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Abstract 

Digital twinning has garnered significant interest for its potential to revolutionize bridge 

operation and maintenance (O&M) in the era of Industry 4.0. Although digital twin (DT) 

systems have achieved considerable development in academia and are getting 

increasingly popular in the industry, many gaps exist between academic research and 

widespread applications in route practices of bridge O&M, such as DT’s efficiency, 

resiliency, and intelligence, which are associated with different scenarios in a realistic 

bridge maintenance cycle. This research is conducted to solve the issues encountered 

in DT practical applications for bridge maintenance, and it can be structured according 

to five parts.  

Firstly, an efficient and resilient bidirectional DT framework is proposed for bridge O&M 

based on a comprehensive understanding of communication complexity by leveraging 

AI-informed edge computing, information hierarchy, and low-powered wide area 

network (LPWAN). The theoretical framework is idealised mathematically with state-

space representation and modelled using Petri-net. The related study indicates that 

the time delay of DT consists of computation and communication time costs and 

reveals the distinct impact of their sequence on DT latency. Moreover, the framework 

is further developed into a cross-platform prototype based on embedded systems, 

long-range wide area network (LoRaWAN), HTTP and MQTT protocols, restful web 

services, and IFC-based human-machine interface (HMI). The prototype is validated 

through different scenarios for bridge O&M, including drone-enabled bridge inspection, 

IoT-based bridge health-state monitoring, and decentralised dynamic evacuation.  

Secondly, an improved Prototypical Network (ProtoNet) is proposed for image-based 

bridge damage detection based on few-shot learning. It can work with only a few 

annotated examples, avoiding the tedious and labour-intensive data acquisition 

required by supervised learning. Feature embedding is “training free”, achieved 

through cross-domain transfer learning from ImageNet. The approach is explored on 

a public dataset through ablation studies and reaches over 94% mean accuracy for 2-

way 5-shot classification via the pre-trained GoogleNet. Moreover, the proposed fine-

tuning methods are demonstrated with better performance than previous research. 

Finally, the approach is validated using real bridge inspection images, demonstrating 

its capability of fast implementation for practical damage inspection.  
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Thirdly, a highly efficient framework is proposed for spatial damage assessment and 

DT synchronization based on point clouds in near real-time. The 2D damage is 

detected via DeepLabV3+ on pseudo grayscale images only from the point depth, 

avoiding the drawbacks of image and point cloud fusion. Then, 3D damage is 

separated through voxelization and converted into a lightweight binary matrix that can 

be further compressed losslessly for DT synchronization. The framework is validated 

via two case studies, demonstrating that the proposed voxel-based method can be 

easily applied to real-world damage with non-convex geometry instead of convex-hull 

fitting; FE and BIM models can be updated automatically through the framework.  

Fourthly, an automatic and unified deep learning (DL) framework is proposed for 

intelligent fault diagnosis (IFD) and health-state recognition based on time series by 

leveraging automated machine learning (AutoML) and data-level fusion. Uniaxial or 

triaxial signals can be reconstructed into 3-channel pseudo-images to satisfy the CNN 

input requirements and achieve data-level fusion simultaneously. Then, the model 

training, hyperparameter optimisation, and evaluation are carried out automatically. 

The selected model can be deployed on a cloud server or an edge device. Moreover, 

the framework can be extended by integrating multi-channel 1D-CNN architectures, 

validated using the data from a railway bridge's vibration-based monitoring (VBM) 

project. Multiple sensors' data-level and decision-level fusion performances are also 

compared and analysed.  

Fifthly, a knowledge graph (KG) schema based on bridge structure and maintenance 

reports is proposed. Then, graph data mining is explored on the established KG by 

leveraging large language models (LLMs) and graph neural networks (GNNs). The 

models trained from graph contextual similarity can identify node layer information and 

provide maintenance recommendation for unsolved defects from the existing options. 

Moreover, an intact workflow integrating the proposed KG schema and data mining 

approaches is designed for maintenance routine practices.  

Finally, a preliminary bridge DT system is developed based on the above outcomes. 

This research addresses some challenges encountered for bridge DT implementation 

in practical O&M and has paved the way for a more efficient, resilient, and intelligent 

bridge DT system. As such, it offers excellent potential to achieve generalised DT 

applications in smart and practical bridge maintenance.  
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Chapter 1 Introduction 

1.1  Research background 

In recent years, the construction industry has witnessed a transformation towards the 

digitalization of assets, which is not only a trend but also a substantial evolution in 

conceiving, managing, and interacting with built environment. Digital assets, 

embracing sensor data from Internet of Things (IoT) devices, building information, 3D 

models, and extensive historical maintenance records, have become increasingly 

important. Different from traditional physical assets, these digital counterparts provide 

a dynamic, interactive, and predictive approach for project management and 

infrastructure maintenance. Currently, digital assets in construction have transitioned 

from supplementary tools to core elements that drive value throughout projects. They 

play a crucial role in enhancing decision-making processes, optimizing operation and 

maintenance (O&M) costs, elevating safety criteria, and extending the lifecycle of 

infrastructures. This transformation is characterized by an increasing awareness in the 

industry that digital assets hold inherent value and can yield substantial enhancements 

in project outcomes and operational efficiencies. 

Digital twinning is an emerging technology for intelligent asset management that 

provides an up-to-date presentation of an actual physical asset in operation, which 

can reflect the current asset condition, include relevant historical information, and 

make holistic decisions (or feedback). Although the idea can date back to 1970 as the 

“living model” of the Apollo 13 space rescue mission, the first definition of a concept 

nowadays known as the digital twin (DT) was made in 2002 by Michael Grieves in the 

context of an industry presentation concerning product lifecycle management (PLM) 

[1]. Based on the given definitions of a DT in many studies [2]–[7], there are two 

common understandings of the term DT. One can be identified as the digital 

counterpart of a physical object or entity (PE); the other refers to the DT systems or 

frameworks. To prevent misunderstandings, in this research, DT refers explicitly to the 
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latter, i.e., a DT system, and the former (i.e., digital counterparts) is referred to as a 

virtual entity (VE). Moreover, the DTs can be categorized in terms of the system 

integration level between PEs and VEs [5], i.e., digital modelling, digital shadowing, 

and digital twining, as shown in Figure 1, where the dashed line represents the manual 

data flow, and the full line indicates the automatic data flow.  

 

Figure 1 Different DT system integration levels [5] 

A qualified DT for bridge O&M is not only about creating a digital representation of the 

physical bridge (i.e., digital modelling) but can also update in near real-time as new 

data is collected (i.e., digital shadowing) and provide feedback into the physical bridge 

based on relevant historical records as well as perform ‘what-if’ scenario analysis for 

asset risk assessment and performance prediction (i.e., digital twining) [8]. In practice, 

bridge DT is systematic engineering, consisting of inspection and monitoring on the 

site of physical bridges, communication between physical entities (PEs) and virtual 

entities (VEs), and backend services, including analysis, simulation, prediction, and 

decision-making.  

Many efforts have been made for the related topics of the bridge DT in previous 

research, such as drone-enabled bridge inspection [9], [10], real-time IoT-based bridge 

structural health monitoring (SHM) [8], bridge information modelling (BrIM) (served as 

DT informatics foundation) [11], [12], knowledge-based and optimization-oriented 

bridge management systems (BMS) [13], [14], etc. Nevertheless, there is limited 

research exploring the entire maintenance cycle of DTs for bridges. This includes 

stages from on-site inspection and monitoring, synchronization of DT, and feedback to 
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Physical Entities (PEs), to the backend services that facilitate decision-making in the 

bridge O&M.  

1.2  Research motivations 

Although DT has garnered significant interest for its potential to revolutionize bridge 

O&M, many gaps exist between academic research and industrial applications. For 

example, when DT implementation concerns bridge locations, it may have many 

issues, such as restricted communication capability and power supply, which is a 

bottleneck for DT synchronization with massive inspection and monitoring data; 

moreover, the automatic visual inspection based on supervised learning requires a 

huge number of annotated images, but it is not always practical to collect sufficient 

examples for the model training due to various materials, different surface coatings, 

changing light and weather conditions, etc.; furthermore, assessing bridge conditions 

and proposing repair actions for bridge maintenance, which are based on the specific 

expertise, are still time-consuming and require elaborate manual analysis by 

engineers in routine practice. Nevertheless, there is limited research examining the 

efficiency and resilience of bridge DTs and associated methods, which could improve 

their practical application in bridge maintenance. Hence, the first motivation of this 

research is to fill the gaps between the conceptual DTs and the practical applications 

in bridge O&M.  

Another research motivation is to promote the existing bridge SHM and BMS systems 

to bridge DTs in terms of both integration and back-end services for bridge O&M. For 

example, the traditional bridge SHM systems are often reactive and focused on 

condition monitoring by using alarms to indicate damage happening [8] but hardly 

provide proactive warning or remaining useful life (RUL) estimation of the property 

according to future ambient change and traffic loads for preventative maintenance, as 

well as optimized operation planning in an area. The latter requires simulation and 

prediction. Moreover, it is also of great significance to integrate the mainstream 
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inspection, monitoring, assessment, and decision-making technologies (which were 

stand-alone and manual) into the same automatic digital twining pipeline, thereby 

achieving an efficient, effective, and comprehensive DT for the bridge maintenance 

cycle. For example, the TLS survey is usually project-based and time-consuming due 

to its massive data and the complexities involved. Integrating the real-time (or near 

real-time) TLS into a DT for bridge O&M does not only enhance the damage 

assessment accuracy at the back end by offering highly detailed 3D information but 

can also improve the inspection effectiveness on the site by leveraging the feedback 

from the DT such as historical records and maintenance expertise guiding inspector 

to areas of concerns.  

1.3  Research questions 

Following the above background and motivations, this research aims to solve the 

problems encountered by DTs for practical applications in the complete bridge 

maintenance cycle, mainly focused on efficiency, effectiveness, and intelligence. This 

research objective can be broken down into the following questions:  

1) How can an efficient, resilient, and bidirectional DT framework be created for 

practical bridge O&M in challenging conditions with massive heterogeneous 

data and limited communication? – Chapter 4  

2) How can automatic bridge image-based defect detection be achieved under 

complex scenarios with weakly supervised information, such as very limited 

data? – Chapter 5 

3) How can the dense 3D point cloud data (such as from TLS) be integrated into 

the digital twinning pipeline efficiently, achieving DT model synchronization and 

volumetric assessment for local damages in near real-time? – Chapter 6  

4) How can intelligent fault diagnosis (IFD) and health-state monitoring be 

implemented through automated machine learning (AutoML) and data fusion 
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(multi-axial or multi-sensor) based on time series? – Chapter 7  

5) How can we design a bridge maintenance knowledge graph (BMKG) based on 

the bridge structure and the practical inspection reports and then achieve 

maintenance recommendation via the analogical strategy? – Chapter 8  

1.4  Research innovations 

This research contains works on theoretical and practical developments for DT 

implementation in the bridge maintenance cycle. The innovations refer to the 

overarching DT framework, the on-site inspection and monitoring, the communication 

and model synchronization, as well as backend services for assessment and decision-

making, which can be listed below:  

1) The time delay of a DT between PE and VE is studied theoretically and 

mathematically, which is significant to the design of a bridge DT for different 

purposes. Then, an AIoT-informed bridge DT framework is proposed by 

leveraging low-power wide-area network (LPWAN) to achieve a decentralized 

fault-tolerant DT system and by leveraging edge computing to minimize 

communication complexity.  

2) A training-free few-shot learning (FSL) approach based on an improved 

prototypical network (ProtoNet) is proposed for image-based bridge damage 

detection with weakly supervised information, which can be quickly 

implemented under complex circumstances with very limited data.  

3) An extremely light-weight framework is proposed to integrate dense point cloud 

data (PCD) into the digital twining during a survey, which can achieve 3D spatial 

damage segmentation via voxelization, low-latency model synchronization 

through a binary matrix and lossless compression, as well as more accurate 

volumetric assessment without manual efforts.  

4) An efficient framework leveraging AutoML and data fusion (multi-axial or multi-
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sensor) is proposed for IFD and health-state monitoring based on time series 

signals.  

5) A BMKG schema is designed based on bridge structures and practical 

inspection reports. Then, an approach that can automatically suggest repair 

actions for new defects is proposed by leveraging the analogical strategy based 

on context.  

6) A preliminary web-based bridge DT platform fusing GIS, BIM, and AI is 

developed, integrating element-based query, visualization, vision-based bridge 

defect assessment, and a knowledge-based question and answer (Q&A) 

chatbot.  

The above research outcomes significantly advance the use of digital assets in 

construction, particularly in bridge maintenance. By developing a sophisticated AIoT-

informed DT framework, the research enables bridge stakeholders to make more 

accurate and efficient decisions through data synchronization and analysis in near 

real-time. The implementation of training-free few-shot approach for damage detection 

is promising to revolutionize automatic visual inspection, allowing for rapid, effective 

analysis with minimal data. The integration of dense PCD into digital twinning and the 

use of AutoML based on time series greatly enhance efficiency and precision for reality 

modelling and bridge SHM during routine inspection and monitoring. Additionally, the 

creation of a maintenance-oriented KG schema and a web-based DT platform 

facilitates easier management and maintenance planning of digital assets. These 

innovations not only streamline bridge O&M processes but also exemplify the broader 

potential of digital assets in enhancing operational efficiency, reducing costs, and 

improving the lifecycle management of many other construction projects.  

1.5  Structure of the thesis 

Chapter 1 aims to comprehensively introduce the research’s background, motivation, 
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and significance within this thesis.  

Chapter 2 provides a thorough review of the existing body of literature. It is divided 

into five main sections: (1) the existing bridge DT frameworks and systems; (2) the 

details of various bridge maintenance technologies within the context of triplet 

interaction between bridge, machine, and human; (3) the details of vision-based bridge 

inspection technologies, including image-based and point-cloud-based survey; (4) the 

workflows for IFD and health-state monitoring based on traditional machine learning 

(ML) and deep learning (DL), respectively; (5) the advanced bridge knowledge 

engineering (KE), including ontology generation and KG completion, as well as data 

mining using GNN.  

Chapter 3 presents the research methodology in the form of a “Research Onion” from 

the outer layers to the inner layers, including philosophies, approaches, strategies, 

choices, time horizons, techniques and procedures. Then, the research roadmap is 

proposed with the methodology details, hypotheses, and expected outputs.  

In Chapter 4, an efficient and fault-tolerant AIoT-informed DT framework is proposed 

for bridge maintenance, which can decrease time delay, minimize communication 

complexity, and enhance system resilience against fault. The validation is conducted 

using a DT prototype and simulation on three different bridge O&M scenarios: drone-

assisted bridge inspection, vibration-based monitoring (VBM), and dynamic evaluation, 

demonstrating the framework’s superiority compared to the existing bridge DT 

frameworks and systems.  

Chapter 5 focuses on image-based bridge damage detection with weakly supervised 

information using FSL approaches. The chapter begins with the theoretical foundation 

for few-shot classification (FSC), including problem definition, feature embedding, 

transfer learning, and fine-tuning. Then, it proposes an improved ProtoNet for few-shot 

bridge damage detection based on ablation studies. Finally, the network's validation 

uses real-world bridge defect images, demonstrating its fast implementation capability.  
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Chapter 6 proposes an efficient voxel-based framework for integrating the dense 

point-cloud data from TLS into a digital twinning process. The framework consists of 

three modules: surface damage detection, spatial damage segmentation, and DT 

synchronization, which can enable model synchronization and volumetric assessment 

for local damages in near real-time. The validation is conducted using synthetic 

grooves and real-world building cracks, demonstrating its efficiency, effectiveness, and 

superiority compared to the previous research.  

Chapter 7 delves into the time-series-based IFD and SHM. Firstly, a data-driven 

framework is proposed for edge-based IFD integrating image-like data fusion, AutoML-

CNN, and tiny machine learning (tinyML). Its validation uses two public IFD datasets 

based on uniaxial and triaxial sensors. Secondly, a 1D-CNN architecture is employed 

for edge-based bridge SHM by leveraging multi-sensor fusion. The validation is 

performed using data from a VBM project for a railway bridge. Meanwhile, the data-

level and the decision-level fusions are compared in the experiment.   

Chapter 8 explores the knowledge mining of a BMKG using natural language 

processing (NLP) and GNN for semantic enrichment and maintenance 

recommendation. The proposed methods involve contextual node classification and 

link prediction by leveraging GraphSAGE and contrastive learning. The validation uses 

a BMKG derived from an actual bridge inspection report. Finally, an intact workflow is 

designed for practical implementation.    

Chapter 9 presents the developed bridge DT system, including the overarching design, 

the preliminary web-based platform, and a range of backend services dedicated to 

bridge O&M.  

Chapter 10 concludes this thesis by revisiting and answering the research questions. 

In this section, the entire research is discussed and reflected. The limitations and 

future work are clarified. Additionally, the major contributions of this research are 

summarized.  
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Chapter 2 Literature review 

In order to produce a comprehensive review of the subject, this chapter is divided into 

five sections: (1) Section 2.1 introduces the DT development and characteristics, as 

well as the existing bridge DT frameworks and systems; (2) Section 2.2 elaborates the 

technologies associated with bridge DTs in the context of the interaction between 

bridge, machine, and human; (3) Section 2.3 reviews the current situation of vision-

based bridge inspection, including via images and point clouds, as well as the issues 

encountered in practice; (4) Section 2.4 reviews the IFD approaches with time series 

signals, which can be integrated into the bridge DT for health-state monitoring; (5) 

Section 2.5 reviews the current studies in KE associated with bridges and data mining 

with GNN, and then introduces the potential to improve bridge maintenance by 

leveraging BMKG, GNN, and contextual analogy.   

2.1 Bridge DT frameworks and systems 

In the context of Industry 4.0, the architecture, engineering, and construction (AEC) 

processes and product life-cycle management are becoming more efficient and 

intelligent [15], and bridge O&M is no exception. As an emerging technology, DT has 

received extensive attention and application in different fields for this revolution [16], 

especially when combined with digital transformation, such as DT-enabled smart 

manufacturing, construction, operation, and management. Although there is hardly a 

unified framework for DTs across different disciplines and domains, the ongoing 

research exhibits a notable characteristic (or pattern) in the current studies that DT 

systems are always designed and developed for specific purposes and circumstances 

[17], [18].  

In terms of bridge engineering, a bridge DT for SHM can be defined as a virtual 

representation of the physical bridge, which does not only update as new data is 

collected in near real-time but also provides feedback into the physical bridge and 

performs ‘what-if’ scenarios for assessing asset risks and predicting asset 
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performance [8]. A DT for bridge maintenance aims to be updated along with visual 

inspection and non-destructive test (NDT) continuously [19]–[21] and integrated with 

other multi-source data, such as original design, damage history, inventory, traffic, 

weather, disaster, to support holistic decision-making for maintenance planning [22], 

[23]. Moreover, multiple bridges DTs can be considered a bridge network and utilized 

for intelligent transport, usually represented topologically on a map [24]. A 

comprehensive and sophisticated DT system to support bridge O&M in this research 

aims to consider all the above purposes (or services). The bridge DT models can be 

created through different approaches, including building information modelling (BIM), 

physics-based approach (such as finite element modelling), data-driven approach 

(such as statistical modelling), and data-centric engineering approach (i.e., hybrid 

modelling) [8]. Their primary characteristics comprise digital replica (like geometry, 

materials, etc.), data composition, bidirectional connection for updates and feedback 

in near real-time, the entire life-cycle coverage of a physical bridge, a common data 

environment (CDE), visualization capabilities, simulation, and the ability to learn from 

actual measurement data [8].  

Over the past decade, the interest in bridge DT has grown significantly, and a few 

prototypes and pilot projects have been proposed and demonstrated successfully. For 

example, a DT system for two pilot railway bridges [25] was developed, which 

integrates Fiber Bragg Gratings (FBG) sensors, laser rangefinders, and other 

additional sensors to achieve ongoing monitoring for train-bridge coupling parameters 

(e.g., strains, accelerations, train axle positions). It can calculate the key indicators 

(e.g., curvature, end rotations, displacements, axle weights) for SHM in the cloud and 

use a web-based platform embedded with Unity for human-machine interaction (HMI). 

Another cloud-based bridge DT for SHM [26] employs a finite element model with 

damaged states and data synthetically created, real-world monitoring data (such as 

vibration and strain) from multiple sensors, and a pre-trained surrogate model based 

on DL to detect damage existence, identify damage location, and quantify damage 
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severity on a practical bridge, thereby achieving proactive maintenance. Moreover, a 

conceptual bridge DT [21], [27], [28] for preventative maintenance is developed using 

a surface model, BIM model, and simulation model. The surface model is generated 

continuously through reverse engineering (photograph mapping and 3D scanning) and 

aligned parametric modelling during the bridge lifecycle O&M. Damage information 

through image processing after visual inspection can be recorded in a code system 

and linked to specific BIM elements. The simulation model is achieved with FEM, 

wherein the detected deterioration of structural elements is evaluated and employed 

to update the structural parameters. Another exemplary openBIM-based bridge DT [29] 

was developed by industry, which can enable long-term monitoring of bridge condition 

and predictive maintenance (PM) with aggregated information by combining traditional 

inspections with digital information (from structural diagnosis and monitoring) and 

injecting the derived semantic information into the BIM model. Furthermore, there are 

also many other frameworks or systems developed in the forms of the bridge BMS or 

BrIM for bridge SHM [30]–[34], and O&M [23], [35]–[37]. They are very instructive due 

to the close relationship to bridge DT, which can be taken as resorts and further 

developed to bridge DT.  

Although there are already some successful designs and implementations for bridge 

DT, most of them relied on excellent communication [25], [29], [38], such as Ethernet, 

4G, and 5G, or even did not reveal communication approaches such as conceptual 

designs [21], [27], [28]. However, when the bridge DT is implemented in practice, the 

location may be a concern because many bridges work with limited communication 

and power supply, which can be attributed to geographic or economic reasons. For 

example, the successful bridge DT exemplar in the pilot project [25], which requires 

excellent communication for successful DT implementation, cannot spread widely to 

thousands of bridges in the UK because it will lead to significant expenditures on 

middleware and data plans. Meanwhile, storing such tremendous inspection and 

monitoring data will also become a heavy burden for technology and the economy. 
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Besides, as shown in Figure 2, most of the existing bridge DTs work in a centralized 

mode based on the cloud [37]–[40]. In this way, the digital bridge can synchronize with 

the physical bridge through the triplet bridge-machine-human interaction, which 

involves four significant components, i.e., data acquisition and preprocessing, 

communication, cloud servers, human-machine interface (HMI), to achieve multiple 

DT services at the back end.  

 

Figure 2 Cloud-based Bridge DT Architecture 

However, the above centralised cloud-based architecture raises two questions. Firstly, 
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DTs [39], [40] is usually neglected, so how can we enable bridge DT with fault-tolerant 

capability, e.g., under a temporary loss of communication?  

According to the investigation of the UK practitioners [41], the first question is related 

to the significant disconnect between academia and industries towards DT 

applications in bridge O&M, which is the difficulty of updating the bridge DT models 

automatically in routine practice. It can be solved by collecting data continuously from 

traditional inspections and ongoing structural monitoring, but one of the bottlenecks is 

focused on the synchronization of massive heterogeneous data. Besides, to our best 

knowledge, there is no precedent of bridge DT framework considering resilience to 

endure a temporary loss of communication. Hence, this work is going to study the 

bridge DT communication to solve the above issues from two perspectives: 1) to 

enhance DT efficiency through a trade-off between complexity and time delay of DT 

services; 2) to enable bridge DT with excellent fault tolerance, which can endure a 

temporary loss of communication.  

2.2 Bridge-machine-human triplet interaction 

This part investigates the technologies related to bridge DT, which is helpful for the 

following framework design and prototype development. The content will be organized 

as a triplet bridge-machine-human interaction, as shown in Figure 3.  

 

Figure 3 Triplet bridge-machine-human interaction  
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2.2.1 Bridge-machine Interaction 

2.2.1.1 IoT-based monitoring 

Bridge-machine interaction includes various sensing and robotic technologies. 

Recently, elaborated attached sensors or handheld equipment have been successfully 

applied on bridges [42] for global SHM, including accelerometers [30], strain gauges 

[43], fibre optical sensors [34], etc., and local non-destructive testing (NDT), such as 

passive acoustic emission (AE) monitoring [44], active sonar [45] and ultrasonic coda 

wave interferometry (CWI) detection [46]. A high-speed motion camera can also 

monitor bridge vibration and displacements with high accuracy under dynamic 

loadings based on motion amplification technology [32]. Digital single-lens reflex 

(DSLR) [47], [48] and infrared (IR) cameras [47], [48] are also widely used for vision-

based bridge inspection to identify surface deficiencies due to their easy integration 

into traditional inspection workflows. LiDAR (i.e., 3D laser scanning) is another 

powerful vision-based method supplementary to 2D inspection [49] for bridge 

inspection, which can provide more detailed information such as depth. These sensors 

and equipment in the regular inspection and real-time monitoring will generate 

massive heterogeneous data, which is essential for bridge condition assessment and 

decision-making but also poses a challenge for DT synchronization.  

2.2.1.2 Robotic inspection 

Traditional bridge inspection with manual access is costly, time-consuming, and 

dangerous [50]–[52]. Nowadays, it has got a lot of help from versatile robotic systems, 

e.g., drones [50]–[52] and climbing robots [50]–[52]. Such automated inspection 

systems can work with various payloads (i.e., sensors) to access limited areas and 

better angles that are difficult or dangerous for people to reach. Moreover, they are not 

only carriers of inspection payloads but can also improve or assist the inspection with 

the data from their control system. For example, mobile robots and drones can use 

the approaches based on Global Navigation Satellite System (GNSS) [53] – i.e., real-
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time kinematic (RTK) and post-processing kinematic (PPK) positioning, obstacle 

avoidance system – camera, ultrasonic distance ranger or LiDAR, inertial 

measurement units (IMUs) to help with defect localization, as shown in Figure 4. Thus, 

it will further increase the amount of data for synchronization.  

 

Figure 4 Defect localization with the drone control system [54] 

2.2.2 Machine-human Interaction 

2.2.2.1 Data communication 

Machine-human interaction includes data communication, storage, common data 

environment (CDE), and HMI. Transmitting such massive data from bridge-machine 

interaction requires abundant bandwidth. Therefore, data acquisition in many DTs is 

based on a wired connection, such as Fieldbus and Ethernet, which can provide fast 

(up to 10Gbps) and robust data transmission. Still, it has low scalability and leads to 

high installation and maintenance costs [55]. Wireless communication is more flexible, 
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enabling monitoring of the bridges that used to be inaccessible by cables, although it 

is susceptible to distance and obstacles. The capability of different wireless 

communication technologies [56]–[58] is shown in Figure 5. Short-range wireless 

communication, such as WIFI, Zigbee and Bluetooth, is only suitable for data collection 

in situ. Commercial cellular networks operate at a medium range with service costs 

(charge of data plan). Their bandwidth increases along with frequency bands, i.e., data 

rate – 5G > 4G > 3G, but their coverage decreases, i.e., distance – 3G > 4G > 5G. 

The LPWAN technology, which is long-distance wireless communication, includes 

cellular and non-cellular. Cellular LPWAN, such as NB-IoT and LTE-M, relies on 

existing commercial cellular networks. In contrast, non-cellular LPWAN, including 

LoRa, Sigfox, Ingenu, etc., works on free, unlicensed industrial, scientific, and medical 

(ISM) bands. LPWAN is a restricted communication, which works with limited 

bandwidths (i.e., low data rates), e.g., LoRa (sub-GHz) – up to 50kbps, NB-IoT – up 

to 158.5kbps, GBAN – up to 800kbps, LTE-M – up to 1Mbps, and is usually bounded 

by small payload size and duty cycle, such as LoRa and Sigfox. Still, it has many 

advantages, such as long-distance, scalable, low-cost, suitable for bridges in 

resource-constraint environments and remote areas and promising for widespread 

applications.   
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Figure 5 Capability of typical IoT wireless communication technologies  
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A CDE is required for bridge DT to store massive heterogeneous data from multiple 

data sources to support seamless collaboration among different stakeholders across 

the bridge life cycle, including monitoring data, inspection reports, bridge design and 
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ambient data, such as traffic, weather, air salinity, water speed, and natural disasters. 

Users can conditionally access and modify the models and data [8]. Meanwhile, each 

user should have a corresponding priority and resource budget, including time and 

payment, to avoid potential conflicts with others [43]. It is also worth noting that the 

required computation and storage resources should not exceed the total capacity of 

the service provider [43]. BIM with Industry Foundation Classes (IFC) format files is 

the most popular choice to create such a CDE [59], [60] thanks to the consistent and 

sharable data schema. For example, a dynamic data-driven environment [61] based 

on IoT-informed BrIM was developed for bridge SHM to support dynamic visualization, 
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seamless updating, long-term monitoring, and data exchange with IFC. Another 

framework based on BrIM for drone inspection was proposed for data storage and 

management, which can assign deficiency evaluation to the corresponding BIM 

element [62].  

2.2.2.3 Bridge DT platform 

A virtual platform in computer terminals integrating multiple tools and applications is 

required to support human-machine interaction [61], [63]–[65]. A few tools have been 

successfully validated for bridge DT visualization, including Unity [65], Xeokit [66]–[68], 

and Visualization Toolkit (VTK) [69]. Docker is recommended for platform deployment 

as it is less resource-intensive (i.e., multiple containers can share a common kernel) 

than virtual machines (VMs), and the services can be distributed amongst a cluster of 

nodes via Docker Swarm [70]. The Hadoop framework can be used for big-data 

storage. Meanwhile, NoSQL (such as MongoDB) and NewSQL databases with 

MapReduce and Spark can accelerate computation for data management [71]. 

Moreover, the web-based application relying on microservices [33] has recently been 

taken as an alternative to a desktop-based application due to its lightweight and 

excellent cross-platform capability. Additionally, extended reality and gaming 

technologies, such as augmented reality (AR), virtual reality (VR), mixed reality (MR), 

and Unity engine, are brought in to develop new HMI [72]–[74]. Emails, text messages, 

as well as social media (such as Twitter and Facebook) can also be adopted in the 

platform [75], [76].  

 

2.2.3 Human-bridge Interaction 

Human-bridge interaction aims to make holistic decision-making based on human 

knowledge or human-designed computational programs. It is reflected in the various 

DT functions (or services) for bridge O&M, such as condition assessment, 

maintenance planning, and multi-objective optimization. Traditionally, bridge structural 
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integrity and serviceability are assessed by human engineers based on experience 

and standards [77]. Currently, many data-driven and knowledge-driven approaches 

are employed in the workflow, such as data analysis, data mining, ML, and knowledge 

discovery. The data usage in this process can be either indicator-based [78] or the 

direct use of data in the time or frequency domain [79]. For example, structural damage 

diagnosis can be achieved through a fully convolutional encoder-decoder architecture 

using vibration signals from a grid sensor network to locate damage and classify 

multiple damage mechanisms [80]. 

Moreover, bridge deterioration can be predicted based on data mining and knowledge 

discovery from multi-source data, such as design and construction documents, 

inspection reports, traffic, weather, disasters, and inventory [23]. Meanwhile, the 

intervention duration and impact caused by maintenance can also be predicted 

through a deep neural network (DNN) with embedded entities [81], which can help to 

make optimal maintenance planning. Additionally, early warnings and protective 

measures, such as weight restriction, traffic diversion, or even closure, are significant 

for physical bridges' safety and on-site users' safety, especially in an emergency. Such 

decision-making is also required in the bridge DT, which is usually achieved by 

knowledge-based reasoning, such as ontology [82] or knowledge graph [35], [36], [82]. 

The human-bridge interaction can also enhance maintenance efficiency and save 

social and economic costs. 

2.3 Vision-based bridge inspection 

2.3.1 2D image-based survey 

2.3.1.1 Damage classification and detection 

For bridge visual inspection, a fundamental task is to determine if there are certain 

kinds of damage in an image, such as surface cracking, spalling, or rebar corrosion, 

i.e., damage classification [83]. The task can be defined as the binary classification for 
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each defect or a multi-defect classification. It can also be extended to determine 

whether damages exist and deduce the exact damage type, such as longitudinal crack, 

transverse crack, and alligator crack [83]. Furthermore, damage detection aims to 

provide more information about the damage, such as location, area, skeleton, and 

direction, which is helpful because classification only indicates the existence of defects 

in an image but leaves the task of finding the actual defect to inspectors [83]. A typical 

damage detection approach can be achieved by sliding the window or splitting the 

image into patches and then applying classification on each window or patch, followed 

by stitching them back, as shown in Figure 6. Another type of damage detection utilizes 

bounding boxes to indicate defects, like object detection tasks in many competition 

datasets, such as COCO [84] and Pascal VOC [85]. However, this method is not 

always the best option to locate damage because defects have various shapes. The 

created bounding box can include many undefective sub-regions, e.g., an oblique 

crack is marked by a sizeable bounding box determined by its diagonal points.  

 

Figure 6 Crack detection by patch splitting and classification [86] 

The image-processing methods for damage detection underperform on practical 

inspection images due to the interference of surface textures, changing light, stains, 

etc. [87]. Therefore, many data-driven approaches have been developed based on 

artificial intelligence (AI) for damage classification and detection to assist visual 

inspection. They can be categorized based on feature extraction, i.e., traditional ML 

(with handcrafted features) and DL (without handcrafted features). The former include 
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support vector machine (SVM) [88]–[90], Random Forest [91]–[94], Adaptive boosting 

(Adaboost) [95], [96], artificial neural network (ANN) [97]–[100], etc. In traditional ML-

based approaches, image processing is still required to implement pre-defined feature 

extraction. Various features have been utilized in research, such as statistical 

information, feature map projection, and defined defects' characteristics [101]. For 

example, Chen et al. [102] utilized local binary patterns (LBP), SVM, and Bayesian 

decision theory to detect cracks; Wang et al. [103] employed crack characteristics (i.e., 

density and connectivity) and SVM to discriminate alligator and transverse cracking. 

Meanwhile, ML can also be used to find optimal parameters for feature extraction, 

such as threshold values [100], [104]. The major problem with traditional ML 

approaches is that they still require handcrafted features and contain shallow learned 

information (or representation) [101].  

Deep learning (DL) can extract features automatically with multi-layer neural networks. 

Cha et al. [86] proposed a convolutional neural network (CNN) to identify cracks 

without calculating handcrafted features for the first time. The model was trained on 

40k images (256 ×256), including crack and non-crack, and then combined with the 

sliding window to scan any photo larger than 256 ×256 for crack detection, which 

shows better performance and can detect concrete cracks in practical scenarios. 

Subsequently, a few datasets and DL approaches were created for damage detection 

based on supervised learning, including CNN [87], [105]–[107], transformer [108]–

[112], etc. For example, Xu et al. [107] created an image set for automatic bridge crack 

detection. They proposed a CNN architecture by leveraging the atrous spatial pyramid 

pooling (ASPP) module and depth-wise separable convolution, which can achieve 

96.37% accuracy on the test set. Xiang et al. [112] integrated a transformer module in 

YOLOv5 for road crack detection. Cha et al. [113] created a dataset including five 

typical defects – concrete rack, steel corrosion with two levels (medium and high), bolt 

corrosion, and steel delamination. Then, they employed the faster region-based 

convolutional neural network (Faster-RCNN) and the region proposal network (RPN) 
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for multiple damage detection. Furthermore, Mundt et al. [114] developed a concrete 

defect bridge image dataset (CODEBRIM) of five commonly appearing concrete 

defects. They employed two meta-learning approaches based on reinforcement 

learning, i.e., MetaQNN and efficient neural architecture search, to find suitable CNN 

architectures for multi-class and multi-target damage detection.  

The above ML and DL approaches are all based on inductive supervised learning, in 

which the performance relies on the pre-collected annotated examples before the 

inspection. They must work with pre-trained models to detect specific types of damage 

and cannot adapt themselves to novel defects quickly. However, annotation is usually 

time-consuming and tedious, and collecting sufficient defect images from various 

damage scenarios is not always practical. Traditional supervised transfer learning was 

expected to solve this issue, but it tends to be overfitting or challenging in convergence 

with only a few labelled examples. Little research exists about weakly supervised 

learning for few-shot image-based bridge damage classification and detection. The 

only related one is an attribute-based approach [115] for structural damage 

identification through meta-learning, which relies on episodic training through a series 

of pre-collected tasks and is not developed to the level of damage detection.  

In summary, the previous research about damage detection and their approaches are 

illustrated in Table 1. As can be seen, proposing an efficient transductive FSL approach, 

which can be exempt from episodic training, is beneficial to assist vision-based bridge 

damage detection without a tedious data acquisition process before the inspection. It 

will also promise fast implementation for damage detection under complex 

circumstances with weakly supervised information.  
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Table 1 Related works for image-based structural damage detection  

Names Approaches Research Advantage / Disadvantage 

Supervised 

Learning 

(Inductive) 

Traditional 

ML 
[14]–[26] 

Fast with good interpretability  

but require handcrafted features 

DL 
[13], [31]–

[38] 

No need for handcrafted features but 

heavy and require time-consuming 

image acquisition 

Few-shot Learning 

(Weakly 

Supervised) 

Meta-

learning 
[115] 

Transductive inference with only a few 

examples but requires episodic training 

 

2.3.1.2 Few-shot learning for images 

The time-consuming and labour-intensive data acquisition process is the bottleneck 

for applying supervised ML in many fields. FSL aims to solve this issue by learning 

from a limited number of annotated images, including few-shot classification and 

segmentation, which is essentially related to the data-efficiency problem. This work 

focuses on the few-shot classification, which is usually taken as an example of meta-

learning. A meta-learner is trained through a series of related works (episodic training) 

to perform well to unseen but related tasks with just a few examples. Meanwhile, 

transduction has been widely adopted for FSL tasks in learning and inference because 

it is more effective at using only a few labelled examples than induction with supervised 

models [116].  

Many great efforts have been made in this field, including a few specific image 

datasets [117]–[120] (such as Omniglot, CIFAR-FS, CUB, and mini-ImageNet) and 

various approaches. For example, a few works [121]–[125] aim to use data 

augmentation based on different methods to solve the few-shot classification with 

limited training samples, such as self-augmentation [123], deformation [125], and 
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generation from DCGAN [121]. Some other works aim to learn good model 

initialization [126], [127] or an optimizer [128], [129] to achieve rapid adaption with a 

limited number of training examples for new classes. In contrast, the other approaches 

aim to learn latent embeddings that can be used to compare [130] or cluster [131] 

query items using appropriate metrics. It includes creating the exemplar for each class 

from the support set and selecting a metric for evaluation [132]. For example, ProtoNet 

[133] calculates the mean vector of feature embedding as the prototype for each class 

in the support set and classifies query items as the nearest prototype based on the 

Euclidean distance because its case study fits Bregman divergence [134]. Some other 

approaches prefer cosine similarity [135], [136]. Relation Network further developed 

the ProtoNet using a relation module as a learning metric in training [137].  

However, the sophisticated meta-learning FSL approaches are based on episodic 

training through an intentionally collected series of related works, which is still time-

consuming. Recently, a few works [136], [138] have challenged the efficiency and 

effectiveness of this way by replacing episodic training with inter-class transfer 

learning (except the classes in the target FSL tasks). They can achieve similar state-

of-the-art performance as the meta-learning approaches in the CUB and mini-

ImageNet datasets. Furthermore, they have also indicated that the proper feature 

embeddings learned from cross-domain transfer learning (e.g., CUB → mini-ImageNet) 

can achieve competitive performance for FSL to the sophisticated meta-learning 

approaches [136], [138]. Moreover, the latest work [139] has demonstrated the 

availability of cross-domain transfer learning (i.e., ImageNet → MSCOCO and 

PASCAL VOC) for few-shot segmentation. It is achieved by leveraging a "training-tree" 

module (i.e., a pre-trained CNN backbone from ImageNet) to learn the feature 

representation.  

Therefore, leveraging cross-domain transfer learning for few-shot damage detection 

is promising. However, the domain differences in the previous studies [136], [138], 
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[139] are not distinct enough compared to the domain difference from a public dataset 

to a specific engineering scenario, such as ImageNet → bridge structural defects (e.g., 

cracks, spalling, and corrosion). Therefore, this work aims to develop a transductive 

FSL approach for bridge damage detection using cross-domain transfer learning from 

a public dataset. It should be available for fast implementation under practical 

scenarios without episodic training and supervised learning, i.e., achieve similar 

"training-free" [139]. Hence, it is necessary to find a reliable source domain to perform 

effective feature embedding for few-shot damage detection and compare the 

performance of different pre-trained DNN backbones derived from supervised or 

unsupervised learning. Based on the transduction in the ProtoNet, it is also helpful to 

explore the performance of different metrics (i.e., Euclidean distance and cosine 

similarity) and propose a proper fine-tuning method for practical application.  

2.3.2 3D point-cloud based survey  

2.3.2.1 3D Damage detection and characterization 

Although image-based damage detection and characterization have significantly 

progressed, they cannot provide the necessary depth information for 3D damage 

assessment and geometric model updating. The high-resolution point cloud, derived 

from photogrammetry, depth cameras, binocular cameras, terrestrial laser scanning 

(TLS), etc., is expected to fill this gap. For example, spalling and crack can be detected 

using the luminance or depth variation of RGB point-cloud data from TLS [140], [141] 

and then characterized approximately with the maximum depth. However, these 

approaches cannot distinguish between natural 3D damage and legitimate concave 

patterns, such as handcrafted circles, brick joints, and decorative textures. Hence, the 

latest research proposed a method based on mask R-CNN to achieve damage 

detection and segmentation. The mask geo-reference is achieved by the fusion of the 

image and point cloud [142]. This method can automatically distinguish target damage 

from the designed concaves. Still, it requires extra photo acquisition and complex 
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coordinate transformation [143], which will bring in potential errors, especially when 

the image and the point cloud are obtained under different conditions (i.e., from 

different angles and distances). Therefore, developing an approach for surface 

damage detection and segmentation based on only the point cloud would be helpful.  

2.3.2.2 Data processing and 3D damage assessment 

Point-cloud data processing approaches can be categorized into point-based and 

voxel-based. Previous spatial damage detection and assessment studies mainly 

belong to the former, which compares the point cloud with the ideal 3D model or the 

previous captures. For example, the point cloud of a damaged reinforced concrete 

(RC) column after seismic testing can be sliced into different layers and compared with 

a rectangle to distinguish the spalling and residual areas [144]. Component point-cloud 

captures at different times can be compared with each other to identify damage and 

monitor its evolution [145]. Moreover, the damage volumetric quantification can be 

achieved with convex-hull fitting [142] based on point cloud. However, it is prone to 

exaggerate the ground truth of the target volume for non-convex geometry, so it 

requires elaborate manual separation for each component, as the dash lines shown in 

Figure 7, which is not always practical for real-world damage with complicated 

geometry. The point-based approaches lose sight of the benefit of voxels for volume 

calculation and mitigation of point sparsity. Therefore, developing a voxel-based point-

cloud processing approach for 3D damage detection and assessment would be helpful.   
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Figure 7 Convex-hull fitting for damage quantification based on manual cutting [142] 

2.3.2.3 Model synchronization and data compression 

The infrastructure DT for structure health monitoring (SHM) and maintenance is not 

only about 3D visualization but also involves communication and back-end services, 

such as FEA and BIM, as well as feedback to the physical entity (PE). From the 

practitioners’ view, one obstacle to digital-twin application in practice is the difficulty of 

keeping model synchronization automatically in routine inspection [41]. The current 

3D survey for local damage is still far from automated, and the DT models cannot be 

updated in time, so developing an approach for “as-is” model updating with the 

detected local damage during the survey would improve the work efficiency. One of 

the bottlenecks is the communication complexity, i.e., the massive volume of point 

cloud data. It is a heavy load for data transmission in both time and cost, especially 

for some infrastructures under circumstances with limited communication, such as 

bridges and tunnels. Therefore, it is necessary to only transmit the damaged part in 

an efficient format instead of the raw point cloud.  

Additionally, compression can be used to further decrease communication complexity. 

For example, previous studies proposed a few approaches to compress 3D point 

clouds using RNN with residual blocks [146] or a hierarchical auto encoder [147]. 

However, the transmitted data for DT synchronization is not necessarily a point cloud. 

It can be any format that distinguishes the 3D damaged space from the residual entity. 

Therefore, binarized voxels have become a promising way to reduce complexity 

significantly, and lossless run-length encoding (RLE) can be utilized for further 

compression. In the medical field, the 3D binary matrix through the volumetric RLE 

has already been proven successful as an efficient approach for transmitting 3D 

medical imaging data, as shown in Figure 8. 
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Figure 8 Compression through 3D run-length encoding [148] 

Moreover, the transmitted binarized voxels can update the FE and BIM models. The 

latest research [142] has demonstrated the effectiveness of updating the FE model by 

deleting the corresponding elements less than the damage depth. The method is 

based on iteration and can be integrated into mainstream FE software programs. 

Moreover, the previous studies [149]–[152] have revealed the availability and workflow 

for damage modelling in geometry and semantics using IFC files.  

2.4 IFD and health monitoring with time series 

2.4.1 Traditional machine learning pipeline  

IFD methods that can automatically recognise the health states of machines and 

infrastructures [153] are essential for preventative maintenance in Industry 4.0. Many 

traditional ML approaches can be applied in IFD, such as k-nearest Neighbour (k-NN) 

[154], Naïve Bayes classifier [155], support vector machine (SVM) [156], decision tree 

[157] and random forests [158], etc., which rely on manual features. The pipeline for 

IFD based on traditional ML can be condensed as shown in Figure 9, which starts from 

data acquisition through various IoT technologies to feature extraction via handcrafted 

design and automatic data-driven health state recognition using supervised or 

unsupervised learning approaches.   
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Figure 9 The IFD pipeline through traditional machine learning [153] 

Data for fault diagnosis are usually in time series and collected constantly from 

different sensors mounted on machines or infrastructures, such as acceleration, 

displacement, strain, and acoustic signals, as well as ambient conditions like 

temperature and wind speed. The commonly used features can be categorised into 

time, frequency, and time-frequency domains based on the extraction methods, e.g., 

the statistical features, zero-cross rate, wavelet, fractal features in the time domain; 

discrete Fourier transform (DFT) and power spectral density (PSD) in the frequency 

domain; energy and entropy from short-term Fourier transform (STFT), wavelet 

transform (WT), wave packet transform (WPT), and Hilbert-Huang transform (HHT) in 

the time-frequency domain, as shown in Table 2. 

Table 2 Traditional machine learning pipeline for IFD 

Machine 

learning 
Handcrafted Feature Extraction Approaches 

Traditional ML 

Time domain: statistical features, 

zero-cross rate, wavelet, fractal 

features, etc. 

KNN, SVM, 

Naïve Bayes 

Classifier, 

decision tree, 

random forest, 

etc.  

Frequency domain: DFT, PSD, etc. 

Time-frequency domain: STFT, 

WT, WPT, EMD, HTT, etc.  
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2.4.2 Deep learning pipeline 

With the rapid development of IoT, the collected data volume is dramatically higher 

than ever before and brings more useful information for fault diagnosis. Big data 

acquisition has four characteristics: volume, quality, variety, and velocity [153]. 

(1) Volume – the volume of collected data sustainably grows during the long-term 

O&M.  

(2) Quality – a portion of poor-quality data is mingled in the massive data.   

(3) Variety – multi-source data is collected from multiple sources (by different 

sensors) with a heterogeneous structure.  

(4) Velocity – fast transmission can be enabled in situ via fieldbus cables or at the 

remote end via high-speed communication like 5G, which promises response 

and decision-making in near real-time for DT.   

Traditional ML relying on handcrafted features becomes inappropriate for big data 

scenarios. Hence, IFD has been extensively developed based on DL, which can learn 

features automatically. Its pipeline is shown in Figure 10, consisting of only two steps, 

i.e., data acquisition and health state recognition, which can accommodate massive 

data and achieve a higher level of automation by skipping the step of manual feature 

extraction. The widely used DL approaches for IFD include multilayer perceptron 

(MLP), autoencoder (AE), recurrent neural network (RNN), CNN, transformer, etc. 

 

Figure 10 IFD pipeline through deep learning [153] 
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2.4.2.1 DL with 1D time series 

Liu et al. [159] and Lu et al. [160] employed the stacked sparse AE and the stacked 

denoising AE for the IFD of bearings, presenting higher diagnosis accuracy than 

traditional ML methods. Common RNNs, including gated recurrent units (GRUs) and 

long-term memory networks (LSTM), are theoretically an ideal non-linear time-series 

forecasting tool and a universal approximator for dynamic systems [161]. Ling et al. 

[162] employed RNN to achieve early warning in the fault creep period for nuclear 

power machinery, together with principal component analysis (PCA), wavelet analysis, 

and Bayesian inference. Yuan et al. [163] utilised LSTM for IFD and remaining useful 

life (RUL) estimation for aero-engine based on time-series data. Moreover, Neves et 

al. [164], [165] employed an MLP to identify the structure health conditions of the 

KW51 railway bridge with train-induced acceleration data. Sajedi and Liang [166] 

proposed a framework based on a fully convolutional encoder-decoder architecture 

for structural damage diagnosis with the vibration signals from a grid sensor network, 

which can localise damages and distinguish multiple damage mechanisms with 

reliable generalisation capacities.  

Additionally, 1D-CNN is also inherently suitable for time-series pattern recognition. For 

example, Wu et al. [167] proposed an approach for rub-impact fault diagnosis of a 

rotor system based on 1D-CNN. Sony et al. [168] designed a 1D-CNN to identify 

multiclass damage using bridge vibration data. 1D CNN was also utilised to detect the 

change of local structural stiffness and mass based on acceleration from a single 

sensor [169], [170].  

2.4.2.2 DL with 2D synthetic images 

As the monitoring variable for IFD is usually a 1D time series, which is different from 

2D images, to leverage the powerful feature learning capability of CNNs, many efforts 

have been made to transform 1D motion signals into 2D images, including Gramian 

angular field (GAF) [171], wavelet transform [172]–[174], S-transform [175], phase 

space reconstruction [176], etc. The GAF, wavelet transform, and S-transform are 

time-consuming, and the latter two require expert knowledge in the frequency domain 

for spectrum exploration. In contrast, phase space reconstruction can quickly generate 

synthetic images with simple backgrounds. For example, time series can be converted 
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through Eq. 1. (i.e., min-max normalisation) into a single-channel greyscale image, as 

shown in Figure 11.  

𝑃(𝑗, 𝑘) = 𝑟𝑜𝑢𝑛𝑑 {
𝑓 (𝑥((𝑗 − 1) × 𝐿 + 𝑘) − 𝑀𝑖𝑛( 𝑓(𝑥))

𝑀𝑎𝑥( 𝑓(𝑥)) − 𝑀𝑖𝑛( 𝑓(𝑥))
× 255} (1) 

Where 𝑃(𝑗, 𝑘) ∈ [0,255] denotes the pixel strength of the grayscale image; j and k are 

the row and column numbers in the reconstructed image, respectively.   

 

Figure 11 Reconstruction from time series to a single-channel grayscale image [176] 

The DL-based IFD can be summarised as shown in Table 3. Previous works [176]–

[178] have already proved the effectiveness of using shallow CNNs, like modified 

LeNet, for IFD. However, they mainly focused on a single sensor and did not consider 

data fusion for the signals from triple sensors or axes. Meanwhile, the imaging method 

has not been further developed to generate 3-channel images (like RGB) to take 

advantage of the popular deep CNN architectures. 

Table 3 Deep learning pipeline for IFD 

Pipeline Approaches 

Deep Learning 

1D time series:  

RNN (including GRU and LSTM), 1D-CNN, etc. 

2D synthetic images: 

1) Imaging – GAF, wavelet transform, S-

transform, phase space reconstruction, etc.  

2) Models – shallow single-channel CNNs and 

classical 3-channel deep CNNs via proposed 

imaging.   
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2.4.3 Multi-sensor data fusion 

Data fusion is usually employed in IFD based on multi-sensor data, which is supposed 

to be an effective way to improve pattern recognition accuracy. It includes data-level 

and decision-level fusion. Teng et al. [179] trained seven individual 1D CNNs using the 

acceleration signals from the corresponding sensors and fused their classification 

results at the decision level by hard voting. Compared with data-level fusion, i.e., 

integrating all acceleration signals into a multi-channel time sequence, decision-level 

fusion enhanced the classification accuracy by at least 10% in the experiments. 

However, this comparison consequence is not absolute. For example, Gao et al. [9] 

trained a single 1D CNN with the data-level fused acceleration signals from six sensors 

on a bridge for structure health-state recognition. Compared with decision-level fusion 

with hard and soft voting from six individual classifiers, data-level fusion can enhance 

test accuracy by more than 20%. Furthermore, Gong et al. [180] used a multi-channel 

data-level fusion of time series signals from different sensors for the IFD of rotating 

machinery by leveraging CNN-SVM, which also achieves excellent test performance 

(nearly 100% accuracy). As can be seen, the level of fusion occurrence in IFD is 

flexible, depending on the used dataset and the selected neural network architecture.  

2.5 Bridge maintenance knowledge graph 

2.5.1.1 Bridge knowledge engineering 

KE is a field of AI that creates rules by applying data to imitate the thought process of 

a human expert. It looks at the structure of a task or a decision to identify how a 

conclusion is reached [181]. In the AEC industry, KE refers to knowledge 

representation, acquisition, reasoning, decision-making, and application in building, 

operation, and maintenance. A knowledge graph (KG) has become one of the most 

effective tools for knowledge management and integration. For most studies in the 

construction fields, KGs are usually termed ontological semantic networks based on 

graphics with domain entities as nodes and the defined entities' relationships as edges 

[182].  

To represent the intricate knowledge of bridge maintenance, Ren et al. [183] 
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developed an ontology for bridge maintenance (BrMontology) based on web ontology 

language (OWL), which covers bridge structure, damage (and causes), solutions, and 

big events. It can enable automatic rule-based maintenance planning and holistic 

decision-making. Liu and ElGohary [184] proposed a bridge ontology (BridgeOnto) 

based on routine inspection reports and maintenance manuals in the US, in which the 

bridge elements, types of bridge elements, and bridge defects are elaborately 

decomposed. Zhang et al. [182] proposed a comprehensive BMKG involving 

expenses, which utilized an ontology for knowledge organization and the graph 

database Neo4j for storage. Wu et al. [185] developed an ontology for project 

management of bridge rehabilitation, which covers restoration tasks and constraints.  

Additionally, several studies focused on a knowledge-based bridge O&M system, 

especially by leveraging data mining. For example, Li et al. [186] designed a bridge 

structure health monitoring (SHM) system based on a fine-grained ontology to 

integrate heterogeneous data from various sensors. Yang et al. [187] developed a 

framework for bridge management based on a big-data KE paradigm, which consists 

of the layers of data (sources, storage, and computing) and knowledge (representation, 

computing, and services). This framework can facilitate intelligent bridge maintenance 

by leveraging the big data within the entire bridge life cycle.  

Moreover, some efforts have been made for automatic ontology generation and KG 

completion, such as semantic information extraction from inspection reports, including 

named entity recognition for target classes [188], [189] (e.g., bridge element, 

deficiency, cause, repair action) and dependency parsing [190], [191] (i.e., relation 

extraction) from textual reports. These works utilized NLP approaches to build (or 

complete) an ontology. Still, the data mining of the generated KG usually relies on 

classic algorithms through the graph properties, such as centrality, clustering, and 

pathfinding. However, few studies explored using node or edge text embedding and 

graph neural network (GNN) in the BMKG for semantic enrichment and maintenance 
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recommendation.  

2.5.1.2 Graph data mining with GNN 

Although the classic DNNs achieve great success for latent embedding from Euclidean 

spatial data, they cannot perform satisfactorily in processing non-Euclidean data, such 

as graphs. Hence, GNNs are proposed to solve this issue (i.e., graph embedding), 

which are defined as an optimizable transformation on all attributes of the graph 

(nodes, edges, global context) that preserves graph symmetries (permutation 

invariances) [192]. Graph embedding is a process to generate a vector from graph 

features and attributes but tries to preserve graph information as far as possible so 

that the downstream graph analytic tasks can be achieved easily using the off-the-self 

ML algorithms [193]. Embedding aggregation and message passing are the primary 

attributes of GNNs. The common GNN architectures [194] include graph convolutional 

networks (GCN), graph attention networks (GAT), GraphSAGE, graph spatial-

temporal networks, etc. Most GNNs are based on transductive learning, in which the 

model is trained using the whole graph. In contrast, others (such as GraphSAGE) rely 

on inductive learning, where the model can only see the training data. Thus, the 

generated model can predict graph labels for unseen data.  

GNNs are a set of neural networks that operate on graph data, and they can usually 

be applied to graph classification, node classification, link prediction, etc. Collins et al. 

[195] applied graph classification through GCN to classify IFC building objects based 

on their geometry in the AEC industry. Wang et al. [196] proposed an approach for the 

semantic enrichment of BIM models by using node classification with GraphSAGE for 

room types. Moreover, link prediction is usually utilized for recommendation and KG 

completion. Xia et al. [197] developed an approach to recommend potential solutions 

and explain the fault for oil drilling equipment using linkage prediction through an 

attention-based compressed relational GCN (ACRGCN), inspiring this work.  

GNNs have demonstrated their potential in context-related NLP tasks, such as text 
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similarity calculation and sentence completion. However, few efforts have been made 

on the BMKG about graph data mining. Hence, it would be helpful to 1) propose a 

maintenance-oriented KG schema based on real-world bridge maintenance reports 

and 2) explore the GNN algorithms with text embeddings as node features on the 

generated BMKG for graph data mining, such as contextual node classification and 

link prediction for both semantic enrichment and maintenance recommendation.  

2.6 Summary of literature findings 

This chapter introduced the research status quo in the field of DT for bridges in terms 

of different purposes, such as bridge SHM, O&M, and asset management, etc., 

including conceptual frameworks and implemented systems, and bridge-machine-

human triplet interaction, as well as the representative technologies related to bridge 

maintenance, which aims to be integrated into the target bridge DT of this thesis. The 

content highlights the patterns and contributions of the existing studies for bridge DT 

and identifies the gaps between academic research and practical implementation, 

inspiring this research. Several findings can be illustrated below:  

Firstly, In the context of industry 4.0, the DT has received extensive attention for 

improving the AEC processes and the product life-cycle management, such as bridge 

O&M. The ongoing research indicates a notable characteristic (or pattern) in the 

current studies that DT systems are always designed and developed for specific 

purposes and circumstances [17], [18], which is the principal hypothesis for any DT 

framework and system development.  

Secondly, bridge DT-related technologies can be embodied in the triplet interaction 

between bridge, machine, and human. This novel triplet interaction can reflect 

technical targets, data streaming, and the locations of technology deployment (such 

as on the site of physical bridges, middleware, or use end), as well as provides a new 

perspective for DT understanding different from the previous one between PE and VE, 

which can further benefit the DT conceptual design and practical implementation.  
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Thirdly, although DT technologies have made advances in many areas, such as 

aerospace and smart manufacturing, these successful precedents (including 

frameworks and systems) cannot be transferred to bridges directly because when a 

DT is implemented on the bridges, their locations may concern with specific issues, 

e.g., the remote bridges might not have the required access to communication or 

electricity for massive data transmission. Therefore, it is desired that a bridge DT would 

have an efficient and resilient framework that can work under communication-

constraint circumstances and endure the loss of signal or similar communication 

breakdown problems. Moreover, DT integration of general bridge maintenance 

workflow, data streaming among different platforms (or middleware), and a working 

prototype are also significant challenges.  

Fourthly, most bridge DT studies focus on a single aspect of the triplet interaction, such 

as bridge-machine interaction (like drone-enable bridge inspection and IoT-based 

SHM) and human-bridge interaction (like optimization-oriented bridge maintenance). 

The former provides data to create a digital representation with early warning and 

simple assessment, while the latter leverages data, information, and knowledge from 

multiple sources for holistic decision-making. However, there is a scarcity of research 

that explains mutual connections clearly and seamlessly incorporates them into a 

unified bridge DT system. Therefore, the practical survey and SHM in most bridge DTs 

are still discrete (project-based or condition-based), which cannot take full advantage 

of the DT concept by triggering various backend DT services and providing timely 

feedback to the side of physical bridges.  

Fifthly, there is no study for bridge DT setting its scope for the complete bridge 

maintenance cycle using a general workflow, i.e., from on-site inspection and 

monitoring to bridge maintenance planning and decision-making. In this scope, many 

practical issues can be raised related to efficiency:  

1) The current automatic visual inspection is mainly based on supervised learning, 
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requiring time-consuming and labour-intensive image acquisition. However, it 

is not always practical, especially under complex circumstances.   

2) The TLS survey is still project-based due to the heavy load of point-cloud data 

and cannot achieve timely model synchronization and damage assessment for 

DT backend services.  

3) Although many individual approaches have been developed for IFD and SHM 

based on multi-sensor time series signals, there is still a lack of a unified 

framework leveraging AutoML and data fusion for network search and 

parameter optimization to achieve autonomous DL-based health-state 

recognition for the long term.  

4) There are few KG schemas designed based on practical bridge inspection 

reports for bridge maintenance, and the practical bridge maintenance 

suggestion is still a time-consuming workflow based on experienced engineers. 

In contrast, the graph-based homogeneous bridge structures (such as 

symmetry and repeatability) and the text similarity based on domain knowledge 

in the historical reports are neglected, which can be leveraged to improve the 

working efficiency via the analogical strategy.      
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Chapter 3 Research Methodology 

This chapter presents the overarching methodology through the research, which can 

be condensed into the “Research Opinion” framework [198]. The procedure is 

explained in the following sections, from the outer layers to the inner layers, including 

philosophies, approaches, strategies, choices, time horizons, techniques and 

procedures, as shown in Figure 12. Then, the research roadmap is presented at the 

end, which echoes the above methodology framework and components.  

 

Figure 12 The “research onion” [198] 

3.1 Research philosophies 

Philosophy refers to the collection of principles that dictate the perspective or 

standpoint from which research is undertaken. It is usually studied in terms of 

metaphysics and epistemology [199]. The former refers to the authenticity of the 

information and how one understands its existence. In contrast, the latter refers to the 
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valid information required for the research and how to obtain it [200], the core 

philosophy theory of knowledge in this research.  

Philosophical positions used in academic studies are often divided into positivism, 

interpretivism, critical realism, and pragmatism [198]. Positivism assumes that 

knowledge is independent of the subject being studied, which is often more scientific 

in testing phenomena; interpretivism claims that individual observers have their 

perception and understanding of reality; critical realism emphasizes historical causal 

explanation as construction; pragmatism focuses on practical problem-solving and 

future-oriented practice as construction [200], [201]. Hence, positivism and 

pragmatism are employed in this research as the major research philosophy 

paradigms, whilst there are also a few elements of the others for specific research 

questions.  

3.2 Research approaches, strategies and choices 

The research approaches can be categorized into deductive and inductive [198]. The 

deductive approach starts with a specific hypothesis development based on the 

literature review that the researcher has observed. It tries to gradually test this 

hypothesis and checks if the hypothesis holds in particular contexts [200]. In contrast, 

the inductive approach starts with observations that the researcher uses to create a 

new theory [200]. In this research, the former deductive one is chosen as the approach 

to commence the research for each question with appropriate hypotheses and validate 

these hypotheses and the discovered new knowledge based on them under particular 

circumstances.  

Moreover, as indicated by Mackenzie and Knipe [202], there is no necessity to define 

a single specific strategy to achieve research objectives. By contrast, the multiple 

strategies in most cases can enable a well-structured research design to a greater 

extent. Hence, various strategies, including systematic literature review, survey, case 

study, and grounded theory, are utilized across different research questions. Moreover, 
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both quantitative and qualitative methods can significantly contribute to this pragmatic 

research. Therefore, the mixed methods are adopted in this research.  

3.3 Research time horizons, techniques and procedures 

Research time horizon refers to the time frame of the research [198]. Generally, 

observations can be of two types based on time horizons: cross-sectional and 

longitudinal. The cross-sectional data is used when all observations are for a single 

point of time, such as in most surveys [200]. Longitudinal data, in contrast, implies the 

observations for a particular variable that is available for several years, quarters, 

months or days [200]. This research mainly focuses on the former, i.e., cross-sectional 

studies. At the same time, the latter is expected in future work to test the outcomes 

from this research (such as frameworks, approaches, and new knowledge) along the 

time dimension.  

Finally, the last layer of the “research onion” consists of the techniques and procedures 

used [198], which aim to clearly explain the ways and purposes of the conducted 

research. As data is considered the central piece in the “research onion” model, it is 

expected to choose between primary and secondary data or qualitative and 

quantitative data collected from different sources at this stage [201]. This research 

employs both primary data (e.g., interviews, questionnaires, and measurements) and 

secondary data (e.g., literature, statistics, public datasets). Moreover, as the mixed 

methods are selected for this pragmatical research, the data and information are 

derived from both quantitative and qualitative sources.  

3.4 Overarching research roadmap 

The overarching research roadmap can be condensed into Figure 13, in which the 

methodology details for each research question (i.e., each chapter) are illustrated 

along with hypotheses (i.e., H1, H2, … H5) and outcomes.  
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Figure 13 Overarching research roadmap 
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Chapter 4 AIoT-informed DT framework 

DT has been moving progressively from concept to practice for bridge O&M, but its 

data synchronization and fault tolerance issues remain problematic. This chapter 

investigates the time delay of bridge DT services according to communication and 

computation complexity, revealing the distinct impact of their sequence, and proposes 

an AIoT-informed DT communication framework to solve the above issues. The 

information hierarchy and two-way communication can be leveraged to minimize 

communication complexity in the framework. Meanwhile, the data flow and resilience 

of the proposed framework are demonstrated using a Petri net. Moreover, the 

framework is developed into a prototypical DT through cross-platform integration and 

validated with different cases. The results indicate that compared with other existing 

bridge DTs, the proposed framework has high efficiency, low latency, and excellent 

fault tolerance, which can contribute to the efficiency and safety of bridge O&M, 

especially under communication-constraint circumstances. The framework is also 

promising for federated learning to protect the AI-model privacy of different 

stakeholders and can potentially support agent-based intelligent bridge management 

in the future with little human intervention.  

4.1 Theoretical foundation 

As seen from Section 2.2.2, massive heterogeneous data from regular inspection and 

real-time monitoring of physical bridges has become a challenge for bridge DT 

synchronization, especially under communication-constraint environments and for 

large-scale applications. Meanwhile, DT computation and performance are also 

influenced by the complexity of enormous multi-source data and inevitable system 

faults (e.g., loss of communication) in terms of time delay and resilience. Although 

some research [203], [204] explored edge computing and federated learning for SHM, 

which has relatively low communication complexity, they were not developed into a 

complete and comprehensive bridge DT system. Recently, the concept of Artificial 
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Intelligence of Things (AIoT) has received widespread attention, which combines AI 

technologies with the Internet of Things (IoT) infrastructures to achieve more efficient 

IoT operations, improve human-machine interactions and enhance data management 

and analytics [205]. This research aims to study the time delay, complexity, and fault 

tolerance of bridge DT and reveal how to design a bridge DT to overcome the barriers 

of data synchronization and communication faults theoretically, as well as develop an 

AIoT-informed DT communication framework to support bridge O&M with high 

efficiency, low latency, and excellent resiliency.  

4.2 Time delay and complexity 

Although there is always a time delay between PE and VE in a DT system, how much 

of it can be tolerable depends on pre-designed purposes (services) and practical 

application scenarios. For bridge operation, the low latency of DT services can enable 

timely “what-if” analysis and quick emergency response. Specifically, the time delay of 

DT services, such as early warnings and protective measures, is critical for the safety 

of physical bridges and the public travelling on the bridges when a disaster is 

happening or predicted to occur. Meanwhile, a short delay between the physical and 

virtual bridges can also enhance maintenance efficiency, such as inquiry, inference, 

and decision-making during the inspection, especially when a complex issue requires 

big-data analysis or involves multiple stakeholders.  

Time delay of DT services comprises communication time 𝑇𝑐𝑜𝑚𝑚  and computation 

time 𝑇𝑐𝑜𝑚𝑝, as indicated in Eq. 2.  

𝑇𝑑𝑒𝑙𝑎𝑦 = 𝑇𝑐𝑜𝑚𝑚 + 𝑇𝑐𝑜𝑚𝑝 (2) 

Where comm and comp represent communication and computation, respectively. 

Computation time is directly proportional to computational complexity 𝑂(𝑛) , as 

indicated in Eq. 3 [206], where 𝑛  is the number of variables. Computational 

complexity includes time complexity, i.e., the time taken by the algorithm to execute 

https://en.wikipedia.org/wiki/Internet_of_things
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each set of instructions, and space complexity, i.e., the amount of memory consumed 

by the algorithm [207].  

𝑇𝑐𝑜𝑚𝑝 ∝
𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

𝐶𝑙𝑜𝑐𝑘 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
(3) 

Where I/O and bus time for connecting peripheral devices are negligible. 

In contrast, the computational time is inversely proportional to the clock frequency of 

processors when all the processes are sequential, i.e., only one pulse at one time on 

a single core. For example, suppose an algorithm running on a 𝑌 MHz processor takes 

t seconds to execute, then moves the same algorithm to a 𝑍 MHz processor. In that 

case, the program is expected to be completed in approximately (𝑌/𝑍) × 𝑡 seconds 

[208]. Although it is no longer the case currently due to non-sequential ways (such as 

multi-core and multi-threading), this relationship is still valid.  

Communication time is determined by communication complexity, bandwidth, and 

latency, as indicated in Eq. 4.  

𝑇𝑐𝑜𝑚𝑚 =
𝐶𝑜𝑚𝑚𝑢𝑛𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
+ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (4) 

Communication complexity (one-way or multiparty) is the amount of exchanged 

information (e.g., bits) among PE and VE necessary to perform the computation of 

certain DT services. The bandwidth is the maximum data transmission speed of a 

specific communication technology. Finally, the latency depends on the distance 

between communication nodes. Hence, the complexity determines the lower bound of 

the communication time, especially when communication is restricted with limited 

bandwidth, such as LPWAN. Therefore, reducing communication complexity becomes 

critical for decreasing time delay.  

As data ambiguity and complexity are in direct proportion, i.e., more ambiguity means 

more complexity, the information hierarchy, i.e., the DIKW pyramid, can be leveraged 

to decrease complexity [209], as shown in Figure 14.  
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Figure 14 Complexity/ambiguity decreasing along the information hierarchy 

Bridge routine inspection is a typical DIKW process, which can reduce ambiguity by 

extracting information and knowledge from inspection data based on the engineer’s 

experience. Similarly, structural damage detection involves complexity reduction by 

obtaining information or knowledge from real-time SHM based on statistical models, 

big-data analysis, and ML. Moreover, knowledge from human engineers can be 

transferred to machines by AI (such as supervised or unsupervised learning) and KE, 

thereby achieving the automatic process to reduce complexity in the workflow. For 

example, agent-based drone inspection can contextualize bridge deficiency and 

ambient conditions automatically via localization, object detection, and semantic 

segmentation instead of human engineers [210].  

Edge devices and the DT platform can be taken as two parties with different data 

sources, e.g., the former includes data collected on the site of physical bridges (𝑥 ∈

𝑋). At the same time, the latter involves multi-source data (𝑦 ∈ 𝑌) at the cloud server, 

such as historical records, inventory, weather, and natural disasters. Hence, it brings 

in an issue of how many bits they need to communicate with each other for computing 

the function 𝑓  on 𝑋 × 𝑌  until one party knows the value of 𝑓(𝑥, 𝑦)  for decision-

 
 
  

  
  
  
 
   
 

 
 
 
 
  
 
 
 

 
   
 
 

                              

    

      



48 

 

making. Here, cost(𝑃) is the worst case of bits exchanged (maximum) for a protocol 

𝑃 , which can solve this problem over all inputs (𝑥, 𝑦) ∈ 𝑋 × 𝑌 . Finally, the 

communication complexity 𝐷(𝑓) is determined with Eq. 5 [211].  

𝐷(𝑓) = 𝑚𝑖𝑛{ cost(𝑃)|𝑃(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌} (5) 

Note: 𝑥 and 𝑦 are n-bit strings; assume no concerns of computational power.  

Theoretically, a communication protocol 𝑃 can be defined as a rooted binary tree with 

internal nodes labelled by either E (edge) or C (cloud), as shown in Figure 15, 

indicating PE and VE, respectively. Each leaf has an output weight 𝑤 in {0,1} (bit 

exchanging or not). For simplicity, the function 𝑓: 𝑋 × 𝑌 → {0,1}𝑛, encoded as a finite 

sequence of zeros and ones. 𝑓𝑣  is associated with node 𝑣  (if 𝑣  is labelled by E, 

𝑓𝑣(𝑥) → {0,1}𝑚, and vice versa). The bits at node 𝑎 are sent by E with the calculated 

value 𝑓𝑎(𝑥) , which is a binary string. The number of bits transmitted to C is 𝑤𝑎 ⋅

(𝑙𝑜𝑔2( 𝑓(𝑥)) + 1). Therefore, the number of bits exchanged to compute 𝑓(𝑥, 𝑦) in the 

path of 𝑎 → 𝑏 → 𝑐 → 𝑑 is 𝑙𝑜𝑔2( 𝑓𝑎(𝑥)) + 𝑙𝑜𝑔2( 𝑓𝑏(𝑦)) + 1.  

 

Figure 15 A rooted binary tree for computing 𝑓(𝑥, 𝑦) through two-way 

communication  
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There is always a simple protocol that sends all 𝑥 ∈ 𝑋 to 𝑌, performing the same as 

one-way communication, in which 𝐷(𝑓) = 𝑂(𝑛). This way is the best one can do for 

the equality function (EQ), which outputs one if 𝑥 = 𝑦 . However, for other tasks 

requiring bidirectional communication, i.e., 𝑓 computation is achieved by both parties, 

communication complexity can be decreased by a few methods, such as edge 

computing, so there is 𝐷(𝑓) ≤ 𝑂(𝑛). For example, for a parity function ⊕2𝑛 (𝑥, 𝑦), the 

best way is to send 𝑏 =⊕𝑛 (𝑥) to Y , then calculate 𝑏 ⊕ (⊕𝑛 (𝑦)), in which 𝐷(𝑓) is 

only 1 bit.  

In practice, many tasks do not always need to consume the maximum bits exchanged 

under the worst case. For example, for the structural assessment process (query 

problem) based on a decision tree, as shown in Figure 16, its cost(𝑃)  follows the 

longest path of the tree. However, many non-severe defect assessments do not need 

as much complexity as cost(𝑃) , so we can use hierarchical or interactive data 

exchange to reduce the practical communication. Furthermore, communication 

complexity can also be reduced by turning deterministic communication complexity 

𝐷(𝑓)  into randomized communication complexity 𝑃𝑟[ 𝑅(𝑥)]  even in one-way 

communication, e.g., only update the changing data beyond a threshold 𝜃 to the DT 

for synchronization as long as 𝜃 can meet the precision requirement of services.   
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Figure 16 Bridge structural assessment based on a decision tree 

Moreover, as 𝑇𝐷𝑒𝑙𝑎𝑦 is comprised of 𝑇𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 and 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑚, the sequence of 

communication and computing can also have a distinct impact on 𝑇𝐷𝑒𝑙𝑎𝑦  of DT 

services, even if communication and computation complexity is constant, i.e., with a 

certain protocol and algorithm, as shown in Figure 17. Such impact can be amplified 

when either of 𝑇𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 and 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 plays a dominant role in the process, 

e.g., when communication protocols are pretty restricted, such as LPWAN. For such 

a case, the total time delay 𝑇𝐷𝑒𝑙𝑎𝑦 can be reduced significantly with appropriate edge 

computing before communication.  

 

Figure 17 Edge computing reduces time delay significantly when 𝑇𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

dominates 
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4.2.1 Fault tolerance and topology 

Fault tolerance is the property that enables a system to continue operating correctly in 

the event of a failure due to one or more faults of its components. The fault-tolerant 

capability allows DT to continue its intended services, possibly at a reduced level, 

rather than failing when some part of the system fails [212]. Currently, most bridge DTs 

offer data storage and analysis on the cloud. Still, the services will fail when cloud 

servers become unresponsive, such as temporarily losing communication. Suppose it 

occurs when a disaster is happening or is predicted to happen. In that case, it might 

be fatal to the physical bridge and the users on-site, so developing a bridge DT with 

the required fault-tolerant capability is necessary. Edge computing and AIoT can also 

help to enhance the current bridge DT system resilience. For example, even if 

communication between the edge and cloud breaks down, the edge devices can still 

make an AI-based decision to take an appropriate and timely measure via bridge or 

transport control systems as a response, e.g., load restriction, traffic diversion, or even 

closure. Depending on task complexity, such edge computing can be designed on 

base stations, gateways, embedded systems, or sensor nodes. The closer to the 

physical bridge, the more resilient the design will be.  

Besides, the communication topology is also significant to system resilience. A 

decentralized mesh network (even partial mesh) has better fault tolerance than a 

centralized star network, as shown in Figure 18. As presented in 2.2.2, non-cellular 

LPWAN is suitable for remote bridge management thanks to its decentralized 

transmission mode and long-distance coverage (over 10 km in rural areas), such as 

LoRa. Therefore, non-cellular LPWAN with a mesh network can be utilized for local 

communication on the site of physical bridges and integrated into the cloud-based DT 

architecture to enable fault tolerance for a temporary loss of communication. 

Meanwhile, by combining AI-based edge computing, the edge devices and control 

system of physical bridges can perform as a self-adaptive subsystem when the cloud 

https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Failure
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servers become unresponsive, and their performance can be simulated and predicted 

at the cloud level. Hence, the whole bridge DT can continue to work at a reduced level 

without complete failure. Finally, the physical bridge and digital-twin bridge can re-

synchronize after the restoration of communication.  

 

Figure 18 (a) Cellular network based on star network (b) Non-cellular LPWAN based 

on the mesh network 

4.2.2 Mathematical idealization 

A physical bridge, i.e., PE, can be described as a discrete system in Eq. 6. 𝑥𝑡 and 

𝑥𝑡+1 are the states of PE at time 𝑡 and 𝑡 + 1. 𝑢𝑡 is the input variable at time 𝑡. 𝑦𝑡 is 

the observed variable from IoT sensors. 𝑒𝑡 is the error of the measurement.  

𝑥𝑡+1 = 𝑓(𝑥𝑡, 𝑢𝑡),    𝑦𝑡  = ℎ(𝑥𝑡, 𝑢𝑡 , 𝑒𝑡) (6) 

Here, ℝ𝑛𝑥 × ℝ𝑛𝑢 × ℝ𝑛𝑒 → ℝ𝑛𝑦 . The edge-computing model was trained with the 

observed variable 𝑦 ∈ ℝ𝑛𝑦, so the inference can be represented as 𝜐𝑡 = 𝑔(𝑦𝑡). 𝜐𝑡 is 

the result to support decision-making, i.e., to calculate the input variable 𝑢𝑡+1 at time 

𝑡 + 1. Therefore, 𝑢𝑡+1 = 𝑑(𝑢𝑡, 𝜐𝑡).  

If such computing is taken on the cloud, i.e., 𝑥𝑡, 𝑦𝑡 and 𝑢𝑡 are transmitted to VE, it 

can leverage powerful computational capability and massive multi-source data (𝜑 ∈
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ℝ𝑛𝜑 ) in the cloud, which can help to make more precise and holistic decisions. 

Therefore, there is 𝑉𝑡 = 𝐺(𝑦𝑡, 𝜑𝑡).  

However, it will also bring in a time delay 𝑇𝑑𝑒𝑙𝑎𝑦 between edge and cloud, i.e., PE and 

VE.  Given bi-directional time delay in both uplink and downlink, the input variable 𝑢 

derived from cloud computing has a lag of 2𝑑  behind the result based on edge 

computing, i.e., 𝑢𝑡+2𝑑 = 𝐷(𝑢𝑡, 𝑉𝑡, 𝜃) . 𝜃 ∈ ℝ𝑛𝜃  is the set of model parameters for 

prediction to offset the time delay. 𝑑 is the ratio of 𝑇𝑑𝑒𝑙𝑎𝑦 to the measurement period 

𝑇𝑝𝑒𝑟𝑖𝑜𝑑. Therefore, considering the time delay between PE and VE, the cloud-based 

bridge system can be represented as Eq. 7.  

𝑥𝑡+2𝑑+1 = 𝐹(𝑥𝑡, 𝑢𝑡+2𝑑),    𝑦𝑡+2𝑑  = ℎ(𝑥𝑡+2𝑑, 𝑢𝑡+2𝑑, 𝑒𝑡+2𝑑) (7) 

Therefore, edge computing is suggested for quick analysis and response due to its 

low latency, such as under emergent circumstances. Moreover, edge-based 

algorithms also pursue low computational complexity in practice, e.g., 𝑢𝑡+1 = 𝑠(𝜐𝑡) in 

edge computing is usually based on straightforward “what-if” analysis or fuzzy control 

rules. In contrast, cloud computing is recommended for holistic decision-making with 

big-data analysis from multiple sources to achieve a long-term maintenance strategy 

for the bridge.  

For one-way communication, i.e., sending all three variables 𝑥𝑡 , 𝑦𝑡, 𝑢𝑡 to the cloud, 

the communication complexity 𝐷(𝐹)  =  𝑂(𝑥)  + 𝑂(𝑦)  +  𝑂(𝑢) , where the variables 

have x bits, y bits, and u bits respectively. Most of the time, the communication time in 

and among edge devices on a single physical bridge can be negligible.  

Furthermore, the total computational resources required by tasks running on the edge 

device should not exceed its processing capability [26].  

𝐶𝑒𝑑𝑔𝑒
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 > ∑ 𝑡𝑎𝑠𝑘𝑖

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 (8) 
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𝐶𝑒𝑑𝑔𝑒
𝑅𝐴𝑀 > ∑ 𝑡𝑎𝑠𝑘𝑖

𝑅𝐴𝑀 (9) 

4.2.3 Petri-net modelling 

The bridge DT can be taken as a discrete event dynamic system with distributed 

architecture. Therefore, it can be described with a Petri net (PN), i.e., a bipartite, 

weighted, and directed graph (digraph) that has been proven to be an efficient tool for 

the modelling, analysis, and control of a discrete event system (DES) [213]. A 

stochastic time PN can help demonstrate system resilience and time delay and trace 

data flow and sources in the system for DT services.  

A PN comprises two types of nodes, i.e., places and transitions, with arc connections 

from a place to a transition (or a transition to a place). In the graphical representation, 

a place 𝑝 ∈ 𝑃 is drawn as a circle representing a condition (a particular state of the 

system). In contrast, a transition 𝑡 ∈ 𝑇  is marked as a box describing an event 

(dynamic activity). Arcs are labelled with the corresponding weights 𝑤 ∈ W (𝑤 = 1 by 

default). Places are visited by 𝑘 tokens, representing data items moving through a PN, 

like communication packages. Marking 𝑀  is given by a vector that refers to the 

distribution of tokens throughout all the places at a specific time, indicating the state 

of the PN. The firing rules indicate when and how tokens are created and destroyed 

in a new marking 𝑀′. More details about Petri nets can be found in [214], [215].  

Mathematically, a stochastic time PN can be described as below:  

𝑁 = (𝑃, 𝑇, 𝐴, W, Λ,   ) (8) 𝑁 = (𝑃, 𝑇, 𝐴, W, Λ, ) (8) 

Where 𝑃  is the finite set of places, 𝑃 ≠ 𝜙 ; 𝑇  is the finite set of transitions, 𝑇 ≠ 𝜙 ; 𝐴 ⊆

(𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is the set of arcs; 𝑊: 𝐴 → {1,2,3 . . . } is the weight function on the arcs; 𝜆 ∈

𝛬 is the firing rates associated with transition, which are related to probabilities of successful 

communication; 𝜃 ∈ 𝛩 is the time elapsed in state transition. 

Here, the firing rules are summarized as follows: 
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1. Transition 𝑡𝑖 consume the tokens from each available input arc and generate 

𝜔𝑖,𝑜𝑢𝑡𝑝𝑢𝑡 tokens at each output arc. 𝜔𝑖,𝑜𝑢𝑡𝑝𝑢𝑡 is the weight on the output arc.  

2. Transition 𝑡𝑖  is enabled if the input place 𝑝𝑗  has at least 𝜔𝑗,𝑖𝑛𝑝𝑢𝑡  tokens. 

𝜔𝑗,𝑖𝑛𝑝𝑢𝑡 is the weight on the input arc.  

3. An enabled transition 𝑡𝑖 fires according to the firing rate 𝜆𝑖 with probability R, 

which can be expressed as below:   

𝑡𝑖 = {
1  (R=𝜆𝑖)   

 0  (R=1-𝜆𝑖)
 

4. After firing, transition 𝑡𝑖  removes all the tokens in the place 𝑝𝑖  and add 

𝑤𝑖,𝑜𝑢𝑡𝑝𝑢𝑡 ⋅ 𝑡𝑖 tokens into the next place.  

The proposed framework is modelled in a PN, which has seven places (𝑝1, 𝑝2, … 𝑝7) 

and six transitions (𝑡1, 𝑡2, … 𝑡6), as shown in Figure 19. The starting place 𝑝1 holds the 

token of the observed variable 𝑦 from PE, i.e., physical bridge. 𝑡1 and 𝑡5 are taken 

on edge devices, such as sensor nodes, embedded systems, and gateways. 𝑡2 and 

𝑡4 are communication between PE and VE and fired according to the firing rates 𝜆2 

and 𝜆4. 𝑡3 is taken on cloud servers. 𝑝4 holds the token of the variable 𝜈 collected 

from multiple resources in the cloud. Finally, the decision-making variables from edge 

computing and (or) cloud computing converge at 𝑝7 for the control or adjustment of 

PE to generate a new token of the observed variable 𝑦′.  
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Figure 19 Petri-net modelling for a bridge DT system initialized from 𝑀0 

As can be seen from the PN, there is an edge-based loop 𝑡1 → 𝑡5 and a cloud-based 

loop 𝑡1 → 𝑡2 → 𝑡3 → 𝑡4. Here, assume the edge loop working as 𝐸 and failure as 𝐸′, 

and so does the cloud loop, i.e., 𝐶  and 𝐶′ . Therefore, the edge loop working 

probability is 𝑅(𝐸) = 𝜆5 and the cloud loop working probability is 𝑅(𝐶) = 𝜆2 ⋅ 𝜆3 ⋅ 𝜆4. 

1) If both loops (after 𝑡1) are mutually independent, the results can be divided into 

three categories: a) the result is determined with both edge and cloud loops, 

wherein the probability is 𝑅(𝐸) ⋅ 𝑅(𝐶); b) determined with either edge or cloud 

loop, wherein the probability is 𝑅(𝐸′) ⋅ 𝑅(𝐶)  or 𝑅(𝐸) ⋅ 𝑅(𝐶′) , respectively; c) 

system failure, wherein the probability is 𝑅(𝐸′) ⋅ 𝑅(𝐶′). Because of 0 < 𝜆𝑖 < 1, 

𝑅(𝐶′) − 𝑅(𝐸′) ⋅ 𝑅(𝐶′) = 𝜆5 ⋅ (1 − 𝜆2 ⋅ 𝜆3 ⋅ 𝜆4) > 0. Therefore, the system failure 

probability decreases by adding the edge loop. Moreover, to achieve a 

significant enhancement of system robustness, 𝜆5  should be much greater 

than 𝜆2 ⋅ 𝜆3 ⋅ 𝜆4.    
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2) If both loops (after 𝑡1) are mutually exclusive with an extra rule that 𝑡5 only 

fires when 𝑡2 or 𝑡3 or 𝑡4 does not fire, i.e., the edge loop is only enabled 

when the cloud loop fails. Thus, according to conditional probability, there is 

𝑅(𝐶′) − 𝑅(𝐸′|𝐶′) = 𝑅(𝐸|𝐶′) = (1 − 𝜆2 ⋅ 𝜆3 ⋅ 𝜆4) ⋅  𝜆5 > 0. Therefore, the system 

becomes more robust by adding the edge loop.   

3) Moreover, the total time elapsed in a path can be calculated by summing all the 

elapsed times in the firing schedule [215]. For the edge loop, the time elapsed 

𝜃𝑒𝑑𝑔𝑒 = 𝜃1 + 𝜃5, while for the cloud-based loop, the time elapsed 𝜃𝑐𝑙𝑜𝑢𝑑 = 𝜃1 +

𝜃2 + 𝜃3 + 𝜃4. Hence, the difference is 𝛥 = 𝜃2 + 𝜃3 + 𝜃4 − 𝜃5. Here, 𝜃2 and 𝜃4 

are communication time elapsed, which 𝜃3 and 𝜃5 are computational time at 

the cloud and the edge. Hence, a trade-off between computing and 

communication complexity is required to guarantee the system's performance.  

4.3 Framework design and development 

4.3.1 AI-based edge computing 

When agent-based drones, robots, and versatile sensor networks are leveraged for 

bridge regular inspection and real-time monitoring, AI-based edge computing can 

enable them with autonomous capability for preliminary analysis and decision-making, 

such as damage detection, bridge assessment, and early warnings. An advantage in 

this way is that edge computing can reduce data complexity significantly by converting 

them to advanced information or knowledge according to information hierarchy (i.e., 

DIKW), as shown in Figure 20. Its ultra-lightweight data/information streaming can 

enable bridge DT to satisfy restricted communication requirements, such as LPWAN.  
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Figure 20  The edge loop according to DIKW to reduce complexity  

The derived information or knowledge can be transmitted to cloud servers to achieve 

DT services directly (such as visualization) or participate in the bipartite interactive 

computing for function 𝑓 (see Eq. 5) based on different data sources owned by edge 

and cloud. It can significantly reduce the delay of cloud-based DT services using 

appropriate sequential design (see Figure 17). For example, in the drone-enabled 

bridge inspection, the extracted semantic information based on DL and computer 

vision, such as defect location and severity, can be synchronized to the bridge DT 

quickly and conveniently through LPWAN instead of massive image and point-cloud 

data. This method can enhance maintenance efficiency through DT services such as 

historical query, big-data analysis for defect causes, and optimization for inspection 

and repair.    

Another advantage is that preliminary decision-making based on edge computing can 

provide the quickest response and still perform the task even if cloud servers become 

unavailable. For example, the detected bridge damage from a sensor network, which 

has influenced bridge serviceability, can trigger weight restriction or even closure 
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through actuators and monitors immediately. Moreover, it can also transmit the derived 

information to cloud servers or adjacent bridges for collaboration, such as traffic 

diversion.  

Notably, edge computing can be taken on different roles in architecture, such as 

sensor nodes or gateways, as well as various edge devices equipped with robotic 

agents or attached to physical bridges, including field-programmable gate array 

(FPGA), microcontrollers, single-board computers, etc. The power can be supported 

by batteries, sustainable power supply, and energy harvest [216]. The edge-computing 

tasks and power restriction should not exceed the device's computational capability 

(see Eq. 8 and Eq. 9). Meanwhile, the data owned by the edge is limited to the local 

physical bridge and environment, so edge computing only aims to provide preliminary 

analysis and decision-making. Moreover, to achieve high resilience, the edge device 

for decision-making should usually be placed as close to physical bridges as possible 

(explained in 3.2). Still, it can also be designed for hierarchical architecture for 

different-level tasks, which will be discussed in the next section.  

4.3.2 LPWAN communication 

As reviewed in 2.2.2, LPWAN is a set of low-power, long-distance communication 

technologies. As claimed [56]–[58], [217], [218], they can sustain a long-term work of 

up to several years for battery-operated sensor nodes and over 10 km coverage in 

rural areas, which is beneficial to the connection for bridges in resources-constraint 

environments. However, LPWAN is restricted by its low data rates, duty cycle, etc., so 

it cannot transmit massive heterogeneous data in regular inspection and real-time 

monitoring, e.g., images and point clouds. Thus, AI-based edge computing is designed 

to reduce complexity significantly by converting data to advanced information or 

knowledge, according to DIKW. The derived information can be organized in a code 

system with a predefined protocol [219]. Moreover, appropriate compression methods 

can also be applied before transmission to achieve more efficient transmission, such 
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as run-length encoding (RLE), a lossless compression approach especially suitable 

for binary images.  

Moreover, non-cellular LPWAN does not require commercial base stations and can 

take advantage of free ISM bands, providing flexible and low-cost communication to 

create bridge DTs. It can be utilized in a hierarchical communication architecture 

designed for different-level tasks, wherein sensor nodes, gateways, and cloud servers 

are organized from bottom to top. Gateways can simultaneously manage multiple 

sensor nodes and embedded systems (e.g., multiple bridges and robotic agents) in an 

area through LPWAN. They can communicate with cloud servers as well as with each 

other. Thus, bridge DTs are enabled with fault tolerance (or resilience) by combining 

edge-based AI for normal functions when cloud servers become unavailable 

temporarily. Furthermore, sensor nodes are designed to communicate with gateways 

and connect to each other via non-cellular LPWAN, which can guarantee preliminary 

decision-making and quick response on physical bridges even if gateways break down 

(resilience). In the prototype, LoRa is selected for DT communication to support bridge 

O&M. The complete hierarchical communication architecture is shown in Figure 21.  
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Figure 21 Proposed framework and developed prototype for bridge DT  

4.3.3 Cloud and protocols 

Cloud servers are designed to provide a CDE for data from multiple sources, including 

edge-based data from regular inspection and real-time monitoring and cloud-based 

data such as design and construction documents, historical records, inventory, traffic, 

weather, and disasters. Relational and non-relational databases, like MySQL and 

MongoDB, can store and manage such heterogeneous data and information. 

Meanwhile, cloud computing is another crucial function. The huge and sophisticated 

models for complex DT services, e.g., structural analysis, DL, multi-objective 

optimization, and holistic decision-making, which require powerful computational 

capability, are deployed on cloud servers within dockers. The models and data can be 

conditionally accessed and modified by different stakeholders. The results can be sent 

back to end devices on physical bridges through the downlink of LPWAN for 

performance.  
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The proposed information or knowledge from cloud servers can be transmitted to HMI 

through HTTP or MQTT protocols. In the prototype, the TTN (The Things Network) 

server and the desktops in the lab are integrated as cloud servers to support the web-

based platform. The bidirectional communication among cloud servers and the 

interface is achieved with MQTT protocol thanks to its lightweight and fast 

transmission capability. Specifically, it can be implemented with “subscribe” and 

“publish” between brokers and clients using Eclipse Mosquito or Node-RED, as shown 

in Figure 22.  

  

Figure 22 MQTT implementation between cloud servers and HMI 

4.3.4 Web-based platform 

The bridge DT platform is designed to perform through web services based on the 

RESTful framework. It has a user-friendly interface, which can enable users to access 

the available information according to their permissions. In the prototype, Cesium and 

Xeokit are employed in the platform for GIS and BIM, respectively. Node.js and npm-

anywhere (i.e., a static file server) support the web-based interface. The bridge 

location, traffic conditions, ambient situation (weather and tides), and project 

description are displayed in the Cesium, wherein 3D tiles are utilized for bridge 

visualization. Xeokit enables users to manipulate each element of the BIM model 

based on the IFC file. Then, the bridge condition, such as defect location and severity, 

bridge serviceability, and structural assessment, are displayed. The web-based click 
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event can trigger various DT services, such as query, knowledge-based reasoning, 

and maintenance planning. Such a platform can enable users to interact with entities 

and nodes in VE and PE, e.g., to reconfigure and reboot the edge device in the VE 

remotely from the platform if the device is registered with a fault.  

 

Figure 23 Platform across Cesium (GIS part) and Xeokit (BIM part)  

Finally, following the above sections, the proposed AIoT-informed framework and the 

developed cross-platform prototype are shown in Figure 23. The framework and 

prototype have high efficiency and low latency, achieved through AI-based edge 

computing. Moreover, edge computing and the resilient hierarchical communication 

architecture with cellular and non-cellular LPWAN can enable the PEs (i.e., physical 

bridges) with the capability of preliminary data analysis, decision-making, and quick 

response, even under the temporary loss of communication, to guarantee the system 

fault tolerance. Meanwhile, the PEs with edge devices can perform as a self-adaptive 

subsystem when cloud servers become unavailable. Their performance can be 

predicted by cloud-based VE using simulation or ML. Then, PE and VE will 

synchronize again after communication recovery.  

4.4 Proof of concept 

Firstly, the proposed framework is validated under three cases during bridge O&M to 

demonstrate its functionality, i.e., 1) drone-enabled bridge inspection, 2) vibration-

based bridge monitoring, and 3) dynamic evacuation when cloud servers become 

unresponsive. Then, a comparative analysis between the proposed framework and 

the previous bridge DTs is conducted.  
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4.4.1 Drone-enabled bridge inspection 

The experiment aims to synchronize the sufficient defect characteristics to the bridge 

DT during drone flight in a communication-constraint environment (e.g., LoRa) to 

update the bending stiffness (BS) reduction coefficient for structural assessment 

instead of bringing massive inspection images to the office (like in the conventional 

workflow) or to another place under excellent communication for synchronization. This 

method enables on-site inspection and back-end DT services to collaborate 

simultaneously, e.g., structural assessment, historical query, in-depth inspection, 

mechanism analysis, and even instant repair, enhancing maintenance project 

efficiency.  

The AI-based processing is taken on a Raspberry Pi 4 Model B, which can be utilized 

as a drone on-board computer or a controller in situ. As a prerequisite, the drone needs 

calibration before inspection using a chessboard at different distances and angles to 

obtain the proportional scales between the image pixel and actual size. Deep 

convolutional neural networks (DCNN) can enable drones with automatic defect-

detection ability, which has been widely accepted and commonly used in image-based 

defect detection. Here, a dataset created for bridge crack detection [220] is selected 

for the experiment, including the 2011 background and 4058 crack images (224×224). 

The images are resized to 32×32 and trained with a simplified LeNet-5 (for 

acceleration of the on-board computing process) through TensorFlow on the Google 

Codelab under the configurations: train-validation-test split – 60%:20%:20%; optimizer 

– stochastic gradient descent (SGD); learning rate – 0.001; batch size – 128. The 

training process and model performance in the test set are shown in Figure 24 and 

Table 4. Then, the model is converted into a specific version for tinyML through 

TensorFlow Lite, which is especially suitable for the DL model deployment on 

microcontrollers and embedded systems with improved efficiency. The crack 

identification for one image is less than 1 second in the experiment.    



65 

 

  

Figure 24 Training and test for crack detection  

Table 4 Model performance evaluation  

Model Accuracy Precision Recall F1 score 

LeNet-5 0.95 0.95 0.91 0.93 

 

Subsequently, detected crack images are segmented into binary images with 

background and crack through image processing (OTSU thresholding and 

morphological operations). Then, the crack characteristics can be calculated 

statistically, such as 𝐻𝑐𝑟𝑎𝑐𝑘 , 𝑊𝑚𝑎𝑥 𝑎𝑛𝑑 𝐿 , as shown in Figure 25, by combining the 

distance from the lens to the objective surface (measured with an ultrasonic ranger or 

a laser scanner, etc.)  

 

Figure 25 Crack segmentation through image processing 
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Crack orientation can be determined with the camera angle and the flight attitude from 

IMUs, such as transverse or longitudinal. Furthermore, the defect (e.g., crack) can be 

localized in the bridge coordinate by combining GNSS positioning (such as RTK or 

PPK), IMUs, and distance ranger during flight, as shown in Figure 26 [53]. Given the 

situation without stable GNSS signals, computer vision (such as bridge element 

recognition), IMUs, and distance rangers can be leveraged for drone positioning and 

defect localization through the Kalman Filter.  

 

Figure 26 PPK approach for defect localization in the bridge coordinate system  

Given the earth's ground can be taken as a plane within just a few-kilometre distance, 

𝐷𝑑𝑟𝑜𝑛𝑒 can be calculated as Eq. 9. The defect coordinates can be calculated as Eq.10 

-12. Then, the coordinates can be further linked to the precise bridge element, such 

as the beam, deck, and pier, according to geometric information.  

𝐷𝑑𝑟𝑜𝑛𝑒 = 𝑅√(𝜙2 − 𝜙1)2 + (𝜆2 − 𝜆1)2 (9) 

Where L – horizontal distance; R – earth’s radius (the parameter that needs to be calibrated); 

φ1, φ2 – base and drone latitude; λ1, λ2 – base and drone longitude.  

𝑋𝑐𝑟𝑎𝑐𝑘 = 𝐷𝑑𝑟𝑜𝑛𝑒 𝑠𝑖𝑛 𝜃 − 𝐷𝑐𝑟𝑎𝑐𝑘 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝛼 (10) 

𝑌𝑐𝑟𝑎𝑐𝑘 = 𝐷𝑑𝑟𝑜𝑛𝑒 𝑐𝑜𝑠 𝜃 − 𝐷𝑐𝑟𝑎𝑐𝑘 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛼 (11) 

𝑍𝑐𝑟𝑎𝑐𝑘 = 𝐻𝑑𝑟𝑜𝑛𝑒 − 𝐻𝑏𝑎𝑠𝑒 + ℎ𝑒𝑞𝑢𝑖𝑝 − 𝐷𝑐𝑟𝑎𝑐𝑘 𝑠𝑖𝑛 𝛽 (12) 
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The AI-derived critical information for structural assessment, i.e., defect types, 

characteristics, coordinates, and orientation, can be encoded as Figure 27 with three 

significant digits (i.e., a single float) for transmission. It can satisfy the strictest payload 

requirement of LoRa (at SF12/125kHz) with the maximum range in EU868. The 

calculated airtime is 2.138 seconds, which can achieve synchronization in near real-

time.      

 

Figure 27 Encoded defect information to synchronize for structural assessment 

BS reduction coefficient 𝛽 is calculated as 𝛽 = 𝐾𝑖/𝐾1, where 𝐾1 is the initial stiffness 

of the beam in the elastic stage and 𝐾𝑖 is the 𝑖th loading. The relationship of 𝛽 to 

𝑊𝑚𝑎𝑥  and 𝐻𝑐𝑟𝑎𝑐𝑘  can be derived from the test on the specimen as Eq.  [221]. 

Therefore, 𝛽 can be calculated using the synchronized crack information so that the 

BS reduction can be assessed successfully.  

𝛽 = {𝑓(𝑊𝑚𝑎𝑥),  𝑔(𝐻𝑐𝑟𝑎𝑐𝑘/ℎ)}𝑚𝑖𝑛 (13) 

Where ℎ is the beam height.  

Sometimes, defect profiles are unusual, such as the crack shown in Figure 28. The 

segmented crack profile can be losslessly compressed via RLE significantly, i.e., 8048 

to 654 bytes, and then completely recovered in the cloud server. This approach 

performs better than the previous research for image transmission through LoRa 

based on lossy compression [222], [223] and can still satisfy the DT services, such as 

visualization and evaluation. However, it is worth noting that the LoRa data rate is still 

relatively low. Even if the example image only requires three communication packets 

at SF7/125KHz, it still needs an airtime of 1.107 seconds and a duty cycle of 73.8 
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seconds for such a transmission. In this case, other LPWAN technologies with higher 

bandwidth, such as NB-IoT, are more recommended.  

  

 

Figure 28 Synchronization of crack profile through LoRa and RLE  

This experiment demonstrates that the proposed framework with the developed 

prototype can synchronize the drone-enabled inspection to the cloud server in near 

real-time for bridge DT services, such as structural assessment and visualization. 

Meanwhile, the feedback can be transmitted to local inspectors or agent-based drones 

through the on-board computer or the drone controller. The complete procedure can 

be shown in Figure 29.  
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Figure 29 Developed bridge DT prototype for drone-enabled bridge inspection 

4.4.2 Vibration-based monitoring 

Previous research [26] developed a cloud-based bridge DT to achieve real-time SHM 

based on vibration signals using a pre-trained surrogate model based on DL. Still, it 

relies on excellent communication (i.e., 5G), and its services will fail when cloud 

servers become unresponsive (lack of resilience). This experiment aims to achieve 

similar real-time SHM in the prototype and demonstrates the fault tolerance of the 

proposed framework for temporary loss of communication between edge and cloud.  

The public dataset of acceleration signals from the VBM project of the KW51 bridge 

[80] is employed in the experiment, generated from 6 uniaxial accelerometers during 

train passes before and after bridge repair (i.e., the damaged and healthy condition, 

respectively). Its sampling frequency is 825.8Hz, and the resolution is 24-bit. Such 

vast data is a challenge for synchronization, especially in a communication-constraint 

environment, i.e., LoRa here. Edge computing is taken on the Raspberry Pi 4 model 
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B. Two different machine-learning approaches are developed for bridge risk 

identification. One is based on the support vector machine (SVM) with hand-crafted 

features, including signal features [224] or wavelet-packet energy (WPE) as Eq. 14, 

and the other is based on 1D-CNN with multi-channel input (shown as Figure 30), 

which is similar to the DNN model used in previous bridge DT [26].  

𝑊𝑃𝐸𝑙𝑒𝑣𝑒𝑙,𝑖 = ∑|𝑥(𝑛)|2 (14) 

Note: wavelet-packet energy (WPE) of discrete-time signal for each node (level = 3, i = 1 ~ 7).  

 

Figure 30 1D-CNN architecture with multi-channel input utilized for pattern 

recognition 

The SVM model with the hand-crafted features is trained on a laptop using 

GridSearchCV to find the optimal parameter values. Its confusion matrices on the test 

set are shown in Figure 31 and Table 5. The 1D-CNN model with raw data (50176×6) 

is trained through TensorFlow on the Google Codelab, i.e., train-validate-test split – 

60%:20%:20%; optimizer – SGD; learning rate – 0.001; batch size – 64. Then, it can 

be converted to a tinyML version and deployed on the Raspberry Pi (i.e., the 

embedded system installed on the physical bridge). Two LED lights (green and red) 
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are connected to the GPIO pins of the Raspberry Pi, and the result can be displayed 

by switching either of them on. With normal communication, the edge can transmit the 

identified bridge pattern and the timestamp to the cloud using the predefined code 

system and then receive cloud-based feedback. Otherwise, when communication 

between the edge and cloud is lost, the local embedded system can perform 

preliminary pattern recognition and trigger corresponding measures on the physical 

bridge, such as weight restriction, traffic diversion, or even closure. The edge-based 

inference of SVM with signal features or WPE takes an average time of 1.2104 and 

1.5309 seconds on the test set, while 1D-CNN with raw data takes 0.7825 seconds. 

Meanwhile, 1D-CNN has the best performance, as shown in Table 5.  

             

Figure 31 Test confusion matrices for SVM with signal features and SVM with WPE 

Table 5 Model performance for pattern recognition 

Model Input Accuracy Precision Recall F1 score 

SVM SF 0.85 0.83 0.88 0.86 

SVM WPE 0.96 0.98 0.95 0.96 

1D-CNN Acceleration 1 1 1 1 

Note: SF – signal features; WPE – wavelet-packet energy (level-3); acceleration data – 

50176×6. 

It is worth noting that the derived signal features and WPE can be either utilized at the 
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edge or transmitted to the cloud, e.g., signal features require a total of 33 bytes with 

the calculated airtime of 2.302 seconds at SF12/125kHz for LoRa because their 

communication complexity has become much lower than the transmission of raw data 

in the previous DT. This experiment demonstrates that the proposed framework with 

the developed prototype can achieve similar performance to the previous research [26] 

for real-time SHM but does not rely on excellent communication anymore and has 

better fault tolerance in operation to guarantee the safety of the physical bridge. The 

complete procedure is shown in Figure 32.  

 

Figure 32 Proposed framework and developed prototype for bridge VBM 

4.4.3 Dynamic evacuation 

As an emergency response, dynamic evacuation with route planning is necessary 

when a disaster is happening or is predicted to happen on the site of physical bridges, 

such as flash floods or earthquakes. Route planning is a well-known problem which 

can be solved with many approaches, such as Floyd [225] and Dijkstra [226] 

algorithms. However, under extreme weather conditions, the cloud server likely 

becomes unresponsive, e.g., the internet or gateways break down temporarily, 

resulting in DT service failure for dynamic route planning in the cloud-based system. 

It is dangerous for public users travelling on the site of bridges. This experiment aims 

to demonstrate the resilience of the proposed framework to endure a temporary loss 

of communication at different levels.  
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An open-source emulator for the LoRa network [227] is employed for the experiment. 

Suppose there is an area with multiple bridges under the threat of flash flooding, as 

shown in Figure 33. People must evacuate from the left side (flooding area) to the right 

side (safe area) of the dashed line in the bridge network. Gateways activate the LoRa 

sensor nodes for water-level monitoring and can also exchange messages with each 

other. The stars represent the gateways, while the squares stand for the bridges. The 

dashed line in communication topology is the LoRa connection, while the complete 

line and weight in the bridge network are the road and distance between bridges. As 

a prerequisite, the LoRa module of end-devices is designed to be at least Class B 

during an emergency, making them reachable at preconfigure times. Gateways have 

eight channels (sub-bands), allowing sufficient capability for uplink and downlink, 

thereby minimizing the duty-cycle influence, and can transmit messages through LoRa 

between each other.  

 

Figure 33 (1) bridge network; (2) communication topology 

For simplicity, there are only two conditions for bridge serviceability in the simulation, 

i.e., Y- available and N - closed. The route planning is only updated when a gateway 

or sensor node receives the message that a bridge becomes closed, and the affected 

weights become infinitely great. The information is encoded as a message of 

characters indicating the bridge's location and condition. For example, “BN” means 

bridge B becomes unavailable. Because LoRa gateways are usually built on the 
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Raspberry Pi, they have sufficient computing capability to find the new shortest path 

via the Floyd algorithm (considering all the nodes) with a computational complexity of 

𝑂(𝑛3) and space complexity of 𝑂(𝑛), where 𝑛 is the number of nodes. Similarly, the 

sensor nodes built on Arduinos can also perform computing to find the new shortest 

path from their own to the safe area via the Dijkstra algorithm with computational 

complexity 𝑂((𝑛 + 𝑚)𝑙𝑜𝑔𝑛) and space complexity 𝑛 + 𝑚, where 𝑛 is the number of 

nodes and 𝑚 is the number of edges in the graph. Therefore, if cloud servers become 

unresponsive temporarily, the dynamic route planning for evacuation can still work as 

the following procedures.  

 

The simulation is initialized with all the bridges available. When bridge B becomes 

closed in the simulation, and cloud servers are out of the connection, the gateways 

can transmit the messages through LoRa and perform dynamic route planning. 

Moreover, when the gateways become unresponsive, the sensor nodes will relay the 

message through LoRa to each other and find the shortest evacuation route, which 

becomes a decentralized mode. The difference between gateway-based and sensor-

node-based route planning is shown in Figure 34.  
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Figure 34  (1) gateway-based route planning (2) sensor-node-based route planning  

The results are shown in Table 6. Take “BN” as an example. When the cloud server 

becomes unresponsive, it will result in new route planning at nodes A, B, C, and D 

based on the gateways. The downlink instruction message can be encoded as “BDES 

CDES DES” (i.e., 13 bytes), which will take up to 2.8017 seconds of airtime at the 

mode SF12/125kHz in both uplink and downlink. Moreover, when gateways become 

unresponsive, “BN” can be relayed through LoRa to all the nodes (i.e., 𝐵 → 𝐶, 𝐷 →

𝐸 → 𝐹, 𝐻 ). The communication time cost is up to 3.4653s. This experiment 

demonstrates the excellent fault-tolerant capability of the proposed framework for DT 

services to endure a temporary loss of communication, especially under emergent 

situations. In practice, PE (i.e., multiple bridges) in the proposed framework becomes 

a resilient and self-adaptive subsystem under such conditions, of which the behaviour 

can be predicted and simulated in the cloud, so PE and VE can be re-synchronized 

seamlessly when the communication recovers.  

Table 6 Simulation result for dynamic route planning 

Nodes Route and Distance Route and Distance Communication Time 

A Initial / A C B S and 4 BN / A D E S and 6  2.8017s / 3.4653s 

B Initial / B S and 1 BN / B D E S and 4.7 2.8017s / 3.4653s 

C Initial / C B S and 2.5 BN / C D E S and 4.5 2.8017s / 3.4653s 
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D Initial / D B S and 2.2 BN / D E S and 3.5 2.8017s / 3.4653s 

E Initial / E S and 1 BN / E S and 1 0/ 3.4653s 

F Initial / F E S and 2 BN / F E S and 2 0/ 3.4653s 

G Initial / G F E S and 4 BN / G F E S and 4 0/ 3.4653s 

H Initial / H S and 1 BN / H S and 1 0/ 3.4653s 

 

4.4.4 Comparative analysis  

A comparative analysis between the proposed framework and the current bridge DTs 

is presented in Table 7. As can be seen, the proposed AIoT-informed DT framework 

and the developed cross-platform prototype can handle massive heterogeneous data 

efficiently using AI-based edge computing and perform DT services in near real-time, 

even under the communication-constraint circumstances, i.e., LPWAN. Moreover, it 

has excellent fault tolerance, which can endure a temporary loss of communication 

rather than failing and is scalable to support single or multiple bridges in a large area.  

Table 7 Compare the proposed DT framework and existing bridge DTs 

Features 

Proposed 

Framework 

cDTSHM [38] Broo et al. [25] Shim et at. [21] 

Jeong et al. 

[228]  

Level Prototype Prototype Pilot project Concept Prototype 

Data type Heterogenous time-series time-series Heterogenous time-series 

Data collection Automatic Semi-automatic Automatic Manual Semi-automatic 

Pre-processing Edge Fog layer Cloud Cloud Cloud 

Computing Edge & Cloud Cloud Cloud Local server Cloud 

Communication LPWAN 5G Ethernet and 4G N/A 4G 

Resilience Yes No No N/A No 

HMI Web Web Web Desktop Web 
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Time delay Near real-time Near real-time Near real-time Periodic Near real-time 

 

4.5 Summary 

With the development of sensing and IoT technologies, massive heterogeneous data 

from regular inspection and real-time monitoring has become a challenge for bridge 

DT synchronization. However, when DT implementation concerns bridge locations, it 

may have many issues, such as restricted communication. Meanwhile, most existing 

bridge DTs are cloud-based and rely on excellent communication without 

consideration of system resilience to endure a temporary loss of communication. This 

work proposed an AIoT-informed DT communication framework to support bridge 

O&M in a communication-constraint environment with high efficiency, low latency, and 

excellent fault tolerance.  

Firstly, the research indicates that the time delay of DT services consists of 

computation and communication time costs, which depend on computational and 

communication complexity, respectively, and reveals the distinct impact of their 

sequence on time consumption for DT services, i.e., edge computing can help to 

reduce time delay significantly when communication time is dominant in the process. 

Information hierarchy (i.e., DIKW) is leveraged to indicate how to reduce 

communication complexity using AI-based edge computing theoretically.  

Moreover, two-way communication between edge and cloud is recommended to 

satisfy the restricted communication with minimal complexity for big-data analysis, 

which involves different data sources owned by edge and cloud, thereby decreasing 

the time delay. AI-based edge computing can enable the system with resilience to 

endure a temporary loss of communication, such as preliminary analysis and decision-

making, which is especially beneficial to the safety of physical bridges and public users 

when a disaster is happening or is predicted to happen. Furthermore, a hierarchical 
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communication architecture with excellent fault tolerance can be designed based on 

LPWAN and the mesh network for different-level tasks.  

Then, a bridge DT system is idealized mathematically, including state-space 

representation with time delay and inequalities for hardware processing capability. 

Meanwhile, the data flow for DT services and the resilience of the proposed framework 

are demonstrated based on Petri-net modelling with token and conditional probability. 

Furthermore, the framework is developed to the level of a prototype with cross-

platform integration for bridge O&M, including AI-based edge computing, LPWAN 

communication, cloud servers, MQTT protocols, and a web-based platform with both 

GIS and BIM.   

Finally, the proposed framework and prototype are validated with different cases for 

bridge O&M, including drone-enabled inspection, VBM, and dynamic evacuation. The 

DL model is trained on Google CodeLab and then converted to a tinyML version for 

deployment to enhance the efficiency of AI-based inference at the edge. The results 

demonstrate that 1) the proposed framework can achieve DT synchronization during 

drone inspection in near real-time under communication-constraint circumstances 

such as LPWAN; 2) the prototype can achieve similar performance to the previous 

cloud-based DT [26] in near real-time for vibration-based SHM without relying on 

excellent communication and has extra resilience; 3) the framework can achieve 

excellent fault tolerance for DT services through the hierarchical communication 

architecture to endure a temporary loss of communication at different levels for single 

or multiple bridges in a large area. These benefits can contribute directly to the 

efficiency and safety of bridge O&M through DT.  

The proposed DT framework and prototype will be implemented on a real-world bridge 

in the UK for practical application in the next step. This framework is also promising 

for federated learning to protect privacy because different stakeholders prefer to 

preserve their AI models derived from specific domain knowledge and experience 
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rather than share them on the cloud. Although this framework has many benefits, 

which can contribute directly to the efficiency and safety of bridge O&M through DT, it 

still has some limitations. For example, though LPWAN can reduce the power 

consumption of communication significantly, AI-based edge computing raises a high 

requirement for power supply according to the tasks and algorithms, which can be an 

issue under resource-constraint circumstances. Hence, edge-based AI can only 

perform preliminary analysis and decision-making currently. Therefore, the 

sustainable power supply for edge devices and the trade-off between edge and cloud 

in data storage and computation have great research significance in the future.  
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Chapter 5 Few-shot bridge image damage detection 

Autonomous bridge visual inspection is a real-world challenge due to various materials, 

surface coatings, and changing light and weather conditions. Traditional supervised 

learning relies on many annotated data to establish a robust model, which requires a 

time-consuming data acquisition process. This chapter proposes a few-shot learning 

(FSL) approach based on improved ProtoNet for damage detection with just a few 

labelled examples. Feature embedding is achieved through cross-domain transfer 

learning from ImageNet instead of episodic training. The ProtoNet is improved with 

embedding normalization to enhance transduction performance based on Euclidean 

distance and a linear classifier for classification. The approach is explored on a public 

dataset through different ablation experiments and achieves over 94% mean accuracy 

for 2-way 5-shot classification via the pre-trained GoogleNet after fine-tuning. 

Moreover, the proposed fine-tuning methods based on a fully connected layer (FCN) 

and Hadamard product are demonstrated with better performance than the previous 

method. Finally, the approach is validated using real bridge inspection images, 

demonstrating its capability of fast implementation for practical damage inspection with 

weakly supervised information.  

5.1 Theoretical foundation 

5.1.1 Few-shot problem definition  

ML is said to learn from experience 𝐸 to some classes of task 𝑇, and the performance 

is measured by 𝑃 [229], e.g., 𝐸 – ImageNet dataset, 𝑇 – object recognition, and 𝑃 

– classification accuracy. Few-shot learning is a specific type of ML problem where 𝐸 

contains only a little supervised information for the task 𝑇. In the few-shot setting, the 

dataset 𝐷 is separated into 𝐷𝑠𝑢𝑝 𝑝𝑜𝑟𝑡 and 𝐷𝑞𝑢𝑒𝑟𝑦, as shown in Eq. 15 and Eq. 16. I is 

a very small integer, commonly from 1 to 5. In a standard N-way K-shot classification 

task, 𝐷𝑠𝑢𝑝𝑝𝑜𝑟𝑡  comes from 𝑁  categories (N-way) with K  samples (K-shot) per 

category, so there are I=𝑁 × 𝐾 support examples. 𝐷𝑞𝑢𝑒𝑟𝑦 contains samples from the 
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same 𝑁 categories with 𝑄 samples per category. The goal is to classify the 𝑁 × 𝑄 

images into 𝑁 categories based on the limited supervised information from 𝐷𝑠𝑢𝑝𝑝𝑜𝑟𝑡 

[230].  

𝐷𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝐼=𝑁×𝐾 (15) 

𝐷𝑞𝑢𝑒𝑟𝑦 = {𝑥𝑗}
𝑗=1

𝐽=𝑁×𝑄
(16) 

Where 𝑁 is the number of categories; K is the number of samples (i.e., the support 

items); 𝑥𝑖 is the support item; 𝑦𝑖 is the corresponding category for the support item; 

𝑥𝑗 is the query item.  

Let 𝑝(𝑥, 𝑦)  as the joint probability distribution of input 𝑥  and label 𝑦 . ℎ  is the 

hypothesis model mapping from 𝑥 to 𝑦. Few-shot classification aims to learn ℎ from 

𝐷𝑠𝑢𝑝𝑝𝑜𝑟𝑡 for prediction and then test it in 𝐷𝑞𝑢𝑒𝑟𝑦. Here, ℎ is parameterized as ℎ(𝜃). 

The algorithm aims to find the optimal 𝜃  for 𝐷𝑠𝑢𝑝𝑝𝑜𝑟𝑡  in the vector space Η . The 

model ℎ  performance is evaluated through the loss function 𝐿(�̂�, 𝑦)  between the 

prediction value �̂� = ℎ(𝑥; 𝜃) and the actual value 𝑦.  

Assuming vector space Η , task 𝑇,  and distribution 𝑝(𝑥, 𝑦) , to minimize the loss 

function 𝐿(�̂�, 𝑦) equals to minimize the expected risk 𝑅(ℎ) with appropriate 𝜃, which 

can be indicated in Eq. 17.  

𝑚𝑖𝑛 𝑅(ℎ) = min ∫ 𝐿(ℎ(𝑥; 𝜃), 𝑦)𝑑𝑝(𝑥, 𝑦) = min 𝔼[𝐿(ℎ(𝑥; 𝜃), 𝑦)] (17)  

In practice, posterior distribution from data sampling is utilized to approach 𝑝(𝑥, 𝑦) 

through ML. However, as 𝑝(𝑥, 𝑦)  is unknown, the empirical risk 𝑅𝐼(ℎ)  is used to 

estimate 𝑅(ℎ), as indicated in Eq. 18.  

𝑅(ℎ) ≈ 𝑅𝐼(ℎ) =
1

𝑛
∑ 𝐿(ℎ(𝑥𝑖; 𝜃), 𝑦𝑖) (18) 

Hence, there will be three different optimal solutions [231], which are: 1) ℎ̂ =

𝑎𝑟𝑔𝑚𝑖𝑛 𝑅 (ℎ) – global optimal solution; 2) ℎ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ∈Η 𝑅 (ℎ) – optimal solution in 
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hypothesis space 𝛨 ; 3) ℎ𝐼 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ∈Η 𝑅𝐼 (ℎ)  – optimal solution in Η  for 𝑅𝐼(ℎ) . 

Moreover, with model ℎ trained from a random set for a task, its total error consists 

of two parts: 1) approximation error 𝜀𝑎𝑝𝑝(𝛨) caused by the difference between the 

hypothesis space Η and the global space; 2) estimation error 𝜀𝑒𝑠𝑡(𝛨, 𝛪) is the impact 

of using empirical risk 𝑅𝐼(ℎ)  instead of expected risk 𝑅(ℎ) . Here, 𝛪  is the set of 

training data. In theory, as the training set increases, 𝜀𝑒𝑠𝑡(𝛨, 𝛪) converges to zero, as 

shown in Eq. 19.  

𝑙𝑖𝑚
𝛪→∞

𝜀𝑒𝑠𝑡(𝛨, 𝛪) = 𝑙𝑖𝑚
𝛪→∞

𝔼[𝑅(ℎ𝛪) − 𝑅(ℎ∗)] = 0 (19)  

However, as few-shot learning lacks plenty of training data, it becomes difficult to use 

𝑅𝐼(ℎ) approaching 𝑅(ℎ) accurately. Therefore, the most difficulty of few-shot learning 

is the gap between the empirical best ℎ𝐼(𝛪) and hypothesis best ℎ∗(𝛨).  

5.1.2 Meta-learning and feature embedding  

Meta-learning approaches aim to learn prior knowledge from a series of training tasks 

to solve a new task. It includes hallucination-based (learning to augment), initialization-

based (learning to fine-tune), and metric-based (learning to compare) approaches. 

The hallucination-based approaches [122]–[124] aim to generate more training 

examples of novel classes through data augmentation to alleviate the issue of 

insufficient data. The initialization-based approaches, e.g., MAML [232], Reptiles [127], 

and LEO [233], aim to learn the optimal hyperparameter initialization to reach 

convergence with only a small number of data samples. The metric-based approaches, 

e.g., MatchingNet [234], ProtoNet [133], and RelationNet [137], aim to project data into 

an embedding space in which similar objects are close to each other and vice versa. 

The transductive inference process is to calculate the distance (or similarity) between 

𝑥𝑖 ∈ 𝐷𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and 𝑥𝑗 ∈ 𝐷𝑞𝑢𝑒𝑟𝑦, then the label 𝑦𝑖 with the closest distance (or highest 

similarity) in 𝐷𝑠𝑢𝑝𝑝𝑜𝑟𝑡  is assigned as 𝑦𝑗  in 𝐷𝑞𝑢𝑒𝑟𝑦 . In detail, MatchingNet uses 

attention calculated from the cosine similarity of extracted features for classification; 
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ProtoNet uses the mean vector of each class as the cluster centre and Euclidean 

distance as the metric for classification; RelationNet employs relation module instead 

of Cosine similarity and Euclidean distance, generating a non-linear classifier based 

on relation score. These sophisticated meta-learning approaches are usually based 

on episodic training through a series of related tasks (episodes) sampled from the 

base dataset to simulate reasoning scenarios [139].  

Feature embedding (representation) is used to represent a data point 𝑥𝑖 ∈ 𝛸 ⊂ ℝ𝑑 in 

a low-dimension space 𝑧𝑖 ∈ 𝛧 ⊂ ℝ𝑚  ( 𝑚 < 𝑑 ), which is supposed to have three 

essential assumptions [235], i.e., smoothness, clustering, and manifold. Feature 

embedding must retain consistent similarities or differences among data points in the 

original space. Embedding functions are usually in the form of DNN architectures. Note 

that feature representations through different embedding functions can have different 

properties, even from the same data point, which can significantly impact the 

performance of downstream tasks. The hyper-parameters of the embedding function 

can be learned from prior knowledge or task-specific information, e.g., multiple 

sophisticated tasks or a related source domain. 

The support embedding function and query embedding function are usually the same. 

The most straightforward way to learn the embedding function is to train a model in 

the support set through supervised learning. Still, its parameters are prone to 

overfitting or difficult to converge under few-shot conditions. Hence, many existing few-

shot learning works tackle this problem based on meta-learning, i.e., trained on a 

series of invariant tasks and then generalized to the target task. However, cross-

domain transfer learning has been recently demonstrated as an effective way to 

initialize the feature embedding functions for few-shot classification [136], [138] 

instead of meta-learning.  

5.1.3 Transfer learning and fine-tuning 

Transfer learning focuses on storing the knowledge learned while solving one task 𝑇𝑆 
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in a source domain ℝ𝑆 and applying it to a different but related task 𝑇𝑇 in a target 

domain ℝ𝑇 . The correlative research problems, such as multi-task learning and 

domain adaption, are also related to few-shot learning and meta-learning [236]. In 

multi-task learning, the hypothesis space of each task strongly correlates with each 

other. This correlation (i.e., prior knowledge) can be represented through sharing 

hyperparameters of DNNs. According to explicit or implicit constraints in parameter 

space, the sharing methods can be classified into soft parameter sharing, which does 

not place a strong constraint on parameters but encourages them to meet some 

requirements, such as regulation function 𝐿1 or 𝐿2, and hard parameter sharing, such 

as freezing specific layers in DNN. The frozen layers can be part of the embedding 

function or just the classifier, which solidifies the prior knowledge learned from the 

source task 𝑇𝑆. At the same time, the rest of the network will be updated (i.e., fine-

tuning) to adapt the target task 𝑇𝑇 in the target domain.  

Some meta-learning works have been developed to leverage transfer learning by 

learning the scaling and shifting functions of DNN weights through episodic training 

for each task, such as meta-transfer learning [237]. Research [8] has recently 

demonstrated that cross-domain transfer learning can achieve the comparable 

performance of (or even overperform) many state-of-the-art meta-learning approaches 

in few-shot classification. Moreover, fine-tuning can enhance average accuracy by 1%-

2% on the CUB and ImageNet datasets [136], [138]. This progress enables few-shot 

classification to be exempt from episodic training and become "training-free" like [139] 

by using pre-trained DNN backbones from a large-scale public dataset (e.g., ImageNet) 

for feature embedding.  

5.2 Few-shot damage detection approach 

5.2.1 Proposed architecture 

The proposed approach for bridge damage detection is derived from the ProtoNet 

[133], which consists of episodic training through a series of related tasks and 
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prototypical transduction based on Euclidean distance for few-shot classification. Its 

improvement includes three aspects: (1) previous episodic training is replaced with 

cross-domain transfer learning from ImageNet for "training-free" feature embedding; 

(2) embedding normalization is integrated to reduce domain variation and enhance the 

original ProtoNet performance based on Euclidean distance; (3) the fine-tuning 

methods based on fully connected network (FCN) and the Hadamard product can 

achieve better performance in fewer epochs compared to the previous transductive 

fine-tuning [138].  

The approach architecture is shown in Figure 35 with an example of 2-way 3-shot 

crack detection, and the steps are shown below.  

 

Figure 35 Proposed approach for few-shot damage detection 

1) Image splitting into support and query sets – an inspection image is split 

into multiple patches, in which the support and the query items are selected, 

respectively. Here, the patches marked with the blue boundary are picked up 

as the support set, while the remaining patches are taken as the query set.  

2) Feature embedding (cross-domain transfer learning) – the pre-trained DNN 

backbones from ImageNet are applied on both support and query items for 

feature embedding, which not only enables the feature embedding to be exempt 
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from episodic training but also makes the process become "training-free" (no 

need to be trained from scratch).  

3) Feature normalization – normalization is employed after feature embedding 

to reduce domain variation.  

4) Calculating prototypes – the mean vector of the support feature embeddings 

is calculated as the prototype for each class, and the initial transductive 

inference can be taken based on Euclidean distance.  

5) Fine-tuning – fine-tuning is employed to improve the linear classifier further 

using the support examples and the derived prototypes.  

6) Inference – finally, the damage type, location, and skeleton can be obtained 

based on the inference for each patch. Meanwhile, the obtained prototypes and 

fine-tuned classifier can be applied to a new image to detect the specific defect.  

The pseudocode of the algorithm is shown below:  

 

5.2.2 Domain adaption and transduction  

In principle, the pre-trained DNN backbones and weights based on prior knowledge 

(e.g., from the related source domain) can help to constrain the hypothesis space into 
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a smaller one for few-shot classification, as shown in Figure 36, thereby achieving less 

𝜀𝑒𝑠𝑡 quickly and better 𝑅𝐼(ℎ). The left ellipse shows the normal 𝜀𝑒𝑠𝑡 based on a large 

dataset, which is the goal to pursue. The middle one shows a bigger 𝜀𝑒𝑠𝑡 based on a 

small dataset (i.e., under FSL conditions), while the right one shows a decreased 𝜀𝑒𝑠𝑡 

in a constrained hypothesis space by prior knowledge.   

 

Figure 36 Decreased 𝜀𝑒𝑠𝑡 in constrained hypothesis space by prior knowledge [231] 

In the embedding module, the pre-trained DNN backbone (feature extractor) learned 

from 1000-class ImageNet of 12 million images is employed as the embedding 

function 𝑓𝜃(𝑥𝑖)  for both support and query sets. Note that the object classes of 

ImageNet do not include the specific defects for detection, i.e., the source domain has 

a vast difference from the target domain. The embedding function 𝑓𝜃(𝑥𝑖)  can be 

derived from supervised or self-supervised learning, as shown in Figure 37. The 

former includes different DCNNs and vision transformers. The latter mainly involves 

masked image modelling (MIM) approaches, such as masked autoencoder (MAE) 

[238] or BEiT [239].  
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Figure 37 (1) 𝑓𝜃(𝑥𝑖) from supervised learning; (2) 𝑓𝜃(𝑥𝑖) from self-supervised 

learning 

Although the hardcoded mean and the standard deviation obtained statistically from 

ImageNet, i.e., 𝜇 = [0.485,0.456,0.406]  and 𝜎 = [0.229,0.224,0.225]  can be 

employed for image transformation, it cannot guarantee the normalization in the target 

domain. Hence, normalization according to Eq. 20 (𝑣  is the embedding vector) is 

required for the obtained feature embeddings to minimize domain variation.  

𝑣𝑛𝑜𝑟𝑚 =
𝑣

𝑚𝑎𝑥(‖𝑣‖2)
(20) 

In the transductive inference, the mean vector of the support embeddings is computed 

as the prototype for each class. Then, the distances from the query embedding to each 

prototype are calculated. Consequently, the query item can be predicted as the closest 

prototype. The metrics commonly include Euclidean distance and cosine similarity, as 

indicated in Eq. 21 and Eq. 22. Here, 𝑣  and 𝑤  are the query and prototype 

embedding vectors, respectively. As seen, embedding normalization enables the 

transduction based on Euclidean distance and cosine similarity to start from the same 

circumstance.   

𝑑 = 𝑑𝑖𝑠𝑡(𝑣, 𝑤) = (∑ |𝑣 − 𝑤|2)

1
2

(21) 

𝑠 = 𝑐𝑜𝑠 𝜃 =
𝑣𝑇𝑤

‖𝑣‖2 ⋅ ‖𝑤‖2
(22) 
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5.2.3 Loss function and fine-tuning   

In the proposed architecture, the linear classifier 𝑊𝑇𝑥 + 𝑏  is utilized for few-shot 

classification. 𝑥  can be either the query embedding vector 𝑣  or the distances 𝑑 

between the query item and the prototypes. The softmax function is utilized as the 

output layer to convert the result to a probability distribution 𝑝𝑖 ∈ [0,1] for each class, 

as shown in Eq. 23.  

𝑝𝑖 = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥( 𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑛𝑁
𝑛=1

(23) 

Then, the loss function 𝐿 is defined based on binary cross-entropy, as indicated in Eq. 

24.  

𝐿 =
1

𝑁
∑ 𝐿𝑖

𝑖

= −
1

𝑁
∑[𝑦𝑖 𝑙𝑜𝑔2( 𝑝𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔2( 1 − 𝑝𝑖)]

𝑖

(24) 

Where 𝑦𝑖 is the example label (0 or 1); 𝑝𝑖 is the probability of 𝑦𝑖 for the example 𝑖. 

As the support set is relatively small under few-shot conditions, the Shannon Entropy 

(Eq. 25) is introduced as the regularization item to alleviate overfitting due to increased 

uncertainty in classification, as shown in Figure 38. It is similar to the transductive fine-

tuning method in [138], but the entropy 𝐻(𝑥) is calculated based on the support set 

rather than the query set because the model aims to be trained and fine-tuned before 

seeing all the query items in the practical inspection.  

𝐻(𝑥) = − ∑ 𝑝𝑖

𝑖

⋅ 𝑙𝑜𝑔2

1

𝑝𝑖
(25) 
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Figure 38 Entropy increases along with uncertainty rising in binary classification 

Hence, the fine-tuning step solves 𝛩∗ to minimize the target function indicated in Eq. 

26.  

𝛩∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛩

(−
1

𝑁
∑[𝑦𝑖 𝑙𝑜𝑔2( 𝑝𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔2( 1 − 𝑝𝑖)]

𝑖

−
1

𝑁
∑ 𝑝𝑖 𝑙𝑜𝑔2( 𝑝𝑖)

𝑖

) (26) 

5.3 Experiments and approach validation 

5.3.1 Experiment preparation 

An image dataset created for automatic bridge crack detection in [107] is employed 

for ablation studies using the proposed architecture for few-shot crack classification. 

The images were collected from real concrete bridges, including the 2014 background 

and 4055 crack images (224×224). The dedicated CNN in the previous research [107] 

can reach 96.37% accuracy on the test set (train-test split of 80%:20%) based on 

supervised learning. Here, the experiment aims to explore the performance of the 

proposed approach for few-shot crack classification (2-way 1-shot or 2-way 5-shot) on 

the test set, i.e., with no access to the training set for supervised learning. It can mimic 

the situation for crack identification without a pre-trained supervised model. The query 

accuracy is illustrated in a boxplot based on 5000 samplings, recommended to 

compare FSL performance by [138]. The random state remains unchanged to 

guarantee the reliability of ablation experiments. The experiments are taken on Google 
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CodeLabs. The code is generated based on the original ProtoNet from a public GitHub 

project (https://github.com/sicara/easy-few-shot-learning).   

5.3.2 Ablation studies 

5.3.2.1 Domain adaption and normalization 

The experiment starts with 2-way 1-shot and 2-way 5-shot crack identification. The 

ResNet18 backbone, popular in previous few-shot learning research [138], [240], [241], 

is employed as the feature embedding function. Its parameters are pre-trained on 

ImageNet, and the hardcoded mean 𝜇 = [0.485,0.456,0.406] and standard deviation 

𝜎 = [0.229,0.224,0.225] , derived from ImageNet statistically, are utilized for image 

transformation. The raw and hardcoded-transformed images can be shown in Figure 

39. The image size is 224×224.  

     

Figure 39 Raw images (left) and hardcoded-transformed images (right) 

The performance of architecture with and without embedding normalization is explored 

in the experiment. Moreover, Euclidean distance and cosine similarity are tested as 

the evaluation metric. The results are shown in Figure 40. Here, the annotation with 

raw and hard represents raw and hardcoded-transformed images, respectively; Eu 

indicates that the result is based on Euclidean distance of raw embedding vectors, 

while Eu_norm stands for Euclidean distances of embedding vectors after 

normalization; Cosine means using cosine similarity of raw embedding vectors.  

https://github.com/sicara/easy-few-shot-learning
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Figure 40 1-shot and 5-shot crack identification with pre-trained ResNet18 (224×224) 

As can be seen, hard-coded transformation (i.e., hard) can significantly improve both 

1-shot and 5-shot performance. After hard-coded transformation, it is shown with 

higher mean accuracy and narrower value distribution, i.e., interquartile range (IQR). 

IQR is calculated as 𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (𝑄1 – the first quartile; 𝑄3 – the third quartile). 

Moreover, the Euclidean distance of normalized embeddings (i.e., Eu_norm) performs 

much better than the raw Euclidean distance (i.e., Eu_raw). The former has the 

equivalent performance as the cosine similarity, demonstrating that embedding 

normalization can bridge the gap between Euclidean distance and cosine similarity in 

the metric-based transduction for the few-shot classification in this dataset. 

Furthermore, 5-shot performs much better than 1-shot in accuracy and IQR, promising 

to be comparable with the dedicated supervised learning in previous research. 

Meanwhile, as the experiment aims to validate the proposed approach and figure out 

the appropriate conditions (such as feature embedding functions and fine-tuning 

methods) for practical application under weakly supervised scenarios, the 2-way 5-

shot classification is adopted for the following experiment.   
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5.3.2.2 Different embedding functions 

A series of ResNet backbones in different depths are employed in the experiment to 

explore the impact of DNN architecture depths on the few-shot performance. Their 

parameters are pre-trained on ImageNet. The experiment is conducted for 2-way 5-

shot classification, and the approach integrates hard-coded transformation and 

embedding normalization. Euclidean distance and cosine similarity are tested as the 

evaluation metric in the experiment. The results are shown in Figure 41.  

 

Figure 41 2-way 5-shot performance of ResNet backbones in different depths 

(84×84) 

Here, the images are resized to 84×84 to fit deep ResNets (such as ResNet152) due 

to CUDA memory limitation, so the ResNet18 performance differs from its previous 

result in Figure 40 (224×224), i.e., the minimum accuracy drops to nearly 70%. 

Although the deeper ResNet has higher accuracy for image recognition in ImageNet, 

the experiment with different pre-trained ResNets for feature embedding cannot see a 

significant proportional relationship between the performance and the DNN depths for 

2-way 5-shot classification, as shown in Figure 41. Therefore, when using the pre-
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trained DNN backbones as embedding functions, their cross-domain few-shot 

performance does not necessarily correspond to their original performance in the 

source domain.  

Moreover, different ResNets can perform diversely, even for the same sample. For 

example, ResNet18 has only 76.5% query accuracy for a sample (i.e., 5-shot for crack 

and 5-shot for non-crack), while ResNet152 can reach 91% for the same sample. 

Meanwhile, Euclidean distance and cosine similarity have the equivalent performance 

as the evaluation metric. Here, the pre-trained backbone ResNet34 has the best 

performance with the highest mean accuracy of 91.7% and narrower IQR in the series 

of ResNets for 2-way 5-shot classification in this dataset (images resized to 84×84).  

Furthermore, the other prevalent DNN backbones are involved in the experiment, 

including multiple DCNN architectures and vision transformers (i.e., Swim Transformer 

and MAE). Their parameters are still pre-trained on ImageNet. The employed DNN 

models and their embedding dimensions are shown in Table 8.  

Table 8 Pre-trained embedding functions and embedding dimensions 

Embedding 

function 
Pre-trained Models 

Embedding 

dimensions 
Input size 

AlexNet alexnet 9216 84×84 

VGG vgg16 25088 84×84 

DenseNet densenet161 2208 84×84 

EfficientNet efficientnet_v2 1208 84×84 

ResNet resnet34 512 84×84 

MobileNet mobilenet_v3_large 960 84×84 

GoogleNet googlenet 1024 84×84 

Swim Transformer swim_t 768 84×84 
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MAE 
mae_visualize_vit_bas

e 
768 224×224 

 

The approach in the experiment is the same as the above for the ResNets, which 

integrates both hard-coded transformation and embedding normalization, and the 

experiment is taken under nearly the same conditions. The only difference is that the 

pre-trained MAE can only be applied on the 224×224 images, which cannot take all 

the remaining images (except the support images) as the query set due to CUDA 

limitation. Hence, the experiment with the pre-trained MAE for feature embedding is 

taken on the original 224×224 images with the randomly selected 50 images per class 

as the support set every time. In contrast, the experiment with the other pre-trained 

DNN backbones is taken under the same condition as the above, i.e., with resized 

images (84×84) and all the left images as the support set. Both Euclidean distance 

and cosine similarity are tested in the experiment. The results are shown in Figure 42.  

 

Figure 42 Comparison of different pre-trained DNN embedding functions 

As can be seen, the pre-trained DNN backbones can achieve excellent performance 

for 2-way 5-shot classification. The improved ProtoNet can reach a mean accuracy of 

over 93% via GoogleNet and Swim Transformer, which proves that ImageNet is a 

reliable source domain for few-shot crack detection. Note that the pre-trained MAE 
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encoder is derived from self-supervised learning, demonstrating the availability of a 

training embedding function without supervised information (i.e., labels). It indicates 

that ImageNet is a reliable source domain for few-shot crack identification based on 

cross-domain transfer learning. Moreover, the Euclidean distance of the normalized 

embeddings can achieve the equivalent performance as cosine similarity for the 

transductive inference.  

5.3.2.3 Fine-tuning and comparison  

Fine-tuning aims to improve the few-shot classification performance based on 

transduction after feature embedding through the pre-trained DNN backbones. Its 

target function can be seen in 3.2.3. Here, three different fine-tuning methods are 

compared in the experiment, including the Baseline and FCN-based (modified 

Baseline++) methods, which are inspired by previous research [136], [138], and a 

proposed method based on Hadamard product (i.e., element-wise product). 

Meanwhile, fine-tuning with and without the Shannon Entropy regularization (see Eq. 

11) is also explored in the experiment. The entropy is calculated based on the support 

set rather than the query set because the model aims to be trained and fine-tuned 

before seeing all the query images. This process is different from the previous 

research [138].  

1) The first linear classifier is implemented by adding a linear layer after the 

normalized feature embedding, similar to the Baseline in [136] and transductive 

fine-tuning in [138]. Its formula is indicated in Eq. 13, where 𝑛 is the number 

of classes ( 𝑛 = 2 ), and 𝑚  is the embedding dimension. 𝑥𝑚×1  is the 

normalized feature embedding of each support example. 𝑊𝑛×𝑚  is initialized 

with the prototype matrix 𝑀𝑛×𝑚 (i.e., the stack of prototype embedding vectors 

[𝑤1, 𝑤2] ∈ ℝ1×𝑚) because it can help hyperparameters converge quickly and 

perform better, as suggested in [138]. 𝑏𝑛×1 is the bias and initialized from 0.  

𝑦𝑛×1 = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥( 𝑊𝑛×𝑚 ⋅ 𝑥𝑚×1 + 𝑏𝑛×1) (27) 
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2) The second one is adding an FCN after Euclidean distance, as indicated in Eq. 

14, which is similar to the Baseline++ in [136] and taken as the modified 

Baseline++. 𝑑𝑛×1 represents Euclidean distances from a support example to 

each prototype. 𝑊𝑛×𝑛 and 𝑏𝑛×1 are initialized from an identity matrix and 0, 

respectively.  

𝑦𝑛×1 = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥( 𝑊𝑛×𝑛 ⋅ 𝑑𝑛×1 + 𝑏𝑛×1) (28) 

3) The third one is based on the Hadamard product by adding a linear layer with 

fewer hyperparameters after Euclidean distance, as indicated in Eq. 15. 𝑑𝑛×1 

represents Euclidean distances from a support example to each prototype. 

𝑊𝑛×1 and 𝑏𝑛×1 are initialized from 1 and 0, respectively.  

𝑦𝑛×1 = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥( 𝑊𝑛×1 ⊙ 𝑑𝑛×1 + 𝑏𝑛×1) (29) 

Here, the experiment employs the GoogleNet result for fine-tuning as it performs well 

in query accuracy and IQR. The experiment uses the RMSProp optimizer at the 

learning rate 0.01 until 2000 epochs. The mean query accuracies and 95% confidence 

interval of different fine-tuning methods with and without entropy regularization are 

shown in Figure 43 and Figure 44. 
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Figure 43 Fine-tuning without entropy regularization 

 

Figure 44 Fine-tuning with entropy regularization 

As can be seen, both the FCN-based (i.e., modified Baseline++) and the Hadamard 

product fine-tuning methods perform much better than the Baseline (i.e., transductive 

fine-tuning [138]), which can enhance the mean query accuracy from 93.4% to over 

94%. Moreover, the FCN-based method can reach the peak faster than the Hadamard-

product method in terms of accuracy during fine-tuning. Entropy regularization will 

slow down the fine-tuning of both methods and postpone their time to reach the peak. 

After the peak, there is overfitting for both methods. Hence, early stopping should be 

taken at the epoch number where query accuracy reaches the peak. As can be seen, 

early stopping can be determined empirically for few-shot crack detection as 600 

epochs and 1000 epochs when using the proposed methods without regularization. 

Similarly, 1000 epochs and 1500 epochs are recommended for both methods with 

regularization.  

In principle, avoiding overfitting in few-shot classification is difficult because the 

discrepancy between the support examples and the overall items triggers it. If the 

support examples are representative, fine-tuning by fitting the model to the selected 
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examples can enhance the query accuracy. On the contrary, fine-tuning will deteriorate 

the model and decrease its generalization capability if the support examples are 

unrepresentative. It can also be observed that the support set with increased accuracy 

after the Baseline fine-tuning can get more increment after the FCN and Hadamard-

product fine-tuning. At the same time, the other two methods can also amplify the 

accuracy decrement after the Baseline fine-tuning.  

5.3.3 Few-shot damage detection 

The approach is also validated with the real bridge inspection images from the 

CODEBRIM dataset [242]. The images are resized to 1260×840 and split into 150 

patches (84×84). A few patches with and without target defects are selected as the 

support set, while the others are taken as the query set. The embedding function is 

selected from the pre-trained DNN backbones based on ImageNet, and the classifier 

is fine-tuned with the support examples. Subsequently, the transductive inference is 

applied on each query patch using the obtained prototypes and fine-tuned classifier 

for damage detection. The pre-trained VGG16, VGG19, Swim Transformer, and MAE 

performed well as embedding functions in the experiment. Here, the results are shown 

based on the MAE encoder derived from self-supervised learning for feature 

embedding, in which each patch is resized to 224×224 for inference as required by 

Vision Transformer (i.e., ViT-Base). Moreover, the time cost is also tested for damage 

detection using different embedding functions.  

An example of 2-way 2-shot crack detection on the real bridge inspection images is 

shown in Figure 45. The support examples are from the first image in the top right, 

marked with a blue boundary, and the approach can recognize the crack skeleton with 

only two shots. The obtained prototypes and fine-tuned classifier can be applied on a 

new image directly for crack detection in the bottom right. As can be seen, most crack 

areas can be identified correctly, but a few crack patches were not recognized due to 

stains, which is related to the approach's robustness.  
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Figure 45 Few-shot crack detection through the approach based on MAE 

Spalling with rebar corrosion is another typical defect on the reinforced concrete bridge. 

An example of 2-way 5-shot spalling detection on the real bridge inspection images is 

shown in Figure 46. The support patches are from the first image in the top right, 

marked with a blue boundary, and the approach can recognize the most spalling areas. 

Similarly, the spalling areas can be identified when applied to a new image in the 

bottom right through the identical prototypes and fine-tuned classifier.  
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Figure 46 Few-shot spalling detection through the approach based on MAE 

The time cost of the approach by using different embedding functions for each patch 

(84×84) is shown in Table 9. As seen, the time cost increases as the model complexity 

and input image size increase.  

Table 9 Time costs of the approach using different embedding functions 

Embedding 

function 
Pre-trained Models Patch size Time cost  

VGG16 vgg16 84×84 0.08s / patch 

VGG19 vgg19 84×84 0.08s / patch 

Swim Transformer swim_t 84×84 0.101s / patch 

MAE mae_visualize_vit_base 224×224 (resized) 0.25s / patch 
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6.1.1 Summary 

The current image-based approaches for drone-enabled bridge inspection still mainly 

rely on supervised learning, which requires time-consuming data acquisition and 

labour-intensive data annotation. These inductive approaches are inappropriate for 

practical damage detection under complex circumstances without enough supervised 

information, such as different materials, novel defects, and changing light. To solve 

this issue, this work proposes an approach based on improved ProtoNet for bridge 

damage detection under few-shot conditions (with only a few annotated examples).   

In the approach, feature embedding is achieved by cross-domain transfer learning 

from ImageNet, which enables the embedding function to be not only exempt from 

episodic training but also become "training-free", i.e., no need to be trained from 

scratch. Moreover, after feature embedding, normalization is integrated into the 

ProtoNet to reduce the domain variation and enhance the transduction performance 

based on Euclidean distance. The linear classifier is added at the end of the ProtoNet 

for classification, and fine-tuning based on the support set can be further leveraged to 

improve the performance.  

The approach is explored in a public automatic bridge crack detection dataset through 

extensive ablation studies. The experiment proves that ImageNet is a reliable source 

domain for few-shot damage detection and can achieve a mean accuracy of over 94% 

for 2-way 5-shot classification in the test set via the pre-trained GoogleNet after fine-

tuning. The performance is already close to supervised learning using a dedicated 

CNN architecture. Moreover, the proposed fine-tuning methods based on the FCN and 

the Hadamard product demonstrated better performance than those in previous 

research [136], [138]. The time for early stopping can be determined empirically in the 

experiment. Furthermore, the approach is also validated using real bridge inspection 

images, demonstrating its capability of fast implementation for damage detection with 

weakly supervised information and the potential for practical application in near real-
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time.  

Although the approach has the above advantages, it still has a few limitations. Firstly, 

the approach is sensitive to noise, such as oil stains, road marks, shadows, and bridge 

joints. Therefore, enhancing the approach's robustness in the next step would be 

helpful. Secondly, the current approach only focuses on binary classification in fixed 

patches. Hence, it is difficult to identify a specific defect in one step when different 

kinds of defects coexist in one image, especially for similar damage with different ROI 

(region of interest) sizes, such as potholes and cracks. The hierarchical ensemble 

learning and flexible region proposals are promising to solve this issue. Thirdly, the 

support examples should be representative across the overall items because different 

support sets will result in different performances in damage detection. However, it 

requires a combination of ML and domain knowledge. Hence, how to select the 

support examples needs further study.  
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Chapter 6 Point-cloud damage assessment and DT 

synchronization 

Point clouds are widely used for structure inspection and can provide damage spatial 

information. However, how to update a DT with local damage based on point clouds 

has not been sufficiently studied. This research presents an efficient framework for 

assessing and DT synchronizing local damage on a planar surface using point clouds. 

The pipeline starts from damage detection via DeepLabV3+ on the pseudo grayscale 

images from the point depth. It avoids the drawbacks of image and point cloud fusion. 

The target point cloud is separated according to the detected damage. Then, it can be 

converted into a 3D binary matrix through voxelization and binarization, which is highly 

lightweight and can be losslessly compressed for DT synchronization. The framework 

is validated via two case studies, demonstrating that the proposed voxel-based 

method can be easily applied to real-world damage with non-convex geometry instead 

of convex-hull fitting; FE and BIM models can be updated automatically through the 

framework. 

6.2 Proposed framework 

The overall design of the proposed framework is shown in Figure 47, including data 

preparation, surface damage detection, point cloud processing, and DT 

synchronization. In data preparation, the target planar surface in the raw point cloud 

is calibrated through normal lines and rotation matrices. The surface damage detection 

is achieved through the state-of-the-art semantic segmentation model (i.e., 

DeepLabV3+) based on the pseudo grayscale image from the point depth. The point-

cloud processing for damage spatial segmentation is achieved through voxelization 

and binarization. The result representing the spatial damage geometry is a highly 

lightweight 3D binary matrix and can be losslessly compressed for data transmission. 

Finally, the DT model synchronization (i.e., FE and BIM models) and damage 

volumetric assessment can be achieved automatically from the transmitted 3D binary 
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matrix.  

 

Figure 47 Proposed framework for 3D damage assessment and DT synchronization 

6.3 Data preparation 

In the beginning, the target surface plane in the point cloud can be fitted using the M-

estimator Sample Consensus (MSAC) algorithm by finding a plane that has a 

maximum allowable distance from an inlier to it [243]. The MSAC algorithm is a variant 

of the Random Sample Consensus (RANSAC) algorithm, which can partially 

compensate for the undesirable effect of noise threshold selection [244]. Then, the 

point cloud can be calibrated by adjusting the surface normal line perpendicularly to 

the horizontal plane. The calibration can be achieved by multiplying the rotation matrix 

𝑀, indicated in Eq. 30.  

𝑀 = [
𝑐𝑜𝑠 𝛽 0 𝑠𝑖𝑛 𝛽

0 1 0
− 𝑠𝑖𝑛 𝛽 0 𝑐𝑜𝑠 𝛽

] (30) 

Where 𝛽 is the pitch angle between the surface normal line and the z-axis.  

This process can be illustrated by checking the verticality of a damaged RC column 

based on a point cloud, as shown in Figure 48. The column base upper surface is fitted 

using the MSAC algorithm and calibrated through the above rotation matrix. It is worth 

noting that the normal points on the target surface should be sufficiently more than the 

damage face points, which is required for surface plane fitting.   
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Figure 48 Plane fitting and calibration of point cloud to check damaged column 

verticality 

6.4 Surface damage defection 

6.4.1 Depth-to-grayscale transformation 

In previous research [142], surface damage detection on a point cloud is achieved 

through image processing or DL on 2D images (usually RGB) and fusion with the point 

cloud. It requires extra photo acquisition with a built-in camera. If the photo cannot be 

taken under the same condition as the survey, i.e., from the same angle and distance, 

it will lead to complex coordinate transformation and potential errors. This work aims 

to solve this issue by achieving surface damage detection with pseudo-grayscale 

images entirely based on point-cloud depth information.  

Assuming the deeper spot in the damaged space has lower luminance (i.e., lower 

grayscale level), the pseudo grayscale images can be generated through the pipeline 

shown in Figure 49. Here, the point cloud for the manual groove on a specimen is 

taken as an example. The resolution in grid meshing is considered consistent for the 

following voxelization and downstream tasks, determined by damage conditions and 

assessment requirements. For example, the evaluation for the building crack in the 

maintenance manuals [245]–[247] is at the millimetre level, so the survey for cracking 

is usually achieved with high-resolution TLS scanning, and the grid resolution is set as 

1 mm. In contrast, the assessment for spalling, which is much broader than crack with 

more relaxed inspection standards, can be achieved using the iPhone LiDAR under 1 

cm resolution for both volumetric quantification and FE model updating in the previous 



107 

 

research [142].  

 

Figure 49 Pseudo grayscale images derived from point-cloud depth information 

Initially, grid meshing is applied on the point cloud to tighten the point sparsity. As seen 

in Figure 49, multiple points can be in a single grid, and the depth matrix is generated 

with the maximum point depth in the grid. Notably, this process will not lead to the loss 

of information related to the crack. In contrast, it will enhance the impact of the 

maximum depth in the grid because the deepest point represents the depth of a single 

grid.  

Then, the depth-to-grayscale transformation for pseudo grayscale images is achieved 

through Eq. 31 – Eq. 33. 𝑑 is the depth value for each element in the depth matrix; 

𝑑𝑡ℎ  is the depth threshold for normalization (i.e., 𝑑 = 𝑑𝑡ℎ, ∀𝑑 > 𝑑𝑡ℎ ); 𝐼𝑚𝑒𝑎𝑛  is the 

average grayscale level of the training image set 𝐼; 𝐷𝑔𝑟𝑎𝑦 is the generated grayscale 

level for each pixel in a pseudo-grayscale image.  

𝐷 = 1 −
𝑑

𝑑𝑡ℎ
(31) 

𝐾 =
𝐼𝑚𝑒𝑎𝑛

𝐷𝑚𝑒𝑎𝑛
(32) 

𝐷𝑔𝑟𝑎𝑦 = 𝐾 ⋅ 𝐷 (33) 

Moreover, the ratio 𝑘  between the minimum damage depth 𝑑′𝑚𝑖𝑛  and the depth 

threshold 𝑑𝑡ℎ is an essential indicator for successful transformation, indicated in Eq. 
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34.   

𝑘 =
𝑑′𝑚𝑖𝑛

𝑑𝑡ℎ
(34) 

Here, a realistic damage image set 𝐼 [248] is utilized to train a DNN model for surface 

damage detection on the real grayscale images and then apply the model to the 

pseudo grayscale images. The pseudo-images are scaled to the same average 

grayscale level of the damage image set 𝐼  (i.e., 𝐼𝑚𝑒𝑎𝑛 ), which is beneficial for the 

model's performance. As the pseudo grayscale images are entirely generated from 

the point-cloud depth information, this method overcomes the angle and distance 

difference between the point cloud and the photo (see Figure 49), avoiding complex 

coordinate transformation and potential errors within data fusion.  

6.4.2 DeepLabV3+ model 

Surface damage detection on the generated pseudo grayscale images can be 

achieved via image processing such as OTSU’s method [249] through exhaustively 

searching the optimal threshold to maximize inter-class variance (Eq. 35) based on 

grayscale. The result can reflect the depth difference between the surface and the 

damaged areas. However, it cannot distinguish between natural damage and 

legitimate concave patterns, such as handcrafted holes, brick joints, and decorative 

textures. Hence, DL is utilized to solve this issue for surface damage detection.  

𝜎𝑤
2 (𝑡) = 𝜔0(𝑡)𝜎0

2(𝑡) + 𝜔1(𝑡)𝜎1
2(𝑡) (35) 

Where 𝜔0  and 𝜔1  are the probabilities of the two classes (i.e., background and 

damage areas) separated by a threshold 𝑡; 𝜎0
2 and 𝜎1

2 are variances of these two 

classes.  

This work uses the state-of-the-art semantic segmentation model DeepLabV3+, which 

combines the Atrous Spatial Pyramid Pooling benefits and the Encoder-Decoder 

architecture for surface damage detection and segmentation on grayscale images. 
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Here, the supervised learning approach for crack detection is an example and can be 

easily extended to detect other surface damages (such as spalling) by using the 

annotated corresponding images to train the model.  

The DeepLabV3+ model is trained on a public crack image set [248], which includes 

9584 crack and 1411 non-crack images. The images are all transformed into grayscale 

pictures and split into the training, validation, and test sets (i.e., 80%:10%10%). The 

pre-trained MobileNet-v2 based on the PASCAL VOC dataset [250] is employed as 

the backbone for feature extraction. The training condition is shown in Table 10. The 

training loss and MIoU are presented in Figure 50. The performance on the test set is 

evaluated using mean Intersection over Union (MIoU) and mean Pixel Accuracy (MPA), 

which are 80% and 88%, respectively. It demonstrates that the trained DeepLabV3+ 

has excellent performance for crack detection and segmentation on real grayscale 

images. Moreover, the model can distinguish between natural cracks and legitimate 

concave patterns such as handcrafted holes and brick joints.  

Table 10 Model training condition 

Architecture Input Split Epochs Batch Size Learning Rate 

DeepLabV3+ 448×448 80%:10%:10% 100 8 0.00005 

 

Figure 50 (a) training loss and validation loss; (b) training MIoU 

Four specimens created in the lab with variant crack widths and depths are utilized to 

test the model performance on the pseudo grayscale images, as shown in Figure 51. 
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The RealSense LiDAR Camera L515 is used for crack scanning to generate point 

clouds. The real RGB images are derived from the RGB information for each point 

using the built-in camera, and its grayscale images are calculated through Eq. 36. The 

pseudo grayscale images are generated through the pipeline in Figure 49 with a 

resolution of 1 mm and 𝑑𝑡ℎ = 𝑑𝑚𝑎𝑥.  

 Gray = 0.2989 ∗ 𝑅 + 0.5870 ∗ 𝐺 + 0.1140 ∗ 𝐵 (36) 

The proposed approach is tested by comparing the model performance on the pseudo 

grayscale images with the real grayscale images, and the latter is taken as the ground 

truth for segmentation. The model performance is evaluated using the MIoU (Eq. 37) 

and the MPA (Eq. 38) for binary segmentation, i.e., crack (positive) and background 

(negative) pixels. 𝐼𝑜𝑈𝑝𝑜𝑠  and 𝐼𝑜𝑈𝑛𝑒𝑔  denote positive and negative Intersection of 

Union; 𝑃𝑝𝑜𝑠  and 𝑃𝑛𝑒𝑔  represent positive and negative precision; 𝑇𝑃 , 𝐹𝑃 , 𝑇𝑁 , and 

𝐹𝑁  denote true positive, false positive, true negative, and false negative pixels, 

respectively.  

𝑀𝐼𝑜𝑈 =
𝐼𝑜𝑈𝑝𝑜𝑠 + 𝐼𝑜𝑈𝑛𝑒𝑔

2
=

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 +

𝐹𝑁
𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃

2
(37) 

𝑀𝑃𝐴 =
𝑃𝑝𝑜𝑠 + 𝑃𝑛𝑒𝑔

2
=

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 +

𝑇𝑁
𝑇𝑁 + 𝐹𝑁

2
(38) 

The segmentation results through the trained DeepLabV3+ model on both real and 

pseudo-grayscale images are demonstrated in Figure 51. Here, the crack depth is the 

vertical depth detected by LiDAR. As can be seen, in the experiment for the cracking 

with width > 5 mm and depth > 6 mm, the trained DeepLabV3+ model can achieve 

excellent crack detection and segmentation performance (i.e., 𝑀𝐼𝑜𝑈 = 84.60% , 

𝑀𝑃𝐴 = 97.20%) on the pseudo grayscale images, which are entirely derived from the 

point depth. The failure on the fourth beam is because the crack is too narrow, and the 

LiDAR cannot obtain sufficient points within the cracking space due to occlusion. 
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Notably, although this approach is illustrated with crack detection and segmentation, 

it is also available to detect other volumetric damages on a planar surface, such as 

spalling.  

 

Figure 51 Damage segmentation using DeepLabV3+ model on the pseudo grayscale 

images 

The experiment demonstrates that when structural damages satisfy certain conditions 

(e.g., cracking width > 5mm and 𝑘 > 0.17  in the experiment), a pre-trained DNN 

model from the real grayscale damage images with annotation can achieve excellent 

performance for surface damage detection and segmentation on the pseudo grayscale 

images, which are entirely derived from the point depth with appropriate resolution. 

This approach avoids the drawbacks of image and point cloud fusion, such as extra 

photo acquisition, complex coordinate transformation, and potential data fusion errors. 

Notably, the resolution selection is affected by the survey equipment, such as the 1 

cm resolution with iPhone LiDAR in the previous research [142]. The model 

performance may degrade when using a relatively low resolution to generate pseudo-
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grayscale images. At that moment, a new model would be required based on the 

reduced training images with the corresponding resolution. After training, the model 

can also distinguish natural structural damages from legitimate concave patterns.   

6.5 Spatial damage segmentation 

6.5.1 Spatial voxelization 

After surface damage detection and segmentation, the damage can be masked with 

a bounding box. Then, the point cloud section involving target damage can be 

separated as a cuboid according to the bounding box from the surface until the 

maximum depth along the depth direction, i.e., the z-axis, as shown in Figure 52. The 

separated cuboid section can be fully voxelized with an appropriate resolution, which 

should be consistent with the grid resolution in the previous stage and suitable in 

downstream tasks for damage assessment. As seen in Figure 52, the cuboid after 

voxelization includes three different types of voxels, i.e., (1) the empty voxels in the 

damage space, (2) the occupied voxels by the entity surface and damage face, (3) the 

unobserved voxels due to occlusion. The benefit of doing this is that the enclosed 

damage space and the entity can be distinguished using the status of each voxel, i.e., 

the empty and the occupied voxels. Here, the voxel status is defined as occupied even 

if only a single point is included, so the voxelization will not lead to losing the point 

information. By contrast, it will enlarge the single-point impact, which is beneficial for 

assessment reliability.  
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Figure 52 Separated cuboid damage section and spatial voxelization 

In principle, voxelization can be implemented through the Octree [251]. The observed 

occupied voxels on the surface can be easily obtained using floor-like integerization 

for point coordinates according to the resolution, as shown in Figure 53. Here, the 

integer coordinate (𝑥, 𝑦, 𝑧) of each node at the corner corresponds to the position of 

each occupied voxel in the cuboid.  

 

Figure 53 Voxelization through floor-like integerization 

6.5.2 Binarization and morphological operation 

The binary mask for the detected damage on the surface is shown in Figure 54, 

including the damage area (white pixels – 1) and the background area (black pixels – 

0). It can be utilized as the damage mask directly on the surface layer of the separated 

cuboid damage section when grid meshing and voxelization have the same resolution. 

Otherwise, the mask needs to be resized.  

 

Figure 54 Surface binary mask and following morphological operations 

After assigning occupied voxels with 0 and empty voxels (including unobserved voxels) 
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with 1, each layer (or slice) of the voxelized cuboid along the depth direction can be 

taken as a binary image. Then, the empty voxels, occupied voxels, and unobserved 

voxels in the following layers along the depth direction are updated through 

morphological operations, as shown in the algorithm below. The Hadamard product 

enables the damage area to shrink when newly occupied voxels arise in the current 

layer, and image closing can remove the outlier pixels enclosed in the damage area. 

Finally, the result is a highly lightweight 3D binary matrix representing the damage 

spatial geometry.  

 

Notably, this processing method relies on the detected damage face points and will 

not lead to the loss of the damage space. For example, if the equipment cannot 

perceive the damage face in a few layers, these layers will inherit the damage mask 

of the previous layer. Hence, the damage area in each layer will only change as the 

new occupied voxels arise, i.e., new damage face points are detected. It is beneficial 

for assessment reliability based on the perceived point cloud.  

6.6 DT synchronization and damage assessment 

6.6.1 Data compression and transmission 

The transmission data includes the generated 3D binary matrix representing the 

damage spatial geometry and the corner point coordinates of the segmented cuboid 

on the surface for geo-referencing. The 3D binary matrix is much lighter than the 



115 

 

original point cloud and can be further compressed through the lossless RLE before 

transmission, as shown in Figure 55. The compression efficiency can be evaluated 

with compression ratio (CR), indicated in Eq. 36.  

 

Figure 55 3D Binary matrix compression and transmission 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑆𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑆𝑖𝑧𝑒
(39) 

6.6.2 Damage volumetric assessment  

The damage volume assessment aims to evaluate the residual bearing capacity of the 

damaged structure by quantifying the damaged void space. The latest research [142] 

uses convex-hull fitting to achieve damage volumetric quantification, but this method 

requires handcrafted cutting for each convex component. Otherwise, it will exaggerate 

the damage volume. However, elaborate manual cutting is time-consuming and is not 

always available for real-world structural damage with complicated non-convex 

geometry. Hence, voxel-based fitting is proposed to solve this issue in this work.  

A point cloud for cracking is shown in Figure 56. Here, it assumes the crack is wide 

enough, and the survey provides sufficient points for damage spatial assessment. As 

can be seen, the damage space is a non-convex geometry, which can be manually 

separated into three convex polyhedrons for convex-hull fitting, as shown in Figure 56 

(a). According to previous research [142], the sum of these three volumes can be taken 

as the ground truth. Figure 56 (b) shows the convex-fitting result for the intact point 

cloud without manual separation, and Figure 56 (c) demonstrates the voxel-based 

fitting result. As can be seen, the convex-hull fitting without manual separation tends 

to exaggerate the damage volume with the purple-marked volume, and the voxel-
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based fitting is much closer to the ground truth. In practice, the voxel-based fitting 

volume can be easily obtained by summing up the value of the transmitted 3D binary 

matrix (i.e., empty voxel – 1 and occupied voxel – 0) to figure out the voxel amount 

and then multiplying it with the volume of the unit voxel.  

 

Figure 56 Comparison of convex-hull fitting and voxel-based fitting: (a) ground truth; 

(b) convex-hull fitting without manual separation; (c) voxel-based fitting 

6.6.3 Model synchronization 

6.6.3.1 FE model geometric updating 

Here, the element for FEA has the equivalent resolution of grid meshing and 

voxelization in Section 3.4 and Section 3.5. The latest research [142] demonstrates 

that the FE model can be updated geometrically by removing the elements less than 

the damage depth, but the algorithm is based on loop iteration. In principle, with the 

generated 3D binary matrix, the more efficient method to update the FE geometric 

model is to apply the element-wise product on the corresponding cuboid (after geo-

referencing) in the FE model, as shown in Figure 57. Its time complexity is 𝑂(𝑛), where 

𝑛 = 𝑙 × 𝑤 × 𝑑 (𝑙, 𝑤, and 𝑑 are numbers of elements in the matrix along length, width, 
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and depth, respectively), and space complexity is 𝑂(1).  

 

Figure 57 Designed FE model geometric updating through elementwise product 

However, most commercial FE software cannot support this manipulation, and the 

elements are usually denoted with indices rather than a matrix, such as Abaqus and 

Ansys. Hence, the empty voxel coordinates are retrieved by querying with the matrix 

element equal to 1 and then used to generate the damage elements’ indices. Finally, 

the FE model can be updated geometrically by deleting the corresponding elements 

or setting them invalid for the calculation. The pseudocode of the process is shown 

below.  

 

6.6.3.2 BIM model geometric and semantic updating 

The damage contour in each layer (or slice) of the transmitted 3D binary matrix can 

be fitted with an appropriate shape. For example, the circles or ellipses fitting for 

spalling can indicate each layer's centroid and radius (including major and minor 



118 

 

radius), which is helpful for damage recording and assessment. The 3D damage 

geometry can be constructed automatically from the transmitted matrix through 

commercial software like Dynamo. Then, the BIM model can be further updated with 

the damage geometry following the pipeline shown in Figure 58 according to previous 

research [150], [252], [253]. The fitted damage polyhedron can be taken as an entity 

and assigned with IfcVoidingFeature, a modification of an element to reduce its volume. 

After setting its parameter PredefinedType to CUTOUT, the damage geometry can be 

subtracted from the intact component via the DamagedGeometryCutout relationship.  

 

Figure 58 BIM model updating with the local damage geometry [253] 

6.7 Experiment preparation 

A public TLS point cloud dataset [141], [254] for synthetic grooves and real-world 

cracking is utilized for framework validation. The synthetic grooves are created on a 

specimen with different widths (from 1mm to 10mm), and the cracking happens on a 

building wall, as shown in Figure 59. The survey uses a high-quality laser scanner 

(Z+F IMAGER® 5016) at 5m with an incidence angle of 0°. The scanner’s distance 

resolution is 0.1 mm, and the linearity error is less than 1 mm + 10 ppm/m. The blue 

rectangles indicate the selected point clouds for the experiment. CloudCompare and 

MATLAB are utilized for point-cloud processing. Dynamo is used to reconstruct the 3D 

damage geometry automatically, and Abaqus is used for updating the FE geometric 

model.  
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Figure 59 (a) Synthetic grooves; (b) Real-world building crack 

6.8 Case study 1 – synthetic groove 

6.8.1 Groove detection and spatial segmentation 

As the wider groove has a better scanning performance for its internal space, the 

biggest groove with a 10 mm width is adopted for the experiment, shown as blue-

marked in Figure 59 (1). Previous research indicates that its spatial geometry can be 

described effectively using the point cloud for damage detection[141]. The target 

groove is initially cropped from the point cloud, and the surface plane is fitted using 

the MSAC. The pitch angle 𝛽 of the fitted surface is -0.0218 𝑟𝑎𝑑, so the point cloud 

can be calibrated through Eq. 30 around the y-axis by 𝛽 , to make sure the fitted 

surface plane is horizontal.  

The pseudo grayscale image for the cropped section is generated based on the point 

depth information through the pipeline shown in Figure 49, with an average grayscale 

of 124. The grid resolution is 1 mm. Because the trained DeepLabV3+ model cannot 

recognize synthetic damage (like a groove), the OTSU thresholding method is adopted 

here for groove segmentation on the surface. The groove region, i.e., the mask and 
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the bounding box, can be generated, as shown in Figure 60.  

 

Figure 60 Groove detection on a pseudo grayscale image 

Then, a 3D cuboid involving the groove is separated according to the bounding box 

from the surface plane until the maximum depth. The cuboid can be voxelized spatially 

with the same resolution as grid meshing in the above stage, i.e., 1 mm. The occupied 

voxels by the entity surface and the damage face are set to 0; the empty voxels 

(including unobserved voxels) are set to 1. Subsequently, the spatial segmentation for 

the groove is achieved through Algorithm 1 in Section 3.5.1. The voxelized cuboid’s 

layers (or slices) can be shown in Figure 61, where empty voxels are white and 

occupied voxels are black. Finally, a 3D binary matrix 𝑀 (200 × 35 × 21) representing 

the groove spatial geometry is generated as a “.mat” file.  
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Figure 61 Each layer (or slice) for the groove in the voxelized section 

6.8.2 DT synchronization 

6.8.2.1 Data compression and transmission 

The blue-marked point cloud in Figure 59 (1) has 9.5428 × 104 points and is saved 

as a “.pcd” file of 2.18 MB. In contrast, the generated 3D binary matrix is saved as a 

“.mat” file of only 3KB, and it can be further compressed through RLE to 1148 bytes. 

The compression rate (CR) reaches 61%. Meanwhile, the x-y coordinates (m) of the 

bounding box diagonal corner points, i.e., (0.029, 0.197) and (0.042, 0.018), are 

utilized for geo-referencing of the target groove section on the surface plane. It 

demonstrates that the proposed framework can enable highly efficient data 

transmission for DT synchronization with the target groove. The generated data 

through voxelization and binarization is significantly lighter than the original point cloud, 

which can support the timely as-is model updating during the survey.      

6.8.2.2 Groove volumetric assessment 

As the target vertical groove is a simply convex geometry, the convex-hull fitting 

method in the previous research [142] can be implemented directly on the groove point 

cloud without handcrafted separation as a benchmark, and its estimated volume is 
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25687 mm3. The voxel-based fitting assessment can be achieved by summing up the 

Boolean values of the transmitted 3D binary matrix (i.e., the unit voxel is 1 mm3), and 

the volume estimation is 25231 mm3. As can be seen, the result difference between 

the two fitting methods is less than 2% for the target groove, demonstrating that the 

proposed voxel-based fitting is acceptable for the volumetric assessment of the 3D 

damage with a convex geometry based on appropriate resolution. Both fitting methods’ 

performance is presented in Figure 62.  

 

Figure 62 Groove volumetric assessment with convex-hull and voxel-based fitting 

6.8.2.3 FE model geometric updating 

A model for FEA is established in Abaqus with the equivalent resolution of voxelization. 

Initially, the target groove section (corresponding to the transmitted 3D binary matrix) 

can be localized in the FE model using the diagonal corner point coordinates. Then, 

the ID list of the empty elements can be obtained by retrieving the matrix element that 

equals 1. Finally, the FE model can be updated automatically by deleting the open 

elements in the groove using the Python-based script, as shown in Figure 63. It 

demonstrates that the proposed framework can automatically enable FE model 

geometric updating with the 3D local damage.  
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Figure 63 FE model geometric updating for synthetic groove 

6.8.2.4 BIM model updating 

The groove contour in each layer can be fitted with ellipses based on centroids, major 

and minor axes, as shown in Figure 64 (a), indicating the critical damage features, 

such as location, width, and length. The fitted ellipses can be generated in Dynamo 

using Ellipse.ByOriginRadii through visual programming, as shown in Figure 64 (b). 

Finally, the groove geometry can be reconstructed, as shown in Figure 64 (c). 
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Figure 64 BIM model geometric updating for synthetic groove 

Furthermore, the groove component can be taken as an entity with IfcVoidingFeature, 

and the parameter PredefinedType is set to CUTOUT. Then, the groove geometry can 

be subtracted from the intact BuildingProduct based on the DamagedGeometryCutout 

relationship. Consequently, BuildingProduct will point to the specimen with 

componentGeometry, and DamagedGeometryCutout will refer to the groove with 

damagedGeometry. Finally, DefectAnnotation (including name, id, description, 

position, etc.) can be associated with the groove component to update the semantic 

information in the BIM model. The complete pipeline is shown in Figure 58.  

6.9 Case study 2 – real-world building crack 

6.9.1 Crack detection and spatial segmentation 

In the second case, the framework is tested on the point cloud of a real-world building 

crack, as shown in Figure 59 (2). The experiment adopts the blue-marked region, with 

the cracking width from 11 mm to 30 mm. As the high-resolution TLS scanning can 
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provide sufficient spatial information for the synthetic groove with a width of 10 mm 

(see case 1), the point-cloud data under the same survey condition (i.e., the same 

equipment, angle, and distance) for the crack greater than 11 mm is available for 

damage spatial assessment. The surface plane is fitted with the MSAC, and the point-

cloud calibration is achieved through Eq. 30 with 𝛽 = 0.0023 𝑟𝑎𝑑 . The pseudo 

grayscale image is entirely derived from the point depth with a grid resolution of 1 mm 

and utilized for the crack segmentation on the surface through the pre-trained 

DeepLabV3+ model. The crack mask and bounding box are shown in Figure 65.  

 

Figure 65 Real-world crack detection with pseudo grayscale image via DeepLabV3+ 

The 3D crack section (i.e., cuboid) is separated according to the bounding box from 

the surface plane until the maximum depth. The cuboid is voxelized spatially at a 

resolution of 1 mm. The occupied voxels by the entity surface and the damage face 

are set to 0; the empty voxels (including unobserved voxels) are set to 1. The spatial 

segmentation for the crack can be achieved through the algorithm in Section 3.5.1. 

The voxelized cuboid’s layers (or slices) can be shown in Figure 66, where empty 

voxels are white and occupied voxels are black. Finally, a 3D binary matrix 

𝑀 (850 × 55 × 56)  representing the crack spatial geometry can be generated as a 

“.mat” file.  
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Figure 66 Each layer (or slice) for real-world cracking in the voxelized section 

6.9.2 DT synchronization  

6.9.2.1 Data compression and transmission 

The original point cloud for the target crack section in Figure 59 (2) has 

2.141447 × 106  points and is saved as a “.pcd” file of 57.1 MB. In contrast, the 

generated 3D binary matrix is a “.mat” file of only 63KB, and it can be further 

compressed through lossless RLE until 19.3 KB. The compression rate (CR) reaches 

69.37%. Meanwhile, the x-y coordinates (m) of the bounding-box diagonal corner 

points, i.e., (0.129, 0) and (0.184, 0.183), are utilized for geo-referencing of the target 

crack section on the surface. It demonstrates that the proposed framework can enable 

highly efficient data transmission for DT synchronization with the real-world building 

crack. The transmitted data is significantly lighter than the original point cloud, which 

can support the as-is model updating during the survey.  

6.9.2.2 Damage volumetric assessment 

The target real-world building crack is a complicated non-convex geometry, shown in 

Figure 67 (1), so it is impractical to apply elaborate handcrafted separation for each 

convex component to achieve volumetric assessment through the convex-hull fitting. 
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In contrast, the voxel-based fitting can be easily applied for the damage volumetric 

assessment in this situation. As case study 1 has demonstrated the effectiveness of 

the voxel-based method for a convex geometry, the voxel-based fitting with an 

appropriate resolution can be closer to the ground truth than the convex-hull fitting for 

the intact point cloud without manual cutting, as shown in Figure 67 (2) and (3). In 

practice, the voxel-based volumetric assessment can be achieved by summing up the 

Boolean values of the transmitted 3D binary matrix (i.e., the unit voxel is 1mm3), and 

its result is 4.0652 × 10
5
  mm3. This method can also be extended for volumetric 

assessment of other 3D damages having non-convex geometry, such as the spalling 

in Figure 7. It demonstrates that the proposed voxel-based method can be easily 

applied for volumetric assessment of real-world damage having a non-convex 

geometry instead of convex-hull fitting.  

 

Figure 67 Volumetric assessment for the real-world building crack 

6.9.2.3 Model updating 

Like case 1, an FE model can be established in Abaqus with the equivalent resolution 

of voxelization. The separated crack section (i.e., a cuboid) can be localized using the 

diagonal corner point coordinates in the FE model. Then, the ID list of the empty 
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element can be obtained by retrieving the matrix element that equals 1. Finally, as 

shown in Figure 68, the FE model can be updated automatically by deleting the open 

elements in the cracking space through a Python-based script. It demonstrates that 

the proposed framework can efficiently and automatically update the FE geometric 

model for real-world building cracks based on the point cloud.  

 

Figure 68 FE model geometrically updating for real-world cracking 

Furthermore, the crack contour in each layer can be fitted using a bounding box, as 

shown in Figure 69, to indicate the cracking location and skeleton. Then, the crack 

spatial geometry can be generated by meshing the bounding boxes across different 

layers. Finally, the BIM model can be updated geometrically and semantically 

according to Section 6.6.3.2. The proposed framework for FE and BIM model updating 

with local damage is also available for other 3D structural damage, such as concrete 

spalling.  
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Figure 70 Crack contour in each layer fitted with bounding box 

6.10 Discussion 

Although the proposed framework performs excellently on synthetic and real-world 

spatial damage in the case studies, it still has some limitations. For example, the 

accessibility of the target from the LiDAR plays an important role in the proposed 

methodology while capturing the point cloud with the required interpoint spacing, which 

is crucial to the performance of damage assessment and reality modelling. This study 

keeps the scanner 5 m apart from the target and perpendicular to the planner surface 

without any angles in the experiment. However, this configuration may not always be 

practical for a survey of damaged structures if they cannot be accessible like this. 

Hence, it is necessary to discuss the ambient and intrinsic factors affecting the 

proposed methodology's performance, summarising as distance, angle, and edge 

effect (or laser beam size).  

The distance from the scanner to the target influences measurement accuracy and 

point cloud density. As the distance grows, the measurement accuracy declines, so it 

is necessary to adapt the grid and voxel resolution accordingly. Although the accuracy 

remains acceptable within a specific distance range determined by the equipment, 

increased distance leads to a decrease in point density. This results in more empty 

grids or voxels without enclosed points, consequently raising ambiguity in determining 

whether a voxel is void within a damaged volume. In such instances, appropriate 
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computer vision methods based on image processing or DL are required to perform 

effective spatial denoising.  

The angle of incidence is directly related to the scanning field of the structural damage. 

The previous study [15] has shown that when the incidence angle is oblique, it causes 

a restricted visual field of the damage area due to occlusion, resulting in loss of 

information during inspection. Therefore, when it is impossible to conduct 

perpendicular scanning, it becomes necessary to perform scanning from different 

viewpoints to acquire sufficient damage spatial information. Then, the damage space 

can be reconstructed or potentially predicted through various technologies like neural 

radiance fields (NeRF) or 3D shape completion. This procedure can be carried out 

before transmission with point clouds or after transmission using the generated binary 

matrices through the proposed method. 

Although the damage size and depth may meet specific criteria for a high-quality point 

cloud description, the edge effect still exists. As defined in [15], this effect refers to 

using an average object distance when the laser beam covers multiple surfaces with 

varying depths along the edge. It will blur the damage boundary in the point cloud and 

can only be mitigated by reducing the size of the laser beam. Therefore, a modest 

enhancement of the points' depth along the edge would benefit damage segmentation 

in the pseudo grayscale images (i.e., equivalent to image sharpening) while also 

expanding the margin for reliable damage assessment.  

6.11 Summary 

This study presents a highly efficient framework for damage volumetric assessment 

and DT synchronisation based on the point cloud. It includes surface damage 

detection, damage spatial segmentation, and DT model synchronisation. The surface 

damage detection is achieved through a pre-trained DeepLabV3+ model on the 

pseudo grayscale images derived from the point cloud depth information. It avoids the 

drawbacks of using image and point cloud fusion, such as extra photo acquisition, 
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complex coordinate transformation and potential errors. The approach is validated on 

the specimens created in the lab with different crack widths and depths. It 

demonstrates that the trained model from the real grayscale images for damage 

detection can be applied to the pseudo grayscale images when the damage satisfies 

certain conditions, such as appropriate width and normalisation threshold. Meanwhile, 

the natural damage and manual concave patterns can be distinguished via the 

DeepLabV3+ model by training on the annotated damage and non-damage images.  

After surface damage detection, the bounding box and mask are utilised for damage 

spatial segmentation to remove the redundant point cloud. Then, the separated point 

cloud can be converted into a highly lightweight 3D binary matrix representing the 

spatial damage geometry through voxelization and binarization. Compared with the 

full-scale object's point cloud transmission, communication complexity can be 

significantly decreased (over 99%) by only transmitting the segmented target point 

cloud in a binary matrix. The binary matrix can be further compressed through lossless 

RLE (with a CR of over 50%) for efficient data transmission and practical downstream 

tasks. This approach addresses the communication complexity challenge when DT 

synchronises with voluminous point cloud data in 3D scanning surveys.  

Finally, the transmitted 3D binary matrix and the geo-referencing coordinates can be 

utilised for different downstream tasks, including SHM and reality modelling. For 

example, the damage volumetric assessment can be easily achieved by summing up 

the elements of the binary matrix (as void voxel – 1 and occupied voxel – 0). This 

voxel-based method doesn't require elaborate manual cutting for each component like 

the previous method based on the convex-hull fitting [4]. It can perform well for real-

world damage with a complicated non-convex geometry under an appropriate 

resolution. Moreover, the FE model can be updated geometrically through the binary 

matrix with lower time and space complexity (see Table 11). The BIM model can also 

be updated automatically as an IFC file using appropriate patterns (such as ellipses 



132 

 

and bounding boxes) to fit the damage contour in each layer.   

The intact framework is validated based on two case studies, i.e., a synthetic groove 

and a real-world building crack. A comparative analysis, as shown in Table 2, 

demonstrates that the proposed framework is superior to the existing practices for 

damage assessment and reality modelling via 3D scanning.  

Table 11 Comparative analysis between proposed methodology and existing practices 

Methodology 

(data form) 
Payload Volumetric Assessment 

FE complexity 

(time/space) 
BIM updating 

Project-based 

(full-scale PCD) 
Heavy Manually comparing 

𝑂(𝑃 × 𝑁) 

𝑂(𝑀) 
 

Time-consuming 

Research [4] 

(segmented PCD) 
Medium Manual cutting (convex) 

𝑂(3 × 𝑛 × 𝑙𝑜𝑔2 𝑛) 

𝑂(𝑚) 
n/a 

Proposed framework 

(binary matrix) 
Light Automatically 

  𝑂(𝑛) + 𝑂(𝑚) 

𝑂(𝑚) 
Fast 

Note: PCD – point cloud data; the damage volumetric estimation in the current project-based 

survey is achieved by manually comparing the full-scale point cloud with an ideal 3D model; 

𝑃 is the number of all the points in PCD; 𝑁 is the number of elements, and 𝑀 is the number 

of damaged elements in the full-scale model; 𝑛  is the number of elements and 𝑚  is the 

number of damaged elements in the target section.  

It is important to highlight that the proposed framework and approaches hold promise 

for further study in extending their application to spatial damage on the object with a 

curved surface, such as cracks or spalling on a pillar. The proposed methodology can 

revolutionise the existing workflow for infrastructure maintenance surveys based on 

3D scanning, which is unidirectional, time-consuming, and burdensome due to the 

large volume of point cloud data. Instead, it can facilitate near real-time damage 

assessment and reality modelling during the scanning process and provide timely 

feedback to the PE, effectively streaming the challenging 3D scanning survey into the 
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infrastructure's DT.   
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Chapter 7 Time-series IFD and health monitoring 

Bridge SHM and component fault diagnosis is essential for preventative maintenance 

(PM) in Industry 4.0. Data-driven approaches have been widely accepted for intelligent 

fault diagnosis (IFD) in smart manufacturing and infrastructure health-state monitoring, 

and various DL models have been developed for different datasets and scenarios.  

However, an automatic and unified DL framework for developing IFD applications is 

still required. Hence, this chapter proposes an efficient framework integrating popular 

convolutional neural networks (CNNs) for IFD based on time-series data by leveraging 

AutoML and image-like data fusion at first. After normalisation, uniaxial or triaxial 

signals are reconstructed into 3-channel pseudo-images to satisfy the input 

requirements for CNNs and achieve data-level fusion simultaneously. Then, the model 

training, hyperparameter optimisation, and evaluation can be taken automatically 

based on AutoML. Finally, the selected model can be deployed on a cloud server or 

an edge device (via tinyML). The proposed framework and method are validated via 

two case studies, demonstrating the framework’s availability for automatic 

development of IFD applications and the effectiveness of the proposed data-level 

fusion method.  

Secondly, an approach for bridge health-state recognition based on time-series signals 

from multiple sensors is proposed by using a multi-channel 1D-CNN architecture to 

achieve data-level fusion. The approach is validated via a public dataset from the VBM 

project of a railway bridge. Moreover, multiple sensors' data-level and decision-level 

fusion performances are compared and analysed.  

7.1 IFD based on a uniaxial or triaxial sensor 

7.1.1 Proposed IFD via AutoML-CNN and image-like fusion 

7.1.1.1 Problem statement 

As can be seen from the related works for IFD with DL, CNN-based pattern recognition 
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using the derived 2D images from time-series data has become one of the most 

effective approaches for data-driven fault diagnosis. It can be attributed to the 

excellent feature learning capability of CNNs and subsequent FCNs fitting ability. 

Meanwhile, there are already many classical CNN architectures designed in computer 

vision, including LeNet, VGG, ResNet, EfficientNet, MobileNet, etc., as well as 

techniques developed for improvement, such as dilated convolution, attention, and 

lightweight design.  

However, previous research has focused on implementing or improving an individual 

architecture, such as modified LeNet, VGG16, and transformer. Still, it did not involve 

different neural networks in a unified framework by leveraging AutoML. As is known, 

variant neural networks could perform differently in data-driven fault diagnosis even 

for the same dataset. Therefore, how to automatically realise training (including 

parameter optimisation) and select the most appropriate neural network has become 

an issue for developing practical IFD applications. Meanwhile, how to fuse the data 

from a triaxial sensor, such as 3-axis acceleration on (x, y, z), efficiently and effectively 

is also a problem.  

7.1.1.2 Pseudo-image reconstruction and data fusion 

The previous time-frequency transformation from 1D time-series signals to 2D 

synthetic images is usually time-consuming (e.g., the wavelet transformation for a 

sliding window of 1032 will take 1.653s on Google Colab) and requires expert 

knowledge of the frequency spectrum. In contrast, the spatial reconstruction from the 

same time-series sliding window to a grayscale image like in [176] will only take 

0.0001s. However, the generated single-channel grayscale image cannot be utilised 

directly as input for the popular deep CNNs because they are designed for the 3-

channel RGB images. Hence, an improved 3-channel pseudo-image reconstruction 

(i.e., imaging) method is proposed here, as shown in Figure 70. 
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Figure 69 Proposed 3-channel pseudo-image reconstruction from time series 

The first step in pre-processing is to select an appropriate sliding window size, which 

depends on the sampling frequency, computing capability (for edge device), etc. Data 

normalisation is suggested to decrease the time cost of training convergence, which 

can be the min-max normalisation or z-score standardisation. The pseudo-image 

pixels (i.e., matrix element) can be decimals without scaling up to the range of [0,255] 

(i.e., unlike Eq. 1 in previous research) because neural networks can convert the 

decimals to the scores between [0,1] after the hidden layers and softmax functions. 

The slice of signals on each axis is reshaped as a single-channel pseudo-image in 

rows or columns. Then, the single-channel pseudo-image from a uniaxial signal can 

be duplicated to 3 channels, and the slice of triaxial signals can be reconstructed into 

a 3-channel pseudo-image by stacking the single-channel image from each axis. The 

latter can achieve triaxial data-level fusion and satisfy the input requirement for CNN 

architectures at the same time.  

7.1.1.3 Automated machine learning 

AutoML includes the end-to-end procedure from beginning with a raw dataset to 

building a ML model ready for deployment. The high degree of automation in AutoML 

aims to allow non-experts to use ML models and techniques without requiring them to 

become experts in ML [255]. Currently, most popular CNN architectures have already 

been built as APIs in the mainstream DL framework, including Keras, TensorFlow, 

PyTorch, etc. They can be revoked straightforwardly, which serves as the foundation 

of AutoML in this study. 

After the proposed imaging, the derived 3-channel pseudo-images are adopted as the 
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input for integrated DL neural networks, which can be the built-in classical CNN 

architectures or the self-defined models. It is worth noting that the integrated neural 

networks are not limited to CNNs and can be any DNN architecture designed for RGB 

images, such as the Swim Transformer. The pseudo-images need to be resized 

appropriately according to the input requirement of each neural network. Then, the 

AutoML procedure can be carried out as shown in Figure 71, consisting of 1) automatic 

training through the popular DL frameworks for the integrated CNN architectures; 2) 

neural network search (and hyperparameter optimisation) based on evaluation 

according to various metrics; and 3) deployment on an edge device through tinyML.  

 

Figure 70 Proposed AutoML procedures for IFD 

Notably, the first two steps should be taken on a high-performance computer, such as 

a cloud server with a GPU, because DL training requires considerable computing 

power and memory. Hyperparameters, including optimiser, epoch, activation function, 

and learning rate, are also available for automatic optimisation via different 

approaches, such as random search, grid search, Hyperband [256], Bayesian 

hyperparameter optimisation (BHO) [257], tree-structured Parzen estimator (TPE) 

[258], population-based training (PBT) [259]. Appropriate transfer learning, such as 

pre-trained backbones from similar signals, can also be integrated into the training 

step, especially when applying self-defined neural networks.  

The models are evaluated via different metrics (see Eq. 40 - 45), including accuracy, 

precision, recall, F1 score, receiver operating characteristic curve (ROC), area under 
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the ROC curve (AUC), Matthew’s correlation coefficient (MCC), etc.  

Accuracy =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
(40) 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(41) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(42) 

𝐹1 Score = 2 ×
 Precision ×  Recall 

 Precision +  Recall 
(43) 

MCC =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
(44) 

Where TP – true positive, TN – true negative, FP – false positive, and FN – false 

negative. 

𝐴𝑈𝐶 =

∑(𝑝𝑖 , 𝑛𝑗)
𝑝𝑖>𝑛𝑗

𝑃 ∗ 𝑁
(45) 

Where 𝑃 – the number of positive examples, 𝑁 – the number of negative examples, 

𝑝𝑖 – the prediction score for a positive example, and 𝑛𝑗 – the prediction score for a 

negative example. 

Additionally, because the float point operations (FLOPs) represent the forward-pass 

computing capability needed by the neural network model, the number of model 

parameters (params) is subject to the computing memory, and the frame per second 

(FPS) reflects the processing speed, if the trained models have similar performance 

using the above indicators, the one with fewer FLOPs, fewer params, and higher FPS 

would be recommended for practical applications.  

Finally, the selected DL model can be deployed on edge devices for IFD by leveraging 

tinyML, such as TensorFlow Lite. Moreover, as edge devices are also usually the 

equipment for data acquisition or aggregation, the newly collected data can be used 

to update the training set based on supervised or semi-supervised learning via 

appropriate annotation, thereby enhancing the long-term performance of the IFD 

application, shown as the loop in Figure 71.  
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7.1.1.4 Proposed IFD framework and workflow 

The complete workflow for IFD by leveraging AutoML-CNN and image-like data fusion 

can be seen in Figure 72. The time-series signals from uniaxial and triaxial sensors 

are adopted as the input for the built-in and self-defined CNN architectures seamlessly 

after the proposed pseudo-image reconstruction, achieving triaxial data fusion 

simultaneously. Neural network selection and hyperparameter optimisation can be 

implemented through AutoML based on model evaluation according to different 

metrics, including test performance (such as accuracy, precision, recall, F1 score, 

ROC, AUC, and MCC) and computing performance (such as FLOPs, params, and 

FPS).  

 

 

Figure 71 Proposed framework leveraging AutoML-CNN and image-like data fusion 

7.1.2 Framework validation 

7.1.2.1 Experiment preparation 

The proposed framework, including the data fusion approach and the AutoML 

procedure for IFD, is validated via two case studies using the data from the CWRU 

and the SEU test rigs, as shown in Figure 73 a,b. The experiments are carried out on 

Google CoLab using a T4 GPU. The tf.keras provides model architectures, including 

the popular CNN architectures via the built-in APIs (such as Mobilenet, EfficientNet, 

Xception, and VGG16) and the self-defined classical models such as LeNet-5. 
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Figure 72 CWRU bearing (a) and SEU gearbox (b) test rigs for data acquisition 

7.1.2.2 Case 1 – CWRU dataset (uniaxial signals) 

In the first case, the bearing dataset collected by the Case Western Reserve University 

Bearing Data Center on a bearing test rig is utilised for framework validation with 

uniaxial signals [35]. The vibration signals in the experiment were collected from the 

uniaxial accelerometers on the drive end of the motor under one hp at the sampling 

frequency of 48kHz. Different faulty bearings were introduced with fault diameters of 

0.007, 0.014, and 0.021 inches on the rolling element, the inner raceway, and the outer 

raceway, respectively. Therefore, there are nine fault categories plus a normal baseline, 

i.e., 10 kinds of bearing health states. The experiment aims to automatically recognise 

each fault category and select the most appropriate neural network for deployment 

through the proposed IFD framework. 

Firstly, the uniaxial acceleration signals for each bearing health condition are 

separated into segments with the size of 1024 because the 32×32 pseudo-images can 

be utilised for most built-in APIs of classical CNN architectures directly in the tf.keras. 

The segments are split randomly into the training, validation, and test sets according 

to 60%:20%:20%, i.e., 2820, 940, and 940 segments, respectively. Z-score 

standardisation is employed on the training set, and the fitted scaler transforms the 

test set. The segments are reshaped to single-channel matrices and duplicated into 

triple-channel pseudo-images through the pipeline in Figure 70. Subsequently, the 

pseudo-images are provided to the integrated CNN architectures as input for training 
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and evaluation. Here, the pseudo-images are resized to 75×75 through nearest-

neighbour interpolation when necessary to meet the input shape requirements of some 

CNN architectures, such as Xception. A fixed training configuration is employed in the 

experiment to test the framework availability for neural network selection, as shown in 

Table 11. Automatic hyperparameter optimisation can be further integrated in future 

work. The training loss and test accuracy are shown in Figure 74.  

Table 12 Training configuration 

Input Shape Split Epochs Optimiser Batch Size Learning Rate 

32×32×3 or 

75×75×3 
60%:20%:20% 1000 Adam 32 0.001 

 

 

Figure 73 IFD experiment for uniaxial acceleration data via the framework: (a) 

training loss; (b) validation accuracy 

The checkpoint with the highest validation accuracy during training is saved as the 

best model for each CNN architecture. Their test performance can be seen in Figure 

75, including accuracy, precision, recall, F1 score, and normal-vs-fault AUC. As can 

be seen, the Xception model with resized pseudo-images (75×75×3) as input has the 

best performance, and its confusion matrix is shown in Figure 76. The FLOPs, 

parameters, and average FPS (within 100 times) are shown in Table 12. After 

 a  b 
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conversion through TFLiteConverter [36], the derived lightweight Xception model can 

be deployed on an edge device, i.e., Raspberry Pi 4 (4GB) here, to satisfy the 

requirement for a practical application. It demonstrates that the proposed framework 

can achieve the model training, evaluation, and selection for IFD with the time-series 

signals from a uniaxial sensor by leveraging the popular built-in and self-defined CNN 

architectures based on AutoML, i.e., AutoML-CNN. 

 

Figure 74 Test performance on the CWRU dataset through the proposed pipeline 

 

Figure 75 (a) AUC for each model on the CWRU dataset and (b) confusion matrix of 

Xception on the CWRU dataset 

Table 13 CWRU model FLOPs, Parameters, and FPS 
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Models LeNet EfficientNetB0 Mobile-Net Densnet-121 ResNet50 Xception VGG16 

FLOPs 6.58 × 105 8.66 × 106 1.16 × 107 5.79 × 107 7.89 × 107 5.62 × 108 3.32 × 108 

Params 6.16 × 104 4.06 × 106 3.23 × 106 7.05 × 106 2.36 × 107 2.09 × 107 3.36 × 107 

FPS 5449 2374 4058 1464 2463 1128 2760 

 

7.1.2.3 Case 2 – SEU dataset (triaxial signals) 

In the second case, the gearbox dataset collected on the DDS (Drivetrain Dynamic 

Simulator) test rig of Southeast University is utilised for framework validation with 

triaxial signals. The planetary vibration data on triple axes (i.e., x, y, z) under the load 

configuration 30-2 is adopted for the experiment. There are four gear faults, including 

chipped tooth, missing tooth, root fault, surface fault, plus health working state, i.e., 

five kinds of gear health states. The experiment aims to automatically recognise each 

fault category and select the most appropriate neural network for deployment through 

the proposed IFD framework. 

Initially, the planetary vibration signals for each axis are separated into segments with 

a size of 1024. Then, the segments are split randomly into the training, validation, and 

test sets under 60%:20%:20%, i.e., 3100, 1000, and 1000 segments, respectively. Z-

score standardisation is employed on the training set, and the fitted scaler transforms 

the test set. Moreover, the segments are reconstructed into 3-channel pseudo-images 

by stacking the single-channel image from each axis to achieve triaxial data fusion. 

Subsequently, the pseudo-images are provided to the integrated CNN architectures 

as input for training and evaluation. Here, the pseudo-images are resized to 75×75 

through nearest-neighbour interpolation to meet the input shape requirements of some 

CNN architectures, such as Xception, when necessary. Like case 1, a fixed training 

configuration is employed in the experiment, as shown in Table 11. The training loss 

and test accuracy are shown in Figure 77, where lenet_x, lenet_y, and lenet_z denote 

the LeNet-5 performance based on the data on a single axis. In contrast, lenet_xyz, 

mobile_xyz, and xception_xyz represent the model performance based on the triaxial 
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data through the proposed image-like data fusion. 

 

Figure 76 IFD experiment for triaxial acceleration data via the framework: (a) training 

loss; (b) test accuracy 

The test performance of each model, including accuracy, precision, recall, F1 score, 

and normal-vs-fault AUC, is shown in Figure 78, where x, y, z, and xyz denote the 

models with single- or triaxial signals. As can be seen, the model with the triaxial 

signals through the proposed image-like data fusion can achieve better performance 

than the model with the uniaxial signals, i.e., lenet_xyz performs better than lenet_x, 

lenet_y, and lenet_z. The Xception model with resized pseudo-images (75×75×3) as 

input has the best performance, and its confusion matrix is shown in Figure 79. The 

FLOPs, parameters, and average FPS (within 100 times) are shown in Table 13. After 

conversion through the TFLiteConverter [36], the derived lightweight Xception model 

can be deployed on the Raspberry Pi for practical applications. It demonstrates that 

data fusion and model training for IFD with the triaxial signals can be achieved through 

the proposed framework by leveraging AutoML-CNN and the proposed image-like 

data fusion. 

 a  b 
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Figure 77 Test performance on the SEU dataset through the proposed pipeline 

 

Figure 78 (a) AUC for each model on the SEU dataset and (2) confusion matrix of 

Xception on the SEU dataset 

Table 14 SEU model FLOPs, Parameters, and FPS 

Models LeNet_x LeNet_y LeNet_z LeNet_xyz Mobile-Net_xyz Xception_xyz 

FLOPs 6.58 × 105 8.66 × 106 6.58 × 105 6.58 × 105 6.58 × 105 5.62 × 108 

Params 6.16 × 104 4.06 × 106 6.16 × 104 6.16 × 104 6.16 × 104 2.09 × 107 

FPS 5778 5585 5726 6003 3493 1161 
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7.1.3 Summary 

This work proposes an efficient and unified framework by leveraging AutoML and 

image-like data fusion for IFD with time-series signals from uniaxial or triaxial sensors. 

The popular built-in and self-defined DL architectures can be easily integrated into the 

framework to select the most suitable IFD model for different datasets or scenarios. 

Their training can be carried out consecutively or parallelly, and the evaluation can be 

taken automatically by comparing the model performance on the test set according to 

different metrics. In the proposed spatial reconstruction method, the time-series data 

from a uniaxial sensor can be reshaped into a 2D matrix after normalisation and then 

duplicated into a 3-channel pseudo-image. Similarly, the data from a triaxial sensor 

can be reconstructed into a 3-channel pseudo-image by stacking the single-channel 

image from each axis, thereby achieving data fusion.  

The proposed IFD framework and the data fusion method are validated via two case 

studies based on uniaxial and triaxial vibration signals from the CWRU and SEU 

datasets, respectively. The experiments demonstrate that it can automatically achieve 

model training and evaluation through the proposed IFD framework, thereby 

enhancing the development efficiency for practical applications. Moreover, the fused 

triaxial time-series data through the proposed image-like data fusion method can 

improve the model performance effectively. Moreover, the recommended DL model 

can be easily deployed on a cloud server or an edge device (such as Raspberry Pi) 

via tinyML for inference to satisfy the requirement by practical scenarios, such as in a 

DT system, which requires timely and resilient decision-making, even under 

communication-constraint circumstances.   

Although the proposed framework can benefit practical IFD applications by leveraging 

AutoML and image-like data fusion, it still has some limitations. Firstly, the proposed 

data-level fusion method is only suitable for the signals from a single triaxial sensor or 

no more than three uniaxial sensors at the same sampling frequency. Hence, fusion 
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methods for heterogeneous data from multiple sensors (more than three) with different 

sampling frequencies are required for future research. Secondly, as there is a trade-

off between neural network performance and computing complexity, a more in-depth 

study for model recommendation considering practical scenarios, such as device 

computing capability, storage, and power, is also necessary for future work.  

7.2 Health-state recognition based on multiple sensors 

7.2.1 Proposed multi-channel 1D-CNN architecture 

The proposed approach by leveraging AutoML-CNN and image-like data fusion in 

Section 7.1 still has some limits, e.g., the approach can only deal with the signals from 

a single-axis or a triple-axis sensor. To handle time series from multiple sensors (more 

than 3) for IoT-based bridge health monitoring, a multi-channel 1D-CNN architecture 

is proposed for data fusion and fault diagnosis, as shown in Figure 81.  

7.2.2 Experiment validation 

A dataset of acceleration signals from the KW51 bridge VBM project [80] is employed 

here for approach validation, as shown in Figure 80. The multi-channel acceleration 

data are generated from 6 different uniaxial accelerometers triggered by train passes 

before and after a scheduled bridge repair (i.e., the damaged and healthy condition, 

respectively). Its sampling frequency and resolution are 825.8Hz and 24-bit, 

respectively. The time window in the experiment is 1 minute (i.e., time-series size of 

50176 for each example). The data includes 361 examples under the defective bridge 

condition and 211 under the healthy bridge condition. The sensors are mounted on the 

bridge deck, and the detailed locations can be found in [80]. The train-validation-test 

split is 60%:20%:20%, i.e., 342:115:115.  
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Figure 79 KW51 railway bridge, damage, and accelerator locations 

The experiment aims to identify the bridge's damaged and healthy status through the 

proposed 1D-CNN architecture. It starts from the data-level fusion, i.e., integrating all 

acceleration signals into a multi-channel time sequence. Then, compare the 

classification results of each single sensor and multiple sensors (i.e., with and without 

multi-channel fusion).  

Moreover, the experiment also tests the decision-level fusion, i.e., ensemble voting for 

the results from each single sensor. The voting includes unweighted hard and soft 

voting. The former is based on majority or plurality voting for the results from multiple 

classifiers. In contrast, the latter is based on multiple classifiers' average predicted 

probability for each class. Then, both fusion methods are compared in test 

performance. The training configuration is presented in Table 14.  

Table 15 Configuration for experiment with 1D-CNN 

Input shape Split Epochs Optimizer Batch Size Learning Rate 

50176×1 or 50176×6 60%:20%:20% 1000 Adam 32 0.001 
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7.2.3 Result analysis 

The proposed 1D-CNN architecture, training loss, validation accuracy, and test 

performance are shown in Figure 81 (b) (c) (d), where a1, a2 … a6 and a_6c denote 

each uniaxial acceleration and the combined 6-channel acceleration. As can be seen, 

the model with combined 6-channel acceleration can achieve much better accuracy 

(reaching 100%), precision, recall, and F1 score than the model with each uniaxial 

acceleration. It demonstrates the availability of the proposed 1D-CNN architecture for 

pattern recognition with time-series signals from multiple sensors by data-level fusion.  

 

Figure 80 Proposed 1D-CNN and test performance at data-level fusion 

Moreover, test performance via the decision-level fusion (including hard and soft voting) 

is shown in Figure 82, where hard_vote and soft_vote represent hard and soft voting 

results. As can be seen, unlike the previous research [179], the experiment does not 

see the enhancement for classification by decision-level fusion. Instead, it 

demonstrates that the data-level fusion performs much better than the decision-level 
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fusion in this case, using the proposed 1D-CNN architecture, and the decision-level 

fusion is even uncompetitive versus most stand-alone sensors without fusion. This 

phenomenon may be attributed to different datasets and 1D-CNN architectures, which 

require more in-depth study in the future.  

 

Figure 81 Comparison of decision-level and data-level fusion on the test set 
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Chapter 8 BMKG data mining with text encoding and 

GraphSAGE 

KG is one of the most effective methods to document the domain knowledge of bridge 

maintenance. Many previous efforts have been made in ontology generation or KG 

completion, but few studies have focused on graph data mining after that. Hence, this 

chapter proposes a BMKG schema based on practical maintenance reports and 

explores graph data mining (including node classification and link prediction) on the 

BMKG by leveraging text encodings (through LLMs) and inductive GraphSAGE. The 

proposed approaches are validated on incomplete BMKGs with missing links. The 

models are trained from graph context to identify node layer information for semantic 

enrichment and provide repair suggestions for unsolved defects from the existing 

options. Finally, an intact workflow integrating the proposed KG schema and 

approaches is designed for routine practice of bridge maintenance.   

8.1 Theoretical foundation 

8.1.1 Text encoding  

Various static word embedding techniques, such as Bag of Words [260], TF-IDF [261], 

Word2Vec [262] and GloVe [263], can be utilized to transform a single word to an n-

dimensional vector by looking up through the created “tables”. The generated vectors 

are supposed to maintain attributes of the words from the training set and can be 

adopted for different downstream tasks, such as lexical similarity measurement. 

However, word embedding approaches encounter a few issues in generating the 

vectorized representation of a sentence, e.g., how to manipulate multiple embedding 

vectors. After BERT [264] was born, many pre-trained text models emerged based on 

large-scale unsupervised learning, which can be utilized for text encoding at the 

sentence level. Because the unsupervised learning tasks for training mainly involve 

mask language modelling (MLM), next sentence prediction, etc., they have excellent 
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performance [265] in close tests, text comparison, entity extraction, and many other 

downstream tasks. These pre-trained large language models (LLM) can be divided 

into five categories according to their architectures, shown in Table 15.  

Table 16 Pre-trained language models for text encoding [266] 

Autoregressive  Autoencoding Seq2Seq Multimodal Retrieval-based 

GPT  

GPT-2  

CTRL  

Transformer-XL  

Reformer  

XLNet 

BERT  

ALBERT  

RoBERTa  

DistilBERT  

ConvBERT  

XLM  

XLM-

RoBERTa 

FlauBERT 

ELECTRA 

Funnel 

Transformer 

Longformer 

BART  

Pegasus 

MarianMT 

T5 

MT5 

Mbart 

ProphetNet 

XLM-

ProphetNet 

MMBT 

CLIP 

DPR 

RAG 

 

In this work, the graph nodes are based on text data from a structured bridge 

maintenance report. The text encoding through the pre-trained LLM aims to provide 

node features in the GNN for multiple downstream tasks. The complete encoding 

pipeline is illustrated using BERT with a series of text messages or sentences from 

the report, as shown in Figure 82.  
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Figure 82 Text encoding with BERT to generate node features 

Firstly, each node message or sentence in BMKG is separated into multiple tokens in 

the id form, whilst the special tokens [CLS] and [SEP] (i.e., the ids of 101 and 102) are 

added at the head and end, respectively. After encoding through the pre-trained text 

encoder, the hidden layer output of the special token CLS (used for classification), 

which has been proven as the effective sentence-level representation [264], [267], is 

adopted as the latent feature of the node in the graph. These CLS embedding vectors 

have identical dimensions (i.e., 768 here), which makes feature input easy in GNN.  

8.1.2 GraphSAGE 

Most GNNs are inherently transductive (such as GCN) and can only generate 

representation through all the nodes for a single fixed graph [268], i.e., the node 

representation learned from transductive approaches uniquely corresponds to the 

graph. Such graph representation frameworks are difficult to generalize to unseen 

nodes in an evolving graph with new links. Meanwhile, they cannot learn to generalize 

across different graphs. In contrast, GraphSAGE is an inductive framework to 

generate low-dimensional vector representations for nodes, which is especially useful 

for graphs with rich node attribute information [269]. It aims to solve the above issues 

by learning a dynamic representation method across partial graphs through inductive 
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training. After training, GraphSAGE can be used to generate node representation for 

previously unseen nodes or entirely new input graphs if these graphs have the same 

attribute schema as the training data. Meanwhile, the learned node representation can 

change along with the neighbour relationship variation in an evolving graph. Therefore, 

GraphSAGE is particularly suitable for link prediction in an incomplete graph with 

missing links.  

Assuming there are 𝐾  aggregator functions, denoted as 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸𝑘  ( ∀𝑘 ∈

{1, … , 𝐾}), which are used for aggregating features from node neighbours. Their set of 

weight matrices is denoted as 𝑾𝑘  (∀𝑘 ∈ {1, … , 𝐾} ), which are utilized for message 

propagation across different layers of the model [269]. The algorithm to generate node 

vector representation based on GraphSAGE can be described using the pseudo-code 

below.  

 

The principle behind the GraphSAGE embedding algorithm is that nodes can 

aggregate more and more information from their neighbours and reach further parts 

of the graph as this process iterates. In detail, 𝑘 denotes the current step in the loop 

(or the depth of the search), and ℎ𝑘 denotes the latent embedding at step 𝑘 (or the 

hidden layer 𝑘). At first, each node 𝑣 ∈ 𝑉 aggregates its neighbourhood embeddings, 

i.e., ℎ𝑢
𝑘−1  ∀𝑢 ∈ 𝑁(𝑣) , into a single vector ℎ𝑁(𝑣)

𝑘−1  . After aggregation, GraphSAGE 
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concatenate the node's embedding ℎ𝑣
𝑘−1  with the aggregated neighbourhood 

embedding ℎ𝑁(𝑣)
𝑘−1 , and then fed the result into a fully connected neural network (FCN) 

with a nonlinear activating function 𝜎 to generate the representation vector (i.e., ℎ𝑣
𝑘) 

for the next step. It is worth noting 𝑘 − 1 indicates the aggregation, and the node's 

embedding employs the related node representation vectors at the previous step (not 

the current 𝑘 ). Here, the initial case, i.e., 𝑘 = 0 , denotes the input node features. 

Finally, the representation output at the depth 𝐾 is obtained after normalization as 

𝑧𝑣 = ℎ𝑣
𝐾, ∀𝑣 ∈ 𝑉.  

In GraphSAGE, the aggregation of neighbour embeddings, i.e., 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸𝑘, can be 

done by various architectures [269], including mean, pool, GCN, and LSTM. Here, the 

mean aggregator used in this work is indicated in Eq. 46.  

𝒉𝑣
𝑘 ← 𝜎(𝑾 ⋅ 𝑀𝐸𝐴𝑁({𝒉𝑣

𝑘−1} ∪ {𝒉𝑢
𝑘−1, ∀𝑢 ∈ 𝒩(𝑣)}) (46) 

8.2 Proposed approaches for maintenance knowledge mining  

8.2.1 Knowledge-graph schema 

A maintenance-oriented knowledge-graph schema for bridges is proposed as shown 

in Figure 83, which consists of five layers, i.e., primary structure layer, component layer, 

element (or minor component) layer, defect (or fault) layer, and repair action layer. This 

knowledge graph schema is established based on observations from routine practice: 

1) bridges always present symmetry and repeatability, e.g., different spans in a bridge 

usually have similar components and defects; 2) defect assessment and repair 

suggestions usually present semantic similarity and hierarchy, e.g., medium section 

loss (less than 50%) and remarkable section loss (more than 50%) for stiffener cranks 

have similar and incremental repair actions. Such semantic similarity can also be 

observed in historical textual reports and can be leveraged for maintenance 

recommendation. For example, similar defects on different components are promising 

to adopt the analogous repair proposals. Additionally, it is worth noting that the 
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proposed BMKG schema is directed from top to bottom (i.e., from the primary structure 

layer to the action layer). All connections are strictly limited between the nodes in 

adjacent layers. This setting is critical for data mining in the BMKG with graph-based 

algorithms.  
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Figure 83 Proposed maintenance-oriented knowledge graph schema 
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8.2.2 Node classification 

Node classification is a typical task for semantic enrichment of knowledge graphs in 

previous research [270], [271]. This task starts with depth-first search (DFS), a 

classical method to find the shortest path in a graph from one node to another. After 

indicating the staring nodes, i.e., the main part layer, it can be utilized to identify the 

following nodes’ layer levels (i.e., node layer classification) in an intact BMKG graph, 

as shown in Figure 84 (a). Node layer information is helpful for different downstream 

tasks, such as link prediction, knowledge graph completion, and templated Q&A 

systems. In detail, one-way and bidirectional DFS can be successfully employed for 

node (level) classification in directed and undirected intact graphs, respectively. 

However, when the graph becomes incomplete with missing links, which usually 

happens due to data deficiency in node edges (e.g., missing entities or relations in the 

structured report), DFS will fail to classify all the node levels in the BMKG without any 

ancillary information, as shown in Figure 84 (b).  

 

Figure 84 Node layer classification using DFS on intact and incomplete graphs 

Therefore, the encoded text embedding vectors are employed as node features to 
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solve the above issue by leveraging the GNN. Here, the inductive GraphSAGE is 

utilized for node classification through supervised learning. The identified nodes after 

DFS are employed as the training set, while the unidentified nodes are adopted as the 

test set. The complete solution pipeline is proposed, as shown in Figure 85. Different 

pre-trained text encoders will be tested in the experiment for comparison to find the 

most appropriate encoder for the target dataset in bridge maintenance.  

 

Figure 85 Proposed pipeline for node layer classification by leveraging DFS, text 

encoding, and GraphSAGE 

8.2.3 Link prediction  

In this work, maintenance suggestion is formulated as a link prediction problem, which 

predicts if an edge exists between two specific nodes, i.e., the missing links. The 

problem can be taken as binary classification, and contrastive learning can be utilized 

to solve this problem, following the steps listed below [272].  

1) Firstly, the existing edges in the graph are treated as positive examples.  

2) Then, a few non-existent edges (i.e., node pairs without edges) are sampled as 

negative examples.  

3) The positive and the negative examples are separated into training and test 

sets.  

4) Finally, the model is evaluated using a binary classification metric such as Area 
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Under Curve (AUC).    

In this work, the pairs of nodes are treated as graphs, i.e., positive and negative graphs 

constructed with positive and negative examples, respectively. Meanwhile, they have 

the same set of nodes as the original graph, enabling node features to be utilised 

across different graphs, but noting that instead of generating node representation, link 

prediction needs to compute the node pair’s (i.e., edge) representation, which is 

denoted as scalar pair-wise scores for inference. In practice, such pair-wise scores 

can be computed using a dot product of both node representations for each edge or a 

multilayer perceptron. Meanwhile, the positive and negative edge examples are {1, 

1, …, 1} and {0, 0, …, 0}, respectively. After concatenation, training aims to minimize 

the difference between the generated pair-wise scores and the actual examples’ binary 

labels, i.e., loss function. The pipeline for link prediction can be shown in Figure 86.  

 

Figure 86 Proposed pipeline for link prediction by leveraging contrastive learning and 

GraphSAGE 

8.2.4 Loss function and evaluation metrics 

The loss functions for node classification and link prediction are based on multi-class 

cross-entropy and binary cross-entropy, respectively, which can be summarized in Eq. 

47.  
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𝐿 =
1

𝑁
∑ 𝐿𝑖

𝑖

= −
1

𝑁
∑ ∑ 𝑦𝑖𝑐

𝑀

𝑐=1𝑖

𝑙𝑜𝑔2(𝑝𝑖𝑐) (47) 

Where 𝑁 is the number of examples; 𝑀 is the number of classes and 𝑐 ∈ [1, 𝑀]; 𝑦𝑖𝑐 

is a binary value (0 or 1) – if the 𝑖th example’s true class is 𝑐, 𝑦𝑖𝑐 = 1, and vice versa; 

𝑝𝑖𝑐 is the probability of the 𝑖th example belonging to the class 𝑐, derived from the 

Softmax function (Eq. 48).    

𝑝𝑐 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(ℎ𝑗) =
𝑒ℎ𝑗

∑ 𝑒ℎ𝑐𝑀
𝑐=1

 (48) 

Where 𝑝𝑐 is the calculated probability of the example belonging to the class 𝑐; 𝑗 ∈

[1, 𝑀]  indicates 𝑗 th class; ℎ𝑗  is the 𝑗 th node output of the last hidden layer (i.e., 

embeddings).  

The evaluation metrics for node classification include accuracy, precision, recall, and 

f1 score, shown in Eq. 40 - 44.  

The receiver operating characteristic (ROC) and the area under the ROC curve (i.e., 

AUC) are employed as the evaluation metrics for link prediction using contrastive 

learning. ROC is plotted in the x-y coordinate system, in which x represents the false 

positive rate (FPR) (Eq. 49), and y represents the true positive rate (TPR), i.e., recall.   

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (49) 

The AUC can be calculated as indicated in Eq. 50, which represents the probability 

that a positive example score is greater than a negative example score when they are 

both sampled out of data randomly.  

𝐴𝑈𝐶 =

∑(𝑝𝑖, 𝑛𝑗)
𝑝𝑖>𝑛𝑗

𝑃 ∗ 𝑁
 (50) 

Where 𝑃 – the number of positive examples; 𝑁 – the number of negative examples; 

𝑝𝑖  – the prediction score for a positive example; 𝑛𝑗  – the prediction score for a 
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negative example.  

8.3 Proof of concept 

8.3.1 Experiment preparation  

To validate the proposed approach, a BMKG is created based on a structured real-

world bridge maintenance report (see Appendix I), including one primary structure part 

(span), seven components (main girder, cross girder, deck, rail bearer, caisson 

bracing …), twelve elements (stiffener crank, top flange, bottom flange, plate, web 

plate, gusset plate, fixing, cleat connection, …), eleven defects 

(excessive/medium/slight section loss, distortion, failure, hole and pitting, …), and 

seventeen repair proposals (cut out corroded section, weld a new plate, replace 

stiffener, install a bolted packer, remove the existing rivet, cut out fixing and ream the 

hole, …). The selected pre-trained language models for text encoding in the 

experiment include three autoregressive models (i.e., GPT2, Transformer-XL, 

Reformer), two autoencoding models (i.e., BERT, XLM), one Seq2Seq model (i.e., 

BART), and one multi-modal model (i.e., CLIP). The model details, including maximum 

input sequence length (Max_Seq), embedding dimension, and training corpus (or 

dataset), are shown in Table 16.  

Table 17 Pre-trained language models for text encoding 

Language Models Max_Seq Dimension Corpus / Dataset 

bert-base-uncased 512 768 Wikipedia + Book Corpus 

bart-base 1024 768 GLUE and SQuAD 

xlm-mlm-en-2048 512 2048 Wikipedia + Book Corpus 

reformer-crime-and-punishment 4096 320 Crime and Punishment 

gpt2 no limit 768 
BookCorpus + 8 milion web 

pages 

transfo-xl-wt103 no limit 1024 Wikitext-103 
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text encoder (CLIP) 77 512 400 million text and image pairs 

 

8.3.2 Node layer identification  

The intact directional BMKG has 48 nodes and 66 edges, as shown in Figure 84 (a). 

All the nodes’ layers of the intact BMKG can be identified through bidirectional DFS if 

the starting node 0 (in the primary structure layer) is known. The incomplete BMKGs 

in this study are obtained by randomly removing 10%, 20%, 30%, and 35% of links 

(i.e., edges). In contrast, incomplete BMKG after removing links will lead to isolated 

node clusters, which can be identified via DFS, as shown in Figure 87. This experiment 

aims to predict their layers in the BMKG via node classification using GNN and 

encoded text embeddings through LLMs (as node features).  

 

Figure 87 Incomplete BMKG with 10%-35% missing links 
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Firstly, bidirectional DFS is employed for node classification, and the results can be 

shown in Figure 88. Here, node 0 is in the first layer – the primary structure layer. Due 

to missing links, there are a few unclassified nodes after DFS, i.e., 6 missing links 

(10%) – 11 unclassified nodes; 13 missing links (20%) – 8 unclassified nodes; 19 

missing links (20%) – 11 unclassified nodes; 23 missing links (35%) – 22 unclassified 

nodes.  

 

Figure 88 Incomplete BMKGs after bidirectional DFS 

Then, the encoded text embeddings through different pre-trained language models 

(see Table. ) for each node are adopted as node features to identify the node layer in 

the BMKG (i.e., node classification). The nodes with classified layers after DFS are 

taken as the training set, and the unclassified nodes are adopted as the test set. Root 
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Mean Squared Propagation (RMSprop) is utilized for hyperparameter optimization. 

The node classification is achieved using GraphSAGE with the depth 𝐾 = 3  (i.e., 

three hidden SAGEConv layers) and input feature dimension 128. The training 

configuration is shown in Table 17. 

Table 18 Training configuration for GraphSAGE 

Optimisation 
Learning 

rate 
alpha eps weight_decay momentum epochs 

RMSProp 0.0001 0.99 1.00E-08 0.001 0.8 1000 

 

The GraphSAGE models are trained based on semantic similarity from the context 

through inductive learning. The node classification performance on the test set through 

different pre-trained language models is shown in Figure 89. As can be seen, the text 

encoder from CLIP has the best performance for node layer identification, achieving 

100% test accuracy for the BMKG with 10% - 35% missing links.  

This experiment demonstrates that using the encoded text embeddings (through an 

LLM encoder) as node features can achieve excellent performance to identify the 

isolated nodes’ layers in the incomplete BMKG after bidirectional DFS. The CLIP text 

encoder performs better than the other LLMs in this study for node classification, most 

likely attributed to its extensive training corpus. The result can enrich the BMKG 

semantic information at the node level and assist the subsequent link prediction.  
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Figure 89 Node classification for incomplete BMKG with text encoding through LLMs 

8.3.3 Maintenance recommendation 

The experiment aims to predict the existence of edges between specific nodes in 

graphs following the pipeline in Section 4.2.3. The correct predicted links for BMKG 

completion can be accepted to suggest repair actions. The incomplete graphs are 

derived from the original BMKG (i.e., 48 nodes, 65 edges) by removing specific 

proportions of links (i.e., 10% ~ 40%). The utilized GraphSAGE in the experiment has 

three hidden SAGEConv layers, i.e., depth 𝐾 = 3, based on mean aggregation and 

the input feature dimension is 128. The node features are generated through the pre-

trained CLIP text encoder. The existing links (edges) and the missing links (edges) are 

taken as positive examples for the training and test sets, respectively. In contrast, the 

nonexistent links (edges) are adopted as negative examples and split into the training 

and test sets.   

The pair-wise link scores are obtained by applying the dot product of node 

representations for each predicting edge. The same training configuration as in the 
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previous node classification is adopted, shown in Table 17. The AUC on the test set is 

shown as the left columns in Figure 90, and the preliminary test accuracy is shown as 

the middle columns in Figure 90. Moreover, because the node links (i.e., pair 

connections) are strictly constrained between adjacent layers in the designed BMKG 

schema, the test accuracy can be further improved significantly by removing the 

unqualified links that violate the BMKG schema, shown as the right columns in Figure 

90.   

 

Figure 90 AUC and test accuracies of link prediction 

In detail, by leveraging the aggregation and message propagation of GraphSAGE, 

when predicting if a link exists between the node pair, the trained model can consider 

the context of its upstream and downstream nodes, as shown in Figure 91. The real 

lines represent the existing links, and the dashed line indicates the predicted links. For 

example, directly linking (11) fixing to (25) failure in Figure 91 (a) is difficult. However, 

based on semantic similarity, the trained model can consider the subsequent node, 

i.e., (36) cut out fixing and ream the hole, to predict it. Similarly, the link between (14) 

stiffener angle and (27) distortion can also be predicted by considering the contextual 

similarity, i.e., (41) replace stiffener, as shown in Figure 91 (b).  
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Figure 91 Contextual link prediction based on semantic similarity 

The result of link prediction for an incomplete BMKG (35% missing links) is shown in 

Figure 92. Several extra links in prediction, which are non-existent in the current 

KMBG, are shown as dashed lines in Figure 92 (b). After careful examination by bridge 

maintenance experts, some of the extra predicted links are plausible, which had 

happened to other bridges or been observed in other maintenance reports, such as (2) 

cross girder → (14) stiffener angle, (24) hole → (43) fill with a similar product.  

 

Figure 92 Extra predicted links for incomplete BMKG with 35% missing links   

This experiment demonstrates that the proposed approach via text encoding (through 

an LLM encoder) and contrastive learning can achieve excellent performance for link 

prediction. The model is learned from contextual similarity via inductive GraphSAGE 

through graph-based aggregation and message passing. The trained model can 

propose repair action for the unsolved defects from the existing options.  

Finally, the proposed repair action can be forwarded to the qualified engineers for 

evaluation. If the engineer is satisfied with the suggestion, it will be added to 

maintenance planning and updated to the BMKG as a positive example. Otherwise, 

the pair link behind the suggestion will be updated to BMKG as a negative example to 
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improve the training. The intact workflow is designed as shown in Figure 93.  

 

Figure 93 Designed workflow for AI-aided bridge maintenance planning by 

leveraging NLP, LLMs and GNNs 

8.4 Summary 

This work aims to explore graph data mining on BMKG, which shows superiority in 

documenting the domain expertise of bridge maintenance. Firstly, a BMKG schema is 

proposed based on bridge structure and practical maintenance reports, where the KG 

is oriented from top to bottom, and the node connection is strictly limited in adjacent 

layers. Then, the study explores contextual node classification and link prediction via 

GraphSAGE in the established BMKG, with text embeddings through LLMs as node 

features.  

The experiment demonstrates that contextural node classification can identify the 

isolated nodes’ layers in an incomplete BMKG (with missing links) after DFS, which is 

meaningful for node-level semantic enrichment. Then, contrastive learning via 

GraphSAGE can predict the missing links. The prediction accuracy can be enhanced 

significantly using the identified node layer information from the previous node 
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classification. The link-prediction model is trained based on contextual similarity 

through inductive learning and can propose repair actions for unsolved defects from 

the existing options via an analogous strategy. Finally, an intact workflow (containing 

the proposed BMKG schema, feature embedding, and graph data mining approaches) 

is designed for bridge routine maintenance.  

Although the proposed approach can achieve excellent performance for node layer 

identification and maintenance suggestion in an incomplete BMKG, it still has some 

limitations. Firstly, this preliminary work is based on a small knowledge graph with only 

48 nodes and 66 edges. A large-scale knowledge graph based on a massive bridge 

maintenance corpus is required for further study. Secondly, the current model for 

maintenance recommendation can only provide repair proposals from the existing 

options. However, an existing option may not be the best solution for a specific defect. 

Therefore, more in-depth research to demonstrate the plausibility of triples and context 

based on the domain expertise is necessary. Moreover, generative models based on 

contextual understanding for bridge maintenance are required in the future.  
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Chapter 9 Bridge DT design and development 

9.1 Overall design of system architecture 

The bridge DT system architecture is designed as shown in Figure 94, consisting of 

three layers, i.e., presentation, application, and platform. The presentation layer 

includes data acquisition on the site of the physical bridge and the visualization of the 

virtual bridge at the used end. The heterogenous data input can be images, point 

clouds, time series, textural reports, etc. The user-end interface integrates the 

mainstream GIS and BIM web viewers, i.e., Cesium and Xeokit. The application layer 

involves usual bridge DT services (i.e., common APIs) for bridge inspection and 

assessment, such as damage detection and segmentation, FE and BIM model 

updating, structure health monitoring, as well as customized applications such as few-

shot damage detection, optimization for maintenance planning, knowledge-based 

reasoning. Finally, the platform layer provides the back-end services for the web-

based Digi-bridge platform, including essential web technologies, ML engine, big-data 

and cloud server.  

 

Figure 94 The overall architecture of the bridge DT system 
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9.2 Preliminary platform and DT services 

9.2.1 Digi-bridge visualization and CDE 

The complete Digi-bridge visualization pipeline and CDE interaction are shown in 

Figure 95. The CesiumJS presents multiple bridges and their surrounding geometric 

information with the coarse full bridge GLTF models. The weather data, prediction from 

the Met Office, and the local project information are integrated into the Cesium web 

page for enquiry. The detailed as-is built IFC model (LOD 500) is embedded on the 

web page via Xeokit SDK for BIM visualization. The monitoring sensors are pre-

located on the corresponding entities (i.e., elements) and annotated according to the 

entity IDs from IfcBuildingElementProxy. Their data is visualized on the dashboard via 

Apache Echarts and updated from the IoT database. Similarly, the observed defects 

during the drone-enabled inspection are saved and linked to the corresponding 

elements based on the entity IDs for retrieval and evaluation. Therefore, an engineer 

can achieve remote monitoring and assessment through the developed digi-bridge 

platform in the office during the operation and inspection.  

 



173 

 

Figure 95 Digi-bridge visualization and CDE 

9.2.2 Web-based API for damage segmentation 

In the preliminary platform, the public COCO-bridge dataset [210] with annotated crack 

and corrosion images from practical bridge reports is utilized for the API development 

of crack and corrosion segmentation. The DeepLabV3+ architecture with the 

MobileNet-v2 backbone (pre-trained on the PASCAL VOC dataset [250]) is employed 

for model training, and the configuration is the same as in Table 8. The test results (i.e., 

mIoU, mPA, mPrecision, mRecall) are shown in Figure 96 (a) and (b).  

 

Figure 96 Test performance of the trained DeepLabV3+ models 

Then, the trained DeepLabV3+ models are deployed on the web server through the 

architecture shown in Figure 97. The API performance for crack and corrosion 

segmentation is illustrated in Figure 98. This application can support the quantitative 

damage evaluation during bridge inspection, such as cracking and corrosion. It also 

promises to be deployed on a drone based on its lightweight potential via knowledge 

distillation.  
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Figure 97 Web service architecture for damage segmentation  

 

Figure 98 Web service for damage segmentation via DeepLabV3+ 

9.2.3 Unsupervised corrosion assessment 

The unsupervised corrosion assessment is developed based on the practical 

inspection images from a pilot steel bridge. Three different colour spaces (i.e., RGB, 
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HSV, L*a*b) and two unsupervised learning approaches (k-means and GMM) are 

utilised for comparison. The results demonstrate that L*a*b performs much better than 

the other two colour spaces for corrosion segmentation, i.e., the L*a*b clustering 

centres are more likely to indicate the foreground, background, and corrosion, as 

shown in Figure 99. Moreover, k-means and GMM have similar segmentation results.  

 

Figure 99 Corrosion segmentation via k-means in different colour spaces 

Furthermore, the target structural element, such as a pier, can be segmented via the 

graph-cut algorithm or SAM for assessment. Then, the areas for each grade of 

corrosion are derived via k-means or GMM to support damage rating and repair 

decision-making by integrating super-pixels for downstream tasks, such as area 

labelling and calculation. The pipeline can be shown in Figure 100. The coating drop 

and fair rust area occupies 22% of the pier profile, which requires polish and repaint 

with anti-corrosion coating; the severe corrosion reaches 40%, which requires extra 

strengthening in addition to the above disposal.  
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Figure 100 Corrosion assessment via k-means in L*a*b 

9.2.4 Question and answer chatbot 

A graph dataset is created via Neo4j based on the BMKG with 48 nodes and 66 

relationships in Section 8.3.1, as shown in Figure 101. Moreover, a preliminary chatbot 

for bridge inspection query is developed using spaCy (an open-source NLP library) 

and gradio interface.  

 

Figure 101 BMKG based on Neo4j 

Four different sentence templates are designed for enquiry step by step as follows:  

1) Question 1 – What components belong to A? A is at the primary structure layer, 

such as the span.  

2) Question 2 – What elements does B have? B is at the component layer, such 

as the deck.  
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3) Question 3 – Is there any defect on C? C is at the element layer, such as the 

stiffener gusset plate.  

4) Question 4 – How to repair D? D is at the defect layer, such as remarkable 

section loss.  

The templated chatbot performance can be illustrated in Appendix B. Currently, it can 

only cover the maintenance query for the Neath River Swing Bridge based on a 

practical bridge inspection report from Centre Great Rail Ltd. The maintenance 

recommendations, such as analogous repair proposals like in Section 8.3.3, as well 

as versatile NLP functions and generative AI (such as the fine-tuning of ChatGPT), 

can be integrated into the chatbot in the future.  
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Chapter 10 Conclusion 

Based on the research process and results, this Chapter aims to conclude the 

research by revisiting the research questions with rational answers point-by-point 

(Section 10.1), discussing the research limitations and future work (Section 10.2), as 

well as summarising the research contributions (Section 10.3).  

10.1 Revisiting Research Questions 

The pre-defined research questions and the corresponding answers are recapped 

below.  

Question 1: How can an efficient, resilient, and bidirectional DT framework be created 

for practical bridge O&M in challenging conditions with massive heterogeneous data 

and limited communication? 

The study in Chapter 4 proposes an AIoT-informed bridge DT framework to solve this 

question. The study indicates that the time delay of DT services consists of 

computation and communication time costs, depending on computational and 

communication complexity, respectively. It also reveals the distinct impact of their 

sequence on time consumption for DT services and the usage of information hierarchy 

to reduce communication complexity via AI-based edge computing. Then, bi-

directional communication between edge and cloud is recommended to satisfy the 

restricted communication with minimal complexity for DT services. Moreover, AI-

based edge computing can enable the system with resilience to endure a temporary 

loss of communication. Hence, a hierarchical communication architecture with fault-

tolerant capability is designed based on LPWAN and mesh networks for different 

levels of DT services.  

The proposed bridge DT framework is idealized mathematically, including state-space 

representation with time delay and inequalities for hardware processing capability. 

Meanwhile, the data flow and system resilience are demonstrated based on Petri-net 
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modelling. Moreover, the framework is developed into a cross-platform prototype for 

bridge O&M and validated with different cases for bridge O&M, demonstrating the 

effectiveness, efficiency, and resilience of the proposed framework for bridge DTs.   

Question 2: How can automatic bridge image-based defect detection be achieved 

under complex scenarios with weakly supervised information, such as very limited 

data?  

The work in Chapter 5 proposes an approach based on improved ProtoNet for bridge 

damage detection under few-shot conditions for this question. The approach achieves 

feature embedding through cross-domain transfer learning from ImageNet, which 

enables embedding functions exempt from episodic training and become "training-

free". Normalization is integrated into the improved ProtoNet to reduce the domain 

variation and enhance the transduction performance based on Euclidean distance. 

The linear classifier is added at the end of the backbone for classification, and fine-

tuning based on the support set is further utilized to improve the performance.  

An extensive ablation study is explored on a public bridge crack dataset, which proves 

that: (1) ImageNet is a reliable source domain for few-shot damage detection and can 

achieve a mean test accuracy of over 94% for 2-way 5-shot classification via the 

approach; (2) the proposed fine-tuning methods based on the FCN and Hadamard 

product perform better than the previous ones. 

Finally, the approach is validated using real bridge inspection images, demonstrating 

its capability of fast implementation for damage detection with weakly supervised 

information and the potential for practical application in near real-time.  

Question 3: How can the dense 3D point cloud data (such as from TLS) be integrated 

into the digital twinning pipeline efficiently, achieving DT model synchronization and 

volumetric assessment for local damages in near real-time?  

The study in Chapter 6 proposes an efficient framework for 3D damage assessment 



180 

 

and DT synchronization via point-cloud data. It starts from surface damage detection 

via DeepLabV3+ with only depth information and is further developed for spatial 

damage segmentation via morphological operations. Then, the separated point cloud 

is converted into a highly lightweight 3D binary matrix through voxelization and 

binarization, which can be compressed losslessly for downstream tasks.  

The framework is validated via two case studies, demonstrating its superiority in 

volumetric assessment compared with the previous convex-hull fitting, as well as its 

excellent efficiency in geometric model updating of FEM and BIM through commercial 

software.  

Question 4: How can intelligent fault diagnosis (IFD) and health-state monitoring be 

implemented through AutoML and data fusion (multi-axial or multi-sensor) based on 

time series? 

The work in Chapter 7 proposes an efficient and unified framework leveraging AutoML 

and image-like data fusion for IFD with time-series signals from uniaxial or triaxial 

sensors. The data from a triaxial sensor can be reconstructed into a 3-channel pseudo-

image by stacking the single-channel image from each axis to achieve data-level 

fusion. It can integrate the popular built-in and self-defined DL architectures, and the 

model training can be carried out consecutively or parallelly. Neural network search, 

hyperparameter optimization, and evaluation can be taken automatically based on 

comprehensive metrics. Finally, the recommended DL model can be easily deployed 

on a cloud server or an edge device via tinyML for inference to satisfy practical 

scenarios, such as in a DT system, which requires timely and resilient decision-making, 

even under communication-constraint circumstances.  

The proposed framework and data fusion method are validated via two case studies 

based on uniaxial and triaxial vibration signals, respectively, demonstrating their 

efficiency for practical IFD application development and effectiveness for pattern 

recognition. Moreover, the fused triaxial time-series data through the proposed image-
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like data fusion method can improve the model performance effectively. Moreover, the 

recommended DL model can be easily deployed on a cloud server or an edge device 

(such as Raspberry Pi) via tinyML for inference to satisfy practical applications, such 

as in a DT manufacturing system, which requires timely and resilient decision-making, 

even under the communication-constraint circumstances.  

As for health-state monitoring based on time-series signals from multiple sensors 

(more than three), a 1D-CNN architecture is proposed for data-level fusion and pattern 

recognition. The experiment demonstrates its effectiveness using a public dataset 

from the VBM project of a real-world railway bridge. Moreover, the data-level and 

decision-level fusion are compared, and the former performs much better in this 

dataset based on the proposed 1D-CNN architecture.  

Question 5: How can we design a bridge maintenance knowledge graph (BMKG) 

based on bridge structures and practical inspection reports and then achieve 

maintenance recommendations via the analogical strategy? 

The study in Chapter 8 proposes a BMKG schema based on bridge structure and 

practical maintenance reports. The KG architecture is oriented from top to bottom, and 

the node connection is strictly limited in adjacent layers. It shows superiority in 

documenting the domain knowledge of bridge maintenance. Then, the study explores 

graph data mining (including contextual node classification and link prediction) on the 

established BMKG by leveraging text encoding through LLMs and GNNs.  

The experiment demonstrates that node classification can identify the isolated nodes’ 

layers in an incomplete BMKG (with missing links) after DFS, which is meaningful for 

node-level semantic enrichment. Then, contrastive learning via inducive GraphSAGE 

can predict the missing links. The prediction accuracy can be enhanced using the 

identified node layer information from node classification. The trained link-prediction 

model can propose repair actions for unsolved defects from the existing options with 

an analogous strategy. Finally, an intact workflow (containing the proposed BMKG 
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schema, feature embedding, and data mining approaches) is designed for bridge 

routine maintenance.  

10.2 Research limitations and future work 

The limitations and future work of this research are discussed below:  

1. Although the proposed AIoT-informed bridge DT framework in Chapter 5 can 

significantly contribute to the efficiency and safety of bridge O&M, it still has 

some limitations. For example, AI-based edge computing raises a high 

requirement for power supply according to the tasks and algorithms, which can 

be an issue under resource-constraint circumstances. Hence, the edge AI in 

the study can only perform preliminary analysis and decision-making currently. 

Moreover, it reveals the great research significance of the sustainable power 

supply for edge devices and the trade-off between edge and cloud in data 

storage and computation.  

2. Though the proposed FSL approach in Chapter 6 can contribute to automatic 

bridge defect detection under weakly supervised circumstances, it still has a 

few restrictions. Firstly, the approach is sensitive to noise, such as oil stains, 

road marks, shadows, and bridge joints. Hence, improving the approach’s 

robustness is necessary in the next step. Secondly, the current approach only 

focuses on binary classification in fixed patches. However, multi-damage 

detection is usually required when different defects coexist in one image. The 

hierarchical ensemble learning and flexible region proposals are promising to 

help with this issue. Thirdly, the support examples should be representative 

across all the items for identification. However, selecting the support examples 

requires both ML and domain knowledge, which needs study in the future.  

3. Chapter 7 proposes a highly lightweight and efficient framework which can 

contribute to 3D damage assessment and DT synchronization based on point 

clouds. However, it still has some limitations. The approach for 3D damage 
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detection in the framework is only suitable for damage perpendicular to a planar 

surface. The oblique (or twisted) damages are not available, as the LiDAR 

scanning cannot provide sufficient spatial information for those damages. 

Moreover, further developing this approach for spatial damages on a curved 

surface would be necessary in the next step. Furthermore, an appropriate point-

cloud resolution is required when applying the proposed framework and 

approach, which relies on the survey equipment.  

4. The proposed framework for health-state recognition by leveraging AutoML and 

data-level fusion in Chapter 8 can improve development for practical SHM 

applications. However, the proposed image-like fusion method is only suitable 

for a single triaxial sensor or three uniaxial sensors at the same sampling 

frequency. Therefore, fusion methods for heterogeneous data from multiple 

sensors with different sampling frequencies become interesting for future 

research. Moreover, the automatic model recommendation for edge devices by 

considering practical scenarios, such as computing capability, storage memory, 

and power supply, also has excellent research significance.  

5. Although graph data mining by leveraging text encoding and GraphSAGE in 

Chapter 8 performs well for node layer identification and maintenance 

suggestion in an incomplete BMKG, it still has some limitations. Firstly, the 

established BMKG is based on a small knowledge graph derived from only 

several inspection reports, which cannot cover all the defect scenarios and 

repair actions. Future study requires a large-scale knowledge graph based on 

a massive bridge maintenance corpus. Secondly, the current maintenance 

recommendation can only provide repair proposals from the existing options, 

which may not be the best solution for an unseen defect. Therefore, future 

studies must delve into the triples and context based on the domain expertise. 

Additionally, generative models based on contextual understanding for bridge 
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maintenance would be helpful in future work.  

10.3 Research contribution 

This research contains works on several theoretical and practical developments to 

provide a data- and informatics-informed bridge DT system for a complete bridge 

maintenance cycle. By considering the findings and developments presented in the 

thesis, the main contributions of this research can be drawn as below:  

1. Chapter 4 proposed and developed an AIoT-informed bridge DT framework in 

terms of mathematical idealization, Petri-net modelling, and LoRa-based 

prototype. Meanwhile, the study indicates that the time delay in a DT system 

consists of computation and communication time costs and reveals the distinct 

impact of their sequence on time consumption for DT services. Moreover, 

theoretically, information hierarchy and two-way communication (between 

edge and cloud) are leveraged and recommended to reduce communication 

complexity and satisfy the restricted communication with minimal complexity. 

Finally, AI-informed edge computing can enable the system with resilience to 

endure a temporary loss of communication, which is especially beneficial to 

the safety of physical bridges and public users.  

The above findings and developments were presented at the 29th EG-ICE 

International Workshop 2022 as a conference paper – “An efficient and 

resilient digital-twin communication framework for smart bridge structural 

survey and maintenance” and published as a journal article in Automation in 

Construction, entitled " AIoT-informed digital twin communication for bridge 

maintenance”.  

2. Chapter 5 proposed an FSL approach with an improved ProtoNet for 

automatic bridge visual inspection under weakly supervised circumstances. 

The designed few-shot damage detection framework and the proposed fine-
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tuning method are validated under practical scenarios, demonstrating the 

approach's effectiveness and fast-implementation capability.  

The above content was presented at the 30th EG-ICE International Workshop 

2023 as a conference paper – “Few-shot classification for image-based crack 

detection” and published as a journal article in Engineering Application of 

Artificial Intelligence, entitled "Few-shot learning for image-based bridge 

damage detection”.  

3. Chapter 6 proposed a highly efficient and lightweight framework for 3D 

damage evaluation and DT synchronization based on massive point-cloud 

data. The framework and related approaches are validated on synthetic and 

real-world damage scenarios, which can achieve volumetric assessment and 

model updating (for FE and BIM) in near real-time.  

The content of this study was written in a journal manuscript entitled “Damage 

Volumetric Assessment and Digital Twin Synchronization Based on Point 

Clouds” and submitted to Automation in Construction (minor revision).  

4. Chapter 7 proposed an automatic and unified development framework for 

infrastructure health-state recognition based on DL by leveraging AutoML and 

data-level fusion. The framework is validated in different scenarios with the 

time-series data from a single sensor (including uniaxial and triaxial) or 

multiple sensors. At the same time, the comparative analysis reveals which 

method (between data-level and decision-level fusion) has better performance 

depending on different datasets and neural networks.  

The above findings and developments were published as a journal article in 

“Machines”, entitled “A Deep Learning Framework for Intelligent Fault 

Diagnosis Using AutoML-CNN and Image-like Data Fusion”.  

5. Chapter 8 proposed a knowledge graph schema based on bridge structure 
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and practical inspection reports for bridge maintenance. Then, graph data 

mining through text encoding and GraphSAGE is successfully carried out on 

the established BMKG, i.e., contextual node classification for semantic 

enrichment and contrastive link prediction for maintenance recommendation.  

It demonstrates the availability of graph data mining on a knowledge graph for 

bridge maintenance by leveraging LLMs and GNNs. Finally, a detailed 

workflow is designed for bridge routine inspection practice, integrating the 

proposed KG schema and graph data mining approaches.  

The content of this study was written as a conference paper – “Bridge 

Maintenance Recommendation by Leveraging Large Language Models and 

Graph Neural Networks”, submitted to the 2024 ACM/SIGAPP Symposium on 

Applied Computing (under review), as well as a journal manuscript entitled 

“Exploring Bridge Maintenance Knowledge Graph by Leveraging Text 

Encoding and GraphSAGE”, submitted to Automation in Construction (under 

review).  
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Appendix A: Bridge inspection and repair actions – 15092 (primary data) 

Main Component Element Defect Action 

span external main girder stiffener crank remarkable section loss cut out corroded section and weld a new plate in its place 

span external main girder stiffener crank medium section loss cut out corroded steel to a specified thickness and apply a specified radius for the new coating system 

span external main girder bottom flange section loss repair the half width of the bottom flange 

span cross girder bottom flange section loss repair the full width of the bottom flange 

span external main girder bottom flange remarkable section loss cut out corroded section and weld a new plate in its place 

span deck plate hole weld a new plate to the underside of the steel deck 

span cross girder bottom flange 

section loss rivet head loss and 

thinning repair the full width of the bottom flange 

span cross girder fixing failure cut out fixing and ream the hole 

span cross girder web plate hole install a packer plate between the upper and lower angles and a cover plate over the packer 

span external rail bearer web plate hole install a welded or bolted plate past the defect area 

span central rail bearer web plate hole install a welded or bolted plate past the defect area 

span deck stiffener gusset plate section loss replace gusset plate 

span internal main girder bottom flange section loss repair the half width of the bottom flange 

span internal main girder stiffener crank remarkable section loss cut out corroded section and weld a new plate in its place 
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span internal main girder stiffener crank medium section loss cut out corroded steel to a specified thickness and apply a specified radius for the new coating system 

span central rail bearer bottom flange excessive section loss 

replace the whole bottom flange with a tee section and bolted splice or replace a measured section with angles and flange 

splice 

span deck stiffener angle deformation replace stiffener 

span external rail bearer bottom flange excessive section loss 

replace the whole bottom flange with a tee section and bolted splice or replace a measured section with angles and flange 

splice 

span external main girder web plate hole and pitting install a bolted packer plate to the main girder web and strengthen cover plate over the stiffener and lower angle 

span external main girder stiffener crank remarkable section loss install a bolted packer plate to the main girder web and strengthen cover plate over the stiffener and lower angle 

span external main girder stiffener crank slight section loss fill with similar product 

span central rail bearer cleat connection section loss and pitting replace cleat 

span external main girder bearing web plate hole and pitting install a bolted packer plate to the main girder web and splice it to the stiffener angles for both web sides 

span deck bearing stiffener web plate hole remove existing rivets using burning equipment and install a new steel plate to the stiffener web 

span internal main girder bearing stiffener crank section loss cut out corroded steel to a specified thickness and apply a specified radius for the new coating system 

span caisson bracing top flange section loss replace the back with new 

span caisson bracing web plate hole install a packer plate between the upper and lower angles and a cover plate over the packer 
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Appendix B: Templated chatbot for bridge maintenance query 

 


