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Standard materials are often used to obtain spectra that can be compared to those

from unknown samples. Spectra measured from these known substances are also

used as a means of computing sensitivity factors to allow quantification by X-ray

photoelectron spectroscopy (XPS) of less well-defined materials. Spectra from known

materials also provide line shapes suitable for inclusion in spectral models which,

when fitted to spectra, permit the chemical state for a sample to be assessed. Both

types of information depend on isolating photoemission signals from the inelastically

scattered signal. In this Insight note, technical issues associated with the use of XPS

of as received Fe3O4 powder sample surface are discussed. The Insight note is

designed to show how linear algebraic techniques applied to data collected from a

sample marketed as pure Fe3O4 powder are used to verify that XPS has been per-

formed on chemistry representative of the sample. The methods described in this

Insight note can further be utilized in elucidating complex XPS data obtained from

thin films formed or evolved during cyclic/non-steady use of complex (electro)cata-

lyst surfaces, especially in the presence of contaminants.
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1 | INTRODUCTION

The merit of X-ray photoelectron spectroscopy (XPS) is the ability to

measure the information from the upper few nanometers of a sample

while providing elemental and chemical state composition. However,

the accuracy of quantification obtained by XPS is dependent on the

availability of scale factors to transform the raw peak area to

the amount of substance.1 While, in principle, these scale factors are

prescribed, in practice for samples of interest such factors can be diffi-

cult to obtain and consequently, empirical sensitivity factors, calcu-

lated by performing XPS on standard materials,2 are often used.

However, a problem encountered when deriving empirical sensitivity

factors is that samples presented as standard materials, when measured

by XPS, are far from the composition of the material specified. The

strength of XPS is the root cause of this issue; namely, XPS samples the

signal from the topmost few nanometers. While a standard sample may

be pure at depths measured in μm, the surface composition often dif-

fers from the bulk. The case considered in this Insight note is commer-

cially available Fe3O4. The X-ray diffraction pattern (XRD) and black

color of the sample may reflect the expected color for Fe3O4, but the

chemistry of the surface available to XPS is very different from Fe3O4.

Consequently, XPS of Fe3O4 powder, unless great care is taken, returns
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F IGURE 1 XPS spectra were measured from
the sample with bulk composition Fe3O4 using
ThermoFisher NEXSA G2. These spectra represent
iterations of identical XPS interleaved with 1 keV
helium ion-beam sputter cycles. The variation in
color for spectra is representative of the
increasing time (seconds) the sample is exposed to
helium ion sputtering.

190 BARGIELA ET AL.

 10969918, 2024, 4, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/sia.7290 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [11/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



spectra that are not representative of this oxide and therefore unsuita-

ble for computing empirical sensitivity factors.

In this Insight note, analysis of XPS data acquired from Fe3O4 pow-

der surface based on principal component analysis (PCA),3–5 linear

algebra,6 and fitting of peak models to data4 confirms the chemistry of

the surface is not that of Fe3O4, yet underneath the surface layers

Fe3O4 stoichiometry does exist. Helium and argon ion beams are used

to remove surface contaminants allowing XPS of these modified sur-

faces to obtain spectra with characteristics closer to the expected

material. An extensive discussion of PCA and linear algebra methods is

provided in the Appendix. Terminology related to PCA, used through-

out this Insight note, is described in the Appendix. The meaning for

PCA abstract factors (AFs), expressed through the mathematical origins

for PCA, is explained and placed in the context of XPS. In contexts

other than XPS, AFs are described as PCA scores, but AFs are preferred

within this insight note for reasons explained within the Appendix.

2 | SAMPLE ANALYSIS USING ION BEAM
AND INITIAL DATA PROCESSING TO DERIVE
PCA ABSTRACT FACTORS

Commercial Fe3O4 (Iron [II, III] oxide nanopowder, 97% from Alfa

Aesar, 50–100 nm APS Powder, S. A 8.5–11.5m2/g) was used as

received. Ideally, XPS does not alter sample chemistry but, in prac-

tice, changes in surface chemistry do occur, as also demonstrated in

this Insight. Some samples can materially be altered by interventions

necessary during measurement by XPS.4,7,8 When a sample is rela-

tively stable during the XPS measurement, changes to a sample sur-

face can be induced by changing the temperature of the sample5 or

by interaction with ion beams.9 When ion beams are used to induce

changes to the sample, the extent to which changes occur, among

other factors, is governed by the mass of the ion in use, the energy

of ions, and the duration the sample is exposed to the ion beam. The

spectra shown in Figure 1 represent the XPS of a sample that

evolves in surface chemistry through 1 keV helium ion-beam action.

The objective in acquiring these data in Figure 1 is to create a

sequence of spectra that evolve from the as-received surface but do

so in gradual steps that facilitate the use of PCA and linear algebraic

techniques, as implemented in CasaXPS 2.3.26,10 to identify the

chemistry of a Fe3O4 sample surface.

The fact that an experiment involving an ion beam causes a

change in the sample is not surprising. In fact, as a rule, the role of an

ion beam in XPS measurements is to either remove adventitious

material from a sample before performing XPS or to etch the surface

to uncover buried layers of the material – an option not only com-

monly used in XPS but also routinely used in low energy ion scattering

(LEIS). The most obvious change to the sample, which can be

F IGURE 2 PCA AFs computed for
XPS measurements interleaved with
helium 1 keV energy ion-beam cycles of
10 seconds per cycle from Fe3O4 pellet
performed using ThermoFisher NEXSA
G2. The number of abstract factors of
significance is as follows: C 1s (2), O 1s
(3), Fe 2p (2), and VB (2).
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observed from the spectra in Figure 1, is the attenuation of the C 1s

signal. Thus, even for helium ions with an energy of 1 keV, material is

removed from the sample surface. However, Fe 2p, O 1s, and valence

band spectra are also modified due to the ion beam action. These less

obvious changes can be observed and quantified using linear algebra.

The use of PCA is illustrated by application to the data in Figure 1.

Spectra in Figure 1 are transformed into PCA AFs, whereby the signal

is extracted from spectra and presented as AFs that are ordered con-

cerning a statistic that measures variance. The first AF is a curve that

fits all spectra in the data set such that the sum of the square differ-

ences between the first AF and each spectrum in the data set is a min-

imum. For this reason, the first AF for each set of spectra

corresponding to C 1s, O 1s, Fe 2p, and valence band shown in

Figure 2 have the appearance of an average spectrum. Computing

PCA AFs is a recursive procedure. Once an AF is computed, the com-

puted AF can be removed (illustrated by the deflation step in NIPALS

[Appendix 2, Equation A2.7]) from the set of spectra. The new data

set is in a state where the same steps used to calculate the AF can be

applied to the new data set to compute the next AF for the original

spectra. Figure 2 includes the first four PCA AFs corresponding to the

greatest variance of spectra overlaid in Figure 1. The results in

Figure 2 are obtained by PCA calculations performed independently

for C 1s, O 1s, Fe 2p, and valence band data. Each PCA AF with

variation in intensity different from variations expected for noise indi-

cates changes to spectra occurred during the experiment. In particular,

the PCA AFs shown in Figure 2 of Fe 2p spectra in Figure 1 include

two AFs with shapes distinct from noise. Hence, based on PCA

applied to Fe 2p spectra in Figure 1, it is reasonable to assume the

surface composition experienced by iron changed throughout the

experiment. Further, these changes can be characterized by two dis-

tinct shapes within the Fe 2p spectra. PCA does not directly provide

spectral shapes that would be required to identify physically meaning-

ful spectral forms for Fe 2p spectra, but it does show that changes of

significance did occur during the experiment.

3 | FURTHER ANALYSIS OF THE BEAM-
MODIFIED SPECTRA OF FE3O4

The experiment yielding the spectra in Figure 1 was designed so that

changes to the sample were limited, yet could still be identified and

monitored. Despite XRD indicating the sample is Fe3O4, PCA AFs

shown in Figure 2 suggest that the XPS of the Fe3O4 pellets does not

yield spectra typical of pure Fe3O4, indicating the composition of both

bulk and surface is not identical. In fact, the Fe 2p spectrum measured

from the as-received surface (Figure 1, iteration 0) does not have the

F IGURE 3 PCA AFs computed for
XPS-only measurements from Fe3O4

pellet performed using a ThermoFisher
NEXSA G2. The number of abstract
factors of significance are as follows: C
1s (1), O 1s (2), Fe 2p (1), and VB (1).
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appearance of Fe 2p photoemission from Fe3O4, with the as-received

surface exhibiting a satellite at �719 eV, characteristic of Fe2O3.
11,12

Moreover, iterations of XPS-only measurements using short acquisi-

tion times yield one abstract factor (Figure 3) for Fe 2p, suggesting

the surface oxide can be measured by XPS without alteration. When

PCA is applied to the Fe 2p spectra in Figure 1, the existence of two

abstract factors shown in Figure 2 is potentially due to a side-effect

of the ion beam removing adventitious material, causing alteration of

the iron oxidation state. However, ion beam damage is thought not to

be entirely responsible for the changes in the spectra since it is possi-

ble to observe a change in the Fe 2p photoemission by XPS measure-

ment alone. An identically prepared Fe3O4 pellet was measured

iteratively using a Kratos Axis Nova using electron-only charge com-

pensation and X-ray power of 300 W with a measurement duration

totaling 6 hours. Similar changes to Fe 2p spectra were observed in

the absence of ion beam damage to the sample, as shown by the num-

ber of abstract factors (three) computed for these data in Figure 4.

The mechanisms responsible for these changes in surface chemistry

for iterations of XPS are different from the mechanism causing alter-

ation to surface chemistry by helium ions. While the helium ion beam

appears to behave similarly to XPS measurements, changes to the

Fe3O4 pellet are induced by the use of argon ions. PCA applied to

data recorded on a ThermoFisher NEXSA G2, where 200 eV argon

ions are used rather than 1 keV helium ions (Figure 5), results in three

AFs for Fe 2p spectra. Clearly, in the case of these Fe3O4 pellets,

argon ions cause greater damage to the chemistry of iron than either

excessive use of XPS or normal use of XPS combined with helium

ions. The conclusion from these observations is that linear algebra

applied to data collected using helium ions offers a means of trans-

forming the spectra to two-component spectra capable of reprodu-

cing, via linear least squares fitting, all spectra measured except for

the argon irradiated sample. In particular, the decomposition into two-

component spectra provides insight into the chemistry of the as-

received Fe3O4 pellet.

4 | IMPLICATIONS OF THE PCA ANALYSIS
OF BEAM-MODIFIED SPECTRA OF FE3O4

The evidence described to this point suggests the spectra measured

from an as-received Fe3O4 pellet are not representative of Fe3O4.

Using an ion beam to alter the surface may also result in chemistry dif-

ferent from Fe3O4. However, given the data shown in Figure 1, it is

possible to compute component spectra that cast light on the chemis-

try measured by XPS. Figure 6 presents three component spectra

computed from the data in Figure 1 using C 1s, Fe 2p, and O 1s

F IGURE 4 PCA AFs computed for
XPS-only measurements from Fe3O4

pellet performed using a Kratos Axis
Nova. The number of abstract factors of
significance is as follows: C 1s (3), O 1s
(3), Fe 2p (3), and VB (2).
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spectra. These three spectral regions are merged to form one spec-

trum per XPS measurement. Combining narrow scan spectra from C

1s, Fe 2p, and O 1s to form a single spectrum per measurement allows

the construction of the difference spectra. These difference spectra

provide intensity distributions, some of which take on shapes that are

compatible with physical properties. Three examples of difference

spectra computed from the data in Figure 1 are shown in Figure 6.

The difference spectrum labeled Phase 1 was chosen because this

shape included the Fe 2p signal where the lower-binding-energy

onset of the Fe 2p signal is at an energy above the lower binding

energy onset Fe 2p signal in the original spectra. The heuristic used in

making this selection was that a signal from iron in a higher oxidation

state is expected to occur at higher binding energies than in lower oxi-

dation states. Therefore Phase 1 represents a signal that can be con-

sidered from iron in a higher oxidation state, such as the initial Fe2O3,

likely with some traces of FeOOH, as observed from the O 1s region

shoulder at 532.0 eV. The difference spectra labeled Phase 2a and

Phase 2b are two alternative options for Fe 2p in a lower oxidation

state than Phase 1. Of these two options, the difference spectrum

labeled Phase 2b is considered more useful in terms of understanding

the proposed composition of the sample. Phase 2a is interesting in

the sense that the Fe 2p shape includes narrow, better-defined peak

shapes, but these shapes occur only when the C 1s signal is distinctly

non-physical in shape. A possible interpretation of Phase 2a is that

the distribution of the Fe 2p signal is characteristic of ion beam-

damaged iron oxide. That is, the process by which the sample evolves

is the initial chemistry is systematically changed through growth

within the oxide of the material identified by Phase 2a Fe 2p. Phase

2b Fe 2p signal correlates with O 1s and an absence of C 1s signal.

That is, Phase 2b is chosen to minimize the C 1s signal and has the

merit that the ratio of Fe 2p to O 1s (Figure 6D) equals 3:3.9, which

is close to the expected 3:4 ratio for Fe3O4. The ratio for Phase 1 for

iron and oxygen is 2:5 and is therefore clearly very different from

the expected ratio for Fe3O4. Even accounting for carbon–oxygen

chemistry that is included in the difference spectrum in Figure 6C,

the ratio 2:5 implies higher oxidation states for iron than is expected

for Fe3O4.

The chosen component spectra to a peak model, capable of fit-

ting all spectra from Figure 1, are difference spectra Phase 1 and

Phase 2b. Two examples of fits to data based on these two-

component spectra are shown in Figure 6E,F. Data used in these

example-fits are the as-received Fe3O4 pellet and the Fe3O4 pellet

after 3,507 seconds of irradiation with 1 keV helium ions. It should

be noted that similar component spectra to Phase 1 and Phase 2b

were obtained through the analysis of data corresponding to PCA

AFs shown in Figure 4, which are computed from data collected

F IGURE 5 PCA AFs computed for
XPS measurements, interleaved with
argon 200 eV energy ion-beam cycles
(of 10 seconds per cycle), from Fe3O4

pellet performed using a ThermoFisher
NEXSA G2. The number of abstract
factors of significance is as follows: C 1s
(2), O 1s (3), Fe 2p (3), and VB (2).
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without the use of an ion beam during the experiment. This obser-

vation is intended to emphasize that while helium ions cause an

evolution in the Fe3O4 pellet, the types of changes in spectra

caused by helium ions are very similar to changes induced by XPS

alone. The implication is that helium ions are delivering energy to

the sample without excessive impact damage. Hence, Phase 2b is

chosen for the peak model rather than Phase 2a.

5 | CONCLUSIONS

The objective of using PCA is to understand the nature of these

changes in a mathematical sense. That is, PCA applied to a set of spec-

tra returns mathematical shapes ordered by variance which convey

visually how the signal is partitioned into abstract shapes such that

these mathematical shapes are both necessary and sufficient to

F IGURE 6 Three-component spectra
composed of Fe 2p, O 1s, and C 1s,
computed from data in Figure 1, are
presented with atomic concentration
tables computed from these component
spectra. Two examples of data, where
linear least squares fit a model
(constructed using two-component
spectra) to data, illustrate the quality of

fit. (A) Component-spectra
corresponding to Fe 2p photoemission.
(B) Component-spectra corresponding to
O 1s photoemission. (C) Component-
spectra corresponding to C 1s
photoemission. (D) Atomic concentration
computed from each of the three
component spectra. (E) Model spectrum
constructed by linear least squares fitting
of component spectra Phase 1 and Phase
2b to data that includes signal from Fe
2p, O 1s, and C 1s from the as-received
surface of the Fe3O4 pellet. (F) Model
spectrum constructed by linear least
squares fitting of component spectra
Phase 1 and Phase 2b to data that
includes signal from Fe 2p, O 1s, and C
1s from the surface of the Fe3O4 pellet
following 3,507 seconds of exposure to
1 keV helium ion beam.
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permit each spectrum in the original data set to be precisely defined

by a unique linear-combination of these abstract factors. The unique-

ness property of PCA AFs (in terms of reconstruction of spectra by

forming linear combinations of AFs) is noteworthy since fitting curves

to data in the sense of fitting measured spectra from standard mate-

rials to data, or when fitting mathematically defined components in a

peak model to XPS data while has the advantage of linking

component-spectra to chemical state in the sample, also has the dis-

advantage of lack of uniqueness. Whenever we construct a set of

curves with the intention of fitting data, there are choices made in

terms of line shapes, background curves, and constraints applied to

fitting parameters.13 These choices represent ambiguity and guess-

work on the part of the analyst that seldom matches the mathematical

rigor offered by PCA decomposition of data into AFs. The conse-

quence of fitting curves to data that do not include a complete set of

shapes necessary to reconstruct the data is that least-squares-fitting

allows fits to data that may change when the line shapes change,14

even slightly. The disadvantage of PCA AFs is that all AFs are mathe-

matical and do not, in general, identify individual component spectra

that represent distinct chemical states for a sample. Nevertheless,

PCA does offer insight into how many different curves are required to

make sense of a data set.

XPS analysis of a sample with the bulk composition of Fe3O4 was

performed either by iterating scans or interleaving scans with ion

beam sputter cycles. Comparing results from XPS-only experiments

and equivalent XPS measurements interleaved with irradiating the

sample with ions demonstrates that, depending on the ion beam ori-

gin, ion-beam energy, and duration of ion-beam action, the as-

received sample evolves in composition. PCA of data sets is used to

show similarities and differences in data sets, which help to evaluate

the sample and create component spectra that describe the evolution

of sample chemistry from, the uncertain initial composition to, a com-

position more representative of Fe3O4. Results obtained when explor-

ing data sets presented herein suggest that samples presented as

standard material, which in theory should be suitable for computing

empirical sensitivity factors or providing XPS line shapes, require care-

ful analysis before concluding that these empirical items can be used

to understand the chemistry of unknown samples.

AUTHOR CONTRIBUTIONS

Pascal Bargiela: Investigation (lead); Writing—review and editing

(equal). Vincent Fernandez: Investigation (lead); Writing—review and

editing (equal). David Morgan: Methodology (supporting); Writing—

review and editing (equal). Neal Fairley: Conceptualization (lead);

Investigation (supporting); Methodology (lead); Writing—original draft

(equal); Writing—review and editing (equal). Jonas Baltrusaitis: Con-

ceptualization (supporting); Methodology (supporting); Supervision

(lead); Writing—original draft (equal); Writing—review and editing

(equal).

ACKNOWLEDGEMENTS

This work by JB was supported as part of Understanding & Control-

ling Accelerated and Gradual Evolution of Materials for Energy

(UNCAGE-ME), an Energy Frontier Research Center funded by the

U.S. Department of Energy, Office of Science, Basic Energy Sciences

under Award # DE-SC0012577. The CNRS is acknowledged for finan-

cial support to the Thematic Workshop (No. 1317144) held at the

Station Biologique, Roscoff, France.

CONFLICT OF INTEREST STATEMENT

The authors declare no competing interests.

DATA AVAILABILITY STATEMENT

Data is available upon request.

ORCID

David Morgan https://orcid.org/0000-0002-6571-5731

Jonas Baltrusaitis https://orcid.org/0000-0001-5634-955X

REFERENCES

1. Shard AG. Practical guides for x-ray photoelectron spectroscopy:

quantitative XPS. J Vac Sci Technol a. 2020;38(4):041201. doi:10.

1116/1.5141395

2. Wagner CD, Davis LE, Zeller MV, Taylor JA, Raymond RH, Gale LH.

Empirical atomic sensitivity factors for quantitative analysis by elec-

tron spectroscopy for chemical analysis. Surf Interface Anal. 1981;3(5):

211-225. doi:10.1002/sia.740030506

3. Fairley N, Bargiela P, Huang W-M, Baltrusaitis J. Principal component

analysis (PCA) unravels spectral components present in XPS spectra

of complex oxide films on iron foil. Appl Surf Sci Adv. 2023;17:

100447. doi:10.1016/j.apsadv.2023.100447

4. Fernandez V, Morgan D, Bargiela P, Fairley N, Baltrusaitis J. Combin-

ing PCA and nonlinear fitting of peak models to re-evaluate C 1s XPS

spectrum of cellulose. Appl Surf Sci. 2023;614:156182. doi:10.1016/j.

apsusc.2022.156182

5. Garland BM, Fairley N, Strandwitz NC, Thorpe R, Bargiela P,

Baltrusaitis J. A study of in situ reduction of MoO3 to MoO2 by X-ray

photoelectron spectroscopy. Appl Surf Sci. 2022;598:153827. doi:10.

1016/j.apsusc.2022.153827

6. Bauer FL, Householder AS, Wilkinson JH, Reinsch C. Handbook for

Automatic Computation: Volume II: Linear Algebra. Springer; 2012.

7. Morgan DJ, Uthayasekaran S. Revisiting degradation in the XPS analy-

sis of polymers. Surf Interface Anal. 2022;55(6-7):556-563. doi:10.

1002/sia.7151

8. Baltrusaitis J, Mendoza-Sanchez B, Fernandez V, et al. Generalized

molybdenum oxide surface chemical state XPS determination via

informed amorphous sample model. Appl Surf Sci. 2015;326:151-161.

doi:10.1016/j.apsusc.2014.11.077

9. Greczynski G, Hultman L. Towards reliable X-ray photoelectron spec-

troscopy: sputter-damage effects in transition metal borides, carbides,

nitrides, and oxides. Appl Surf Sci. 2021;542:148599. doi:10.1016/j.

apsusc.2020.148599

10. Fairley N, Fernandez V, Richard-Plouet M, et al. Systematic and col-

laborative approach to problem solving using X-ray photoelectron

spectroscopy. Appl Surf Sci Adv. 2021;5:100112. doi:10.1016/j.

apsadv.2021.100112

11. Bagus PS, Nelin CJ, Brundle CR, Crist BV, Lahiri N, Rosso KM. Com-

bined multiplet theory and experiment for the Fe 2p and 3p XPS of

FeO and Fe2O3. J Chem Phys. 2021;154(9):094709. doi:10.1063/5.

0039765

12. Bagus PS, Nelin CJ, Brundle CR, Crist BV, Lahiri N, Rosso KM. Origin

of the complex main and satellite features in Fe 2p XPS of Fe2O3.

Phys Chem Chem Phys. 2022;24(7):4562-4575. doi:10.1039/

D1CP04886D

196 BARGIELA ET AL.

 10969918, 2024, 4, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/sia.7290 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [11/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-6571-5731
https://orcid.org/0000-0002-6571-5731
https://orcid.org/0000-0001-5634-955X
https://orcid.org/0000-0001-5634-955X
info:doi/10.1116/1.5141395
info:doi/10.1116/1.5141395
info:doi/10.1002/sia.740030506
info:doi/10.1016/j.apsadv.2023.100447
info:doi/10.1016/j.apsusc.2022.156182
info:doi/10.1016/j.apsusc.2022.156182
info:doi/10.1016/j.apsusc.2022.153827
info:doi/10.1016/j.apsusc.2022.153827
info:doi/10.1002/sia.7151
info:doi/10.1002/sia.7151
info:doi/10.1016/j.apsusc.2014.11.077
info:doi/10.1016/j.apsusc.2020.148599
info:doi/10.1016/j.apsusc.2020.148599
info:doi/10.1016/j.apsadv.2021.100112
info:doi/10.1016/j.apsadv.2021.100112
info:doi/10.1063/5.0039765
info:doi/10.1063/5.0039765
info:doi/10.1039/D1CP04886D
info:doi/10.1039/D1CP04886D


13. Major GH, Fernandez V, Fairley N, Smith EF, Linford MR. Guide to

XPS data analysis: applying appropriate constraints to synthetic peaks

in XPS peak fitting. J Vac Sci Technol a. 2022;40(6):063201. doi:10.

1116/6.0001975

14. Moeini B, Linford MR, Fairley N, et al. Definition of a new (Doniach-

Sunjic-Shirley) peak shape for fitting asymmetric signals applied to

reduced graphene oxide/graphene oxide XPS spectra. Surf Interface

Anal. 2021;54(1):67-77. doi:10.1002/sia.7021

15. Walton J, Fairley N. Noise reduction in X-ray photoelectron spectro-

microscopy by a singular value decomposition sorting procedure.

J Electron Spectros Relat Phenomena. 2005;148(1):29-40. doi:10.

1016/j.elspec.2005.02.003

16. Béchu S, Richard-Plouet M, Fernandez V, Walton J, Fairley N. Devel-

opments in numerical treatments for large data sets of XPS images.

Surf Interface Anal. 2016;48(5):301-309. doi:10.1002/sia.5970

17. Malinowski ER. Factor Analysis in Chemistry. John Wiley & Sons, Ltd;

2002.

18. Major GH, Fairley N, Sherwood PMA, et al. Practical guide for curve

fitting in x-ray photoelectron spectroscopy. J Vac Sci Technol a. 2020;

38(6):061203. doi:10.1116/6.0000377

19. Walton J, Fairley N. Data scaling for quantitative imaging XPS. Surf

Interface Anal. 2009;41(2):114-118. doi:10.1002/sia.2974

20. Golub GH, Reinsch C. Singular value decomposition and least squares

solutions. Numer Math. 1970;14(5):403-420. doi:10.1007/

BF02163027

How to cite this article: Bargiela P, Fernandez V, Morgan D,

Fairley N, Baltrusaitis J. Surface science insight note: A linear

algebraic approach to elucidate native films on Fe3O4 surface.

Surf Interface Anal. 2024;56(4):189‐199. doi:10.1002/sia.7290

APPENDIX A: REVIEW OF PRINCIPAL COMPONENT ANALYSIS

CONCEPTS

Principal component analysis (PCA) is the application of singular val-

ued decomposition (SVD)6 to experimental data. SVD is a linear alge-

braic procedure (Appendix 1) that accepts a set of vectors with no

ordering metric and transforms them into a set of vectors with a very

precise ordering. The computed vectors are mutually orthogonal, and

one of these vectors points in the direction of greatest variance in the

original set of vectors.

When used to process XPS data, the SVD input vectors are either

conventional spectra or spectra obtained from images.15 The vector

computed by SVD pointing in the direction of greatest variance in the

original set of vectors which, in terms of XPS, is a spectrum that can

be described as the principal component of the data set. The precise

steps used to compute an SVD are only important so sufficient preci-

sion is achieved in an acceptable time. However, some algorithms of

SVD are insightful because a sequence of iterations applied to a set of

vectors without preprocessing of any kind creates, on termination of

the initial sequence of iterations, the principal component. In the pro-

cess of computing the principal component a set of vectors of

reduced dimension is also created and vectors within the newly

created set are all orthogonal to the principal component. Therefore,

an iterative algorithm separates the initial data set containing

n vectors into a principal component vector plus a data set of n-1 vec-

tors. Applying the same iterative steps to the data set containing n-1

processed vectors returns the principal component for the remaining

data plus a data set of dimension n-2. Thus, computing SVD iteratively

and recursively generates a sequence of vectors in the order of great-

est variance concerning the original data set. Hence, SVD generates a

new set of n vectors that are arranged in order and mathematically

describes the original data set since any vector from the original data

set can be constructed by forming a linear combination of vectors

from the set of vectors constructed by SVD. Effectively, PCA creates

vectors in an order of importance to signal in the data set.

Altogether, PCA is used to form an alternative perspective of a

data set. Principal components are not, in general, physically useful;

however, principal components can be of value en route to a meaning-

ful interpretation of data. One use of PCA is to enhance signal and

suppress noise in a data set. If it is decided that at some point in the

SVD algorithm, an iteration returns a principal component that is

essentially noise,16 then making use of only the preceding principal

components obtained during SVD to form a linear approximation to

the original data set,creates vectors that contain mostly signal. The

number of principal components deemed to be signals conveys insight

into the true composition of spectra or images. That is, the number of

principal components indicates the minimum number of spectral

shapes required when defining a model with chemical meaning, appli-

cable to all data from an experiment.

The terminology used in this Insight note differs from terminology

often used relating to PCA. Principal components, as described above,

in Factor Analysis17 are often replaced by the quantities referred to as

scores. Scores and loadings are a more general description of relation-

ships found in multivariate problems. XPS use of SVD is more specific.

The results of SVD are matrices from which scores are obtained.

However, in XPS, columns or scores are not independent entities but

are governed by correlated photoemission signals. The concept of a

principal component in XPS is better understood by describing the U

matrix (Appendix 1) as constructed from column vectors that are

mathematically equivalent to spectra or images. Hence, rather than

talking about scores and loadings, XPS data analysis is better served

by talking about PCA abstract factors (AFs) and coefficients rather

than loadings. Loadings are the coefficients in linear combinations of

PCA AFs that are used to convert PCA AFs back to the original spec-

tra or images. Thus, loadings in XPS terms are coefficients used to fit

PCA AFs to data through least squares optimization. Spectra, curves,

and fitting of curves to data18 are more natural to XPS than scores

and loadings which lend more to a statistical analysis of data. Hence,

PCA is presented here in terms of PCA AFs and how PCA AFs are

fitted to spectra to recover the signal from noise.

Accordingly, it is sometimes recommended to perform data scal-

ing and shift preprocessing in preparation for PCA or other algorithms

based on linear algebra. The use of these preprocessing steps is not

without cost. Namely, the direct connection to spectral shapes is fur-

ther removed by preprocessing data. In applications other than XPS,
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there may be merit in preprocessing data. However, XPS spectra con-

vey in the shape of peaks and background information used to under-

stand a sample. Even simple preprocessing, such as mean centering of

spectra, distorts data from spectroscopic forms and creates a false

impression from the outputs of PCA. Mean centering is a good exam-

ple of an operation that is performed but serves no real purpose

which can be seen by following the mathematical logic for the NIPALS

algorithm described in Appendix 2. Mean centering of data is per-

formed by computing the mean average spectrum and then subtract-

ing the mean average spectrum from each of the spectra in the data

set. The mean average spectrum approximates the first principal com-

ponent for a data set. NIPALS computes the first principal component,

and once obtained, via Equation A2.7, removes the first principal com-

ponent from the data set to resume iterations that compute the sec-

ond principal component. Effectively, Equation A2.7 is a more

sophisticated way to recenter spectra than to subtract off the mean

spectrum. The reason one might mean center spectra is based on

numerical analysis. Namely, summing data held in floating point preci-

sion does not cause a loss of significant digits in the average spec-

trum. Subtracting the full numerical precision mean average spectrum

from all spectra minimizes the loss of significant digits when floating

point arithmetic is used during PCA. However, the data set created by

mean centering is nothing other than the data set created by the first

iteration of NIPALS with the exception that a rather poor approxima-

tion to the first principal component was used to reduce the dimen-

sion of the data set by unity (Appendix 3). The numerical design of a

PCA algorithm is the place to limit the influence of loss of significant

digits rather than perturbing the data set from spectroscopic forms

before performing PCA. There are, however, some clear advantages

to scaling of data that aid in extracting signal from noise that justify

distorting spectroscopic or imaging data before an application of

PCA.19

A.1 | Singular Valued Decomposition

PCA is an exercise, in constructing a singular valued

decomposition (SVD) for a data matrix, where a data matrix is an n�
m matrix formed by the n coordinate values for data vectors

d1,d2, � � �,dmf g. The measure for variance in a data set and the corre-

sponding direction for which variance is shown to be a maximum is

encapsulated in the definition of the covariance matrix that is used to

construct an SVD for a data matrix D¼ d1,d2, � � �,dm½ �.
Given a set of data vectors d1,d2, � � �,dmf g, the standard procedure

for expressing these vectors, as a set of abstract vectors

u1,u2, � � �,umf g, is by performing a singular valued decomposition20 of

the data matrix into three matrices in Equation [A1.1].

D¼UWVT ðA1:1Þ

where

di �ℝn,ui �ℝn ,D¼ d1,d2, � � �,dm½ � andU¼ bu1,bu2, � � �,bum½ �

W is a diagonal matrix with diagonal matrix elements equal to the

square root of the eigenvalues computed for the covariance matrix

Z¼DTD ðA1:2Þ

and V is the matrix formed from the normalized eigenvectors of Z

ordered concerning the eigenvalues. The columns and rows of the

matrices U and V and ordered concerning the magnitude of values

that appear along the diagonal of W.

A.2 | Nonlinear Iterative Partial Least Squares (NIPALS) Algorithm

The NIPALS algorithm is an iterative procedure for generating princi-

pal components, where one iterative step calculates one principal

component. NIPALS is not the algorithm of choice for computing prin-

cipal components, but rather has merit in the sense that, the NIPALS

procedure is insightful for those wishing to appreciate the logic of

PCA without the need to understand the intricacies of linear algebra

required by other algorithms.

It might seem odd to use the term nonlinear when naming an

algorithm, which involves an application of linear algebra to comput-

ing principal components. However, the use of nonlinear in NIPALS

refers to the rate of convergence rather than any nonlinearity in the

mathematics. NIPALS is nonlinear in the same sense that

the Newton–Raphson method (for finding a root of a function) is non-

linear. Nonlinear, in both cases, relates to the number of significant

digits in the value-of-interest, achieved following one iterative cycle

of these algorithms. Sadly, in NIPALS like Newton–Raphson, nonlinear

convergence is the best-case behavior. Worst-case convergence can

be slow. It is worth considering why NIPALS performs well in calculat-

ing the first few principal components. One of the most remarkable

aspects of the iterative procedure is how, for most data sets, the first

eigenvector is obtained with almost no effort. This observation is par-

ticularly true for spectra typical of XPS. The reason for this rapid con-

vergence of NIPALS, when computing the first principal component, is

photoemission peaks are superimposed on the background signal, the

result of which is the variance in an XPS data set is heavily weighted

in favor of the first principal component. The mathematics, described

below, explains why weighting in variance, favors or hinders the con-

vergence of NIPALS to a given principal component.

The mathematics of NIPALS is now presented.

Let x be a vector of dimension m, where the dimension for x cor-

responds to the number of data vectors di available to the NIPALS

algorithm. A matrix A¼ d1,d2,d3,…,dm½ � is formed from these data

vectors di, each of which has n acquisition channels.

If it is assumed a set of m eigenvectors pi exist corresponding to

the covariance matrix ATA
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ATApi ¼wipi ðA2:1Þ

and all else being equal, the eigen Equation A2.1 yields m orthonormal

eigenvectors. Since these eigenvectors for a real symmetric matrix

form a basis set it is possible to write

x¼
Xm
i¼1

αipi ðA2:2Þ

Thus, for any vector x, performing matrix multiplication of x by

the matrix ATA can be expressed in terms of eigenvalues and eigen-

vectors of ATA as follows.

ATAx¼ATA
Xm
i¼1

αipi

 !
¼

Xm
i¼1

αiA
TApi

 !
¼

Xm
i¼1

αiwipi

 !
ðA2:3Þ

Therefore, repeated multiplication by ATA results in a transforma-

tion of x as follows.

ATA
� �k

x¼
Xm
i¼1

αiwi
kpi

 !
ðA2:4Þ

Thus, by repeatedly multiplying a vector by the matrix ATA, the

eigenvalues are raised to a power. If one eigenvalue is larger than all

others, that factor will dominate the summation term. Hence the

resulting vector due to iterations is the eigenvector corresponding to

the largest eigenvalue.

A further consideration derives from Equation A2.2. Since pi

belongs to a set of orthonormal eigenvectors pi:pj ¼
1 i¼ j

0 i≠ j

�
and

therefore the coefficients in Equation A2.2 are computed as follows

αi ¼ x:pi.

If x! p1, then α1 ! xk k and αi≠ 1 !0. These relationships pro-

vide an alternative perspective for the converging sequence of vec-

tors. In the event the eigenvalues differ only marginally resulting in a

slow movement toward the largest of these similar eigenvalues,

a good guess for the initial eigenvector is important to obtain conver-

gence within a reasonable number of iterations.

NIPALS includes iterative steps that rely on these types of trans-

formations. However rather than forming a covariance matrix ATA,

the data matrix A is used to transform vectors in a sequence leading

to the computation of u1, the abstract factor corresponding to the

largest eigenvalue of ATA.

The essential iterative steps performed during a NIPALS are as

follows.

The input to an iterative step is a matrix Di, where initially D1 ¼A.

The output from each iterative sequence makes use of Di is a vector

ui and a matrix Diþ1. These steps involve selecting an initial vector y0

of dimension n. A vector x0 of dimension m is computed using the fol-

lowing operations.

Di
Tbyj ¼ xj ðA2:5Þ

Dibxj ¼ yjþ1 ðA2:6Þ

where ba is the unit vector corresponding to the vector a. These steps

represent a vector multiplied by a matrix rather than directly con-

structing a covariance matrix. Separating the action of the covariance

matrix into these two intermediate steps is advantageous if conver-

gence to the desired vector is rapid as it is designed to avoid matrix

multiplication.

A sequence of vectors yj
� �

is constructed which converges to

the vector ui, corresponding to the largest eigenvalue of Di
TDi. Once

the vector ui is established, the ultimate operation for a single itera-

tion is to deflate Di ¼ di1,d
i
2,d

i
3, � � �,dim

h i
using the computed vector ui

diþ1
j ¼ dij�

dij:ui
ui:ui

ui ðA2:7Þ

resulting in the next matrix in the NIPALS sequence Diþ1. The new

matrix represents a set of vectors all belonging to a subspace of

dimension one less than the previous step. The projection operation

in Equation A2.7 is found also in Gram–Schmidt, a procedure for con-

structing a set of mutually orthogonal vectors. Deflating these Di

matrices permit the next iteration of the NIPALS procedure to target

the next largest eigenvalue and hence compute the next vector uiþ1.

A.3 | Mean Centre of Data

Given data vectors d1,d2, � � �,dmf g, the mean spectrum d is computed

using Equation A3.1.

d¼ 1
m

Xm
i¼1

di ðA3:1Þ

A set of mean-centered vectors is obtained by computing

c1,c2, � � �,cmf g, where ci ¼ di�d. However, if we consider c1, for exam-

ple, by definition
Pm
i¼1

ci ¼0, therefore c1 ¼�Pm
i¼2

ci. Hence c1 is a linear

combination of c2,c3, � � �,cmf g. Therefore, the set c1,c2, � � �,cmf g is of

dimension one less than the dimension of the set of vectors

d1,d2, � � �,dmf g. Moreover, the set of vectors d,c1,c2, � � �,cm
n o

is of the

same dimension as d1,d2, � � �,dmf g, hence any spectrum in the original

data set can be constructed from the abstract factors u1,u2, � � �,umf g
computed from c1,c2, � � �,cmf g by reversing the offset d using

Equation A3.2.

cj ¼
Xm
i¼1

αijui anddj ¼ cjþd ðA3:2Þ
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