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A B S T R A C T

The prediction of compressible nonisothermal flows of viscoelastic fluids is important in many industrial
processes. Until relatively recently, there was a lack of tractable thermodynamically consistent mathematical
models for this class of flows. In this paper a stabilised finite element scheme is presented for the models
developed by the authors Mackay and Phillips (2019) which incorporates compressibility and nonisothermal
effects. Numerical results are presented for variants of a couple of benchmark problems: the lid driven cavity
and the natural convection problems. The temporal discretisation is based on the Taylor–Galerkin method.
A compressible version of the discrete elastic viscous split stress (DEVSS) formulation is used to stabilise the
numerical scheme. The combined and separate influence of compressible, viscoelastic and thermal effects on
the characteristics of these benchmark flows is studied for the first time.
1. Introduction

Viscoelastic flows are present in a wide range of modern day
industrial applications of complex fluids such as oil recovery, drug
delivery, ink-jet printing, injection moulding and polymer processing.
Physical experiments are often costly and impractical and therefore
theoretical and computational analysis of viscoelastic flow is a vital
tool in the improvement of these industrial processes. The inherent
sophistication of mathematical models for viscoelastic fluids, such as
Oldroyd-B, Giesekus, PTT, and FENE-P, mean that numerical methods
are required to obtain solutions to viscoelastic flow problems. Even in
simple geometries viscoelastic flows exhibit complex behaviour includ-
ing shear-thinning, extensional-hardening, transient flow patterns and
complex secondary flows [1]. Numerical simulations are an inexpensive
alternative to physical experiments and enable flow predictions to be
made that would otherwise be impossible to obtain. Since the 1970𝑠
improvements have been made to both the accuracy and computational
efficiency of numerical simulations of polymeric fluids. The main con-
tributing factor to this improvement has been an increase in computer
processing power. However, several hurdles in both modelling and
numerical analysis have also been overcome.

A large proportion of the literature on non-Newtonian flow is lim-
ited to incompressible and isothermal problems. Well-known predictor–
corrector schemes such as Chorin’s projection method rely on the
divergence-free velocity field condition in order to update the velocity
at each time step. However enforcing the incompressibility condition
results in the pressure becoming a Lagrange multiplier and therefore
any thermodynamic information about the pressure is lost [2]. In
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industrial polymer processing operations, such as injection moulding
and high-speed extrusion, pressure, flow rate and temperature variation
may be large. Hence, compressibility effects within the viscoelastic
regime may become important and influence resulting flow behaviour
and phenomena. The difference between incompressible and compress-
ible flows is determined by the propagation speed of longitudinal
waves, 𝑐, which couples density with pressure via an equation of
state. For incompressible fluids the speed of sound is infinite whereas
for compressible fluids the speed is finite. In recent years there have
been some development of numerical schemes for compressible flow.
Keshtiban and Webster [3] developed a Taylor–Galerkin scheme and
used it to successfully obtain solutions to several benchmark prob-
lems for viscoelastic flow. Numerical investigations of fluid transport
problems involve finding solutions to coupled systems of equations gov-
erning momentum, density, pressure and extra-stress (state variables).
In the case of Newtonian flow, the extra-stress can be expressed as a
linear function of the rate of strain tensor. For viscoelastic flow the
extra-stress tensor satisfies its own governing equation (constitutive
law) and cannot be eliminated by direct substitution. Furthermore,
if the fluid is assumed to be incompressible the density is constant
and can be parametrised. In the more general case fluid density is
governed by the conservation of mass equation and an equation of
state. Detailed theoretical analysis of the laws governing compressible
& nonisothermal viscoelastic fluid transport have been undertaken by
Beris and Edwards [4,5] and Bollada and Phillips [2].

A major difficulty for all numerical simulations of viscoelastic flow
is the so-called high Weissenberg number problem (HWNP), which
vailable online 30 January 2024
045-7930/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.compfluid.2024.106189
Received 14 July 2023; Received in revised form 27 October 2023; Accepted 22 Ja
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

nuary 2024

https://www.elsevier.com/locate/compfluid
https://www.elsevier.com/locate/compfluid
mailto:PhillipsTN@cf.ac.uk
https://doi.org/10.1016/j.compfluid.2024.106189
https://doi.org/10.1016/j.compfluid.2024.106189
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2024.106189&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers and Fluids 272 (2024) 106189A.T. Mackay and T.N. Phillips

l
A
c
i
i
p
e
a
i
s
t
t
i
a
b
s

b
m
c
f
g
e
M
c
i
p
a

g
i
f
g
w
s
h
l
d
c

u
c
f
r
t
i

c
i
c
T

describes the failure of numerical schemes to reach mesh converged so-
lutions to even simple flow problems beyond some critical value of the
Weissenberg number. Consistent viscoelastic models capturing time de-
pendent relaxation effects use objective derivatives in the constitutive
equations, such as the upper convected derivative. At high Weissenberg
numbers, the presence of deformation terms in these derivatives result
in steep exponential profiles that are not well captured by polynomial
interpolation functions. Errors resulting from the failure to properly
balance deformation with convection leads to convergence failure for
most numerical solution schemes unless further stabilisation techniques
are employed.

A commonly used technique for overcoming the HWNP is the
Streamline Upwind Petrov Galerkin (SUPG) method of Brooks and
Hughes [6]. SUPG was first implemented to stabilise Oldroyd-B flow
calculations by Marchal and Crochet [7]. A similar technique was used
by Guénette and Fortin [8] for the analysis of PTT fluids. Another
stabilisation widely used is Elastic Viscous Stress Splitting (EVSS), first
proposed by Rajagopalan et al. [9]. EVSS was successful in stabilising
finite element method solutions to flow between eccentrically rotating
cylinders, a benchmark problem greatly affected by the high Weis-
senberg number problem due to sharp velocity gradients arising in
the narrow gap. Subsequently a variety of similar methods have been
developed such as Discrete Elastic Viscous Stress Splitting (DEVSS) [8],
Explicitly Elliptic Momentum Equation (EEME) [9], DEVSS-G [10]
and Discontinuous Galerkin (DG) methods [11]. A large number of
studies concerning stabilised finite element methods for viscoelastic
flow can be found. In most cases, finite element methods are stabilised
by adding (artificial) mesh-dependent terms to the standard Galerkin
approximation equation.

Fattal and Kupferman introduced the log-conformation representa-
tion (LCR) method, in which the constitutive equation is reformulated
as an equation for the logarithm of the conformation matrix. Using
log-conformation representation ensures the stress tensor remains sym-
metric positive during computations. Similar techniques have been
proposed such as the square-root conformation tensor formulation
(SRCR), proposed by Balci et al. [12], and the kernel conformation ten-
sor formulation, proposed by Alfonso et al. [13]. The extension of the
log-conformation formulation to constitutive equations for nonisother-
mal compressible viscoelastic fluids in which the material parameters
are replaced by temperature dependent material functions has not been
established and is a subject for future development.

In recent years further advancements have been made in over-
coming the HWNP for finite element approximations of Oldroyd-B
flow. Venkatesan and Ganesan [1] developed a three-field formulation
based on one-level Local Projection Stabilisation (LPS) when investigat-
ing Oldroyd-B flow in a wide channel. Using enriched approximation
spaces and control terms in order to stabilise the constitutive and
momentum equations they were able to compute solutions to the
benchmark problems of flow past a sphere and lid-driven cavity flow
for a wide range of Reynolds and Weissenberg numbers.

The temporal scheme used in this paper employs a decoupled
scheme based on a fractional step approach. Fractional step methods
have the advantage of decomposing the problem into a number of
subproblems that are easier to solve computationally since each sub-
problem is a fraction of the size of the fully coupled set of equations.
Another advantage of this class of methods is that it facilitates the use
of specialised solution methods which may be appropriate for each of
the subproblems separately but not for fully coupled methods. In the
context of viscoelastic flows, several fractional step methods have been
proposed. One of the earliest contributions is that of Saramito [14] who
generalised the 𝜃-method to viscoelastic flow based on three steps: a
generalised Stokes problem for velocity and pressure with a given stress
field; a hyperbolic constitutive equation for the extra-stress; a second
generalised Stokes problem which enhances the overall stability of the
scheme.
2

f

More recently, Castillo and Codina [15] designed several fractional
step methods using a stabilised finite element formulation that al-
lows equal order interpolation for velocity, pressure and stress. The
methods can be viewed as an inexact LU block factorisations of the
original fully coupled discrete problem and are designed at the pure
algebraic level. Pacheco and Castillo [16] developed and implemented
a consistent splitting scheme for viscoelastic fluid flows. The novel
contribution of this scheme was the derivation of a consistent pres-
sure Poisson equation (PPE) with consistent boundary conditions (BCs)
which circumvents the necessity for a treatment of the divergence-free
constraint. However, mass is conserved at the continuous level.

In this paper we consider the flow of both an incompressible (𝑀𝑎 =
0) and compressible (𝑀𝑎 > 0) Oldroyd-B fluid for two flows: the
id-driven cavity problem and buoyancy driven natural convection.

temporal scheme based on second-order Taylor–Galerkin pressure-
orrection scheme first proposed by Keshtiban and Webster [17,18]
s employed. At each discrete timestep the spatial problem is approx-
mated with Galerkin finite elements. Numerical results for incom-
ressible flow will be used to benchmark the Taylor–Galerkin finite
lement scheme. Compressible flow dynamics are then analysed over
range of Reynolds, Weissenberg and Mach numbers. Mach numbers

n the range 0.001 ≤ 𝑀𝑎 ≤ 0.1 are considered. Computations are
tabilised using DEVSS and orthogonal projection stabilisation with the
raditional DEVSS formulation being adapted in order to account for
he compressible terms in the strain-rate tensor. The numerical scheme
s implemented on a single CPU desktop using for the coarse meshed
pproximation. Packages from the FEniCS/DOLFIN finite element li-
rary are used in order to build the meshes and spatially discretise the
tabilised equations at each time-step.

Nonisothermal convection flows are notoriously difficult to model
ecause of the complex coupling between the momentum and ther-
al fields. These types of problems are classified as either forced

onvection, where the flow is generated by some external pump or
an, or as natural convection, where the flow is a result of density
radients within the flow. Buoyancy-driven flows are categorised as
ither external (free convection) or internal (natural convection) [19].
odern developments in the understanding of buoyancy driven flows

ame during the period just after the Second World War [19]. However,
t took nearly two decades before a satisfactory description of the
roblem was formulated and accurate computational models started to
ppear in the literature.

The earliest work on natural convection in a completely enclosed
eometry was performed by Sparrow et al. [20], who performed an
nvestigation into ‘foam-like’ insulating materials consisting of gas-
illed cells dispersed throughout a solid material. Heat transfer through
as layers in rectangular geometries composed of adiabatic horizontal
alls was first investigated by Batchelor [21] and Ostrach [19]. It was

hown that the flow regime within the cavity was dependent on the
eight to width ratio, 𝐿∕𝐷, and the Rayleigh number, 𝑅𝑎 [21]. For
ow values of 𝑅𝑎 the investigation concluded that conduction was the
ominant mode of heat transfer. In the asymptotic limit, 𝐿∕𝐷 → ∞,
onduction was found to be the sole means of heat transport.

The first comprehensive study into this class of flow problems was
ndertaken by Ostrach [22]. Ostrach [23] also commented that internal
onvection flow problems are more complex than external convection
lows. The reason for this is that a boundary layer forms an enclosed
egion around the core of the flow. The core flow is dependent on
he boundary layer and vice versa. At large Rayleigh numbers the
nteraction between the two results in the onset of turbulence [19].

With the development of sophisticated numerical methods and ac-
ess to high-performance computing facilities, the simulation of flows
n enclosed geometries such as the natural convection problem has be-
ome one of the benchmark problems in computational fluid dynamics.
he vast majority of the literature consists of studies of Newtonian

3 7
low at Rayleigh numbers in the range [10 , 10 ], where the solutions
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provide good predictions of low viscosity/large length scale buoyancy-
driven flows. However, the literature on non-Newtonian convective
heat flow problems is sparse with very few publications in the literature
that consider the behaviour of viscoelastic fluids. An investigation into
power law fluids by Kim et al. [24] found that for high values of
the Rayleigh number and moderate values of the Prandtl number, the
overall heat transfer was enhanced as the power-law index is decreased
i.e. as the fluid became more shear-thinning. An experimental study by
Pittman et al. [25] showed that the rheological properties of a fluid are
a significant factor in determining its thermal convective properties.

This paper is organised as follows. Sections 2–5 present the gov-
erning equations, reformulation of the momentum equation includ-
ing stabilisation techniques, and the spatial and temporal numerical
scheme. In Section 6 the computational domain, spatial discretisation
and numerical solutions to the lid-driven cavity problem are presented
with the solutions benchmarked against results from the literature.
Analysis and results of the double-glazing problem are presented in
Section 7 with the formulation, discretisation and results organised in
a similar way to Section 6. Finally a short summary is provided in
Section 8.

2. Governing equations

The governing equations comprising the conservation of mass, mo-
mentum and energy are given by

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮) = 0

𝜌𝐷𝐮
𝐷𝑡

= −∇𝑝 + 𝜇𝑠

(

∇2𝐮 + 1
3
∇(∇ ⋅ 𝐮)

)

+ ∇ ⋅ 𝝉𝑝 + 𝐅

𝐶𝑝
𝐷𝜃
𝐷𝑡

= −∇ ⋅ 𝐪 + 𝐓 ∶ ∇𝐮 − 𝑝∇ ⋅ 𝐮

(1)

where 𝜌 is the density, 𝐮 is the velocity, 𝑝 is the pressure, 𝐓 = 2𝜇𝑠𝐃+𝝉𝑝
is the extra-stress tensor, 𝝉𝑝 is the polymeric contribution to 𝐓, 𝜃 is
absolute temperature, 𝐪 = −𝜅∇𝜃 is the heat flux vector and 𝐅 is the
applied force. The material parameters are 𝜇𝑠, the solvent viscosity,
𝐶𝑝, the specific heat at constant pressure and 𝜅, the heat conduction
coefficient.

The conformation tensor 𝐂 is related to 𝝉𝑝 by

𝝉𝑝 =
𝜇𝑝
𝜆(𝜃)

(𝐂 − 𝐈) (2)

where 𝐂 satisfies the constitutive equation

𝐂 + 𝜆(𝜃)(
▿
𝐂 +(∇ ⋅ 𝐮)𝐂) = 𝐈, (3)

𝐃 is the rate-of-deformation tensor, 𝜇𝑝 is the polymeric viscosity and
𝜆(𝜃) is the temperature-dependent relaxation time.

Finally, an equation of state is required to relate pressure and
density. Here we use the equation

𝜕𝑝
𝜕𝜌

= 𝑐20

(

1 + 𝛼𝑣
(𝜃 − 𝜃0)
𝜃0

)

(4)

where 𝑐0 is the speed of sound and 𝜃0 is a reference temperature.
The parameter 𝛼𝑣 is the coefficient of thermal expansion with 𝛼𝑣 = 0
corresponding to isothermal flow and 𝛼𝑣 = 1 to an ideal gas equation.

Let 𝐿 and 𝑈 denote characteristic length and velocity scales, respec-
ively. Introducing the dimensionless variables

𝐮∗ = 𝐮
𝑈

𝐱∗ = 𝐱
𝐿

𝑡∗ = 𝑡𝑈
𝐿

∗ =
𝜌
, 𝑝∗ =

𝐿𝑝
, 𝜃∗ =

𝜃 − 𝜃0 𝝉∗ =
𝐿𝝉𝑝 (5)
3

𝜌0 𝜇0𝑈 𝜃ℎ − 𝜃0 𝑝 𝜇0𝑈
The system of Eqs. (1), (3), (4) can be written in the following non-
dimensional form
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮) = 0

𝑅𝑒𝜌𝐷𝐮
𝐷𝑡

= −∇𝑝 +

[

𝛽𝑣

(

∇2𝐮 + 1
3
∇(∇ ⋅ 𝐮)

)

+ ∇ ⋅ 𝝉𝑝

]

+ 𝐅

𝜌𝐷𝜃
𝐷𝑡

= 𝐷𝑖∇ ⋅ �̃� + 𝑉ℎ𝝈 ∶ ∇𝐮

𝐂 +𝑊 𝑒 (
▿
𝐂 +(∇ ⋅ 𝐮)𝐂) = 𝐈

𝜕𝜌
𝜕𝑝

= 𝑀𝑎2

𝑅𝑒(1 + 𝛼𝑣𝜃)

(6)

where

𝝈 = −𝑝𝐈 + 2𝛽𝑣𝐃 + 𝝉𝑝 (7)

is the Cauchy stress tensor and

𝛼𝑣 =
(

𝜃ℎ − 𝜃0
𝜃0

)

𝛼𝑣.

The dimensionless groups are 𝑅𝑒, the Reynolds number, 𝑊 𝑒, the
eissenberg number, 𝑀𝑎, the Mach number, 𝛽𝑣, the viscosity ratio,
𝑖, the diffusion number and 𝑉ℎ, the viscous heating number, defined
y

𝑅𝑒 =
𝜌0𝑈𝐿
𝜇0

, 𝑊 𝑒 =
𝜆0𝑈
𝐿

,

𝑀𝑎 = 𝑈
𝑐0
, 𝛽𝑣 =

𝜇𝑠
𝜇0
,

𝐷𝑖 = 𝜅
𝜌0𝐶𝑝𝑈𝐿

, 𝑉ℎ =
𝑈𝜇0

𝜌0𝐶𝑝𝐿(𝜃ℎ − 𝜃0)
.

(8)

For buoyancy driven flows in a cavity an alternative
on-dimensionalisation is used in which the characteristic velocity
cale is 𝑈 = 𝛼∕𝐿 where 𝛼 = 𝜅∕(𝜌0𝐶𝑝) is the thermal diffusivity. This
ives rise to additional dimensionless groups: the Rayleigh number, 𝑅𝑎,
nd the Prandtl number, 𝑃𝑟, defined by

𝑎 =
𝐿3𝑔
𝜈𝛼

(𝜃ℎ − 𝜃𝑐 ), 𝑃 𝑟 = 𝜈
𝛼
, (9)

where 𝜈 = 𝜇0∕𝜌 is the kinematic viscosity and 𝜃ℎ−𝜃𝑐 is the temperature
difference across the cavity.

The dimensionless equations are solved over a 2D computational
domain 𝛺 subject to given initial and boundary conditions. The bound-
ary of 𝛺 is denoted 𝛤 . We subdivide the square boundary into 4 parts
representing the straight edges: 𝛤 = 𝛤𝐷 ∪ 𝛤𝑁 , 𝛤𝐷 ∩ 𝛤𝑁 = ∅, where
Dirichlet conditions are imposed on 𝛤𝐷 and Neumann conditions are
imposed on 𝛤𝑁 . Similarly, for temperature boundary conditions, we
write 𝛤 = 𝛤 𝜃𝐷∪𝛤

𝜃
𝑁 , 𝛤 𝜃𝐷∩𝛤

𝜃
𝑁 = ∅, where Dirichlet conditions are imposed

on 𝛤 𝜃𝐷 and Neumann conditions are imposed on 𝛤 𝜃𝑁 .

3. Reformulation of the momentum equation

The governing equations are rewritten in a mathematically equiv-
alent form to improve the ellipticity of the momentum equation and
to stabilise the corresponding numerical approximation. The success of
schemes introducing additional ellipticity into the momentum equation
arises from the explicit form of the viscous operator in the momentum
equation, which results in solving an elliptic saddle point problem.
For viscoelastic fluids this viscous term is scaled with the viscosity
ratio, 𝛽𝑣. Since we are interested predominantly in flows with dominant
viscoelastic effects, 𝛽𝑣 is small, typically 𝛽𝑣 ≈ 0.1. In this case the elastic
stress contribution can dominate the viscous term, which in turn can
lead to numerical instability. Perera and Walters [26] introduced a
change of variable for the flow of a second-order fluid which ensured
the well-posedness of the corresponding discrete system of equations
by increasing the ellipticity of the momentum equation. This approach

was employed in the elastic viscous split stress (EVSS) formulation by
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Mendolson et al. [27] also for flows of second-order fluids. Since the
change of variables performed in EVSS-type methods may be impossible
for some constitutive equations, Guénette and Fortin [8] proposed the
discrete EVSS (DEVSS) formulation, in which a change of variables
is not required and the viscous term in the momentum equation is
introduced only in an approximate sense.

In the case of incompressible flow, the rate-of-deformation tensor
𝐃 = (∇𝐮 + ∇𝐮𝑇 ) is introduced as an additional variable and the
imensionless momentum equation is expressed in the form

𝑒𝐷𝐮
𝐷𝑡

+ ∇𝑝 + 𝛾𝑢(∇2𝐮 − ∇ ⋅ 𝐃) + 𝛽𝑣∇2𝐮 − ∇ ⋅ 𝝉𝑝 = 0, (10)

here 𝛾𝑢 is the DEVSS stabilisation parameter. At the continuous level,
t is clear that the term multiplied by 𝛾𝑢 is equal to zero because
⋅𝐃 = ∇2𝐮. However, this is not the case for the corresponding discrete
roblem when the approximation space for 𝐃 does not contain the
radient of the approximation space for velocity. As a result, in regions
f high deformation rate where stress gradients are large the DEVSS
erm stabilises the numerical solution.

In the case of compressible flow, Mackay and Phillips [28] proposed
he following extension to the DEVSS formulation (10) in which the
omentum equation is now expressed in the form

𝑒𝐷𝐮
𝐷𝑡

+∇𝑝+𝛾𝑢

(

∇2𝐮+ 1
3
∇(∇⋅𝐮)−∇⋅𝐃

)

+𝛽𝑣

(

∇2𝐮+ 1
3
∇(∇⋅𝐮)

)

−∇⋅𝝉𝑝 = 0,

(11)

here the expression for 𝐃 is given by

=

(

∇𝐮 + ∇𝐮𝑇 − 2
3
(∇ ⋅ 𝐮)𝐈

)

. (12)

n both cases 𝝉𝑝 is determined by Eq. (2) where 𝐂 is the solution of the
imensionless version of the constitutive equation Eq. (3).

Brown et al. [29] used the velocity gradient tensor, 𝐆 = ∇𝐮, as an
dditional unknown, instead of using the rate of deformation tensor, 𝐃.
n this method, called the EVSS-G formulation, the additional unknown,
, is computed by means of an 𝐿2 projection of ∇𝐮. In analogy to the
VSS-G method, the DEVSS-G method (Liu et al. [30]) uses a projection
f the velocity gradient tensor instead of the rate of deformation tensor.
n this formulation, the velocity gradient projection tensor is used in
he constitutive equation as well as in the momentum equation. This is
he approach adopted in this paper. The solution space for the velocity
radient tensor is chosen to be [𝐿2(𝛺)]2×2 in order to be consistent with

the spaces for pressure and polymeric stress, which are chosen to be
𝐿2
0(𝛺) and [𝐿2(𝛺)]2×2𝑠 , respectively.

3.1. Explicit stabilisation of constitutive stress using orthogonal projection

In recent years, projection-based stabilisation techniques have been
considered as a computationally efficient means of treating the numer-
ical instabilities caused by the high Weissenberg problem [1,31]. Con-
sider the explicit Euler time discretisation of the general constitutive
equation in Eq. (6)

𝑊 𝑒(𝐂𝑛+1 − 𝐂𝑛)
𝛥𝑡

= [𝐈 − 𝐂 −𝑊 𝑒𝐅(𝐮,𝐂) − 𝐠2(𝐂,∇𝐮)]𝑛 (13)

where 𝐅 is given by

𝐅(𝐮,𝐂) = 𝐮 ⋅ ∇𝐂 − 𝐂∇𝐮 + ∇𝐮𝑇𝐂 + (∇ ⋅ 𝐮)𝐂 (14)

and 𝐠 is model dependent. If we define  as the suitable function space
for 𝐂, the weak formulation can than be written in terms of an inner
product
𝑊 𝑒
𝛥𝑡

⟨𝐂𝑛+1−𝐂𝑛,𝐑⟩ = ⟨[𝐈−𝐂−𝑊 𝑒𝐅(𝐮,𝐂)]𝑛−𝐠2(𝐂,∇𝐮),𝐑⟩ ∀𝐑 ∈  (15)

The discrete approximation of Eq. (15) can be written in the form
𝑊 𝑒

⟨𝐂𝑛+1 − 𝐂𝑛 ,𝐑⟩
4

𝛥𝑡 𝑘 𝑘
= ⟨[𝐈 − 𝐂𝑘 −𝑊 𝑒𝐅(𝐮𝑘,𝐂𝑘) − 𝐠2(𝐂𝑘,∇𝐮𝑘)]𝑛,𝐑⟩ ∀𝐑𝑘 ∈ 𝑘 (16)

here 𝐮𝑘 ≈ 𝐮 on some element 𝑘 ∈  (see next section for details
f the discrete solution spaces used). Local projection stabilisation
or the discrete problem can be described as follows: Let 𝑃𝑘 be the
2 projection onto an appropriate finite element space for velocity,
olymeric stress or pressure, neglecting boundary conditions. Let 𝑃⟂

𝑘 =
− 𝑃𝑘 be the orthogonal projection, where 𝐼 is the identity mapping,

.e.

⟂(𝐮𝑘) = ∫𝛺
(𝐮𝑘 − �̂�𝑘) ⋅ 𝐯𝑘 𝑑𝛺 ∀𝐯𝑘 ∈  (17)

here �̂�𝑘 is the 𝐿2 projection of u onto a lower order function space (for
urther details on the fluctuation operator, 𝑃⟂(⋅) see Castillo et al. [32]
nd Ganesan et al. [33]). To stabilise the computations of the confor-
ation stress the numerical diffusion term is added to the right-hand

ide of Eq. (16)

𝝉𝑝 (𝐂,𝐑) =
𝑁𝑃
∑

𝑘∈
ℎ𝑘⟨𝑐1𝜅𝑘∇𝐂,∇𝐑⟩ +

𝑁𝑃
∑

𝑘∈
ℎ𝑘⟨𝑐2𝜅𝑘∇ ⋅ 𝐂,∇ ⋅ 𝐑⟩ (18)

here 𝜅𝑘 is the scalar fluctuation operator defined by

𝑛+1
𝑘 =

|

|

|

|

|

|

|

|

|

|

𝑃⟂

[

𝑊 𝑒
𝛥𝑡

(𝐂𝑛+1𝑘 − 𝐂𝑛𝑘) + 𝐂𝑛𝑘 +𝑊 𝑒𝐅𝑛(∇𝐮𝑘,𝐂𝑘) − 𝐈
]

|

|

|

|

|

|

|

|

|

|

(19)

and 𝑐1, 𝑐2 are user chosen parameters. It is clear that, in the elements
where 𝐂𝑛𝑘 satisfies the discretised form of the constitutive equation,
𝜅𝑘 = 0. Thus the stabilised formulation of the discrete problem Eq. (16)
can be written

𝑊 𝑒
𝛥𝑡

⟨𝐂𝑛+1𝑘 − 𝐂𝑛𝑘,𝐑⟩ + 𝐒𝑛+1𝝉𝑝
= ⟨[𝐈 − 𝐂𝑘 −𝑊 𝑒𝐅(𝐮𝑘,𝐂𝑘)]𝑛,𝐑⟩ ∀𝐑𝑘 ∈ 𝑘

(20)

3.2. Choice of stabilisation parameters

Without the use of stabilisation techniques, the numerical algorithm
failed to converge beyond 𝑡 = 2. With the addition of Local Projection
and DEVSS stabilisations, the range of flow parameters for which stable
solutions could be achieved was extended. However, care had to be
exercised about the magnitude of the stabilisation parameters used
since if the values were chosen to be too large then there was a
reduction in the quality of the approximations, and they were not
physically meaningful. For example, if the values of the parameters 𝑐1
and 𝑐2 in Eq. (18) were increased further, converged approximations
were obtained for 𝑊 𝑒 > 5 but these were not physical. There is a range
of stabilisation parameters which enhances stability of the scheme
without impacting on the quality of the numerical approximations.
These considerations motivated the choice of parameters used in this
paper.

In the lid-driven cavity problem, for example, both LPS and DEVSS
stabilisation were necessary. Specifically, LPS extended the range of𝑊 𝑒
for which converged solutions were obtained from 𝑊 𝑒 = 0.1 to 𝑊 𝑒 =
2. The use of the DEVSS reformulation was necessary for extending
the range of 𝑅𝑒 and 𝑀𝑎 over which converged approximations were
obtained.

The stabilisation terms are largest in regions where the gradient of
the components of the stress tensor components is large (see Section 6),
but tend to zero as the mesh resolution increases. The challenge is to
find values of 𝑐1 and 𝑐2 such that the finite element solution converges
without the stabilisation terms negatively impacting on the accuracy
of the discrete conformation stress in any region of the flow. We found
the most suitable range to be 0.01 ≤ 𝑐1, 𝑐2 ≤ 0.1. In both Sections 6
and 7 numerical solutions were generated using the parameter choice

𝑐1 = 0.05 and 𝑐2 = 0.01.
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4. Spatial discretisation

Each of the steps in the semi-discrete problem (29) are written in a
weak formulation with the following choices of function spaces for the
velocity, pressure, stress and temperature

 =
{

𝐯 ∈ 𝐻1(𝛺)2 ∶ 𝐯 = 𝐯𝐷 on 𝛤𝐷,𝛁𝐯 ⋅ 𝐧 = 𝟎 on 𝛤𝑁
}

, (21)

 =
{

𝑞 ∈ 𝐿2(𝛺)
}

, (22)

 =
{

𝐑 ∶ 𝑅𝑖𝑗 ∈ 𝐿2(𝛺), 𝑅𝑖𝑗 = 𝑅𝑗𝑖, 𝑖, 𝑗 = 1, 2
}

, (23)
𝑇 =

{

𝜃 ∈ 𝐻1(𝛺) ∶ 𝜃 = 𝜃𝐷 on 𝛤 𝜃𝐷, ∇𝜃 ⋅ 𝐧 = 0 on 𝛤 𝜃𝑁
}

. (24)

The weak formulation of the semi-discrete problem (29) is discre-
ised using the finite element method. The computational domain, 𝛺,
s partitioned into triangular finite elements. On each element, each
ependent variable is approximated using a low-order polynomial in
hich the unknowns are the coefficients of the basis functions. These
re the degrees of freedom of the problem, which are typically approx-
mations to the dependent variables at the nodes. A set of algebraic
quations is then derived by choosing appropriate test functions and
valuating or approximating the integrals that appear in the weak
ormulation of Eq. (29). Essentially a test function is associated with
ach unknown in the problem.

We define conforming finite element spaces ℎ ⊂  , ℎ ⊂ , ℎ ⊂ 
nd 𝑇ℎ ⊂ 𝑇 in the usual manner

ℎ =
{

𝐯ℎ ∈ 𝐻1(𝛺)2 ∶ 𝐯 = 𝐯𝐽 on 𝛤𝐽 , 𝐯ℎ = 𝟎 on 𝛤𝐵
}

, (25)

ℎ =
{

𝑞ℎ ∈ 𝐿2(𝛺)
}

, (26)

ℎ =
{

𝐑 ∶ 𝑅ℎ,𝑖𝑗 ∈ 𝐿2(𝛺), 𝑅ℎ,𝑖𝑗 = 𝑅ℎ,𝑗𝑖, 𝑖, 𝑗 = 1, 2
}

, (27)
𝑇
ℎ =

{

𝜃ℎ ∈ 𝐻1(𝛺) ∶ 𝜃 = 𝜃0 on 𝛤𝐽
}

. (28)

his combination of discrete function spaces ensures that the
adyzhenskaya–Babuška–Brezzi (LBB) or inf-sup condition is satisfied.
n this paper we restrict ourselves to three types of compatible finite
lements suitable for modelling viscoelastic flow; namely 𝑃 1 piece-
ise linear continuous Lagrangian elements for pressure, density and

emperature, 𝑃2 piecewise quadratic continuous elements for velocity
nd 𝑃1 linear discontinuous Lagrangian elements for stress. In the
mplementation of DEVSS-G stabilisation we make use of the space
f discontinuous functions over 𝛺 constructed using 𝑃 0 elements for
pproximating the components of ∇𝐮.

. Time discretisation: Taylor-Galerkin method

A Taylor–Galerkin method is used to discretise the governing equa-
ions in time. Taylor–Galerkin methods were initially developed for
olving convective transport problems for which the governing equa-
ions are hyperbolic [34]. The motivation for Taylor–Galerkin methods
tems from the desire to derive high-order accurate time-stepping
chemes which can be used in conjunction with spatial discretisa-
ion methods. A two-step Taylor–Galerkin algorithm for computing
onisothermal and (weakly) compressible viscoelastic flow is given by

𝐭𝐞𝐩 𝟏𝐚
(

𝜌𝑛+
1
2 − 𝜌𝑛

𝛥𝑡∕2

)

= −𝐮𝑛 ⋅ ∇𝜌𝑛 − 𝜌𝑛(∇ ⋅ 𝐮𝑛)

𝐒𝐭𝐞𝐩 𝟏𝐛 𝑅𝑒

(

𝜌𝑛+
1
2 𝐮𝑛+

1
2 − 𝜌𝑛𝐮𝑛

𝛥𝑡∕2

)

= 𝛽𝑣

(

∇2𝐮𝑛 + 1
3
∇(∇ ⋅ 𝐮𝑛)

)

− 𝑅𝑒𝐮𝑛 ⋅ ∇𝐮𝑛 + ∇ ⋅ 𝝉𝑛𝑝 − ∇𝑝𝑛

𝐒𝐭𝐞𝐩 𝟏𝐜 𝑊 𝑒

(

𝐂𝑛+
1
2 − 𝐂𝑛
𝛥𝑡∕2

)

𝑇 𝑛
5

= [𝐈 − 𝐂 −𝑊 𝑒(𝐮 ⋅ ∇𝐂 − 𝐂∇𝐮 + ∇𝐮 𝐂 + ∇ ⋅ 𝐮𝐂) − 𝐠2(𝐂,𝐃)]
𝐒𝐭𝐞𝐩 𝟏𝐝 𝜌𝑛
(

𝜃𝑛+
1
2 − 𝜃𝑛
𝛥𝑡∕2

)

= 𝐷𝑖∇2𝜃𝑛 − 𝜌𝑛𝐮𝑛 ⋅ ∇𝜃𝑛

+ 𝑉ℎ(𝝈𝑛 ∶ ∇𝐮𝑛 − 𝑝𝑛∇ ⋅ 𝐮𝑛)

𝐭𝐞𝐩 𝟐 𝑅𝑒𝜌𝑛
(

𝐮∗ − 𝐮𝑛
𝛥𝑡

)

= 1
2
𝛽𝑣

(

∇2𝐮𝑛 + 1
3
∇(∇ ⋅ 𝐮𝑛)

)

− 𝑅𝑒𝐮𝑛+
1
2 ⋅ ∇𝐮𝑛+

1
2 + ∇ ⋅ 𝝉

𝑛+ 1
2

𝑝 − ∇𝑝𝑛

𝐒𝐭𝐞𝐩 𝟑
(

𝜌𝑛+1 − 𝜌𝑛

𝛥𝑡

)

= −𝐮𝑛+
1
2 ⋅ ∇𝜌𝑛+

1
2 − 𝜌𝑛+

1
2 (∇ ⋅ 𝐮𝑛+

1
2 )

𝐒𝐭𝐞𝐩 𝟒 𝑝𝑛+1 − 𝑝𝑛 =
𝑅𝑒(1 + �̃�𝜃𝑛)

𝑀𝑎2
(𝜌𝑛+1 − 𝜌𝑛)

𝐒𝐭𝐞𝐩 𝟓 𝑅𝑒

(

𝜌𝑛+1𝐮𝑛+1 − 𝜌𝑛𝐮∗
𝛥𝑡

)

= −1
2
∇(𝑝𝑛+1 − 𝑝𝑛)

+ 1
2
𝛽𝑣

(

∇2𝐮𝑛+1 + 1
3
∇(∇ ⋅ 𝐮𝑛+1)

)

𝐭𝐞𝐩 𝟔 𝑊 𝑒

(

𝐂𝑛+1 − 𝐂𝑛
𝛥𝑡

)

+ 𝐂𝑛+1 = [𝐈

− 𝑊 𝑒(𝐮 ⋅ ∇𝐂 − 𝐂 ⋅ ∇𝐮 + ∇𝐮𝑇 ⋅ 𝐂 + (∇ ⋅ 𝐮)𝐂)

− 𝐠2(𝐂,𝐃)]
𝑛+ 1

2

𝐒𝐭𝐞𝐩 𝟕
(

𝜌𝑛+1𝜃𝑛+1 − 𝜌𝑛𝜃𝑛

𝛥𝑡

)

= 𝐷𝑖∇2𝜃𝑛+1 − 𝜌𝑛+
1
2 𝐮𝑛+

1
2 ⋅ ∇𝜃𝑛+

1
2

+ 𝑉ℎ(𝝈
𝑛+ 1

2 ∶ ∇𝐮𝑛+
1
2 − 𝑝𝑛∇ ⋅ 𝐮𝑛)

(29)

he scheme given by (29) represents a second-order (in time) discreti-
ation for the system of equations for weakly compressible viscoelastic
low (Eq. (6)).

Step 1 represents an explicit discretisation of the continuity, mo-
entum, constitutive and energy equations over a half time step. An

ntermediate velocity is computed in Step 2 and together with Step 5
hese represent a second-order Crank–Nicolson discretisation of the mo-
entum equation. Step 3 is a discretisation of the continuity equation
sing the mid-point rule. Step 4 is a discretisation of the equation of
tate in which the temporal derivative of density is replaced by the
emporal derivative of pressure using the chain rule

𝜕𝜌
𝜕𝑡

= 𝑀𝑎2

𝑅𝑒(1 + �̃�𝜃)
𝜕𝑝
𝜕𝑡
. (30)

Steps 5, 6 and 7 represent discretisations of the momentum, constitutive
and energy equations, respectively, in which the nonlinear terms are
evaluated using the mid-point rule and the linear terms are treated
implicitly.

6. Regularised lid-driven cavity problem

In this section we compute solutions to the regularised lid-driven
cavity problem. The fluid is contained in a square cavity 𝛺 = [0, 1] ×
[0, 1], bounded by solid walls with the top boundary moving from left
to right. The boundary of 𝛺 is denoted by 𝜕𝛺 with 𝜕𝛺 = 𝜕𝛺1 ∪ 𝜕𝛺2
where 𝜕𝛺1 represents the moving lid (top boundary), and 𝜕𝛺2 the other
hree sides of the boundary on which no-slip boundary conditions are
mposed.

To mitigate against the numerical challenges caused by the initial
apid changes in deformation near the upper two corners, the lid veloc-
ty is regularised such that ∇𝐮 vanishes at (0, 1) and (1, 1). Accordingly

we use the velocity profile proposed by Venkatesan and Ganesan [1]

𝑢𝑥(𝑥, 1, 𝑡) = 8[1 + tanh(8(𝑡 − 0.5))]𝑥2(1 − 𝑥)2

𝑢𝑦(𝑥, 1, 𝑡) = 0, 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0. (31)

The velocity is ramped so that 𝐮 ≈ (0, 0) when 𝑡 = 0. We also impose
𝑝
that 𝝉 (𝑥, 𝑦, 0) = 𝟎. The average horizontal velocity component of the
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Fig. 1. Finite element meshes M1 and M4 for the lid driven cavity problem.
Table 1
Characteristics of the finite element meshes M1–M4 for the lid driven cavity problem.

Mesh Cells ℎ𝑚𝑖𝑛 ℎ𝑚𝑎𝑥 𝐷𝑜𝐹 (𝑝) 𝐷𝑜𝐹 (u) 𝐷𝑜𝐹 (𝐶) Time/iteration

M1 3535 0.01109 0.03975 1854 14 484 21 726 0.94
M2 7813 0.00758 0.02651 4069 31 900 47 850 2.36
M3 13 889 0.00532 0.01989 7118 56 248 84 372 4.36
M4 31 024 0.00362 0.01326 15 836 125 390 188 085 7.24

lid, �̂� , is given by

�̂� = ∫

1

0
𝑢𝑥(𝑥, 1, 𝑡) 𝑑𝑥 = 4

15
[1 + tanh(8(𝑡 − 0.5))]→ 8

15
as 𝑡→ ∞ (32)

Sousa et al. [35] showed that the use of this regularisation of the
lid velocity significantly reduces the strength of the main recirculation
region compared with the unregularised problem. In order to better
mimic the unregularised problem, weaker regularisations can be used
in which the fluid moves at or close to the maximum velocity over a
larger proportion of the top wall.

The domain, 𝛺 is decomposed into triangular elements. Fig. 1 shows
meshes M1 and M4 and Table 1 gives the mesh characteristics. The
refinement method used is similar to the technique used by Venkastesan
and Ganesan [1] where cells with centres within 0.05∕𝐿 of the bound-
ary are divided in two by connecting the mid-point of the longest side
to the opposite vertex. The cell adjacent to the refined element is also
subdivided in the same way to prevent the creation of a hanging node.

6.1. Results

All of the numerical simulations presented in this section (incom-
pressible and compressible) utilise the DEVSS formulation with DEVSS
parameter 𝛾𝑢 = 1 − 𝛽𝑣 and use orthogonal projection stabilisation with
parameters 𝑐1 = 0.05 and 𝑐2 = 0.01. Results were generated on a four
core single CPU machine and the numerical method was implemented
using the FEniCS finite element library [36]. Python modules used to
generate the following results can be found on the GitHub software
repository [37]. Typical simulations had a run time of between 4-8 h
depending on mesh resolution.

6.1.1. Mesh convergence
First we compare the kinetic and elastic energy profiles for the

unstructured meshes in Fig. 1 in order to demonstrate the mesh con-
vergence of the numerical approximation. Fig. 2 shows the evolution
of the kinetic and potential energies for a compressible viscoelastic
fluid defined by the parameters 𝑅𝑒 = 10, 𝑊 𝑒 = 0.25 and 𝑀𝑎 = 0.001
6

Table 2
Lid-driven cavity problem: Convergence of the steady state values of (a) kinetic energy
and (b) elastic energy values at 𝑡 = 15 on meshes M1–M4 for 𝑊 𝑒 = 0.5, 𝑅𝑒 = 0.

Mesh 𝐸𝑘 𝐸𝑒 𝜓𝑚𝑖𝑛 𝑥𝑚𝑖𝑛 𝑦𝑚𝑖𝑛
M1 0.0109 2.755 −0.0641 0.498 0.827
M2 0.0108 2.933 −0.0687 0.491 0.810
M3 0.0107 2.935 −0.0693 0.486 0.800
M4 0.0107 2.935 −0.0693 0.486 0.800

on each of the four meshes M1–M4. The kinetic and elastic energies
increase from 0 under the motion of the top wall with the kinetic energy
responding faster than the elastic energy. The kinetic energy overshoots
and attains its peak value at 𝑡 = 1 before decreasing to its steady sate
value at 𝑡 = 2. The elastic energy increases monotonically and reaches
its steady state value at 𝑡 = 4. Convergence with mesh refinement is
demonstrated. Apart from a small deviation in the kinetic energy during
the transient period of the flow there is close agreement between the
energy profiles throughout the duration of the simulation and especially
at steady-state. Table 2 provides a convergence analysis of the steady
state values of the kinetic and elastic energies for 𝑊 𝑒 = 0.5 and 𝑅𝑒 = 0.
Also shown in this table is the minimum value of the stream function
and its location. The values in this table demonstrate that convergence
has been attained on M3.

In Fig. 3 we show the local influence of the various numerical
stabilisation components of the numerical scheme for 𝑅𝑒 = 0, 𝑊 𝑒 = 0.5,
𝛽𝑣 = 0.5 at 𝑡 = 2. In Fig. 3(a) and (b), the contours of the relative
errors in the normal components of the rate of deformation tensor 𝐃
are shown. The maximum relative error is approximately 5 × 10−3 and
as expected the dominant error is confined to a region near the top
plate and is convected into the upper region of the cavity. Similarly, in
Fig. 3(c) we present the contour plot of the scalar fluctuation parameter
𝜅 in the orthogonal projection scheme, where we have defined

𝜅 =

(

∫𝛺
|𝜅ℎ|

2𝑑𝛺

)1∕2

(33)

and 𝜅ℎ is the orthogonal projection stabilisation term on element ℎ
defined in Eq. (19). This parameter is zero in the bulk of the domain
and only becomes activated in elements near the top plate.

6.1.2. Incompressible flow
In this section comparisons are made between the predictions of the

scheme proposed in this paper and results in the literature [1,35,38].
Contours of the velocity components are shown in Fig. 4. There is a
significant build-up of viscoelastic stress in the region near the upper
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Fig. 2. Lid-driven cavity problem: Influence of the evolution of (a) kinetic energy, (b) elastic energy for meshes M1–M4 for 𝑊 𝑒 = 0.25, 𝑅𝑒 = 10.0.

Fig. 3. Effect of numerical stabilisation for the lid driven cavity problem: Contours of the relative magnitude of the errors in the normal components of the velocity gradient
tensor (a) (∇𝐮)𝑥𝑥, (b) (∇𝐮)𝑦𝑦 computed using DEVSS, (c) the scalar fluctuation parameter 𝜅 in the orthogonal projection scheme, at 𝑡 = 2.0 (𝑅𝑒 = 0, 𝑊 𝑒 = 0.5, 𝛽𝑣 = 0.5).
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Fig. 4. Lid driven cavity flow: contours of the velocity components (a) 𝑢𝑥 and (b) 𝑢𝑦 for 𝑊 𝑒 = 0.5, 𝛽𝑣 = 0.5, 𝑅𝑒 = 0 at 𝑡 = 10.
Fig. 5. Lid-driven cavity flow: (a) kinetic and (b) elastic energy for 𝑊 𝑒 = 0.1, 0.2, 0.3, 0.4, 0.5 and 𝑅𝑒 = 1 and 𝑀𝑎 = 0.01.
Table 3
Incompressible lid driven cavity flow: Comparison of minimum value
of stream function and its location with results in the literature for
𝑊 𝑒 = 0.5, 𝑅𝑒 = 0.
Reference 𝜓𝑚𝑖𝑛 𝑥𝑚𝑖𝑛 𝑦𝑚𝑖𝑛
Current work −0.0693 0.486 0.800
Venkatesan et al. [1] −0.0698 0.470 0.798
Pan et al. [39] −0.0700 0.469 0.798
Sousa et al. [35] – 0.467 0.801
Castillo et al. [31] – 0.470 0.800

right corner, pushing the eye of rotation to the left of its location for
𝑊 𝑒 = 0. Table 3 provides quantitative comparisons and shows that
the predictions of the minimum value of the stream function and the
𝑦 coordinate of its location are in good agreement with results in the
literature [1,31,35,39]. Although the 𝑥 coordinate of the location of the
minimum value of the stream function has converged (see Table 2) it
differs by 3% from other predictions in the literature. This may be due
to the fact that the stream function is not a primary variable in this
formulation which introduces interpolation error in the determination
of the location of the minimum value of the stream function.

6.1.3. Compressible flow
In this section we present numerical results illustrating the effects

of compressibility. Numerical simulations for compressible flow were
generated for the following Mach numbers: 𝑀𝑎 = 0.001, 0.01, 0.1.
At these Mach numbers there is little qualitative difference in the
8

behaviour of flow from the incompressible case. However, there are
quantitative differences and we provide comparisons of the influence of
𝑀𝑎 on kinetic and elastic energy, centre of recirculation and minimum
value of the stream function.

Fig. 5 shows the influence of viscoelasticity on the evolution of the
kinetic and potential elastic energy profiles for 𝑅𝑒 = 1 and 𝑀𝑎 = 0.01.
As anticipated the elastic energy is dominant over kinetic energy and
the steady state value of the elastic energy increases monotonically and
rapidly with respect to increases in the value of 𝑊 𝑒. For 𝑊 𝑒 = 0.5 the
elastic energy is more than two orders of magnitude greater than the
kinetic energy. On the other hand there is a single overshoot in the
kinetic energy for all values of 𝑊 𝑒 considered before it decreases to its
steady state value. Velocity overshoots are a characteristic feature of
viscoelastic flows with the magnitude of the overshoot increasing with
increasing 𝑊 𝑒 [40]. This gives rise to the kinetic energy behaviour
observed in Fig. 5 which exhibits similar overshoot behaviour. The
steady state values of the kinetic energy decrease with respect to
increases in the value of 𝑊 𝑒 and steady state values are reached by
𝑡 = 6. The elastic energy takes longer to reach steady state and the
tiem taken to reach steady state increases with increasing 𝑊 𝑒.

Fig. 6 displays the same information for a larger value of 𝑅𝑒. The
evolution of the energy profiles in this figure are for 𝑅𝑒 = 5. The
trends are the same as for Fig. 5 except that the influence of inertia
has diminished the growth of the elastic energy with the steady state
value of elastic energy reduced by around 25% for 𝑊 𝑒 = 0.5 while
the corresponding steady state value of kinetic energy is increased by
around 10%.
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Fig. 6. Lid-driven cavity flow: (a) kinetic and (b) elastic energy for 𝑊 𝑒 = 0.1, 0.2, 0.3, 0.4, 0.5 and 𝑅𝑒 = 5 and 𝑀𝑎 = 0.01.
Fig. 7. Lid-driven cavity flow: (a) kinetic and (b) elastic energy for 𝑊 𝑒 = 0.1, 0.2, 0.3, 0.4, 0.5 and 𝑅𝑒 = 5 and 𝑀𝑎 = 0.1.
Fig. 7 displays the same information as Fig. 6 but for 𝑀𝑎 = 0.1. Elas-
tic energy is increased over the corresponding profiles for 𝑀𝑎 = 0.01
while kinetic energy is slightly reduced. The increased compressibility
produces a series of undershoots and overshoots in the evolution of
kinetic energy. The number of overshoots and undershoots decreases
and their magnitudes diminish with increasing 𝑊 𝑒 and have damped
out for all cases by around 𝑡 = 4 whereas for 𝑀𝑎 = 0.01 they persist in
time for 𝑊 𝑒 = 0.5.

Fig. 8 shows the influence of 𝑀𝑎 on the evolution of the kinetic
and elastic energy of the flow for 𝑅𝑒 = 1 and 𝑊 𝑒 = 0.3. As in the
case for incompressible flow, the steady state kinetic energy of the
fluid is reduced as the Weissenberg number is increased and stored
elastic energy is significantly increased. Varying the Mach number in
the range 0 ≤ 𝑀𝑎 ≤ 0.1 does not change the underlying behaviour.
However, when the Mach number reaches 0.1 unstable behaviour in
the flow persists for the first few seconds altering the kinetic energy
profile (shown in Fig. 7).

The underlying qualitative behaviour of the flow is the same for
both the compressible and incompressible cases. The Weissenberg num-
ber has a significant influence on the evolution of both kinetic and
elastic energy. The kinetic energy grows as the lid accelerates, reaching
a peak between 𝑡 = 0.5 and 𝑡 = 1.5 before falling to a steady state value.
The elastic energy grows rapidly reaching a plateau proportional to the
Weissenberg number. The Weissenberg number has little impact on the
peak kinetic energy, which remains close to the steady state value for
the Newtonian case. Compressibility does have a noticeable impact on
the kinetic and elastic energy profiles. Increasing 𝑀𝑎 increases the peak
and steady-state kinetic energy and also increases the elastic energy.
9

Table 4
Compressible lid-driven cavity flow: Dependence of the min-
imum value of stream function and its location on 𝑀𝑎 for
𝑅𝑒 = 1, 𝑊 𝑒 = 0.5.
Ma 𝜓𝑚𝑖𝑛 𝑥𝑚𝑖𝑛 𝑦𝑚𝑖𝑛
0.001 −0.0643 0.4862 0.8124
0.01 −0.0599 0.4892 0.8266
0.1 −0.0532 0.4911 0.8353

As shown in Fig. 9(a) and (b) recirculation velocity weakens as
𝑊 𝑒 increases from 0 to 0.5. Fig. 9(a) tracks the x-component of the
velocity field at the horizontal mid-point of the flow. Similarly Fig. 9(b)
shows the y-component of the velocity along the line [𝑥, 0.75]. Overall
there is a net reduction in peak-velocity as 𝑊 𝑒 is increased which is
demonstrated in the lower absolute maximum values in 𝑢𝑥 and 𝑢𝑦 in
(a) and (b) for 𝑊 𝑒 = 0.5 compared to 𝑊 𝑒 = 0.1. Table 4 provides
quantitative information about the influence of 𝑀𝑎 on the minimum
value of the stream function and its location.

For an inertia-less Newtonian fluid the recirculation vortex in the
flow is symmetrical about the line 𝑥 = 0.5. Elastic effects cause the
symmetry to be broken. As the Weissenberg number is increased the
location of the eye of the vortex moves progressively away from the
centre in the opposite direction to the movement of the lid. This can be
seen in Fig. 10 where the contours of the stream function are presented
for 𝑊 𝑒 = 0.1 and 𝑊 𝑒 = 0.5 for 𝑅𝑒 = 0 and 𝑀𝑎 = 0.01.

Contours of the three components of the steady-state viscoelastic
extra-stress tensor are shown in Fig. 11 for 𝑊 𝑒 = 0.5, 𝛽𝑣 = 0.5, 𝑅𝑒 = 1,
𝑀𝑎 = 0.01. The stress component 𝜏 has a boundary layer along the
𝑥𝑥
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Fig. 8. Lid-driven cavity Flow: (a) kinetic and (b) elastic energy for 𝑀𝑎 = 0.001, 0.01, 0.1, 𝑅𝑒 = 1 and 𝑊 𝑒 = 0.5.
Fig. 9. Lid-driven cavity Flow: Cross-section of velocity components for 𝑊 𝑒 = 0.1, 0.2, 0.3, 0.4, 0.5, and 𝑅𝑒 = 1 and 𝑀𝑎 = 0.01.
Fig. 10. Lid-driven cavity flow: contours of the stream function for (a) 𝑊 𝑒 = 0.1 and (b) 𝑊 𝑒 = 0.5 for 𝑅𝑒 = 0 and 𝑀𝑎 = 0.01.
upper boundary whilst 𝜏𝑥𝑦 and 𝜏𝑦𝑦 display large gradients in the upper
right-hand corner. The symmetry of the flow is broken due to elastic
effects as a result of the asymmetry of the normal stress values. The
eye of the recirculation region shifts upstream. However, this trend is
weakened when the Reynolds number is increased above zero.

The kinetic energy is unaffected by changes in 𝑀𝑎 and the elastic
energy is decreased as 𝑀𝑎 is increased meaning viscoelasticity and
10
compressibility have opposite effects on the elastic energy. However
at low Mach numbers the results are close to those for incompressible
flow.

The minimum value of the stream function is the measure used for
quantitative comparisons with numerical investigations reported in the
literature. For inertia-less Newtonian flow the eye of rotation remains
in a central location. As the Weissenberg number increases the location
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Fig. 11. Lid driven cavity flow: contours of the stress components (a) 𝜏𝑥𝑥, (b) 𝜏𝑥𝑦, (c) 𝜏𝑦𝑦 for 𝑊 𝑒 = 0.5, 𝛽 = 0.5, 𝑅𝑒 = 1, 𝑀𝑎 = 0.01.
Table 5
Compressible lid driven cavity flow: influence of the minimum value of the stream function, 𝜓𝑚𝑖𝑛, and its location
on 𝑊 𝑒 and 𝑀𝑎 for 𝑅𝑒 = 0 at 𝑡 = 15.

𝑊 𝑒

𝑀𝑎 0.1 0.25 0.5 0.75 1.0

0.001 −0.0813 −0.0718 −0.0643 −0.0482 −0.0425
(0.4922,0.8255) (0.4897,0.8206) (0.4842,0.8123) (0.4806,0.8116) (0.4746,0.8095)

0.01 −0.0812 −0.0710 −0.0600 −0.0450 −0.0376
(0.4927,0.8255) (0.4902,0.8205) (0.4862,0.8266) (0.4816,0.8106) (0.4760,0.8098)

0.1 −0.0811 −0.0695 −0.0532 – –
(0.4931,0.8265) (0.4917,0.8228) (0.4811,0.8353) – –
of the minimum value of the stream function shifts leftward and the
symmetry of the flow is progressively broken. However, as the Reynolds
number is increased, the eye of rotation shifts back towards the centre
line 𝑥 = 0.5. Increased compressibility also causes the eye of rotation
to shift towards the centre line although the effect is relatively small at
low Mach numbers.

Values of stream function minimum, 𝜓𝑚𝑖𝑛, and its location are
tabulated in Tables 5–6. They provide insight into how steady-state
flow characteristics are influenced by elasticity (𝑊 𝑒), inertia (𝑅𝑒) and
compressibility (𝑀𝑎). Table 5 compares the influence of 𝑊 𝑒 and 𝑀𝑎
for 𝑅𝑒 = 0. When 𝑀𝑎 is fixed, 𝜓𝑚𝑖𝑛 increases with increasing 𝑊 𝑒.
Correspondingly the eye of the vortex moves slightly to the left but
there are no major changes in its location for the range of parameters
11
considered. Table 6 compares the influence of 𝑅𝑒 and 𝑀𝑎 for 𝑊 𝑒 = 0.5.
For a fixed value of 𝑀𝑎, 𝜓𝑚𝑖𝑛 increases slowly with increasing 𝑅𝑒.
Correspondingly the eye of the vortex moves slightly to the right with
increasing 𝑅𝑒 but the change in its location is minimal for the range of
parameters considered. Where there are missing values, a steady state
solution was not attained.

7. Natural convection

In this section we consider the problem of buoyancy driven flow of
an Oldroyd-B fluid in a square cavity whose vertical sides are kept at
(different) constant temperatures and whose horizontal sides are par-
tially insulated. More specifically, we impose the following boundary
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Table 6
Compressible lid-driven cavity flow: influence of the minimum value of the stream function, 𝜓𝑚𝑖𝑛, and its location
on 𝑅𝑒 and 𝑀𝑎 for 𝑊 𝑒 = 0.5 at 𝑡 = 15.

𝑅𝑒

𝑀𝑎 1 5 10 25 50

0.001 −0.0643 −0.0623 −0.0592 −0.0581 −0.0574
(0.4862,0.8124) (0.4886,0.7866) (0.4903,0.7686) (0.4916,0.7458) (0.4955,0.7215)

0.01 −0.0600 −0.0622 −0.0592 −0.0581 −0.0574
(0.4892,0.8266) (0.4905,0.7925) (0.4915,0.7726) (0.4918,0.7425) (0.4925,0.7495)

0.1 −0.0532 −0.0530 −0.0527 – –
(0.4911,0.8353) (0.4918,0.8236) (0.4925,0.8056) – –
t

conditions on velocity and temperature

𝐮(𝑡, 𝑥, 0) = 𝐮(𝑡, 𝑥, 1) = 0 = 𝐮(𝑡, 0, 𝑦) = 𝐮(𝑡, 1, 𝑦)
𝜃(𝑡, 0, 𝑦) = 𝜃ℎ(𝑡), 𝜃(𝑡, 1, 𝑦) = 0,
𝜕𝜃
𝜕𝑛

(𝑡, 𝑥, 1) = 𝐵𝑖𝜃, 𝜕𝜃
𝜕𝑛

(𝑡, 𝑥, 0) = 0

(34)

here 𝐵𝑖 is the Biot number defined by

𝐵𝑖 =
𝐿ℎ𝑐
𝜅
,

nd

ℎ(𝑡) =
1
2
(1 + tanh(8𝑡 − 4)).

he function 𝜃ℎ(𝑡) is chosen so that the temperature increases smoothly
from a value near 0 to a value near 1.

The Boussinesq approximation, in which the thermophysical prop-
erties of the fluid are assumed to be constant (i.e. no equation of state
coupling pressure, density and temperature) is invoked. This approxi-
mation replaces the body force term in the momentum equation in the
governing Eqs. (1) with the term 𝑅𝑎𝑃𝑟𝜃𝐤. In this approximation the
density is assumed to depend linearly on temperature and compressible
effects are contained within the body force term using

𝜌 = 𝜌0(1 − 𝛽(𝜃 − 𝜃𝑐 )) (35)

in the dimensional form of the equation where 𝜌0 is the density at a
reference temperature 𝜃𝑐 .

In the numerical simulations two quantities associated with the flow
are reported. The first is the average Nusselt number defined by

𝑁𝑢(𝑡) = ∫

1

0

𝜕𝜃
𝜕𝑛

(𝑡, 0, 𝑦) 𝑑𝑦, (36)

which is a measure of overall heat transfer. An approximation of the
normal derivative on the hot wall in Eq. (36) is made using the finite
difference approximation

𝜕𝜃
𝜕𝑛

(𝑡, 0, 𝑦) ≈
𝜃(𝑡, ℎ0,𝑦, 𝑦) − 𝜃(𝑡, 0, 𝑦)

ℎ0,𝑦
, (37)

here ℎ0,𝑦 is the length of the cell adjacent to the left-hand boundary in
he 𝑥-direction, The second quantity is the steady-state maximum flow
peed. These two quantities are calculated for different values of 𝑊 𝑒
nd 𝑅𝑎 keeping 𝑃𝑟 and the other parameters fixed.

A structured mesh is used for this problem with increased mesh
efinement near the cavity walls. In particular, we found that the most
uitable choice of mesh was structured with a non-uniform distribution
f finite elements clustered along the 𝑥-axis so that refinement occurs
lose to the left and right walls. The mesh is defined by

𝑥𝑖, 𝑦𝑗 ) =

(

1
2

(

1 − cos
( 𝑖𝜋
𝑁

))

,
𝑗
𝑁

)

, 0 ≤ 𝑖, 𝑗 ≤ 𝑁. (38)

7.1. Incompressible flow

In this subsection we consider incompressible flow for which the
Boussinesq approximation is used to describe the buoyancy forces. We
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begin by performing a mesh convergence study. Three finite element
Table 7
Natural convection flow: Characteristics of the finite element meshes M1–M3 for the
buoyancy-driven flow problem.

Mesh N Cells ℎ𝑚𝑖𝑛 ℎ𝑚𝑎𝑥 𝐷𝑜𝐹 (𝑝) 𝐷𝑜𝐹 (u) 𝐷𝑜𝐹 (𝐶)

M1 40 3200 0.02505 0.04652 1681 22 722 19 683
M2 60 7200 0.01668 0.03102 3721 50 822 43 923
M3 80 12 800 0.01251 0.02327 6561 90 242 77 763

Table 8
Natural convection flow: Spatial and temporal convergence of the steady
state value of 𝑁𝑢 for 𝑅𝑎 = 1000, 𝑊 𝑒 = 0.1 and 𝑃𝑟 = 1.0, 𝛽𝑣 = 0.5.
𝛥𝑡 𝑀1 𝑀2 𝑀3

0.005 0.824415 0.837543 0.848844
0.001 0.859169 0.860261 0.861656
0.0005 0.859504 0.860266 0.861697

Table 9
Natural convection flow: Steady-state values of 𝐸𝑘 and
𝑁𝑢 for meshes M1–M3 with flow parameters 𝑅𝑎 =
1000, 𝑊 𝑒 = 0.1 and 𝑃𝑟 = 1.0.
Mesh 𝐸𝑘 𝑁𝑢

M1 0.460188 0.811989
M2 0.427991 0.823058
M3 0.413851 0.824643

meshes are considered, the characteristics of which are shown in Ta-
ble 7. Spatial and temporal convergence data are provided in Table 8
and Fig. 12. The steady state Nusselt number, 𝑁𝑢 converges up to two
decimal places for meshes 𝑀2 and 𝑀3 when 𝛥𝑡 ≤ 0.001. Fig. 12 shows
he dependence of the evolution of the kinetic energy, 𝐸𝑘, and Nusselt

number, 𝑁𝑢, on mesh size for M1–M3. Converged approximations to
these quantities are obtained on mesh M3 (see Table 9).

Table 10 shows the maximum flow speed attained for values of 𝑅𝑎
and 𝑊 𝑒 in the range 102 ≤ 𝑅𝑎 ≤ 104 and 0 ≤ 𝑊 𝑒 ≤ 2 for 𝑃𝑟 = 2 and
𝛽𝑣 = 0.5. The maximum flow speed increases rapidly with increasing
𝑅𝑎 for each value of 𝑊 𝑒 considered. The introduction of viscoelasticity
leads to an initial substantial decrease in the maximum flow speed
as 𝑊 𝑒 is increased from 𝑊 𝑒 = 0 to 𝑊 𝑒 = 0.1 followed by a more
gradual decrease as 𝑊 𝑒 is increased further to 𝑊 𝑒 = 2. A greater initial
decrease in relative terms is observed with increasing 𝑅𝑎. For 𝑊 𝑒 = 2
the maximum flow speed has decreased to about 10% of its value at
𝑊 𝑒 = 0 for all values of 𝑅𝑎 considered.

Table 11 presents the value of 𝑁𝑢 over the same range of 𝑅𝑎 and
𝑊 𝑒 for 𝑃𝑟 = 2 and 𝛽𝑣 = 0.5. Whilst the value of 𝑁𝑢 increases with 𝑅𝑎,
viscoelasticity works to counteract this effect in a powerful way. For
example, at 𝑅𝑎 = 104, 𝑁𝑢 = 2.28 for Newtonian flow (𝑊 𝑒 = 0) which
reduces to 𝑁𝑢 = 1.10 when 𝑊 𝑒 = 2. This is the same value obtained
for Newtonian flow for 𝑅𝑎 = 102. At high values of 𝑊 𝑒 there is weaker
dependence of 𝑅𝑎 on 𝑁𝑢. For lower values of 𝑊 𝑒, the influence of 𝑅𝑎
on 𝑁𝑢 is more significant with 𝑁𝑢 increasing by almost a factor of two
between 𝑅𝑎 = 102 and 𝑅𝑎 = 104 for 𝑊 𝑒 = 0.1. Increasing 𝑊 𝑒 has a
larger impact on 𝑁𝑢 for high values of 𝑅𝑎 than for low values. Fig. 14
shows the effect on steady-state temperature of 𝑊 𝑒 at 𝑅𝑎 = 103. These
trends would suggest that elasticity has a negative effect on the capacity
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Fig. 12. Natural convection flow: Influence of the evolution of (a) 𝐸𝑘, (b) 𝑁𝑢 for meshes M1–M3 with flow parameters 𝑅𝑎 = 1000, 𝑊 𝑒 = 0.1 and 𝑃𝑟 = 1.0.
Table 10
Natural convection flow: dependence of the steady-state values of max|u| on 𝑅𝑎 and
𝑊 𝑒, for 𝑃𝑟 = 2, 𝛽𝑣 = 0.5.

𝑅𝑎

𝑊 𝑒 102 103 2 × 103 5 × 103 104

0 1.566 7.315 9.365 13.569 18.256
0.1 0.866 2.624 3.568 4.211 5.545
0.25 0.684 2.235 3.144 3.464 4.101
0.5 0.418 1.430 2.001 2.336 3.266
1.0 0.273 1.036 1.563 1.803 3.001
2.0 0.190 0.782 1.233 1.633 –

Table 11
Natural convection flow: dependence of the steady-state values of 𝑁𝑢 on 𝑅𝑎 and 𝑊 𝑒,
for 𝑃𝑟 = 2, 𝛽𝑣 = 0.5.

𝑅𝑎

𝑊 𝑒 102 103 2 × 103 5 × 103 104

0 1.101 1.157 1.342 1.855 2.285
0.1 1.095 1.110 1.182 1.402 1.785
0.25 1.057 1.082 1.121 1.256 1.547
0.5 1.032 1.056 1.069 1.010 1.299
1.0 1.022 1.042 1.051 1.079 1.115
2.0 1.017 1.028 1.042 1.066 1.101

of a fluid to transfer heat via convection, especially for flows in the low
Rayleigh number regime.

7.2. Weakly compressible flow

In order to fully couple the momentum and energy conservation
laws we need to move beyond the Boussinesq approximation and use
an equation of state relating density and temperature. Implicit in the
weakly compressible Taylor–Galerkin scheme given in Section 5 is a
relation between density and pressure of the form

𝑝 + 𝐵 = 𝐵𝜌𝑚 (39)

where 𝐵 is a constant. This isothermal equation of state is derived
empirically and is suitable for describing polymer melts and solutions
and other liquids under the linear approximation (𝑚 = 1). In this case,
the equation of state is
𝜕𝑝
𝜕𝜌

=
(𝐵 + 𝑝)𝑚

𝜌
= 𝑐20 (40)

where 𝑐0 is the speed of sound. A dimensionless nonisothermal exten-
sion to this equation is

𝜕𝑝
= 1

2

(

1
)

(41)
13

𝜕𝜌 𝑀𝑎 1 + 𝛽𝜃
where 𝛽 is a thermal expansion coefficient. In the remainder of this
paper we use 𝛽 = 0.1.

The Weissenberg number has a significant impact on the speed of
the flow and, as a result, on the temperature distribution of the fluid
during the transient phase and at steady state.

Fig. 13 and Fig. 14 show the effect on steady-state velocity magni-
tude and temperature of 𝑊 𝑒 at 𝑅𝑎 = 104, respectively. These trends
suggest that elasticity has a negative effect on the capacity of a fluid
to transfer heat via convection, especially for flows at low-to-moderate
Rayleigh numbers.

In Fig. 15 the evolution of the kinetic and elastic energies are
presented for 𝑅𝑎 = 2 × 103 and 𝑅𝑎 = 5 × 103 and 𝑀𝑎 = 0.05. In the
range 0 < 𝑅𝑎 ≤ 5000 the peak flow speed increases with 𝑅𝑎 and 𝑊 𝑒
while the steady-state flow speed is adversely impacted by increasing
𝑊 𝑒 (Fig. 15(a)–(d)). However as 𝑅𝑎 approaches 5000 this trend is
reversed and it appears steady-state flow speed increases with both 𝑅𝑎
and 𝑊 𝑒 (Fig. 15(e)–(f)). The impact of 𝑊 𝑒 on steady state flow speed
has a noticeable effect on the temperature profiles and heat convection.
Table 11 shows the value of 𝑁𝑢 over the same range of 𝑅𝑎 and 𝑊 𝑒.
Whilst 𝑁𝑢 increases with 𝑅𝑎, the elasticity parameter counteracts this
effect in a strong way. For example, at 𝑅𝑎 = 104 𝑁𝑢 = 2.28 for
Newtonian flow (𝑊 𝑒 = 0). This reduces to 𝑁𝑢 = 1.1011 when 𝑊 𝑒 = 2.0

8. Conclusions

The influence of compressibility, temperature and viscoelasticity on
some benchmark problems in 2D is investigated using a new thermo-
dynamically consistent model developed by Mackay and Phillips [41].
The new model circumvents the ad-hoc treatment of temperature that
pervades many contributions in the literature. Fluids are characterised
using a small number of dimensionless groups which enables the com-
bined and separate effects of compressibility, temperature and vis-
coelasticity on flow characteristics to be evaluated.

The dimensionless governing equations for this new thermodynami-
cally consistent model are discretised using a stabilised Taylor–Galerkin
finite element method. The temporal scheme is based on a second-
order Taylor–Galerkin pressure-correction scheme and within each time
step Galerkin finite elements are used for the spatial discretisation.
Enhanced numerical stability is achieved through use of the DEVSS for-
mulation which has been modified for use in compressible flows. This
formulation increases the ellipticity of the momentum equation. A local
projection stabilisation scheme is used to overcome the instabilities
in the discretisation of the constitutive equation caused by the so-
called high Weissenberg number problem. The use of these stabilisation
techniques for this class of flows represents an original contribution of
this paper.
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Fig. 13. Natural convection flow: contours of the magnitude of the steady-state velocity for (a) 𝑊 𝑒 = 0.1 and (b) 𝑊 𝑒 = 2 and 𝑅𝑎 = 1 × 104.
Fig. 14. Natural convection flow: contours of the steady-state temperature for (a) 𝑊 𝑒 = 0.1 and (b) 𝑊 𝑒 = 2.0 and 𝑅𝑎 = 1 × 104.
Two benchmark problems in square domains are considered. These
represent the first application of the stabilised scheme described in
this paper to the variant of these benchmark problems that include
compressible and nonisothermal considerations. The first benchmark
problem considered was the lid-driven cavity problem. The minimum
value of the stream function, 𝜓𝑚𝑖𝑛, is one of the flow characteristics
that is used as a basis of comparison of numerical methods for incom-
pressible flow. Good agreement is obtained with the literature [1,31]
demonstrating that the alternative formulation yields reliable results as
𝑀𝑎 → 0. The numerical scheme demonstrated good stability character-
istics for 0.001 < 𝑀𝑎 < 0.1 and results for very low Mach numbers were
close to the incompressible predictions as expected. Compressibility
has the effect of reducing the magnitude of 𝜓𝑚𝑖𝑛, but otherwise does
not have a significant impact on the qualitative behaviour of the
flow. Kinetic energy is largely unaffected by changes in 𝑀𝑎. The most
significant changes occur in the elastic energy where compressibility
and viscoelasticity have opposite effects. For a fixed value of𝑀𝑎, elastic
energy increases with increasing 𝑊 𝑒, whereas for a fixed value of
𝑊 𝑒, it decreases with increasing 𝑀𝑎. Quantitatively, for 𝑊 𝑒 = 0.5
there is a 50% reduction in the steady state elastic energy when 𝑀𝑎
is increased from 0.001 to 0.1 whereas for 𝑀𝑎 = 0.1 there is an almost
order of magnitude increase in the steady state elastic energy when
𝑊 𝑒 is increased from 0.1 to 0.5. Future work will focus on obtaining
14
numerically stable solutions for a larger range of Mach and Weissenberg
numbers (i.e. 𝑀𝑎 > 0.1 and 𝑊 𝑒 > 2.0).

The second benchmark problem considered was natural convection
in a cavity. The usual Boussinesq approximation was not adopted
and incompressibility was not imposed which enabled the effects of
density and gravity to be studied using an equation of state. The sta-
bilised Taylor–Galerkin finite element scheme enabled stable numerical
approximations to be obtained for a range of 𝑀𝑎, 𝑅𝑎 and 𝑃𝑟. The nu-
merical model predicted a reduction in kinetic energy with increasing
𝑊 𝑒 which implies, at least intuitively, that viscoelastic fluids exhibit a
potential for increasing the critical Rayleigh number of the flow. For
all values of 𝑅𝑎, the average Nusselt number decreases with increasing
values of 𝑊 𝑒 with the most dramatic decreases occurring for the largest
values of 𝑅𝑎 considered. Thus, for the range of parameters considered
in this paper, viscoelasticity reduces the overall heat transfer in the
convection cell.

In this paper we have focussed on incorporating additional capabili-
ties into the computational model and investigating the stabilisation of
the traditional formulation of the constitutive equation. Although the
log-conformation approach has been shown to stabilise the numerical
simulation of incompressible isothermal viscoelastic flows, its extension
to constitutive equations for compressible viscoelastic fluids in which
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Fig. 15. Natural convection flow: evolution of the kinetic and elastic energy for 𝑊 𝑒 = 0.1, 1, 2, 𝑅𝑎 = 2 × 103 , 1 × 104 and 𝑀𝑎 = 0.05.
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the material parameters are replaced by temperature dependent mate-
rial functions has not been established. This is an interesting research
question and one which we wish to explore in future work.
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