CIs before the stress update (b) 95% CIs after the stress update

A A

B

Figure 6.15: Comparison between the prior and posterior 95% CIs for the maximum Von
Mises stress in the ROI of the patches for a BGNN trained with only 32 FE simulation
data. The diagram on the left, (a), is showing the upper and lower 95% CIs, blue and
orange points respectively, before the stress update. While the diagram on the right,
(b), is after the stress update. Two clusters, A and B, are marked before and after the
stress correction highlighting that blue points, +95% CIs, which were below the y = x
line for the prior case have moved towards the y = x line and in a lot of cases surpassed
it, in the posterior case.

Figure 6.16: Comparison between the Von Mises stress before and after the online
stress update with the one calculated through FE simulations. On the left we see the
FE results, in the middle the posterior mean and on the right the prior mean.

127

Prediction for out-of-training microstructural inputs

In this section, with the phrase “out-of-training” we refer to a network trained with

spherical defects but evaluated in cases that have elliptical defects. The BGNN is

extrapolating which is a particularly undesirable but common scenario for real appli-

cations. In [Fig 6.17] we show a realisation of the training dataset on the left and a

realisation of the test dataset on the right.

(a) a sample from the training dataset (b) a sample from the test dataset

Figure 6.17: On the left (a) we see a realisation of the training dataset and on the
right (b) of the test dataset. For the training dataset the porous phase is composed of
spheres while for the test set of ellipsoids.

In [Fig 6.18] we see the comparison between the prior 95% CIs (left) and the posterior

95% CIs (right). Firstly, we can observe that even in the prior case, where the BGNN

extrapolates, the 95% CIs give a good estimation of where the real value is. We can

see that the percentage of points that are inside the 95% CIs is 91%. Additionally,

we see that this value climbs to 95% in the posterior case. Most importantly we see

that using the ensemble Kalman method we managed to avoid underpredicting the

maximum values. This clearly means that by using the Ensemble Kalman method we

were able to improve the BGNN prediction without adding more data to the training

dataset.

We stress that the results of this section do not suggest that the GNN framework

could be used for extrapolation away from the dataset. Instead, they indicate that

128

given a reasonably accurate prediction where a downward bias is observed for the highest

stress values, the proposed online stress correction technique may be deployed to correct

this bias upward.

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
FE results

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

9
5
%

 C
I

accuracy = 94.51 %

+ 1.96*stdv
- 1.96*stdv
y=x

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
FE results

0.25

0.50

0.75

1.00

1.25

1.50

1.75

9
5
%

 C
I

accuracy = 91.21 %

+ 1.96*stdv
- 1.96*stdv
y=x

(a) 95% CIs before the stress update (b) 95% CIs after the stress update

Figure 6.18: Comparison between the prior and posterior 95% CIs for the maximum
Von Mises stress in the ROI of the patches for a BGNN trained on a dataset with spheres
as microscale features and tested on a dataset with ellipses as microscale features. The
diagram on the left, (a), is showing the upper and lower 95% CIs, blue and orange
points respectively, before the stress update. While the diagram on the right, (b),
is after the stress update. A cluster of points is marked before and after the stress
correction highlighting that blue points, +95% CIs, which were below the y = x line
for the prior case have moved towards the y = x line and in a lot of cases surpassed it,
for the posterior case.

129

6.4.3 Numerical example with dogbone data

After demonstrating the applicability of our GNN and studying the online correction

technique, in this subsection we apply the proposed deep learning methodology to a

more challenging case. We also provide multiple examples of the Von Mises stress

distribution on the surface of the mesh.

Training dataset

The geometry that we choose to model is a dogbone with a single macroscale hole in

the middle that does not change from one realisation to another, and with a random

distribution of 50 to 100 microscale spherical pores. The size of the dogbone is 2 units

along the x axis (length), 0.6 units along the y axis (height) and 0.08 units along the z

axis (width). The radius of the hole is 0.032 units, and the radius of the spherical pores

is 0.016 units. The spherical pores may intersect with each other, with the boundaries

of the geometry and the hole. For the macroscale simulations, input of the BGNN,

only the hole is taken into account and the spherical pores are ignored. In [Fig 6.19] we

show 2 examples of the geometry. For the boundary conditions we apply displacements

on those faces of the dogbone specimen that are perpendicular to the x axis. The

prescribed displacement has the same magnitude for both sides, and is applied along

the positive outer normal direction. Zero displacement is applied along the other two

spatial directions. Lastly, The Young’s modulus and the Poisson ratio of the structure

are 1 and 0.3 respectively.

We performed 500 FE simulations completed in 5.7 hours on 10 cores on an Intel®

Xeon® Gold 6148 CPU @ 2.40GHz CPU. From every FE simulation we extract 10

patches resulting in 5,000 data points, 4,000 for training and 1,000 for testing. As

explained in section [6.4.1] the patch is of size [18R × 18R × 18R] and the ROI is of

size [8R × 8R× 8R], where R is the radius of the spherical pores.

GNN parameters

For the GNN training we used the Adam optimiser with an initial learning rate of 1·10−4

decreasing by 5% every 50 epochs. Additionally, we started with the parameters that

we identified in [6.4.1], namely 5 GN blocks, residual connection, independent encoder,

128 filters and a maximum of 10 neighbours per node. After experiments we concluded

that in this case the GNN can benefit from a maximum of 20 neighbours per node but all

130

Figure 6.19: Two realisations of the dogbone used to train the GNN. Each dogbone has
a cylinder-shaped hole and the porous material is defined via a random distribution of
spherical voids.

the other hyperparameters remained unchanged. Training of the GNN was performed

on an NVIDIA V100 GPU with 16GB of RAM.

In this more challenging problem, we investigate the idea of using dual convolutions.

Instead of only considering the Euclidean neighbourhood we also consider the Geodesic

neighbourhood of every node in order to perform joint Geodesic and Euclidean convo-

lutions as explained in [6.2.2]. After experiments, we concluded that in our case the

optimum value for the ratio between Geodesic and total convolutions is 75%. For more

details the reader can refer to [Appendix B.6].

Additionally, throughout this chapter we made the choice to predict the full stress

tensor instead of the Von Mises stress and to work on patches of the structure instead

of the entire structure. Using data from the dogbone dataset we performed experiments

to support these choices in [Appendix B.7] and [Appendix B.8] respectively.

131

Numerical examples with deterministic GNN

As can be seen in [Fig 6.20a] when training with 4000 patches the accuracy for the max-

imum Von Mises stress is 71% which is considerably lower than the accuracy reported

for the cubical heterogeneous material case, 96%. In [Fig 6.20b] we can also evaluate

the performance of the GNN on the entire dogbone and not only at patch level. The ac-

curacy does not change considerably in this case, but the data are more spread around

the y = x line which is indicated by the lower coefficient of determination R2.

0.5 1.0 1.5 2.0 2.5
real

0.5

1.0

1.5

2.0

2.5

pr
ed

ict
io

n

R2 = 0.8024 | acc = 0.71 | VM_max

(a) evaluate on patches

1.0 1.5 2.0 2.5 3.0
real

1.0

1.5

2.0

2.5

3.0

pr
ed

ict
io

n

R2 = 0.2291 | acc = 0.72 | VM_max

(b) evaluate on entire structure

Figure 6.20: In both subfigures the x-axis corresponds to the maximum Von Mises stress
as calculated by FEA and the y-axis as calculated by the GNN. For the left subfigure,
(a), we see results for the ROI of the patches while for the right subfigure, (b), for the
entire dogbone.

Additionally, we investigate the performance of the network with respect to the size

of the training dataset. We train 4 GNNs with patches generated from 50, 100, 200 and

400 FE simulations. The results can be found in image [Fig 6.21]. From [Fig 6.21a] we

can observe that the accuracy increases as we increase the size of the training dataset,

from 0.5750 for the GNN trained with 50 FE simulations to 0.7060 for the GNN trained

with 400 FE simulations. This strongly suggests that the accuracy can further increase

given more data, although in this work we try to focus on realistic scenarios where the

training data are not abundant. To support our hypothesis, we create 400 additional

FE simulations, and we train a GNN with all the 800 FE simulations, but we refrain

from further increasing the size of the dataset. The accuracy of the GNN is 82% as

can be seen in [Fig 6.22]. This GNN was trained using as initial weights the ones

determined by the GNN trained with 400 FE simulations. In [Fig 6.21b] we investigate

132

the dependency of the accuracy on the relative error threshold. We observe a sharp

increase of the accuracy with respect to the threshold values, as long as the threshold

is less than 20%. After 20% the accuracy slowly converges to 100%. We note that

with only 50 direct FE simulations, and for the 20% threshold, the accuracy reaches

80%. Although such levels of accuracy are relatively loose, this somewhat contradicts

the widespread idea that NNs require too much training data to be of use in areas of

science where data is sparse and/or expensive to acquire.

0 100 200 300 400 500
epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
c

50
100
200
400

(a) Accuracy

0 10 20 30 40 50 60 70 80 90 100
% acceptable error

0

10

20

30

40

50

60

70

80

90

100

%
 a

cc
ur

ac
y

50
100
200
400

(b) Accuracy VS error threshold

Figure 6.21: In the diagram on the left (a) we see accuracy curves defined using the
maximum Von Mises stress and a 15% threshold for the relative error. In the diagram
on the right (b) we see accuracy curves with respect to the threshold used for the relative
error. For both diagrams, coloured lines correspond to GNNs trained with datasets of
different size, namely patches extracted from 50, 100, 200 and 400 FE simulations.

Furthermore, we demonstrate the quality of the stress distribution. In [Fig 6.23]

and [Fig 6.24] we show that the stress field predicted by the GNN is in good agreement

with that provided by direct FEA.

Lastly, we are interested in studying the predicted stress distribution in the highly

stressed regions of the specimen. In [Fig 6.25a] we have zoomed in a region where a

spherical void interacts strongly with the cylinder-shaped hole, and in [Fig 6.25b] we

have zoomed in at a strong interaction between 2 spherical voids. We observe that

in both cases the GNN successfully located the area where the maximum Von Mises

occurs, predicted its value and the stress distribution around it.

133

0.5 1.0 1.5 2.0 2.5
real

0.5

1.0

1.5

2.0

2.5

pr
ed

ict
io

n

R2 = 0.8786 | acc = 0.82 | VM_max

Figure 6.22: In this diagram the x-axis corresponds to the maximum Von Mises stress
as calculated by FEA and the y-axis as calculated by the GNN. The accuracy, defined
by the 15% relative error threshold, is 82%.

GNN prediction dependency on the input mesh

In this section we aim to examine the dependency of the GNN prediction on the density

of the input mesh. To this end, we propose to mesh one single porous dogbone reali-

sation with four different mesh densities. The four different meshes have typical edge

lengths 0.008, 0.009, 0.010 and 0.011. In [Fig 6.26] we can see the results obtained by

applying the NN to the patch. We observe that the stress distribution does not change

considerably from the 0.008 to the 0.009 case but as the mesh gets coarser, like in the

0.011 case, the GNN does not manage to capture the highly stressed area correctly. We

highlight that the GNN was trained using examples meshed with a typical edge length

of 0.008.

134

Figure 6.23: Comparison between the Von Mises stress distribution as calculated by
FEA (top) and Von Mises stress distribution predicted by the GNN (bottom). The
GNN result is reconstructed from the union of multiple patch predictions where only
the ROI is extracted.

135

Figure 6.24: Comparison between the Von Mises stress distribution, extracted from a
cross section of the structure (top), as calculated by FEA (middle) and as predicted by
the GNN (bottom). We can observe that the two distributions are qualitatively very
similar. The GNN result is reconstructed from the union of multiple patch predictions
where only the ROI is extracted.

136

(a) spherical void - cylinder-shaped hole interaction

(b) spherical void - spherical void interaction

Figure 6.25: In both subfigures we compare the maximum Von Mises stress as calculated
by FEA and as predicted by the GNN. In the top subfigure (a), the maximum is due
to an interaction between spherical voids and the cylinder-shaped hole while in the
bottom, (b), due to an interaction between 2 spherical voids.

137

(a) edge length = 0.008 (b) edge length = 0.009

(c) edge length = 0.010 (d) edge length = 0.011

Figure 6.26: Evaluation of the performance of the GNN on input meshes of different
density. In all of the figures the microscale Von Mises stress is plotted.

138

6.4.4 Variable dimension dogbone

In this section we demonstrate the ability of our method to be used for exploration

of responses in a space of shapes described by a few geometrical parameters. To this

end, we perform geometric learning in a family of dogbone shapes where not only the

microscale spherical void distribution will be different from realisation to realisation

but also the macroscale cylindrical-hole and the dimensions of the dogbone. We focus

on the dependence of the quality of the results with respect to the size of the dataset

both in terms of maximum Von Mises stress and stress distribution.

Training dataset

To create this dataset we follow the same process as in the “Dogbone” section, [6.4.3].

The difference lays on the fact that here the dimension of the specimen is not constant.

The length of the dogbone is equal to 2, the width varies from 0.06 to 0.12 and the

height varies from 0.24 to 0.7. Additionally, the number of cylindrical holes varies from

1 to 4 in every realisation, and their radii from 0.024 to 0.06. Two realisations of the

variable dogbone geometry can be found in [Fig 6.27].

Numerical example with variable dimension dogbone data

We perform a similar experiment as in the section [6.4.3], where we investigate the

dependency of the accuracy on the size of the dataset [Fig 6.28]. The accuracy increases

as we increase the size of the dataset, from 50.21% for the GNN trained with 50 FE

simulations to 64.30% for the GNN trained with 400 FE simulations. Compared to the

previous family of dogbone specimen, where the dimensions of the structure and the

cylindrical hole did not change from one realisation to another, we can observe that

the accuracy that can be achieved using 400 FE simulations decreases from 71% to

64% for the variable dogbone case. This result was to be expected since the space of

shapes that we attempt to learn has more parameters than before. In order to achieve

similar accuracy, we create additional 600 FE simulations and we train the GNN for

100 epochs using as initial weights the ones determined by the GNN trained with 400

FE simulations. The accuracy achieved for this case is 70%.

Additionally, in order to examine the stress distribution, in the following figure

we have extracted the upper part of the structure so that we can observe the stress

distribution inside. This can be found in [Fig 6.29], where we can see that the GNN

139

Figure 6.27: Two realisations of the variable dogbone structure. In the top we observe
a dogbone with large height, small width and 4 cylindrical holes. In the bottom we
observe a dogbone with small height, large width and 2 cylindrical holes.

successfully reconstructed the Von Mises distribution.

Lastly, we want to examine the quality of the stress distribution with respect to the

size of the training dataset. In [Fig 6.30] we see the Von Mises prediction for a case

where not many strong interactions are present. We can observe that all the GNNs

even the one trained with 100 FE simulations successfully predicts the correct Von

Mises stress distribution. On the other hand, in [Fig 6.31] we can see a case where

two intersecting defects, located at the corner of the domain, strongly interact and we

can observe that the GNNs trained with less than 400 FE results fail to predict this

interaction.

140

0 100 200 300 400 500
epochs

0.2

0.3

0.4

0.5

0.6

0.7

ac
c

50
100
200
400

(a) Accuracy

0 100 200 300 400 500
epochs

10 3

6 × 10 4

2 × 10 3

3 × 10 3

4 × 10 3

lo
ss

50
100
200
400

(b) Loss

Figure 6.28: In the diagram on the left (a) we see accuracy curves defined using the
maximum Von Mises stress and a 15% threshold for the relative error. Specifically, we
see the accuracy as function of the training epochs. In the diagram on the right (b)
we see the loss function as a function of the epochs. For both diagrams, coloured lines
correspond to GNNs trained with datasets of different size, namely patches extracted
from 50, 100, 200 and 400 FE simulations.

141

Figure 6.29: Comparison between the Von Mises stress distribution, extracted from the
top of the structure (top), as calculated by FEA (middle) and as predicted by the GNN
(bottom). We can observe that the two distributions are qualitatively very similar. The
GNN result is reconstructed from the union of multiple patch predictions where only
the ROI is extracted.

142

Figure 6.30: On the left the Von Mises distribution on the surface of a dogbone structure
as calculated by FE simulations. On the right, we can see a zoom of an area of the
dogbone. From top to bottom we see the FE simulation results, the GNN prediction for
a GNN that was trained with patches extracted from 400, 200 and 100 FE simulations.
We can observe that all the GNN predictions are very close to the FE results.

143

Figure 6.31: On the left the Von Mises distribution on the surface of a dogbone structure
as calculated by FE simulations. On the right, we can see a zoom of the maximum
Von Mises stress area. From top to bottom we see the FE simulation results, the GNN
prediction for a GNN that was trained with patches extracted from 400, 200 and 100
FE simulations. We can observe that only the GNN that was trained using 400 FE
simulations was able to correctly predict the maximum Von Mises stress that is created
from the interaction between two spherical voids.

144

6.5 Conclusion and perspectives of this chapter

The goal of this chapter was to extend the 2D Convolutional Neural Network (CNN)

based multiscale framework developed in [Chapter 5] to 3D problems and to ultimately

create a 3D Graph Neural Network (GNN) surrogate model to circumvent the need for

3D direct numerical analysis of stress simulations in porous materials and structures.

To this end we show that given an inexpensively computed macroscopic approximation

of the stress field, where the pore network is ignored, and a fine scale representation

of the geometry of the structure and of the network of microscale pores, a 3D GNN is

able to correct the macroscopic stress field to produce fields that emulate the output of

the direct numerical simulation.

The developed framework is based on geometric learning. We develop a GNN to

perform convolution-based learning over the surface of the porous structure, which is

represented by a mesh of triangles. This surface mesh represents both the structure

boundary and the surface of the pores. An advantage of using geometric learning for

the surrogate modelling of porous structures is that we eliminate the need to perform

unnecessary algorithmic operations associated with the analysis of bulk information,

which would typically be required in a standard voxel-based CNN approach. In addi-

tion, the GNN architecture allows us to operate on a variable resolution mesh of the

geometry rather than a representation with fixed spatial resolution. Our choice to de-

ploy geometric learning over the surface of the porous structure is supported by three

observations.

Firstly, the surface representation is a comprehensive representation of the geometry

of the specimen. Secondly the macroscale stress over the surface mesh is empirically

found to be a sufficiently rich information for the GNN to produce correct microscale

corrections of the stress state in the porous material. Lastly, we have shown numerically,

that the maximum microscale stress field in the porous network that we analysed in

this chapter was always found at the surface of the porous structure.

The 3D graph-based GNNs developed in this chapter report similar trends in their

prediction abilities, compared to the 2D pixel-based CNNs developed in [Chapter

5]. This includes the uncertainty quantification procedure, which is performed via

a Bayesian formulation of the GNN. In particular, we have examined the ability of the

proposed approach to predict the maximum Von Mises stress, in two different settings

: (i) repeated structural calculations with random distributions of pores and (ii) a sur-

rogate modelling of parameterised structural problems with random microstructures.

145

For application (i), we have shown that relatively few offline simulations were re-

quired to train the GNN. Training with 50 simulations already give predictions where

80% of new outputs are predicted with less than 20% relative error. However, our

investigations also show that in applications where a lower error threshold is required,

then the training dataset needs to be considerably larger. In this case the applicability

of the method is limited to applications whereby (a) the surrogate model needs to be

called at least thousands of times, or (b) results are to be delivered in quasi-real-time.

(a) typically arises when studying all possible relative arrangements of micro-structural

features within a structural component of fixed geometry, whilst (b) may arise when

performing non-destructive testing from CT scans. Of course, it is always possible to

revert to a strategy where the NN is only used to predict likely hot spots.

For application (ii), we have shown that introducing parameterised geometries vastly

increases the complexity of the problem. Using global parameters leads to an exponen-

tial increase in training data requirements (the infamous curse of dimensionality). So, at

the current stage of our understanding of the capabilities of deep learning algorithms,

we recommend to either deploy this type of deep learning methodologies to predict

stresses in random distributions of microscale pores over fixed macroscale geometries,

or use a very small number of structural parameters.

Lastly, we have introduced an approach to enforce physics constraints at evaluation

time. We choose to force the stress predictions delivered by the NN surrogate to satisfy

the homogeneous Neumann conditions on the surface of the porous structure. This is

done in a Bayesian setting. The Bayesian GNN predictions are considered as prior for

this task, and posterior predictions that conform to the imposed Neumann conditions

are computed via an ensemble Kalman update. We have used this method to address

problems commonly reported with data-driven methodologies, namely lack of training

data and poor extrapolation ability. We have shown that without this online correction,

downward bias is observed for maximum equivalent stresses, which is problematic. This

effect is alleviated thanks to the online physics-based correction.

146

Chapter 7

Centroid Graph Neural Network for

the prediction of equivalent stress

in 3D porous structures

7.1 Introduction

In the last two chapters, Convolutional Neural Networks (CNNs) operating on 2D struc-

tures and Graph Neural Networks (GNNs) operating on 3D structures were developed

to circumvent the need for direct numerical analysis of stress simulations in porous ma-

terials. In this chapter we propose a lightweight model, based on the same multiscale

approach, which operates on the centroids of the microscale features. This proposed

model is in practice a GNN, referred to from now on as centroid GNN, in contrast to

the GNN of [Chapter 6], referred to from now on as full GNN. We will demonstrate

that the centroid GNN presents reduced memory and computational requirements com-

pared to the full GNN. In practice this model can be trained on a laptop GPU and it

reports accuracy comparable to the accuracy of the full GNN, trained on a GPU server,

for specific cases. Conversely, there is a price that needs to be paid for this reduced

computational cost. Specifically, this model does not have the ability to predict the

stress distribution on the surface of the structure (since the surface mesh is discarded)

and also it performs poorly in cases where the microscale features cannot be easily

described with a few parameters (as for instance a sphere can in contrast to a defect of

a random shape). To address the last issue, in this chapter we employ a Bayesian opti-

misation procedure with the purpose of trying to identify the defects with the highest

147

micro stress field in a dataset with multiple defects. We show that with only a few fine

scale FE simulations we find the maximum stress in a dataset composed of hundreds

of realistic defects. The purpose of this chapter is to show that

• A centroid GNN, trained on a laptop GPU, can be used to replace the expensive

full GNN, trained on a GPU server, in specific cases.

• Transfer Learning can be applied to reduce the training data requirements, which

is typically a major problem in applying NNs to realistic engineering applications.

• The Bayes by Backprop method can be used to extract meaningful uncertainty

information from the centroid GNN, and thus a Bayesian NN can be obtained able

to provide reliable stress predictions, as opposed to most state-of-the-art works

in the relevant literature.

• The uncertainty information extracted from the Bayesian centroid GNN can be

utilised by a Bayesian optimisation framework to identify the defects associated

with the maximum stress and with only a few fine scale FE simulations the max-

imum stress in a dataset of hundreds of defects can be determined.

7.2 Input-Output

In contrast to the full GNN where we used patches from the FE mesh as input to the

GNN, in the centroid GNN we convert the FE mesh to a point cloud, composed of the

centroids of the microscale features, and use it as input. An example, using a realisation

of the structures we used in section [6.4.1], but without ellipsoids, and with spheres of

variable radius, can be found in [Fig 7.1].

This point cloud will be processed with a GNN. In order to allow message passing

between the nodes (centroids) we create edges between the centroids. This results

in a centroid network. Connecting each centroid with every other centroid creates a

high computational load without significantly improving the predictive ability of the

network. In this work we consider only the 3 nearest neighbours. We prove numerically

in the next sections that this is enough to model the interactions between the centroids.

On top of that, we only consider 2 defects as neighbours if the distance between their

centroids is less than 5 times the maximum of their radii, which is in accordance with

the assumptions we made in the previous chapters regarding the interaction length of

the defects. Below we see an example of a centroid network [Fig 7.2].

148

(a) Surface of microscale features (b) Centroids

Figure 7.1: On the left (a) we can see the surface of the spherical microscale features.
On the right (b) we can see the generated point cloud. Each point corresponds to a
centroid from the spheres on the left.

For the input of the network, we utilise both node and edge features. Every node

(centroid) represents the surface of one of the pores. The node features are the average

macroscale stress on the surface of the pore each centroid represents along with the

radius of the pore each centroid represents. On the edges of the network, we encode

the relative position and the distance between the centroids. The network only predicts

features on the nodes of the centroid network and thus it has no output edge features.

The output node features are the maximum microscale Von Mises stress on the surface

of the pore each centroid represents. A high-level visualisation of the workflow can be

found in [Fig 7.3].

7.3 Loss function

The loss function used for the training of the deterministic networks in this chapter is the

Mean Squared Error (MSE). Specifically, the GNN predicts the maximum microscale

stress on the surface of each pore in the centroid network. Consequently, the loss

149

Figure 7.2: We can observe a centroid network, where we created edges between the
centroids to allow for message passing between them.

function is the MSE between the maximum microscale Von Mises stress on the surface

of each sphere as predicted by the GNN and the maximum microscale Von Mises stress

on the surface of each sphere as calculated using direct FEA. For the Bayesian networks

the ELBO loss is used, as described in equation [2.15].

7.4 Architecture

The architecture of the GNN is very similar to that described in section [6.2.5]. There

are two main differences between the 2 GNN architectures.

• Number of Filters: The number of filters in the MLPs is here reduced from 128

to 64, since no improvement is reported when using a higher value

• Residual Connection: There is no residual connection connecting the input and

output of the GNN

150

(a) macro FE Result

(b) GNN input (c) GNN output

(d) GNN output
mapped to spheres

GNN

Figure 7.3: In (a) we see the output of the macroscale FE simulations. We can see that
as expected the macroscale stress on the surface of the spheres is constant since these
are ignored during the macroscale FE simulations. In (b) we see the centroid network,
which is the input to the centroid GNN. On the edges of the network, we encode the
relative position and the distance between the nodes. On the nodes of the centroid
network, we encode the average macroscale stress and the radius of the spheres they
represent. In (c) we see the output of the centroid GNN. The centroid GNN does not
output any information on the edges, which are consequently not visualised. On the
nodes of the centroid network, we see the maximum microscale stress on the surface
of the spheres they represent. In (d) we can see, for visualisation purposes only, the
maximum microscale stress, as predicted from the centroid GNN, on the surface of the
spheres.

151

7.5 Bayesian Optimisation

Bayesian Optimisation is an iterative gradient free optimisation process commonly used

to maximise a function that is computationally expensive to be evaluated. This function

is usually referred to as objective function. For a set of points p, and an objective

function f , the objective is to find max(f(p)).

Bayesian Optimisation requires a probabilistic surrogate model, g, which is easy to

evaluate, in contrast to the real function, f . This model puts a prior over the data p. In

every iteration, i, the surrogate model is evaluated over all the points p. An acquisition

function, which depends on the surrogate model, is used to indicate which point, p̂i, is

more likely to maximise f . This is the point that maximises the acquisition function.

Then the function f is evaluated at the indicated point p̂i to determine its real value

f(p̂i). This point is used to update the surrogate model using the Bayes Theorem.

The updated model is a better approximation of the objective function. When the

maximum of the acquisition function is less than the maximum of the observed points

(objective function evaluations) the algorithm terminates. An example can be found in

[Fig 7.4].

152

real function
95% CIs

real maximummaximum
+95% CI

It
er

at
io

n
1

It
er

at
io

n
2

It
er

at
io

n
3

In
it
ia

l E
st

im
at

io
n

observed point

(a)

(b)

(c)

(d)

Figure 7.4: Sketch of a Bayesian optimisation procedure. The first figure (a) corre-
sponds to the GNN prediction before the Bayesian optimisation. The black line corre-
sponds to the objective function f that we want to maximise. We assume we have a
surrogate model that can output a mean prediction and 95% CIs (blue area in the fig-
ure). The acquisition function used here is the +95% CIs of the prediction. The mean
prediction of the surrogate model is not visualised here for simplicity. The acquisition
function indicates the point p̂1 as the most probable to maximise f . The black star
denotes the maximum of the acquisition function for the current iteration. The red
star denotes the maximum of f . In the next figure (b) the real value f(p̂1) has been
calculated and the surrogate model has been updated, which can be seen from the new
uncertainty estimation. The uncertainty at point p̂1 is zero, since its real value has
been calculated. There are other points that have +95% CIs higher than this value,
so the algorithm continues. The acquisition function indicates the second point p̂2 and
the same procedure is repeated in the third plot (c). In the last plot (d), we can see
that the point that maximises the acquisition function, p̂3, corresponds to the point
that maximises f . After calculating f(p̂3), we can see that the maximum of the acqui-
sition function is less than f(p̂3) (= max[f(p̂1),f(p̂2),f(p̂3)]), and thus the algorithm
terminates.

153

7.6 Numerical examples

In this section we show numerical results of the centroid GNN applied in different types

of problems. Firstly, we use a synthetic dataset and numerically prove that the centroid

GNN can be used to provide a very good estimation of the maximum micro stress field.

We study the network’s performance with respect to the size of the training dataset.

Additionally, we train a Bayesian centroid GNN and evaluate its ability to provide

meaningful uncertainty information. Moreover, we explore the idea of transfer learning

by using a new synthetic dataset where the range of the radii of the spherical pores

and the porosity of the samples is different compared to the first synthetic dataset.

Lastly, we attempt to predict the maximum micro stress on a real dataset that contains

both almost spherical and strongly non spherical defects. The centroid GNN is not

appropriate for this task, nonetheless we show that the uncertainty extracted by the

Bayesian GNN can be used in a Bayesian Optimisation procedure to identify which

defects are more likely to be associated with the maximum stress.

7.6.1 Numerical examples with deterministic GNN

Training dataset

For the purpose of training a deterministic centroid GNN, we will work with a synthetic

heterogeneous material from which we extract and examine cubical specimens. The

size of each specimen is 2 units along each spatial dimension. The specimen has a

distribution of at most 50 spherical pores with different radii. The radii of the spherical

pores are sampled from a Gaussian distribution, N (0.25, 0.05). The spherical pores are

generated without intersecting, by iterating over all the spheres from the largest to the

smallest and rejecting the intersecting ones. For the macroscale simulations, input of

the centroid BGNN, the spheres are ignored. Two realisations of the cubical specimen

are shown in [Fig 7.5].

We apply homogeneous Dirichlet boundary conditions away from the material spec-

imen, exactly as described in [6.4.1]

For data pre-processing we use a simple linear rescaling by dividing the input stress

components with the maximum stress component in the training dataset, as we did in

the full GNN case.

The dataset we use consists of 11,000 FE simulations (10,000 for training and 1,000

for testing) completed in 11.9 hours on 5 cores on an Intel® Xeon® Gold 6148 CPU @

154

Figure 7.5: Two realisations of a cubical specimen from a heterogeneous material with
a distribution of random spherical non-intersecting pores of different radii.

2.40GHz CPU.

For the training of the network we used a batch size of 32 and the Adam optimiser

with an initial learning rate of 1 · 10−4 decreasing by 5% every 50 epochs.

Centroid GNN prediction

We train 5 different models using 500, 1,000, 2,000, 5,000, 10,000 FE simulations and

we use 1,000 FE simulations for the testing dataset. In [Fig 7.6] we observe the accuracy

and the loss curves with respect to the size of the training dataset. The accuracy for

the network trained with 10,000 data is 96% and its training requires 13 hours on an

NVIDIA T1200 laptop GPU with 4GB of RAM. For comparison we remind the reader

that for the full GNN, training using 180 data from the cubical Heterogeneous Material

[6.4.1] requires 6 hours on an NVIDIA V100 server GPU with 16GB of RAM and

training using 1000 data from the variable dimension dogbone dataset [6.4.4] requires

60 hours on the same GPU.

155

0 100 200 300 400 500
epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
ac

c

500
1000
2000
5000
10000

(a) Accuracy

0 100 200 300 400 500
epochs

10 2

10 1

100

lo
ss

500
1000
2000
5000
10000

(b) Loss

Figure 7.6: In (a) we can observe the accuracy of the centroid GNNs using the 10%
error threshold and in (b) the loss.

7.6.2 Numerical examples with probabilistic GNN

Training dataset

For the purpose of training a probabilistic centroid GNN we use the same dataset

introduced in [7.6.1].

Centroid Bayesian GNN prediction

We train a Bayesian centroid GNN using 2,700 FE simulations as training set and 300

FE simulations as test set. The results corresponding to the mean prediction of the

network can be found in [Fig 7.7a]. The accuracy is 77% for the 10% relative error

threshold. Moreover, to evaluate the quality of the uncertainty of the network we need

to examine the CIs of the prediction. In the following figure [Fig 7.7b] we observe

the 95% CIs extracted from the network. We can see that for 95% of the data the real

maximum is inside the upper and lower 95% CIs and thus we conclude that the network

successfully determined the uncertainty of its prediction.

156

2.0 2.5 3.0 3.5 4.0
real

2.0

2.5

3.0

3.5

4.0

pr
ed

ict
io

n

R2 = 0.6838 | accuracy = 0.77

(a) mean prediction

1.5 2.0 2.5 3.0 3.5 4.0
FE results

1.5

2.0

2.5

3.0

3.5

4.0

95
%

 C
I

accuracy = 94.67 %
+ 1.96*stdv
- 1.96*stdv
y=x

(b) 95% CIs

Figure 7.7: In the 2 figures we see results from a Bayesian centroid GNN trained on
2,700 data and evaluated on 300 data from the dataset introduced in [7.6.1]. In (a) we
can see the mean GNN prediction for the maximum micro Von Mises stress on the y
axis and the one calculated by FE simulations on the x axis. The green dots correspond
to data with less than 10% relative error and the red ones to data with more than 10%.
The red line corresponds to the y = x line. In (b) we can see the 95% CIs of the
prediction. The blue dots correspond to the +95% CIs and the orange ones to the -95%
CIs. The red line corresponds to the y = x line.

157

7.6.3 Transfer Learning

Limited availability of training data is a common problem ML practitioners face. Even

if enough data are available to train a NN on a specific family of inputs its performance

significantly deteriorates when making predictions outside of this family of data. In

this section we examine the idea of transfer learning to improve the network prediction

on datasets for which we only have a limited number of data available for training.

In the context of transfer learning, we define 2 datasets, namely the “initial” dataset

and the “target” dataset. With the term “target” dataset we refer to the dataset of

interest, the dataset that we want to make predictions on. Unfortunately, we have

access to only a few samples from this dataset and we cannot train a NN solely based

on these samples. On the other hand, with the term “initial” dataset we refer to another

dataset that is similar to the “target” dataset and for which we have enough data to

train a NN. The purpose of transfer learning is to use a NN trained on the “initial”

dataset and calibrate/fine tune it with a few samples from the “target” dataset to make

sensible predictions on the “target” dataset.

Datasets

The “initial” dataset used in this section is the one introduced in section [7.6.1]. The

“target” dataset follows the same principles used for the “initial” dataset. The difference

between them lays on the range of radii of the spherical defects and on the porosity of

the samples. Specifically the “target” dataset has a broader range of radii and a lower

porosity. In [Fig 7.8] we see a comparison between samples from the 2 datasets. We

produce 300 samples from the “target” dataset; 80 are used for training and 220 for

testing

Transfer Learning numerical experiment

First of all, we use the NN from the [7.6.1] section trained with 10,000 samples from

the “initial” dataset to make a prediction on the “target” dataset. We observe that

the accuracy dropped from 96% to 68%. Moreover, we attempt to train from scratch a

NN using only the 80 training data available from the “target” dataset. As expected,

the accuracy of such a network is even lower, specifically 40%. The optimum strategy

is to use both the NN trained with the “initial” dataset and the 80 samples from the

“target” dataset. Specifically, in each epoch we use a total of 160 training data, 80

158

(a) Patch from the “initial” dataset (b) Patch from the “target” dataset

Figure 7.8: Comparison between a patch from the initial dataset (a) and a patch from
the target dataset (b).

of them correspond to the samples from the “target” dataset and the other 80 are

randomly sampled from the “initial” dataset. The accuracy of this network is 73%,

which is a 5% increase compared to not training at all and a 33% increase compared

to training from scratch with only the samples from the “target” dataset. The above

results are summarised in [Fig 7.9].

7.6.4 Bayesian Optimisation

In this section we use the centroid GNN to identify the maximum Von Mises stress

in a dataset containing real defects. The centroid GNN is not appropriate for making

sensible stress predictions in this dataset since the defects cannot be easily described

with a few geometrical parameters. Instead, in this section we want to evaluate to what

degree the uncertainty of the centroid GNN can be used to indicate which defects are

associated with the maximum Von Mises stress. This uncertainty will be used in a

Bayesian Optimisation framework where fine scale FE simulations will be performed in

the neighbourhood of the indicated defects to calculate the real Von Mises stress.

Dataset

Eight datasets containing real defects are available to us, referred to as “real datasets”

from now on. Each dataset contains between 100 and 200 defects. All the “real

159

-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

-500 0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5

Transfer learning No training

Train from scratch

Figure 7.9: Transfer Learning using 2 synthetic datasets.

datasets” contain both almost spherical and strongly non spherical defects, [Fig 7.10].

Patches

Since the purpose of the Bayesian Optimisation framework that we develop is to find

which defect is associated with the highest stress, we extract from each dataset one

patch per defect. Specifically, to create the patches we iteratively consider each defect

as central defect, and extract this defect and its neighbourhood. The neighbourhood of

the central defect is defined as all the defects where the distance between their centroid

and the centroid of the central defect is less than 3 times the maximum of their radii.

This procedure is summarised in [Algorithm 2].

Sphericity

The defects in the “real datasets” cannot be described using primitive shapes, and thus

a small number of geometrical parameters that can be easily defined and calculated.

Instead, in this section we use the sphericity of the defects, which indicates how close a

defect is to a sphere. In this work we use the following formula to calculate sphericity

160

(a) Almost spherical defects (b) Strongly non spherical defects

Figure 7.10: In figure (a) we can see a subvolume containing almost spherical defects,
while in figure (b) we see a subvolume containing strongly non spherical defects. The
subvolumes are extracted from the real datasets.

sphericity = 6
√
π

V

S3/2
(7.1)

where V is the volume and S the surface area of the defect. Sphericity can take values

from 0, for a strongly non spherical defect, to 1, for a perfect sphere.

Numerical examples with Bayesian Optimisation

The Bayesian Optimisation requires a probabilistic surrogate model and thus we train

an initial BGNN for this purpose. Specifically, we follow exactly the same process

we followed in section [7.6.2], with the same dataset, but we also use the sphericity

as input node feature for every centroid. This dataset only contains spheres, so the

sphericity is always going to be 1. To fine-tune this model, and allow it to try to

learn how sphericity affects the stress field, we further train it using one of the 8 “real

datasets” for 100 epochs. In this new dataset, that contains both spherical and non

spherical defects, the sphericity will indicate to the network which defects are close to

spheres, and which are not. In the former case, the network prediction is expected to be

sensible since the network has been trained on spheres. In the latter case, the network

is expected to output high uncertainty (in terms of 95% CIs) since non spherical defects

were not present in the training dataset. This hypothesis is backed up by the numerical

examples we have conducted. We summarise these findings in [Fig 7.11] where we see

161

Algorithm 2 Get central defect neighbourhood

1: function get neighbourhood(central defect, defects)
2:

3: central centroid = get centroid(central defect)
4: neighbourhood = []
5:

6: for defect in defects do
7:

8: centroid = get centroid(defect) ▷ Get centroid for current defect
9:

10: centroid distance = Distance(central centroid, centroid)
11: max radius = max(central defect.radius, defect.radius)
12:

13: if centroid distance ≤ 3 ·max radius then ▷ decide if the defects interact
14: neighbourhood.append(defect) ▷ add current defect to neighbourhood

15:

16: return neighbourhood

that the uncertainty of the network is higher for patches that contain strongly non

spherical defects.

After obtaining the probabilistic surrogate model, we extract all the 196 patches

from the second “real dataset” and perform Bayesian Optimisation as described in sec-

tion [7.5]. We use the maximum 95% CIs extracted from the network as the acquisition

function. In every iteration of the Bayesian Optimisation algorithm we retrain the

network for 50 epochs. The results can be found in [Fig 7.12]. We observe that in

5 iterations the maximum Von Mises stress in the dataset was successfully identified.

Specifically, we can see that in the second iteration there was an improvement on the

estimation of the maximum Von Mises stress, followed by 2 iterations where there was

no improvement, and finally in the fifth iteration, the maximum Von Mises stress indi-

cated by the Bayesian Optimisation algorithm was the real maximum. A more in-depth

explanation can be found in [Fig 7.13].

After showing in detail how the Bayesian Optimisation framework works on one “real

dataset” we now apply it on all the remaining “real datasets” and show the total results

in [Fig 7.14]. We can observe that in all but one “real datasets” the algorithm was able

to find the real maximum in the dataset. For the dataset where the real maximum

was not successfully identified the relative error between the predicted maximum and

the real maximum is less than 5%. We can see that for most cases it takes less than

162

0.4 0.5 0.6 0.7 0.8 0.9
sphericity

1.5

2.0

2.5

3.0

95
%

 C
I

Figure 7.11: In this diagram each point corresponds to a patch from one of the “real
datasets”. Specifically, the x axis corresponds to the minimum sphericity in the patch
and the y axis to the maximum 95% CIs in the patch.

10 iterations to terminate the algorithm, and the maximum reported iterations is 18,

while all the datasets had more than 100 defects.

163

1 2 3 4 5
iteration

5.0

5.5

6.0

6.5

7.0

7.5

8.0

m
ax

 V
M

max VM from BO
real max VM
GNN original max VM

Figure 7.12: Results of the Bayesian Optimisation procedure on a “real dataset”. In
every iteration a new maximum Von Mises stress in the dataset is proposed, based on
FEA analysis in the neighbourhood of indicated defects. The blue solid line corresponds
to the maximum of the proposed Von Mises stresses up to the current iteration. The
blue horizontal discontinuous line corresponds to the initial estimation for the maximum
Von Mises stress from the network. The black horizontal discontinuous line corresponds
to the real maximum Von Mises stress in the dataset.

164

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

area where points have
higher +95% CIs than
the maximum Von Mises
stress calculated by FEA

+
95

%
 C

Is

Real maximum Von Mises stress

Iteration : 1 Iteration : 2

point with
maximum +95% CIs

real maximum Von Misses stress
corresponding to the point
with maximum +95% CIs

Iteration : 5

Figure 7.13: In this figure we observe 3 plots corresponding to the first, second and fifth
iteration of the Bayesian Optimisation algorithm. In every plot, each point corresponds
to one defect in the “real dataset”. Specifically, the x axis corresponds to the maximum
Von Mises stress as calculated by FEA on the neighbourhood of the defects. The y axis
corresponds to the upper 95% CIs as calculated by applying the Bayesian centroid GNN
on the neighbourhood of the defects. The black line is the “y=x” line. In the first plot,
first iteration, based on the maximum 95% CIs, a defect is proposed as the one that can
potentially have the maximum Von Mises stress in the dataset. After performing FEA
on the neighbourhood of this defect and calculating the maximum Von Mises stress,
we can see that there are plenty of other defects with upper 95% CIs higher than this
maximum Von Mises stress (points in the red area), so the algorithm continues. The
defect is added to the training dataset, and the network is retrained for 50 epochs.
In the second figure, second iteration, we observe the new 95% CIs as predicted by
the retrained GNN. The same procedure is followed, and FEA is performed in the
neighbourhood of the newly indicated defect. The new maximum Von Mises stress is
higher than the previous one and now considerably less defects have 95% CIs higher
than the current maximum Von Mises stress. For the next two iterations, not included
in this figure, there is no improvement in the maximum Von Mises stress. This means
that the maximum Von Mises stresses calculated by FEA in the neighbourhood of the
indicated defects were lower than the maximum Von Mises determined in the second
iteration. Lastly, in the third figure, fifth iteration, we see that the maximum Von
Mises stress calculated by FEA in the neighbourhood of the indicated defect is higher
than the 95% CIs of all the other defects. At this point the algorithm terminates. This
is the best estimation we can have for the maximum Von Mises stress in the dataset
based on the uncertainty provided by the network and it turns out that indeed this is
the real maximum in the dataset.

165

5 6 7 8 9
real max VM

5

6

7

8

9

pr
ed

 m
ax

 V
M

y=x
5% error
10% error
20% error
40% error
60% error
optimised
initial

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

of Bayesian Optim
isation steps

Figure 7.14: Results of the Bayesian Optimisation procedure on all the available “real
datasets”. The black line corresponds to the “y=x” line. Each point corresponds to one
“real dataset”. Specifically the x axis corresponds to the maximum Von Mises stress as
calculated by FEA in the dataset. The y axis corresponds to the predicted maximum
Von Mises stress. The square points correspond to the GNN prediction before the
Bayesian Optimisation procedure while the circular points correspond to the output
of the Bayesian Optimisation algorithm. Areas with different colours correspond to
different relative errors between the predicted and real maximum Von Mises stress in
the dataset. The colour of the circular points indicates how many steps of the Bayesian
Optimisation algorithm were performed.

166

7.7 Conclusion and perspectives of this chapter

The goal of this chapter is to modify the 3D Graph Neural Network (GNN) introduced

in [Chapter 6], to be applied instead of the entire mesh of the multiscale structure

to the centroids of the microscale features and to ultimately create a lightweight 3D

GNN surrogate model to circumvent the need for 3D direct numerical analysis of stress

simulations in porous materials and structures.

We show that this GNN can be trained in a few hours on a laptop GPU, in contrast

to the GNN introduced in [Chapter 6] that requires days of training on a server GPU.

Additionally, we show that the accuracy reported from this model is comparable to the

accuracy of the full GNN, and it can reach a value of 96% given enough data.

In order to tackle the problem of limited training data we utilised a transfer learning

framework to transfer knowledge gained from one synthetic dataset, “initial dataset”, to

a new synthetic dataset, “target dataset”. We show that the transfer learning approach

outperforms both training from scratch a GNN with limited samples from the “target

dataset” and directly applying the GNN trained with samples from the “initial dataset”

to the “target dataset”.

As done in the full GNN, we showed that we can extract uncertainty information

from the centroid GNN. In 95% of the test data the real value was inside the 95%

CIs, implying that the Bayesian GNN successfully identified the error in its predic-

tions. Additionally, the upper 95% CIs of the Bayesian centroid GNN were used as an

acquisition function in a Bayesian Optimisation framework. Specifically, we managed

by performing a small number of FE simulations, 4 to 18 depending on the dataset, to

identify the maximum Von Mises stress in datasets with, 100 to 200, real defects, of

random shape.

167

Chapter 8

Conclusions

8.1 Problem statement

Multiscale structures are common in a wide range of engineering applications. Nonethe-

less, simulating them using classical Finite Element Analysis (FEA) is challenging. This

is mainly attributed to the very dense mesh that needs to be used around the fine scale

features to properly model their behaviour, leading to increased computational cost.

To tackle this problem, multiscale techniques have been developed. These are usu-

ally divided in homogenisation and concurrent scale analysis techniques. In both cases,

the problem is split into a macroscale problem, which does not take into account the

existence of fine scale features, and a microscale problem, which does. Homogeni-

sation, that is computationally less intensive, assumes that the macroscale gradient

varies slowly across the structure. This is commonly violated in the real applications

due to the existence of sharp macroscale features. In these cases, concurrent multiscale

modelling needs to take place that is computationally challenging and practically more

intrusive.

8.2 Proposed approach and contribution to state of

the art

In this thesis we develop FE surrogate models for stress predictions in multiscale struc-

tures exhibiting spatially random microscopic features. We propose an end-to-end Neu-

ral Network (NN) based framework, that in contrast to traditional surrogate model tech-

168

niques like Gaussian Processes is able to operate on high dimensional data like images

and graphs. The proposed NN framework takes as input an inexpensively calculated

FE solution that ignores the existence of microscale features, and outputs corrections

to the macroscale stress field, which take into account the existence of the microscale

features.

In contrast to the state-of-the-art NN based FE surrogate models, our networks are

able to accurately predict the effect of fine scale features on the global stress field in cases

where multiple fine scale features are interacting with each other and the boundaries

of the structure.

Another gap in the literature that this thesis attempts to cover is the adoption

of Bayesian NNs (BNNs) over deterministic ones. Most of the works found in the

relevant literature tend to be deterministic, and thus their predictions cannot be trusted.

In this thesis we use the Bayes By Backprop method to convert the aforementioned

deterministic NNs to BNNs that are able to quantify the uncertainty of their predictions.

Lastly, we explore different techniques that can be utilised to reduce the training

data requirements, something that a lot of researchers have reported as a blocker in the

adoption of ML techniques in a variety of engineering fields. To this end we adopt stan-

dard techniques from the computer vision domain like data augmentation and transfer

learning and show how they can be used in the context of regression NNs to efficiently

train models with limited number of data. Additionally, we utilise the uncertainty of

the BNNs to examine two more techniques that can help with the adoption of NNs in

more engineering fields. The first technique is the Ensemble Kalman method, which is

being used to enforce online physics-based corrections to the output of the network. We

show that this leads to improved results in cases where data is limited. To the best of

our knowledge this has not been explored in the relevant literature. The last technique

we utilise is selective learning. This technique is popular in fields like medical image

segmentation and is being adopted both by industry and academia. In this thesis, we

show how we can use selective learning in the context of regression NNs, to reduce the

need for labelled training data, which tend to be very expensive to acquire.

169

8.3 Results

8.3.1 Neural Networks for fast stress predictions in multiscale

structures

Regarding the objective of creating NN based multiscale models for fast stress predic-

tions in porous materials and structures, three such models were created operating on

2D image data (Chapter [5]), 3D graph data representing the surface of the porous

structure of interest (Chapter [6]) and centroids of microscale features (Chapter [7]).

All of the models were extensively tested and the conducted numerical experiments

demonstrated good agreement between the model prediction and the FE results, for

data in the training data distribution. Typically, the accuracy of the networks, depend-

ing on the examined case, ranges from 70% to 96%. In this thesis we define accuracy

in a way that serves the purpose of accurately predicting maximum equivalent stresses

(Tresca or Von Mises stress). Accuracy of 70% means that in 70% of the data the

maximum equivalent stress is predicted with a relative error less than the threshold of

10%, unless stated otherwise. In the next three paragraphs we recapitulate our main

findings regarding each of these networks.

The CNN model (Chapter [5]) was tested on linear and nonlinear 2D elasticity

problems. For the linear elasticity case, the examined structures are square plates with a

number of ellipses as macroscale features and random distributions of disks as microscale

features. The accuracy varies from 80% to 96% using 450 FE simulations as training

data, depending on the complexity of the examined dataset. For the nonlinear elasticity

case, a rectangular with a single macroscale feature of random size and position, and

random distributions of disks as microscale features is being examined. The reported

accuracy is 73% for a CNN trained using 200 FE simulations as training dataset. Our

experiments show that the CNN generalises well in new realisations of known macroscale

structures and microscale distributions, but the performance quickly deteriorates when

faced with microscale features not present in the training dataset, (e.g., when ellipses

are present in the testing dataset whereas only disks are present in the training dataset).

The full GNN model (Chapter [6]) was tested in three 3D linear elasticity problems.

The first dataset consists of 200 FE simulations of a cubical heterogeneous material

with two elliptical pores as macroscale features, with random position, size and orien-

tation and a distribution of 50 to 100 spherical pores with the same radius as microscale

features that are not allowed to intersect with each other or the boundaries of the struc-

170

ture. The reported accuracy is 96%. The second and third datasets are devoted to a

specimen compatible with uniaxial tensile testing that we refer to as dogbone. For the

second dataset the dimension of the dogbone remains constant in all FE simulations,

this also applies to the macroscale feature which is a cylinder positioned in the middle

of the structure. The microscale features are represented by a random distribution of

50 to 100 spheres that are allowed to intersect with each other and the boundaries of

the geometry, something that greatly increases the number of possible configurations

and thus the difficulty to explore this space. The experiments have shown that rela-

tively few simulations were required to train the GNN to an insightful level of accuracy.

Typically, training the GNN with 50 direct numerical simulations yields an accuracy

of 80% for the 20% relative error threshold, whilst training it with 800 FE simulations

gives an accuracy of 80% for the 15% relative error threshold. However, the experi-

ments also show that in applications where a lower error threshold is required, then the

training dataset needs to be considerably larger. In the third dataset, the dimension of

the dogbone and the number and size of the macroscale features change in every FE

simulation. This increases even further the difficulty to create a representative dataset

while keeping its size reasonable (curse of dimensionality). The reported accuracy us-

ing a dataset of 1,000 FE simulations is 70% for the 15% error threshold. So, at the

current stage of our understanding of the capabilities of deep learning algorithms, we

recommend to either deploy this type of deep learning methodologies to predict stresses

in random distributions of microscale pores over fixed macroscale geometries, or use a

very small number of structural parameters.

Lastly, for the centroid GNN (Chapter [7]) we examine a dataset consisting of cubical

specimens with no macroscale features and with up to 50 spherical pores with different

radii as microscale features. We show that the accuracy of this model is comparable to

the accuracy of the full GNN, and it can reach a value of 96% given enough data. The

advantage of this network is that it requires significantly less computational resources

and can in practice be trained on a laptop GPU in contrast to the full GNN that would

definitely require a server GPU for the turnaround times to remain practical. On the

other hand, it requires significantly more data.

8.3.2 Reliable Neural Network stress predictions

In the context of reliable predictions, all the 3 models are Bayesian. These models are

able to output credible intervals (CIs) that can be used to warn the user in cases where

171

the network is not certain about the prediction. Numerical experiments confirmed that

the CIs where broader in cases where the error of the prediction was higher.

In [Chapter 5] we highlight the importance of the empirical Bayes, where we show

that a Bayesian NN (BNN) that was trained by updating both the prior and posterior

distribution of weights better explains the error in the prediction compared to a BNN

where only the posterior is updated. Furthermore, in [Chapter 5] and [Chapter 6] we can

see that the BNNs are able to quantify the error in their predictions in the case where

they face microscale features outside of the training distribution. Lastly, in [Chapter

7] we present an example where a GNN is trained with perfectly spherical defects and

then it performs inference on a dataset with real defects. We show that as the sphericity

decreases (defects look less like spheres) the uncertainty of the prediction increases and

thus the user is informed that the prediction of the network is less reliable.

8.3.3 Data requirements and generalisation ability

A number of different techniques were used to address the issue of limited training

data and to increase the generalisation ability of the network. In [Chapter 5], we used

mechanically consistent rotations as data augmentation technique to generate more

training data without needing to perform additional FE simulations. We show that

when we apply this data augmentation scheme to one quarter of the dataset, the trained

CNN is able to outperform the CNN trained with the entire dataset. Furthermore, to

reduce the large computational cost associated with the creation of labelled data (i.e.

multiscale FEA simulations) in [Chapter 5] we used selective learning to choose and

label only the data that contains new information for the network, leading to an up

to 50% decrease in labelled data requirements. Additionally, numerical experiments

showed that the online stress correction technique developed in [Chapter 6] led to a

10% increase in the accuracy of the model when applied to an under-trained network.

Lastly, in [Chapter 7] a transfer learning approach was used to transfer knowledge

gained from one synthetic dataset to a new synthetic dataset resulting in 30% increase

in accuracy compared to training a network from scratch.

172

8.4 Limitations

Extrapolation: In all the 3 different types of models that we trained, we confirmed,

the well-known fact, that the extrapolation ability of NNs is rather poor. Techniques

were developed in the context of this thesis to warn the user about the uncertainty of

the prediction. Nonetheless, one major takeaway from this work is that since the do-

main of applicability of NNs is limited, ML practitioners interested in training NNs for

engineering applications should restrict the application domain of the NN to relatively

narrow families of boundary value problems.

Locality: In the context of this work we assumed that the local macroscale fields that

we use as input to the NNs are sufficient to predict the microscale stress, for all the

structural problems over which training is performed. This is an assumption of locality

that cannot in general be used in the context of non-diffusive problems (e.g. wave

propagation, crack propagation).

8.5 Future work

Time dependent problems: Many problems arising in computational mechanics are

history dependent, for instance elastoplasticity or viscoelasticity. There are examples in

literature of both CNNs and GNNs being used to make predictions on time dependent

problems. Nonetheless, this was outside of the scope of the current thesis. This is a

future direction we are interested in exploring.

Volume based simulations: In the context of the current thesis we tackled 3D prob-

lems by utilising GNNs to perform geometric learning on a graph representing the

surface of the examined structures. This is possible because the porous structures we

examined could be fully described by their surface. This is not always the case, for

instance structures with heterogeneous material properties. In this case, GNNs could

still be used, operating on a graph representing the volume mesh of interest. Compu-

tational gain compared to voxel-based CNNs is still expected, since GNNs can operate

on a variable resolution unstructured mesh in contrast to CNNs that require a constant

resolution structured mesh. In the context of this thesis we did not examine such struc-

tures, but it is an interesting direction to explore.

173

Physics Informed Neural Networks: In Physics Informed Neural Networks (PINNs)

physical constraints are enforced during the training stage. In this work we do not fol-

low this paradigm since we want to have a general framework that is agnostic to the

physical laws. Nonetheless, in cases where the physical laws are known the penalisation

of the NN divergence from these laws can lead to a decrease in the size of the training

dataset, by constricting the space of possible solutions.

174

Bibliography

Al-Dirini, R. M. A., Martelli, S., and Taylor, M. (2020). Computational efficient method

for assessing the influence of surgical variability on primary stability of a contempo-

rary femoral stem in a cohort of subjects. Biomechanics and Modeling in Mechanobi-

ology, 19(4):1283–1295. 2

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint

arXiv:1607.06450. 113

Barrault, M., Maday, Y., Nguyen, N. C., and Patera, A. T. (2004). An ‘empirical

interpolation’ method: application to efficient reduced-basis discretization of partial

differential equations. Comptes Rendus Mathematique, 339(9):667–672. 54

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,

Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre,

C., Song, F., Ballard, A., Gilmer, J., Dahl, G., Vaswani, A., Allen, K., Nash, C.,

Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M., Vinyals,

O., Li, Y., and Pascanu, R. (2018). Relational inductive biases, deep learning, and

graph networks. arXiv preprint arXiv:1806.01261. 3, 30, 47, 48, 112, 113

Bessa, M., Bostanabad, R., Liu, Z., Hu, A., Apley, D. W., Brinson, C., Chen, W., and

Liu, W. (2017). A framework for data-driven analysis of materials under uncertainty:

Countering the curse of dimensionality. Computer Methods in Applied Mechanics and

Engineering, 320:633–667. 55

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University

Press, Inc., USA. 69

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncer-

tainty in neural networks. In Proceedings of the 32nd International Conference on In-

175

ternational Conference on Machine Learning - Volume 37, ICML’15, page 1613–1622.

JMLR.org. 5, 34, 35

Bruna, J., Zaremba, W., Szlam, A., and Lecun, Y. (2014). Spectral networks and

locally connected networks on graphs. In International Conference on Learning Rep-

resentations (ICLR2014), CBLS, April 2014. 28

Cardoso, M. J., Li, W., Brown, R., Ma, N., Kerfoot, E., Wang, Y., Murrey, B., My-

ronenko, A., Zhao, C., Yang, D., Nath, V., He, Y., Xu, Z., Hatamizadeh, A., Myro-

nenko, A., Zhu, W., Liu, Y., Zheng, M., Tang, Y., Yang, I., Zephyr, M., Hashemian,

B., Alle, S., Darestani, M. Z., Budd, C., Modat, M., Vercauteren, T., Wang, G., Li,

Y., Hu, Y., Fu, Y., Gorman, B., Johnson, H., Genereaux, B., Erdal, B. S., Gupta,

V., Diaz-Pinto, A., Dourson, A., Maier-Hein, L., Jaeger, P. F., Baumgartner, M.,

Kalpathy-Cramer, J., Flores, M., Kirby, J., Cooper, L. A. D., Roth, H. R., Xu, D.,

Bericat, D., Floca, R., Zhou, S. K., Shuaib, H., Farahani, K., Maier-Hein, K. H.,

Aylward, S., Dogra, P., Ourselin, S., and Feng, A. (2022). Monai: An open-source

framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701. 6

Cheng, X., Li, X., Yang, J., and Tai, Y. (2018). Sesr: Single image super resolution with

recursive squeeze and excitation networks. In 2018 24th International Conference on

Pattern Recognition (ICPR), pages 147–152. 17, 67

Croom, B. P., Berkson, M., Mueller, R. K., Presley, M., and Storck, S. (2022). Deep

learning prediction of stress fields in additively manufactured metals with intricate

defect networks. Mechanics of Materials, 165:104191. 6

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional Neural Net-

works on Graphs with Fast Localized Spectral Filtering. In Advances in neural in-

formation processing systems, pages 3844–3852. 28

Deshpande, S., Bordas, S. P. A., and Lengiewicz, J. (2022a). Magnet: A graph u-net

architecture for mesh-based simulations. arXiv preprint arXiv:2211.00713. 3, 4, 5, 48

Deshpande, S., Lengiewicz, J., and Bordas, S. P. (2022b). Probabilistic deep learning

for real-time large deformation simulations. Computer Methods in Applied Mechanics

and Engineering, 398:115307. 2, 4, 5

176

Deshpande, S., Sosa, R. I., Bordas, S. P. A., and Lengiewicz, J. (2023). Convolution,

aggregation and attention based deep neural networks for accelerating simulations in

mechanics. Frontiers in Materials, 10. 5, 48

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Repre-

senting model uncertainty in deep learning. In Proceedings of the 33rd International

Conference on International Conference on Machine Learning - Volume 48, ICML’16,

page 1050–1059. JMLR.org. 34

Gal, Y., Islam, R., and Ghahramani, Z. (2017). Deep bayesian active learning with

image data. arXiv preprint arXiv:1703.02910. 6, 92

Ghanem, R. G. and Spanos, P. D. (1991). Stochastic Finite Elements: A Spectral

Approach. Springer New York, NY. 41, 54

Goetz, A., Durmaz, A., Müller, M., Thomas, A., Britz, D., Kerfriden, P., and Eberl, C.

(2022). Addressing materials’ microstructure diversity using transfer learning. npj

Computational Materials, 8:27. 6

Gong, S., Bahri, M., Bronstein, M. M., and Zafeiriou, S. (2020). Geometrically prin-

cipled connections in graph neural networks. In 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 11412–11421, Los Alami-

tos, CA, USA. IEEE Computer Society. 25

Goury, O., Amsallem, D., Bordas, S., Liu, W., and Kerfriden, P. (2016). Automatised

selection of load paths to construct reduced-order models in computational damage

micromechanics: from dissipation-driven random selection to bayesian optimization.

Computational Mechanics, 58. 54, 55

Graves, A. (2011). Practical variational inference for neural networks. In Proceed-

ings of the 24th International Conference on Neural Information Processing Systems,

NIPS’11, page 2348–2356, Red Hook, NY, USA. Curran Associates Inc. 33, 34

Guo, K. and Buehler, M. J. (2020). A semi-supervised approach to architected materials

design using graph neural networks. Extreme Mechanics Letters, 41:101029. 5, 45

Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., and Cohen-Or, D. (2019).

Meshcnn: a network with an edge. ACM Transactions on Graphics (TOG), 38:1 –

12. 24, 26

177

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In 2015 IEEE International

Conference on Computer Vision (ICCV), pages 1026–1034. 120

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 770–778, Los Alamitos, CA, USA. IEEE Computer Society. 17, 114

Hennigh, O., Narasimhan, S., Nabian, M. A., Subramaniam, A., Tangsali, K., Fang,

Z., Rietmann, M., Byeon, W., and Choudhry, S. (2021). Nvidia simnet™: An ai-

accelerated multi-physics simulation framework. In Paszynski, M., Kranzlmüller, D.,

Krzhizhanovskaya, V. V., Dongarra, J. J., and Sloot, P. M., editors, Computational

Science – ICCS 2021, pages 447–461, Cham. Springer International Publishing. 7,

50

Hesthaven, J., Zhang, S., and Zhu, X. (2015). Reduced basis multiscale finite element

methods for elliptic problems. SIAM Journal on Multiscale Modeling and Simulation,

13:316–337. 1, 54

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.

(2012). Improving neural networks by preventing co-adaptation of feature detectors.

arXiv preprint arXiv:1207.0580. 34, 113

Hinton, G. E. and van Camp, D. (1993). Keeping the neural networks simple by

minimizing the description length of the weights. In Proceedings of the Sixth Annual

Conference on Computational Learning Theory, COLT ’93, page 5–13, New York,

NY, USA. Association for Computing Machinery. 33, 34

Hochreiter, S., Bengio, Y., and Frasconi, P. (2001). Gradient flow in recurrent nets: the

difficulty of learning long-term dependencies. In Kolen, J. and Kremer, S., editors,

Field Guide to Dynamical Recurrent Networks. IEEE Press. 17

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. In 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7132–

7141. 17, 67

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. 43

178

Islam, R. (2016). Active learning for high dimensional inputs using bayesian convolu-

tional neural networks. PhD. dissertation, Dept. Eng., Univ. Cambridge, Cambridge,

U.K. 6, 94

Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C., Ionescu, C., Ding, D., Koppula,

S., Zoran, D., Brock, A., Shelhamer, E., Hénaff, O., Botvinick, M. M., Zisserman,

A., Vinyals, O., and Carreira, J. (2022). Perceiver io: A general architecture for

structured inputs & outputs. arXiv preprint arXiv.2107.14795. 48

Jiang, H., Nie, Z., Yeo, R., Farimani, A. B., and Kara, L. B. (2021). StressGAN: A

Generative Deep Learning Model for Two-Dimensional Stress Distribution Predic-

tion. Journal of Applied Mechanics, 88(5). 051005. 2, 4, 5, 45

Kerfriden, P., Allix, O., and Gosselet, P. (2009). A three-scale domain decomposition

method for the 3d analysis of debonding in laminates. Computational Mechanics,

44:343–362. 1, 54

Kim, J., Lee, J. K., and Lee, K. M. (2016). Deeply-recursive convolutional network for

image super-resolution. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1637–1645. 17, 114

Kingma, D. P., Salimans, T., and Welling, M. (2015). Variational dropout and the local

reparameterization trick. In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and

Garnett, R., editors, Advances in Neural Information Processing Systems, volume 28.

Curran Associates, Inc. 5, 47

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114. 5, 34, 35

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolu-

tional networks. arXiv preprint arXiv:1609.02907. 46

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. In Pereira, F., Burges, C., Bottou, L., and Wein-

berger, K., editors, Advances in Neural Information Processing Systems, volume 25.

Curran Associates, Inc. 17

Krokos, V., Bui Xuan, V., Bordas, S., Young, P., and Kerfriden, P. (2021). A bayesian

multiscale cnn framework to predict local stress fields in structures with microscale

features. Computational Mechanics, pages 1–34. 5, 108

179

Lei, H., Akhtar, N., and Mian, A. (2021). Picasso: A cuda-based library for deep

learning over 3d meshes. arXiv preprint arXiv:2103.15076. 24

LeNail, A. (2019). Nn-svg: Publication-ready neural network architecture schematics.

Journal of Open Source Software, 4(33):747. 13

Li, H., Kafka, O., Gao, J., Yu, C., Nie, Y., Zhang, L., Tajdari, M., Tang, S., Li,

G., Tang, S., Cheng, G., and Liu, W. (2019). Clustering discretization methods

for generation of material performance databases in machine learning and design

optimization. Computational Mechanics, 64. 56

Li, X., Wu, J., Lin, Z., Liu, H., and Zha, H. (2018). Recurrent squeeze-and-excitation

context aggregation net for single image deraining. In Proceedings of the European

Conference on Computer Vision (ECCV). 17, 67

Liang, L., Minliang, L., Caitlin, M., and Wei, S. (2018). A deep learning approach to

estimate stress distribution: a fast and accurate surrogate of finite-element analysis.

Journal of the Royal Society, Interface, 15:138. 2, 42

Lim, B., Son, S., Kim, H., Nah, S., and Lee, K. M. (2017). Enhanced deep residual

networks for single image super-resolution. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW), pages 1132–1140. 17, 114

Lino, M., Cantwell, C., Bharath, A. A., and Fotiadis, S. (2021). Simulating continuum

mechanics with multi-scale graph neural networks. arXiv preprint arXiv:2106.04900.

47

Liu, Z., Bessa, M., and Liu, W. K. (2016). Self-consistent clustering analysis: An

efficient multi-scale scheme for inelastic heterogeneous materials. Computer Methods

in Applied Mechanics and Engineering, 306:319–341. 55

Lookman, T., Balachandran, P. V., Xue, D., and Yuan, R. (2019). Active learning in

materials science with emphasis on adaptive sampling using uncertainties for targeted

design. npj Computational Materials, 5(11):1–17. 6

Masci, J., Boscaini, D., Bronstein, M. M., and Vandergheynst, P. (2015). Geodesic

convolutional neural networks on riemannian manifolds. In 2015 IEEE International

Conference on Computer Vision Workshop (ICCVW), pages 832–840, Los Alamitos,

CA, USA. IEEE Computer Society. 25

180

Meister, F., Passerini, T., Mihalef, V., Tuysuzoglu, A., Maier, A., and Mansi, T.

(2018). Towards fast biomechanical modeling of soft tissue using neural networks.

arXiv:1812.06186. 42

Mendizabal, A., Márquez-Neila, P., and Cotin, S. (2020a). Simulation of hyperelastic

materials in real-time using deep learning. Medical Image Analysis, 59:101569. 2, 4,

5, 44

Mendizabal, A., Márquez-Neila, P., and Cotin, S. (2020b). Simulation of hyperelastic

materials in real-time using deep learning. Medical Image Analysis, 59:101569. 3

Mylonas, C., Tsialiamanis, G., Worden, K., and Chatzi, E. N. (2022). Bayesian graph

neural networks for strain-based crack localization. In Madarshahian, R. and Hemez,

F., editors, Data Science in Engineering, Volume 9, pages 253–261, Cham. Springer

International Publishing. 4, 5, 47, 114, 191

Nie, Z., Jiang, H., and Kara, L. B. (2019). Stress field prediction in cantilevered struc-

tures using convolutional neural networks. Journal of Computing and Information

Science in Engineering, 20(1). 2, 4, 5, 43, 45, 66

Niu, S., Bellala, V., Qureshi, D. A., and Srivastava, V. (2023). A machine learning

method to characterize the crack length and position in high-density polyethylene

using ultrasound. arXiv preprint arXiv:2304.11497. 5

Oden, J., Prudhomme, S., Romkes, A., and Bauman, P. (2006). Multiscale modeling

of physical phenomena: Adaptive control of models. SIAM Journal on Scientific

Computing, 28(6):2359–2389. 1, 54

Opper, M. and Archambeau, C. (2009). The Variational Gaussian Approximation

Revisited. Neural Computation, 21(3):786–792. 5

Ozdemir, F., Peng, Z., Fuernstahl, P., Tanner, C., and Goksel, O. (2021). Active learn-

ing for segmentation based on bayesian sample queries. Knowledge-Based Systems,

214:106531. 6

Paladim, D., Almeida, J., Bordas, S., and Kerfriden, P. (2016). Guaranteed error

bounds in homogenisation: an optimum stochastic approach to preserve the numerical

separation of scales. International Journal for Numerical Methods in Engineering,

110. 1, 54

181

Penido, R. E.-K., da Paixão, R. C. F., Costa, L. C. B., Peixoto, R. A. F., Cury, A. A.,

and Mendes, J. C. (2022). Predicting the compressive strength of steelmaking slag

concrete with machine learning – considerations on developing a mix design tool.

Construction and Building Materials, 341:127896. 6

Perera, R., Guzzetti, D., and Agrawal, V. (2022). Graph neural networks for simulating

crack coalescence and propagation in brittle materials. Computer Methods in Applied

Mechanics and Engineering, 395:115021. 4, 5, 48

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and Battaglia, P. W. (2021). Learning

mesh-based simulation with graph networks. International Conference on Learning

Representations; arXiv preprint arXiv:2010.03409. 3, 4, 5, 47, 114, 191

Pilkey, W. and Pilkey, D. (2008). Peterson’s stress concentration factors, third edition.

Peterson’s Stress Concentration Factors, Third Edition, pages 1–522. 68

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Pointnet: Deep learning on

point sets for 3d classification and segmentation. Conference on Computer Vision

and Pattern Recognition (CVPR) 2017; arXiv preprint arXiv: 1612.00593. 25

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Pointnet++: Deep hierarchical fea-

ture learning on point sets in a metric space. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, NIPS’17, page 5105–5114,

Red Hook, NY, USA. Curran Associates Inc. 25

Raghavan, P. and Ghosh, S. (2004). Concurrent multi-scale analysis of elastic compos-

ites by a multi-level computational model. Computer Methods in Applied Mechanics

and Engineering, 193(6):497–538. 1, 54

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural

networks: A deep learning framework for solving forward and inverse problems in-

volving nonlinear partial differential equations. Journal of Computational Physics,

378:686–707. 7, 49

Raissi, M., Yazdani, A., and Karniadakis, G. E. (2020). Hidden fluid mechanics: Learn-

ing velocity and pressure fields from flow visualizations. Science, 367(6481):1026–

1030. 7, 49

182

Rajender, A. and Samanta, A. K. (2023). Compressive strength prediction of metakaolin

based high-performance concrete with machine learning. Materials Today: Proceed-

ings. 5

Rao, C. and Liu, Y. (2020). Three-dimensional convolutional neural network (3d-

cnn) for heterogeneous material homogenization. Computational Materials Science,

184:109850. 3

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation

and approximate inference in deep generative models. In Xing, E. P. and Jebara,

T., editors, Proceedings of the 31st International Conference on Machine Learning,

volume 32 of Proceedings of Machine Learning Research, pages 1278–1286, Bejing,

China. PMLR. 5

Rocha, I., Kerfriden, P., and van der Meer, F. (2021). On-the-fly construction of

surrogate constitutive models for concurrent multiscale mechanical analysis through

probabilistic machine learning. Journal of Computational Physics: X, 9:100083. 103

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks

for biomedical image segmentation. In Navab, N., Hornegger, J., Wells, W. M., and

Frangi, A. F., editors, Medical Image Computing and Computer-Assisted Intervention

– MICCAI 2015, pages 234–241, Cham. Springer International Publishing. 44

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpa-

thy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet

Large Scale Visual Recognition Challenge. International Journal of Computer Vision

(IJCV), 115(3):211–252. 10

Ryckelynck, D. (2009). Hyper-reduction of mechanical models involving internal vari-

ables. International Journal for Numerical Methods in Engineering, 77:75 – 89. 54

Saha, S., Gan, Z., Cheng, L., Gao, J., Kafka, O., Xie, X., Li, H., Tajdari, M., Kim, H.,

and Liu, W. (2020). Hierarchical deep learning neural network (hidenn): an artificial

intelligence (ai) framework for computational science and engineering. Computer

Methods in Applied Mechanics and Engineering, 373. 56

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., and Battaglia, P.

(2020). Learning to simulate complex physics with graph networks. In III, H. D.

183

and Singh, A., editors, Proceedings of the 37th International Conference on Machine

Learning, volume 119 of Proceedings of Machine Learning Research, pages 8459–8468.

PMLR. 3, 47, 114, 191

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2019). How does batch normal-

ization help optimization? arXiv preprint arXiv:1805.11604. 43

Schult, J., Engelmann, F., Kontogianni, T., and Leibe, B. (2020). Dualconvmesh-

net: Joint geodesic and euclidean convolutions on 3d meshes. In 2020 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pages 8609–8619.

24, 109

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J.,

Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J.,

Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel,

T., and Hassabis, D. (2016). Mastering the game of go with deep neural networks

and tree search. Nature, 529:484–489. 10

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M.,

Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., and Hassabis, D.

(2017). Mastering chess and shogi by self-play with a general reinforcement learning

algorithm. arXiv preprint arXiv:1712.01815. 10

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Machine

Learning Res., 15:1929–1958. 34

Stuckner, J., Harder, B., and Smith, T. M. (2022). Microstructure segmentation with

deep learning encoders pre-trained on a large microscopy dataset. npj Computational

Materials, 8(11):1–12. 6

Sun, Y., Hanhan, I., Sangid, M. D., and Lin, G. (2020). Predicting mechanical prop-

erties from microstructure images in fiber-reinforced polymers using convolutional

neural networks. arXiv preprint arXiv:2010.03675. 2, 4, 5, 43

Sussillo, D. and Abbott, L. F. (2015). Random walk initialization for training very deep

feedforward networks. arXiv:1412.6558. 17

184

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-

houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In 2015

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9,

Los Alamitos, CA, USA. IEEE Computer Society. 17

Tsymbalov, E., Panov, M., and Shapeev, A. (2018). Dropout-based active learning

for regression. In van der Aalst, W. M. P., Batagelj, V., Glavaš, G., Ignatov, D. I.,

Khachay, M., Kuznetsov, S. O., Koltsova, O., Lomazova, I. A., Loukachevitch, N.,

Napoli, A., Panchenko, A., Pardalos, P. M., Pelillo, M., and Savchenko, A. V., edi-

tors, Analysis of Images, Social Networks and Texts, pages 247–258, Cham. Springer

International Publishing. 6

Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Ž́ıdek, A., Bridgland,

A., Cowie, A., Meyer, C., Laydon, A., Velankar, S., Kleywegt, G. J., Bateman, A.,

Evans, R., Pritzel, A., Figurnov, M., Ronneberger, O., Bates, R., Kohl, S. A. A.,

Potapenko, A., Ballard, A. J., Romera-Paredes, B., Nikolov, S., Jain, R., Clancy,

E., Reiman, D., Petersen, S., Senior, A. W., Kavukcuoglu, K., Birney, E., Kohli, P.,

Jumper, J., and Hassabis, D. (2021). Highly accurate protein structure prediction

for the human proteome. Nature, 596(7873):590–596. 10

Vlassis, N. N., Ma, R., and Sun, W. (2020). Geometric deep learning for computa-

tional mechanics part i: anisotropic hyperelasticity. Computer Methods in Applied

Mechanics and Engineering, 371:113299. 46, 106

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus, R. (2013). Regularization

of neural networks using dropconnect. In Dasgupta, S. and McAllester, D., editors,

Proceedings of the 30th International Conference on Machine Learning, volume 28 of

Proceedings of Machine Learning Research, pages 1058–1066, Atlanta, Georgia, USA.

PMLR. 34

Wang, Y., Oyen, D., Guo, W. G., Mehta, A., Scott, C. B., Panda, N., Fernández-

Godino, M. G., Srinivasan, G., and Yue, X. (2021). Stressnet - deep learning to predict

stress with fracture propagation in brittle materials. npj Materials Degradation, 5.

2, 5, 45, 103

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon, J. M. (2019).

Dynamic graph cnn for learning on point clouds. ACM Trans. Graph., 38(5). 25, 28

185

Xiao, M., Breitkopf, P., Coelho, R., Knopf-Lenoir, C., Sidorkiewicz, M., and Villon, P.

(2009). Model reduction by cpod and kriging. IntJStruc Multidisc Optim, 41:555–574.

41, 54

Yan, J., Mu, L., Wang, L., Ranjan, R., and Zomaya, A. (2020). Temporal convolutional

networks for the advance prediction of enso. Scientific Reports, 10:8055. 103

Zagoruyko, S. and Komodakis, N. (2016). Wide residual networks. In Richard C. Wil-

son, E. R. H. and Smith, W. A. P., editors, Proceedings of the British Machine Vision

Conference (BMVC), pages 87.1–87.12. BMVA Press. 17, 114

Ziaeipoor, H., Taylor, M., and Martelli, S. (2020). Population-Based Bone Strain During

Physical Activity: A Novel Method Demonstrated for the Human Femur. Annals of

Biomedical Engineering, 48(6):1694–1701. 2

Zohdi, T. and Wriggers, P. (2005). An Introduction to Computational Micromechanics,

volume 20. 1, 51

Évariste Sanchez-Palencia (1987). General introduction to asymptotic methods, volume

272. 1, 51

186

Appendix A

Volume and surface mesh

As discussed in section [6.2.1] of this thesis, the input and output of the model is the

surface and not the volume stress. In [Fig. A.1] we see an example of a surface stress

extracted from the volume mesh. We can observe that the maximum value of the Von

Mises stress is the same in both cases and the location where the maximum Von Mises

stress occurs is the same as well.

V
on

 M
is

es
 s

tr
es

s

(a) Volume Stress

V
on

 M
is

es
 s

tr
es

s

(b) Surface Stress

Figure A.1: Two structures corresponding to one quarter of a random realisation of
the dogbone geometry. In the diagram on the left (a) we see the Von Mises stress
distribution on the volume mesh. In the diagram on the right (b) we see the Von
Mises stress distribution on the surface mesh. We can see, in the red circles, that the
maximum values in both structures are in the same location.

187

Appendix B

GNN parameters and architectural

choices

We identified some key parameters for the training of the GNNs examined in [Chapter

6] and performed several tests to identify their optimum values. The parameters that we

examined is the number of filters in the MLPs, the number of GN Blocks, the number

of maximum neighbours per node, the existence of a skip connection between the input

and the output of the network and finally the type of encoder. For these tests we used

600 patches from the dataset introduced in [section 6.4.1], 500 patches were used as the

training set and 100 patches for the test set.

B.1 Skip connection

We suggest that using a skip connection to add the input macroscale stress tensor to

the output of the network will improve GNN’s performance. The reason behind this is

that the GNN will learn how the microscale stress field deviates from the macroscale

stress field instead of learning the microscale stress field from zero which we believe

that it is easier and it should also improve the generalization ability of the network.

In order to validate our assumption we train 2 identical GNNs with the exact same

parameters and training set but one of them has a skip connection and the other does

not. Both networks have MLPs with 128 filters, 10 GN blocks and each node has at

most 10 neighbours. The results can be found in [Fig B.1] where we can observe that

the GNN trained with the skip connection has smoother convergence compared to the

GNN trained without the skip connection. Also, the skip connection improved accuracy

188

from 65% to 80%. We conclude that indeed the skip connection helped not only to have

more stable training but also to improve the accuracy and thus we decide to include it

in our architecture.

0 100 200 300 400 500
epochs

0.4

0.5

0.6

0.7

0.8

0.9

ac
c

no_skip_connection
skip_connection

Figure B.1: In the diagram we see accuracy curves for the test dataset defined using
the maximum Von Mises stress. The yellow line corresponds to a GNN trained with a
skip connection to add the input macroscale stress to the output of the GNN and the
blue line corresponds to a GNN trained without this skip connection. We observe that
the skip connection results in smoother training and higher accuracy.

189

B.2 Number of filters

An important parameter that heavily influences not only the accuracy of the GNN but

also the training time and memory requirements is the number of filters in the MLPs.

In order to identify the minimum number of filters that result in optimum accuracy we

trained 3 GNNs with 64, 128 and 256 filters in the MLPs and we kept all the other

parameters the same. Specifically, all networks have the skip connection described in

[B.1], 10 GN blocks and each node has at most 10 neighbours. The results can be found

in [Fig B.2] where we observe that 128 and 256 filters result in the same accuracy which

is higher than the accuracy for the 64 filters, 80% compared to 72%. Additionally, the

training time for the GNN with the 256 filters is 12.7 hours and the maximum required

memory is 15.4 GB while for the 128 filter GNN the training was completed in 5.8 hours

and the maximum required memory was 7.7 GB. By choosing to use 128 filters in the

MLPs of the GNN we achieve the same accuracy as in the 256 filters GNN but with a

54% decrease in the training time and a 50% decrease in memory requirements.

0 100 200 300 400 500
epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

ac
c

64
128
256

Figure B.2: In the diagram we see accuracy curves for the test dataset defined using
the maximum Von Mises stress. Coloured lines correspond to networks trained with
different number of filters, namely 64, 128 and 256. We observe that 128 and 256 filters
result in the same accuracy 80% where 64 filters result in a lower accuracy of 72%.

190

B.3 Independent decoder

As already discussed in section [6.2.5], in the first layer of the GNN we choose to encode

the edge and node features independently into the latent dimension as suggested by

[Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021; Mylonas et al., 2022]. We want to

test if this choice results in an improved GNN and thus we perform an experiment

between 2 GNNs with the same parameters where one uses a GN block to encode the

inputs into the latent dimension and the other encodes them independently. Both of

the GNNs have 10 GN blocks, 128 filters in the MLPs, the skip connection described in

[B.1] and each node has at most 10 neighbours. The results can be found in [Fig B.3]

where we observe that both GNNs have similar accuracy curves and they both have a

final accuracy of 80%. Nevertheless, we can observe that in the independent encoder

case the accuracy starts increasing sooner, at epoch 50, where in the GN block case it

starts increasing later, at epoch 120. Lastly, the independent encoder version involves

slightly less calculations and results in a 5% decrease in training time. Consequently,

we choose to use the independent encoder GNN.

0 100 200 300 400 500
epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

ac
c

GN_block
Independent

Figure B.3: In the diagram we see accuracy curves for the test dataset defined using
the maximum Von Mises stress. The yellow line corresponds to a GNN trained with
an independent encoder and the blue line corresponds to a GNN trained with a GN
block as an encoder. We observe that both GNNs have similar accuracy curves with
the same final accuracy but the GNN with the independent encoder starts increasing
its accuracy sooner, epoch 50, compared to the other one, epoch 120.

191

B.4 Number of GN blocks

Another important parameter that affects both the memory requirement and the train-

ing time is the number of residual GN blocks. Because we are using residual connections,

we do not expect a decrease in accuracy as we add more GN blocks but we are expecting

that there should be a saturation point where the GNN does not benefit anymore from

the GN blocks but it performs unnecessary calculations resulting in increased compu-

tational cost. To validate this assumption and determine the most proper number of

GN blocks we train 3 GNNs with the same parameters but different number of GN

blocks. All the GNNs have 128 filters in the MLPs, the skip connection described in

[B.1], independent encoder and each node has at most 10 neighbours. The results can

be found in [Fig B.4] where we observe that the GNN with only 3 GN blocks presents a

decrease of 10% in the test accuracy compared to the other two. Also we can see that

the GNNs with 5 and 10 GN blocks have similar test accuracy curves and they both

reach a test accuracy of 80%. We decide to opt for the GNN with the 5 GN blocks

that presents optimum accuracy without additional computational cost. This results

in a training time of 3.1 hours and a maximum memory of 4.3 GB which is a decrease

of 45% in training time and 44% in memory requirements compared to the GNN with

the 10 GN blocks.

0 100 200 300 400 500
epochs

0.55

0.60

0.65

0.70

0.75

0.80

0.85

ac
c

3
5
10

Figure B.4: In the diagram we see accuracy curves for the test dataset defined using
the maximum Von Mises stress. Coloured lines correspond to networks trained with
different number of GN blocks, namely 3, 5 and 10. We observe that the GNN with 3
GN blocks has a decreased accuracy compared to the rest. Additionally, we can see that
the GNNs trained with 5 and 10 GN blocks have almost exactly the same behaviour.

192

B.5 Number of neighbours

We want to study the effect of the maximum number of neighbours on the GNN training.

A small number of maximum neighbours will result in a graph where disconnected areas

of the FE mesh do not share an edge and thus cannot exchange information, for instance

microscale and macroscale features. We train 3 GNNs with the same parameters apart

from the maximum number of neighbours that have values 5, 10 and 15. All the GNNs

have 5 GN blocks, 128 filters in the MLPs, the skip connection described in [B.1] and

independent encoder. The results can be found in [Fig B.5] where we observe that 10

and 15 neighbours result in the same accuracy which is higher than the accuracy for the

5 neighbours, 81% compared to 75%. Additionally, the training time for the GNN with

the 15 neighbours is 27% higher and the memory requirements 31% higher compared to

the GNN with 10 neighbours. We conclude that in our case we do not have a reason to

use more than 10 neighbours although in denser meshes this number could be different.

0 100 200 300 400 500
epochs

0.5

0.6

0.7

0.8

0.9

ac
c

5
10
15

Figure B.5: In the diagram we see accuracy curves for the test dataset defined using
the maximum Von Mises stress. Coloured lines correspond to networks trained with
different number of maximum neighbours per node, namely 5, 10 and 15. We observe
that 10 and 15 neighbours result in the same accuracy 81% where 5 neighbours result
in a lower accuracy 75%.

193

B.6 Geodesic and Euclidean convolutions

We study the effect of the joint convolutions by training 6 GNNs with different number

of Geodesic and Euclidean filters. Here we use data from the dogbone dataset intro-

duced in [section 6.4.3]. We keep the total number of filters constant to 128 but we

change the ratio between Geodesic and total (Euclidean + Geodesic) filters. We inves-

tigate the case where the ratio is 0% (only Euclidean), 25%, 50% and 75%, 87.5% and

100% (only Geodesic). All the GNNs have 5 GN blocks, residual connection, indepen-

dent encoder, 128 filters and a maximum of 20 neighbours per node. The results can

be found in [Fig B.6]. We can observe that both for the accuracy and the loss the worst

case is when the ratio is 0, so no Geodesic convolutions are present. Both the accuracy

and the loss improve (accuracy increases and loss decreases) as we increase the ratio

until the value 75%. After that no further improvement in performance is observed,

both the accuracy and loss curves for ratio values 75% and 87.5% are the same. We

conclude that a 75% ratio is the most beneficial for this case.

0 100 200 300 400 500
epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
c

0%
25%
50%
75%
87.5%
100%

(a) Accuracy

0 100 200 300 400 500
epochs

2 × 10 3

3 × 10 3

4 × 10 3

lo
ss

0%
25%
50%
75%
87.5%
100%

(b) Loss

Figure B.6: In the diagram on the left (a) we see accuracy curves defined using the
maximum Von Mises stress and a 15% threshold for the relative error. Specifically, we
see the accuracy as function of the training epochs. In the diagram on the right (b) we
see the loss function as a function of the epochs. For both diagrams, coloured lines cor-
respond to GNNs trained with different Geodesic to total (Euclidean + Geodesic) filter
ratio, namely 0% (only Euclidean), 25%, 50%, 75%, 87.5% and 100% (only Geodesic).

194

B.7 Full stress field VS maximum stress

We investigate the option to directly predict the maximum Von Mises stress on the

surface of the dogbone structure. To this end, we train 2 identical GNNs on patches

extracted from 100 FE simulations and we evaluate them in a different set of patches

extracted from 100 FE simulations. One of the GNNs directly predicts the maximum

Von Mises stress and the other the full stress tensor. Here we use data from the dog-

bone dataset introduced in [section 6.4.3]. Both GNNs have 5 GN blocks, independent

encoder, 128 filters (32 Euclidean and 96 Geodesic) and a maximum of 20 neighbours

per node. The results can be found in [Fig B.7]. We observe that the 2 GNNs have

similar accuracy, but the GNN predicting the full stress has slightly higher values. We

conclude that predicting the full stress is beneficial since it not only results in better

prediction of the maximum Von Mises stress, but it also provides us with the full stress

tensor that can be used for the online bias corrections [section 6.4.2].

0 10 20 30 40 50 60 70 80 90 100
% acceptable error

0

10

20

30

40

50

60

70

80

90

100

%
 a

cc
ur

ac
y

stress
max VM

Figure B.7: Accuracy curves as a function of the threshold value used for the relative
error. The accuracy curves are defined using the maximum Von Mises stress. The blue
line corresponds to a GNN that predicts the full microscale stress distribution first and
then from this the maximum Von Mises stress in the ROI of the patch. The orange
line corresponds to a GNN that directly predicts the maximum Von Mises in the ROI
of the patch.

195

B.8 Patches VS full structure

Lastly, we want to evaluate to what degree our choice to train the GNN using patches

of the geometry affects the quality of the results. This choice stems from the fact that

defects only locally affect the macroscale stress field and distant areas do not offer

significant information. On one hand, training on patches has the benefit of making

the GNN unaware of the specific structure and it encourages it to focus on predicting

how the microscale features affect the global stress field, thus leading to improved

generalisation. On the other hand, our choice for the size of ROI and patch has to

be careful so that the network has all the necessary information to make predictions

in the ROI. Choosing to train the GNN using the entire structure alleviates us from

this problem. We perform an experiment to compare the two strategies. Here we use

data from the dogbone dataset introduced in [section 6.4.3]. We train two GNNs with

the same parameters, namely 5 GN blocks, residual connection, independent encoder,

128 filters (32 Euclidean and 96 Geodesic) and a maximum of 20 neighbours per node.

The first GNN is trained using patches from 400 FE simulations (10 patches from each

simulation) and the second GNN is trained directly on the 400 FE simulation results.

We evaluate both GNNs on a separate set of patches extracted from 100 FE simulations.

The results can be found in [Fig B.8]. We can observe that for the GNN that was trained

on patches, the maximum Von Mises in the ROI of the patches is less scattered around

the y = x line, true value. The coefficient of determination for the patch case is 0.79

compared to 0.71 for the full case and the accuracy significantly drops from 70% for

the patch case to 55% for full dogbone case. Thus we conclude that our choice to train

the GNN with patches indeed leads to improved generalisation. We also compare the

Von Mises stress distribution on the surface of a dogbone structure as predicted by

the GNN trained with patches, with the one predicted by the GNN trained with the

entire structure. In [Fig B.9] we see that the GNN that was trained using patches more

accurately predicts the high stress area compared to the GNN that was trained with

the full structure.

196

0.5 1.0 1.5 2.0 2.5
real

0.5

1.0

1.5

2.0

2.5

pr
ed

ict
io

n

R2 = 0.7929 | acc = 0.70 | VM_max

(a) patches

0.5 1.0 1.5 2.0 2.5
real

0.5

1.0

1.5

2.0

2.5

pr
ed

ict
io

n

R2 = 0.7138 | acc = 0.55 | VM_max

(b) full

Figure B.8: In both diagrams the x-axis corresponds to the maximum Von Mises stress
in the ROI of the patches as calculated by FE simulations and the y-axis to the maxi-
mum Von Mises stress in the ROI of the patches as predicted by the GNN. The yellow
lines correspond to the 15% relative error threshold. The accuracy is defined as the
percentage of points with relative error less than 15%. The image on the left (a) corre-
sponds to a GNN trained with patches extracted by 400 FE simulations and the image
on the right (b) to a GNN trained directly on the same 400 FE simulations.

Figure B.9: Von Mises stress on the surface of a dogbone structure (top). On the
bottom of the image we have zoomed in the high stress area. From left to right we see
the FE result, the prediction of the GNN trained with patches and the GNN prediction
of the GNN trained with full structures.

197

Appendix C

Ensemble Kalman method:

Observation matrix free

implementation

We can simplify the calculations involved in the Kalman update procedure (section 6.3)

by avoiding to explicitly define the observation matrix. Instead we can define a function

that will provide the noise free value of the data. This function is called observation

function and is of the from

h(x) = Hx (C.1)

The posterior can be written as

X⋆ = X+
1

N − 1
A(HA)TP−1(D−HX) (C.2a)

HX = h(X) (C.2b)

A = X− 1

N
X (C.2c)

HA = HX− 1

N
HX (C.2d)

P =
1

N − 1
HA(HA)T +Σϵ (C.2e)

40110 words 196563 characters (not including spaces)

File: main.tex

198

Encoding: utf8

Sum count: 40110

Words in text: 32729

Words in headers: 453

Words outside text (captions, etc.): 6340

Number of headers: 140

Number of floats/tables/figures: 112

Number of math inlines: 527

Number of math displayed: 61

Subcounts:

text+headers+captions (#headers/#floats/#inlines/#displayed)

0+1+0 (1/0/0/0) Chapter: Introduction

1002+3+0 (1/0/0/0) Section: Motivation and strategies

49+6+0 (1/0/0/0) Section: Aims and contributions of this thesis

326+3+0 (1/0/0/0) Subsection: Multiscale Neural Networks

215+3+0 (1/0/0/0) Subsection: Bayesian Neural Networks

604+5+0 (1/0/0/0) Subsection: Data requirements and generalisation ability

367+2+0 (1/0/0/0) Section: Thesis structure

18+1+0 (1/0/0/0) Section: Publications

66+2+0 (1/0/0/0) Subsection: International journals

179+5+0 (1/0/3/0) Subsection: Conference papers, presentations and workshops

52+2+0 (1/0/0/0) Chapter: Machine Learning} \label{Machine Learning Chapter

188+1+0 (1/0/0/0) Section: Introduction

302+2+16 (1/1/12/3) Section: Linear regression} \label{linear regression

64+4+0 (1/0/0/0) Section: Fully connected Neural Networks

542+4+67 (1/2/28/3) Subsection: Single hidden layer NNs

88+2+0 (1/0/11/1) Subsection: Multi-layer NNs

56+3+0 (1/0/0/0) Section: Convolutional Neural Networks

242+1+0 (1/0/0/0) Subsection: Introduction

552+2+168 (1/2/18/1) Subsection: Convolution operation} \label{capybara section

178+1+7 (1/1/4/0) Subsection: Pooling} \label{pooling_section

118+1+35 (1/3/0/0) Subsection: Upsampling

23+2+0 (1/0/4/1) Subsection: Simple CNN

89+4+24 (1/2/0/0) Subsection: Example of a CNN

294+5+23 (1/0/6/0) Subsection: Comparison with fully connected layers

199

53+3+0 (1/0/0/0) Section: Graph Neural Networks} \label{GNN section

63+1+31 (1/1/0/0) Subsection: Introduction

492+2+0 (1/0/0/0) Subsection: Literature review} \label{literature_review_GNN

807+2+47 (1/2/34/2) Subsection: Graph convolutions

68+3+0 (1/0/0/0) Section: Bayesian Neural Networks} \label{BNN intro

419+1+95 (1/2/6/1) Subsection: Introduction} \label{BNN intro intro

140+2+40 (1/1/5/2) Subsection: Bayesian modelling

323+2+0 (1/0/5/1) Subsection: Variational Inference

155+3+0 (1/0/8/0) Subsection: Bayesian linear layer} \label{Bayesian Layer

114+5+28 (1/1/0/0) Subsection: Example of a Bayesian NN

61+5+0 (1/0/0/0) Subsection: Extension to CNNs and GNNs

896+1+0 (1/0/25/7) Section: Optimiser} \label{optimisers

45+4+0 (1/0/0/0) Section: Conclusions of the chapter

0+4+0 (1/0/0/0) Chapter: Finite Element surrogate models} \label{PDEs and ML Chapter

94+1+0 (1/0/0/0) Section: Introduction

129+3+0 (1/0/4/1) Section: Classical surrogate models

61+4+0 (1/0/0/0) Section: PDEs and Machine Learning

223+5+0 (1/0/0/0) Subsection: NNs with fully connected layers

709+1+34 (1/4/8/0) Subsection: CNNs} \label{CNN literature

1079+1+123 (1/1/18/1) Subsection: GNNs} \label{GNN literature

348+1+45 (1/1/2/0) Subsection: PINNs

140+2+0 (1/0/0/0) Section: Multiscale methods

248+1+70 (1/2/11/8) Subsection: Homogenisation

149+3+31 (1/1/0/0) Subsection: Concurrent multiscale modelling

293+4+0 (1/0/1/0) Section: ML assisted multiscale methods

96+4+0 (1/0/0/0) Section: Conclusions of the chapter

0+9+0 (1/0/0/0) Chapter: Multiscale problem formulation, structures of interest and accuracy metric} \label{Methods and Governing Equations

60+1+0 (1/0/0/0) Section: Introduction

175+1+0 (1/0/21/10) Section: Elasticity

42+2+0 (1/0/4/0) Section: Equivalent stress

60+2+73 (1/1/0/0) Section: Porous medium

205+2+26 (1/1/9/0) Section: Multiscale problem} \label{Multiscale Problem

180+1+2 (1/0/21/0) Section: Accuracy

85+4+0 (1/0/0/0) Section: Conclusions of the chapter

0+13+0 (1/0/0/0) Chapter: Convolutional Neural Networks for the prediction of equivalent stress in 2D porous structures} \label{2D CNN

200

352+1+0 (1/0/0/0) Section: Introduction

32+3+0 (1/0/0/0) Section: Convolutional Neural Network

271+1+72 (1/2/15/0) Subsection: Input-Output

51+2+0 (1/0/0/0) Subsection: Loss function

272+1+42 (1/3/18/0) Subsection: Architecture

114+2+0 (1/0/0/0) Section: Numerical examples

2821+22+964 (6/16/59/6) Subsection: Linear elasticity} \label{linear elastic

620+10+283 (3/7/10/0) Subsection: Nonlinear elasticity} \label{Non Linear Section

982+2+239 (1/4/0/0) Subsection: Selective learning} \label{Selective Learning

377+4+213 (1/3/6/0) Subsection: Out of distribution study

309+3+326 (1/3/0/0) Section: Comparison to homogenisation

402+3+0 (1/0/0/0) Section: Assumptions and limitations

284+6+0 (1/0/0/0) Section: Conclusion and perspectives of this chapter

0+12+0 (1/0/0/0) Chapter: Graph Neural Networks for the prediction of stress in 3D porous structures} \label{full GNN} \label{3D GNN

274+1+0 (1/0/0/0) Section: Introduction

51+6+0 (1/0/0/0) Section: Geometric learning for multiscale stress analysis

352+3+64 (1/1/3/0) Subsection: Assumptions and justifications} \label{Assumptions and Justifications

460+2+96 (1/1/18/0) Subsection: Graph construction} \label{neighbourhood

233+1+199 (1/2/12/0) Subsection: Input-Output

55+2+0 (1/0/0/0) Subsection: Loss function

601+5+44 (3/2/21/0) Subsection: GNN model

720+15+0 (1/0/22/11) Section: Physics-based corrections of the NN predictions: enforcing Neumann conditions online via an ensemble Kalman approach} \label{EKF section

0+2+0 (1/0/0/0) Section: Numerical examples

934+24+306 (6/6/17/1) Subsection: Numerical example with cubical heterogeneous material} \label{Cubical Heterogenious Material

691+11+443 (3/6/5/0) Subsection: Online stress correction} \label{Online_stress_correction

1110+21+392 (5/8/10/0) Subsection: Numerical example with dogbone data} \label{single_hole_dataset

506+12+351 (3/5/0/0) Subsection: Variable dimension dogbone

760+6+0 (1/0/0/0) Section: Conclusion and perspectives of this chapter

0+14+0 (1/0/0/0) Chapter: Centroid Graph Neural Network for the prediction of equivalent stress in 3D porous structures} \label{Centroid GNN

422+1+0 (1/0/0/0) Section: Introduction

327+1+224 (1/3/0/0) Section: Input-Output

94+2+0 (1/0/0/0) Section: Loss function

65+1+0 (1/0/0/0) Section: Architecture

179+2+227 (1/1/28/0) Section: Bayesian Optimisation} \label{BO strategy

178+2+0 (1/0/0/0) Section: Numerical examples

201

347+10+44 (3/2/2/0) Subsection: Numerical examples with deterministic GNN} \label{Deterministic GNN

130+11+129 (3/1/0/0) Subsection: Numerical examples with probabilistic GNN} \label{Bayesian GNN

458+7+33 (3/2/0/0) Subsection: Transfer Learning

804+10+664 (5/5/13/1) Subsection: Bayesian Optimisation

297+6+0 (1/0/0/0) Section: Conclusion and perspectives of this chapter

0+1+0 (1/0/0/0) Chapter: Conclusions

150+2+0 (1/0/0/0) Section: Problem statement

418+9+0 (1/0/0/0) Section: Proposed approach and contribution to state of the art

0+1+0 (1/0/0/0) Section: Results

796+9+0 (1/0/0/0) Subsection: Neural Networks for fast stress predictions in multiscale structures

199+5+0 (1/0/0/0) Subsection: Reliable Neural Network stress predictions

191+5+0 (1/0/0/0) Subsection: Data requirements and generalisation ability

150+1+0 (1/0/0/0) Section: Limitations

264+2+0 (1/0/0/0) Section: Future work

File: output.bbl

Encoding: utf8

Sum count: 0

Words in text: 0

Words in headers: 0

Words outside text (captions, etc.): 0

Number of headers: 0

Number of floats/tables/figures: 0

Number of math inlines: 0

Number of math displayed: 0

202

	Introduction
	Motivation and strategies
	Aims and contributions of this thesis
	Multiscale Neural Networks
	Bayesian Neural Networks
	Data requirements and generalisation ability

	Thesis structure
	Publications
	International journals
	Conference papers, presentations and workshops

	Machine Learning
	Introduction
	Linear regression
	Fully connected Neural Networks
	Single hidden layer NNs
	Multi-layer NNs

	Convolutional Neural Networks
	Introduction
	Convolution operation
	Pooling
	Upsampling
	Simple CNN
	Example of a CNN
	Comparison with fully connected layers

	Graph Neural Networks
	Introduction
	Literature review
	Graph convolutions

	Bayesian Neural Networks
	Introduction
	Bayesian modelling
	Variational Inference
	Bayesian linear layer
	Example of a Bayesian NN
	Extension to CNNs and GNNs

	Optimiser
	Conclusions of the chapter

	Finite Element surrogate models
	Introduction
	Classical surrogate models
	PDEs and Machine Learning
	NNs with fully connected layers
	CNNs
	GNNs
	PINNs

	Multiscale methods
	Homogenisation
	Concurrent multiscale modelling

	ML assisted multiscale methods
	Conclusions of the chapter

	Multiscale problem formulation, structures of interest and accuracy metric
	Introduction
	Elasticity
	Equivalent stress
	Porous medium
	Multiscale problem
	Accuracy
	Conclusions of the chapter

	Convolutional Neural Networks for the prediction of equivalent stress in 2D porous structures
	Introduction
	Convolutional Neural Network
	Input-Output
	Loss function
	Architecture

	Numerical examples
	Linear elasticity
	Nonlinear elasticity
	Selective learning
	Out of distribution study

	Comparison to homogenisation
	Assumptions and limitations
	Conclusion and perspectives of this chapter

	Graph Neural Networks for the prediction of stress in 3D porous structures
	Introduction
	Geometric learning for multiscale stress analysis
	Assumptions and justifications
	Graph construction
	Input-Output
	Loss function
	GNN model

	Physics-based corrections of the NN predictions: enforcing Neumann conditions online via an ensemble Kalman approach
	Numerical examples
	Numerical example with cubical heterogeneous material
	Online stress correction
	Numerical example with dogbone data
	Variable dimension dogbone

	Conclusion and perspectives of this chapter

	Centroid Graph Neural Network for the prediction of equivalent stress in 3D porous structures
	Introduction
	Input-Output
	Loss function
	Architecture
	Bayesian Optimisation
	Numerical examples
	Numerical examples with deterministic GNN
	Numerical examples with probabilistic GNN
	Transfer Learning
	Bayesian Optimisation

	Conclusion and perspectives of this chapter

	Conclusions
	Problem statement
	Proposed approach and contribution to state of the art
	Results
	Neural Networks for fast stress predictions in multiscale structures
	Reliable Neural Network stress predictions
	Data requirements and generalisation ability

	Limitations
	Future work

	Volume and surface mesh
	GNN parameters and architectural choices
	Skip connection
	Number of filters
	Independent decoder
	Number of GN blocks
	Number of neighbours
	Geodesic and Euclidean convolutions
	Full stress field VS maximum stress
	Patches VS full structure

	Ensemble Kalman method: Observation matrix free implementation

