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Abstract. Climate tipping elements are large-scale subsystems of the Earth that may transgress critical thresh-
olds (tipping points) under ongoing global warming, with substantial impacts on the biosphere and human so-
cieties. Frequently studied examples of such tipping elements include the Greenland Ice Sheet, the Atlantic
Meridional Overturning Circulation (AMOC), permafrost, monsoon systems, and the Amazon rainforest. While
recent scientific efforts have improved our knowledge about individual tipping elements, the interactions be-
tween them are less well understood. Also, the potential of individual tipping events to induce additional tipping
elsewhere or stabilize other tipping elements is largely unknown. Here, we map out the current state of the lit-
erature on the interactions between climate tipping elements and review the influences between them. To do so,
we gathered evidence from model simulations, observations, and conceptual understanding, as well as examples
of paleoclimate reconstructions where multi-component or spatially propagating transitions were potentially at
play. While uncertainties are large, we find indications that many of the interactions between tipping elements
are destabilizing. Therefore, we conclude that tipping elements should not only be studied in isolation, but also
more emphasis has to be put on potential interactions. This means that tipping cascades cannot be ruled out on
centennial to millennial timescales at global warming levels between 1.5 and 2.0 ◦C or on shorter timescales if
global warming surpassed 2.0 ◦C. At these higher levels of global warming, tipping cascades may then include
fast tipping elements such as the AMOC or the Amazon rainforest. To address crucial knowledge gaps in tip-
ping element interactions, we propose four strategies combining observation-based approaches, Earth system
modeling expertise, computational advances, and expert knowledge.

1 Introduction

1.1 Climate tipping elements

Climate change can cause abrupt and irreversible envi-
ronmental and societal change (Masson-Delmotte et al.,
2021). Several climate subsystems have been identified at
risk of undergoing qualitative and often irreversible change
when critical thresholds of global warming are transgressed
(Wang et al., 2023; Armstrong McKay et al., 2022; Bathi-
any et al., 2016; Lenton et al., 2008). Such subsystems are
termed tipping elements (TEs), and examples include the
Atlantic Meridional Overturning Circulation (AMOC), po-
lar ice sheets, tropical rainforests, permafrost regions, and
the marine biosphere. Nonlinear changes can occur at tipping
points (TPs), where a slight change in a parameter or a small
perturbation of a system’s state can cause a large change in
the system, driving it to transition into a completely different
(often undesirable) state. From a dynamical system point of
view, a tipping point can be reached when passing a critical
value of a control parameter, for example the atmospheric

CO2 concentration, which affects the equilibrium states of
the system.

In the context of this paper, we refer to a tipping el-
ement as any climate subsystem that shows threshold be-
havior (at its so-called tipping point) beyond which self-
amplifying feedbacks to forcing reorganize the system qual-
itatively (e.g., from an ice-covered to an ice-free state in
Greenland). This means that, at the tipping point, a small
shift in the background climate can trigger a large-scale qual-
itative system change. Once the tipping element is triggered,
its self-amplifying feedbacks dominate the dynamics of the
tipping element during the tipping process. This definition is
taken from Levermann et al. (2012) and includes large-scale
climate tipping elements such as the AMOC (Weijer et al.,
2019) and polar ice sheets (Rosier et al., 2021), where the as-
sociated feedbacks (e.g., salt–advection, melt–elevation, or
ice–albedo) are well known. Our definition also includes
more regional bistabilities between savanna and forest vege-
tation in the Amazon region. In addition, we also consider el-
ements that can show nonlinear behavior but it is speculated
whether they should be considered tipping elements (Arm-
strong McKay et al., 2022) (El Niño–Southern Oscillation:
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ENSO, Arctic sea ice, and Indian summer monsoon in this
paper). These entities are important due to their connections
to tipping elements and for Earth system stability but also
due to their potentially dramatic consequences on regional
and local scales including impacts on the biosphere and hu-
man societies. We therefore do not restrict ourselves to the
most plausible tipping elements in this review, but also in-
clude nonlinear components like Arctic sea ice, ENSO, and
monsoon systems that can act as mediators of tipping events
in the Earth system.

Tipping processes involving several tipping elements can
also be found in Earth’s history: during the last ice age, re-
peated abrupt shifts, so-called Dansgaard–Oeschger events,
occurred between cold and warm phases lasting 1000–4000
years (Dansgaard et al., 1993). While mostly polar and
Northern Hemisphere elements (sea ice, ocean circulation,
atmospheric dynamics) appear to have been involved (Vet-
toretti and Peltier, 2016; Zhang et al., 2014; Clement and
Peterson, 2008; Ganopolski and Rahmstorf, 2001), the cli-
mate impact of these shifts was global (Barbante et al., 2006;
Shackleton et al., 2000; Stocker and Johnsen, 2003).

1.2 Interactions in the Earth’s climate system

Most climate subsystems are linked via circulation systems
in the ocean and atmosphere, which leads to statistical asso-
ciations between them in their natural variability, often called
teleconnections. For example, ENSO, the monsoon systems,
and Atlantic multi-decadal variability form global modes of
climate variability (Kravtsov et al., 2018; Dommenget and
Latif, 2008). In addition, sea surface temperature variability
in the North Pacific coupled to tropical variability (ENSO)
is transferred to other regions via atmospheric teleconnec-
tions and amplified on longer timescales by the large ocean
heat capacity (Dommenget and Latif, 2008). Similarly, multi-
decadal variability originating in the North Atlantic Ocean
(Knight et al., 2005; Delworth and Mann, 2000), which is
believed to be partly connected to the AMOC (Buckley and
Marshall, 2016), has a global expression in sea surface tem-
perature patterns due to the interaction of slow oceanic and
fast (but large-scale) atmospheric processes (Kravtsov et al.,
2018). Hence most tipping elements and other nonlinear
components (such as ENSO or Arctic sea ice) are not iso-
lated form each other but are either connected directly or
mediated via changes to the background state (Liu et al.,
2023; Kriegler et al., 2009). Via such connections between
tipping elements (see Fig. 1), tipping in one subsystem – the
leading subsystem – can therefore cause tipping in another
one – the following subsystem (Klose et al., 2020; Dekker
et al., 2018). Here we call the linkages between tipping el-
ements and/or other nonlinear components tipping interac-
tions, whether they have a stabilizing or a destabilizing ef-
fect. The most extreme case is the situation in which the tip-
ping of element A causes a subsequent tipping of element B.
In this paper, we define a sequence of events involving sev-

eral nonlinear components of the Earth system as tipping cas-
cades (Dekker et al., 2018; Wunderling et al., 2021a). These
tipping cascades can come in various forms dependent on
the ordering of tipping elements (e.g., Klose et al., 2021) and
can be different depending on the bifurcations (e.g., Hopf or
fold bifurcation) present in the individual tipping elements
(Dekker et al., 2018). Eventually a tipping cascade might re-
sult in a fundamental change in the Earth’s equilibrium cli-
mate. It is important to note that interactions between tip-
ping elements are not all monotonically constant but may
also change depending on the current state of the involved
tipping elements (e.g., interactions can be nonstationary) or
may affect different parts of a particular tipping element in a
different way. Since knowledge at this level of detail in the
interactions is very heterogeneous and sparse, we will use
the above definition of tipping linkages and cascades in this
paper.

For example, a disintegration of the Greenland Ice Sheet
can lead to an abrupt AMOC shift, while an abrupt
change in AMOC strength can lead to an intensification of
ENSO. We do not restrict our definition to specific spatial
scales, timescales, or severity of impact of the tipping el-
ements. Therefore, the slow local invasion fronts in spatial
(eco)systems would also be considered, leading to a rapid
local change in response to the slow system-wide and large-
scale changes (e.g., Bel et al., 2012). Interactions between
climate tipping elements could effectively lower the thresh-
olds for triggering a tipping event or cascade compared to
individual tipping elements (Wunderling et al., 2021a; Klose
et al., 2020). Moreover, a tipping cascade could activate pro-
cesses leading to additional CO2 emissions into the atmo-
sphere; permafrost thaw and forest dieback are typical ex-
amples of such feedbacks (Wunderling et al., 2020; Lenton
et al., 2019; Steffen et al., 2018).

Due to the many nonlinearities in the climate system, it
is also conceivable that components of the Earth system,
though not necessarily tipping elements on their own, could
mediate or amplify nonlinear transitions in one component,
also creating larger-scale impacts in other components. A
prominent example is Arctic summer sea ice cover, which
shows an almost linear response to the CO2 forcing and is
not expected to show tipping behavior under anthropogenic
forcing (Lee et al., 2021; Notz and Stroeve, 2016). Nev-
ertheless it can still sharpen and amplify transitions in the
ocean–atmosphere–cryosphere system (Gildor and Tziper-
man, 2003). Note, however, that Arctic winter sea ice extent
does show very different states at the same atmospheric CO2
concentration (Schwinger et al., 2022) and may be consid-
ered a tipping element (Hankel and Tziperman, 2023). Be-
cause Arctic summer and winter sea ice interacts with the
AMOC, we take both of them into account as one node in
our network.

On the other hand, an abrupt transition in one tipping ele-
ment may also stabilize other climate subsystems (e.g., Nian
et al., 2023; Sinet et al., 2023) as is the case for a weaken-
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ing AMOC decreasing local temperatures around Greenland
(Jackson et al., 2015).

1.3 Motivation and structure of this work

While most TEs that have been proposed so far are clearly
regional (with some being large-scale), there are significant
knowledge gaps with respect to their tipping probability, im-
pact estimates, timescales, and interactions. The main rea-
sons for these knowledge gaps and therefore large uncertain-
ties, are among others, (i) that experiments from comprehen-
sive and process-based models are sparse (however, future
projects plan to systematically increase the number of such
experiments such as TIPMIP1 and WhatifMIP). (ii) Since re-
cent observations of large-scale tipping processes (e.g., in
Greenland and Antarctic ice sheets or the Amazon rainfor-
est) are not available, we need to rely on (iii) paleoclimatic
data, which are inherently sparse in availability. Due to these
uncertainties, the potential of a tipping cascade that could
lead to a global reorganization of the climate system (Steffen
et al., 2018; Hughes et al., 2013) remains speculative. How-
ever, since multiple individual tipping point thresholds may
be crossed during this century with ongoing global warming
and lead to severe tipping element interactions and cascading
transitions in the worst case, it is critical to review the current
state of the science and reveal research gaps that need to be
filled in Armstrong McKay et al. (2022), Masson-Delmotte
et al. (2021), and Rocha et al. (2018). Therefore, we provide
an overview here of the current knowledge of tipping ele-
ment interactions and the potential for tipping cascades. We
review individual interactions between the tipping elements
and determine whether interactions tend to stabilize or desta-
bilize the climate system. Furthermore, we explain why tip-
ping cascades are plausible using past observed cascades and
a recent example. Finally, we discuss the state of the litera-
ture on tipping cascade likelihoods and how scientific work
can improve risks assessments for cascading transitions.

The main part of this paper reviews the current knowledge
of interactions between specific pairs of tipping components
(Sect. 2). In Sect. 3, we discuss three paleoclimate candidates
of tipping sequences that involve more than one tipping el-
ement: one from the more distant past (Eocene–Oligocene
transition; approximately 34 million years ago), one from
the more recent past (Dansgaard–Oeschger events, Bølling–
Allerød warm period, and Heinrich events; during and since
the last glacial period), and a paleoclimatic perspective on in-
teractions between the AMOC and Amazon rainforest. Next,
we map out the present state of modeling tipping sequences
with respect to the role of complex Earth system models and
more conceptualized approaches (Sect. 4). Lastly, we discuss
current research gaps and ways forward from a knowledge,
modeling, and data perspective. We also discuss the value

1See https://tipmip.pik-potsdam.de/, last access: 14 Jan-
uary 2024.

of newly arising methods from machine learning and Earth
observation and how they could complement the present re-
search on interacting climate tipping elements. Finally, we
conclude with recent progress on tipping cascades and inter-
actions between tipping elements (both Sect. 5). Each of the
sections (Sects. 1–5 and Sects. 2.1–2.7, 3.1–3.3) in this pa-
per have been written by a different group of experts in the
respective field (the co-authors of this study).

2 Interactions between climate tipping elements and
nonlinear climate components

2.1 Interactions across scales in space and time

In this section, we lay out the current state of the literature
on the interaction processes between components that are
known to show nonlinear behavior or are even suspected tip-
ping elements. The summary of Sect. 2.2–2.8 is shown in
Table 1 and Figs. 1, 2, and 3. We show that these elements
are not isolated entities but interact across the entire globe
(Fig. 1). Not only do the interactions span global distances,
but the elements themselves are also systems of the sub-
continental up to (nearly) global spatial scale that may tip on
temporal scales of months up to millennia; i.e., tipping ele-
ments interact across scales in space and time (Fig. 2) (Rocha
et al., 2018; Kriegler et al., 2009). The respective processes
of the interactions can be found in Table 1 (summarized in
Fig. 3), alongside an estimation of the interaction direction
and, if available, an estimation of their strength (based on the
detailed literature review of Sect. 2.2–2.8).

Some tipping elements are of sub-continental spatial scale
(e.g., coral reefs or the Greenland Ice Sheet), while others
cover significant portions of the globe (e.g., AMOC). Also,
the temporal scales differ vastly among the different climate
tipping elements: some of them are considered fast tipping
elements once a tipping process has been initiated (tipping
on the order of months, to years or decades, to centuries, e.g.,
Amazon rainforest and AMOC), while others are considered
slow tipping elements (tipping on the order of centuries to
millennia, e.g., Greenland Ice Sheet). These individual dy-
namics in space and time of the individual tipping elements
are therefore also important for their interactions (mapped
out in Fig. 2).

2.2 Interactions between ice sheets and AMOC

The AMOC, Greenland Ice Sheet (GIS), and West Antarctic
Ice Sheet (WAIS) are core tipping elements and are threat-
ened by increasing CO2 emissions (Armstrong McKay et al.,
2022; IPCC, 2019). Moreover, GIS, AMOC, and WAIS in-
teract on very different timescales ranging from decades to
multiple centuries. While some of those links might be stabi-
lizing, others are destabilizing and would allow for the pos-
sibility of large-scale cascading events.

Earth Syst. Dynam., 15, 41–74, 2024 https://doi.org/10.5194/esd-15-41-2024
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Figure 1. Interactions between tipping elements on a world map. All tipping elements discussed in this review article are shown together
with their potential connections. The causal interactions links can have stabilizing (blue), destabilizing (red), or unclear (gray) effects. For
some elements, it is speculative whether they are tipping elements on their own (such as ENSO or Arctic sea ice) and they are denoted as such
(blue outer ring) but they are included as nonlinear Earth system components if they play an important role in mediating transitions towards
(or from) core tipping elements (compare Sect. 1.2). Tipping elements that exert a notable feedback on global mean temperature when they
tip are denoted by a red inner ring. This temperature feedback can be positive (i.e., amplifying warming, as likely for the permafrost, the
Arctic sea ice, the Greenland and West Antarctic ice sheets, the Amazon rainforest, and ENSO) or negative (i.e., dampening warming, as
likely for the AMOC).

2.2.1 Effects of disintegrating ice sheets on AMOC

Greenland Ice Sheet to AMOC. The AMOC depends on the
formation of dense water in the high latitudes of the North
Atlantic. In its present state, this process is widely sustained
by the positive salt–advection feedback (Weijer et al., 2019;
Rahmstorf, 1996; Stommel, 1961) – as the AMOC transports
salt northward, a higher surface water density is maintained
in this region. As GIS melting increases, the associated dis-
charge of freshwater in the ocean would result in a decrease
in the surface water density, inhibiting the formation of dense
waters through deep convection and thereby weakening the
circulation. As less salt is transported to the North Atlantic,
the salt–advection feedback implies a self-sustained freshen-
ing of the high latitudes of the North Atlantic, which, in the
worst case, can result in the collapse of the AMOC. On top of
this classical positive feedback, there is a wide range of other
feedbacks related to the AMOC, either negative (heat ad-
vection feedback, e.g., Swingedouw et al., 2007) or positive
(evaporation feedback). An overall destabilizing impact of

GIS melting on the AMOC is mostly consistent across mod-
els, where adding freshwater in the North Atlantic (e.g., Jack-
son and Wood, 2018; Mecking et al., 2016; Stouffer et al.,
2007), also in combination with increasing CO2 emissions
(Bakker et al., 2016; Hu et al., 2013; Swingedouw et al.,
2006), leads to a substantial weakening of the circulation.
Importantly, in the case of a collapse of the AMOC, some
models suggest that the AMOC does not recover within a
human timescale (Jackson and Wood, 2018; Mecking et al.,
2016). At the moment, one of the key limitations relating
GIS melting and the respective AMOC response concerns the
way meltwater is spread along Greenland towards the open
ocean. This lateral diffusion is mainly performed by oceanic
eddies, whose spatial scale is of the order of 10 km at those
latitudes, and necessitates oceanic resolution in AOGCMs
(atmosphere–ocean general circulation models) of the order
of 2–3 km to be properly resolved. As a consequence, the
spread of GIS meltwater towards the convection sites in the
Labrador, Irminger, and Nordic seas as well as the Atlantic
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Figure 2. Interactions between tipping elements across scales in space and time. Temporal scales are transitioning times of a disintegrating
tipping element from months up to millennia. Spatial scales denote the system size from sub-continental to (nearly) global scales. Transi-
tioning times are taken from Armstrong McKay et al. (2022), and spatial scales from Winkelmann et al. (2022). The causal links can be
stabilizing (blue), destabilizing (red), or unclear (gray). Some tipping elements are particularly speculative (such as ENSO or the Arctic sea
ice) and denoted as nonlinear Earth System components (blue border). Tipping elements that exert a feedback on the global mean temperature
when they tip are depicted with an additional red inner circle.

Subpolar Gyre might be underestimated in AOGCMs, which
might strongly diminish the potential impact of GIS melt-
ing on the AMOC (Martin and Biastoch, 2023; Liu and Fe-
dorov, 2022; Swingedouw et al., 2022; Born and Stocker,
2014). Thus, while there have been a few attempts to couple
AOGCMs with ice sheet models (e.g., Madsen et al., 2022;
Kreuzer et al., 2021; Ackermann et al., 2020; Muntjewerf
et al., 2020), the simulated impact of GIS melting on the
AMOC remains moderate but might be underestimated.

West Antarctic Ice Sheet to AMOC. In the case of a fresh-
water release in the Southern Hemisphere originating from
West Antarctica, different opposing processes are at play that
could affect the AMOC. These effects have been identified to
act on different timescales and depend on the state of the cir-
culation (Berk et al., 2021; Swingedouw et al., 2009). First,
the weakening of AABW formation might lead to enhance-
ment of the AMOC through the so-called ocean bipolar see-
saw related to deep-ocean adjustment through oceanic large-
scale waves (Stocker and Johnsen, 2003; Pedro et al., 2018).
Second, the increase in wind intensity over the Southern
Hemisphere, related to an increase in sea ice cover (Li et al.,
2023; Swingedouw et al., 2008), might also help to enhance
the AMOC. Third, if large enough, the release of freshwater
in the Southern Ocean might eventually reach the North At-

lantic on a longer timescale (centuries), possibly weakening
the AMOC. As a result, the impact of a WAIS collapse on the
AMOC is still unclear, as most models show either a slight
weakening (e.g., Stouffer et al., 2007; Seidov et al., 2005)
or a slight strengthening (e.g., Swingedouw et al., 2009) of
the circulation. Notably, some studies also found that a suf-
ficient freshwater release into the Southern Ocean allows for
delaying an AMOC collapse (Sadai et al., 2020), recovering
from it (Weaver et al., 2003), or even avoiding it (Sinet et al.,
2023). In most cases, the impact of the WAIS melting on the
AMOC remains moderate and mainly affects the southern
part of the AMOC.

2.2.2 Effects of a collapsing AMOC on ice sheets

An AMOC collapse would imply decreased northward heat
transport, leading to a substantial cooling of the Northern
Hemisphere, along with warming in the Southern Hemi-
sphere (Pedro et al., 2018; Jackson et al., 2015; Stouffer et al.,
2006; Stocker and Johnsen, 2003). Cooling the high latitudes
of the North Atlantic would stabilize the GIS, possibly al-
lowing for a safe overshoot of the GIS tipping point (Wun-
derling et al., 2023; Ritchie et al., 2021). Conversely, the re-
lated warming of the Southern Ocean represents a destabiliz-
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Figure 3. Interactions between tipping elements and other nonlin-
ear components. Summary matrix of interactions in Figs. 1 and 2.
More details on the specific interactions can be found in Table 1
and Sect. 2.2–2.7. Columns denote the element from which the in-
teraction originates, and rows denote the tipping element which is
affected by the interaction. We separate three different types of ef-
fects: a stabilizing link (blue box), a destabilizing link (red box),
and an unclear or competing link (gray box). White boxes denote
no (or an unknown) link. The strengths of the links are separated
into four groups: strong (S), moderate (M), weak (W), and unclear
(U) if a strength estimate is lacking.

ing impact on the WAIS, being susceptible to these warmer
ocean waters via the ice shelves and their buttressing effect
on upstream ice flow (Sutter et al., 2023; Favier et al., 2014;
Joughin et al., 2014).

2.2.3 Direct interactions between Greenland and West
Antarctic ice sheets via sea level feedbacks

It is known that an increase in sea level has an overall destabi-
lizing influence on marine-based sectors of ice sheets, possi-
bly triggering or enhancing the retreat of their grounding line
(Schoof, 2007; Weertman, 1974). In the case of an ice sheet
collapse, the induced sea level rise from ice sheets would
vary locally depending on gravitational effects, rotational ef-
fects, and mantle deformation (Kopp et al., 2010; Mitrovica
et al., 2009). Overall, sea level rise is expected to negatively
impact both the GIS and WAIS, but more strongly the latter
where most of the bedrock lies well below sea level (Gomez
et al., 2020).

2.3 Arctic sea ice interactions

2.3.1 Interactions between AMOC and Arctic sea ice

The strength of the AMOC is controlled by the deep con-
vective activity at different sites in the North Atlantic Ocean
(Labrador, Irminger, and Nordic seas), which is largely
driven by its high surface density (Kuhlbrodt et al., 2007).

Changing Arctic sea ice cover can modulate the latter, and
thus the AMOC, mainly in two ways (Sévellec et al., 2017).
First, it alters radiative heating and ocean–atmosphere heat
loss via changing albedo. More precisely, as the Arctic sea
ice area has substantially decreased in the past 40 years,
especially during summer months (Masson-Delmotte et al.,
2021), the open-water fraction of the Arctic Ocean has in-
creased and will continue to do so in the future (Crawford
et al., 2021). This has led to an increase in the absorption
of solar radiation and to subsequent ocean warming, which
can propagate to convection areas. Second, changes in Arc-
tic sea ice alter the ocean density by brine rejection dur-
ing sea ice formation or conversely by freshening from sea
ice melt. In particular, the recent decrease in Arctic sea ice
area, together with the ice loss from the Greenland Ice Sheet
(Sect. 2.2.1), has added freshwater to the Arctic Ocean, al-
though the trend in freshwater content has slowed down dur-
ing the past decade (Solomon et al., 2021). According to
model simulations performed by Sévellec et al. (2017), these
warm and fresh anomalies coming from sea ice melting could
propagate southward to the subpolar North Atlantic Ocean.
These would affect the deep ocean at the main convection
sites by reducing the surface density and would thus weaken
the AMOC. The estimated timescale of this propagation is
multi-decadal (Liu and Fedorov, 2022; Li et al., 2021; Sével-
lec et al., 2017).

The AMOC can also affect Arctic sea ice via the trans-
port of warm water to the North Atlantic Ocean and subse-
quently to the Arctic Ocean via the Barents Sea opening and
Fram Strait. A weaker AMOC could result in lower ocean
heat transport and increased Arctic sea ice area (Delworth
et al., 2016). The estimated timescale of this effect is ap-
proximately 1 year (Liu and Fedorov, 2022). However, re-
cent observations show that the ocean heat transport to the
Arctic has increased, especially on the Atlantic side (Doc-
quier and Koenigk, 2021; Polyakov et al., 2017; Onarheim
et al., 2015; Årthun et al., 2012). Thus, the effect of a de-
creasing AMOC may merely slow down the pace of ongo-
ing increases in ocean heat transport and the associated de-
crease in Arctic sea ice (Liu et al., 2020). Despite this tight
link between the AMOC and Arctic sea ice, Arctic summer
sea ice cannot be considered a tipping element. A tipping
point in the Arctic Ocean would mean that it loses so much
sea ice that the reduced albedo results in enough warming
to prevent sea ice from forming again once melted. How-
ever, according to model simulations in which a summer ice-
free Arctic Ocean is simulated, Arctic sea ice recovers within
2 years, suggesting that the ice–albedo feedback is alleviated
by large-scale recovery mechanisms (Tietsche et al., 2011).
Winter sea ice extent does show very different states at the
same atmospheric CO2 concentration, attributed to AMOC
strength, and may therefore be considered a tipping element
(Hankel and Tziperman, 2023; Schwinger et al., 2022).
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2.3.2 Effect of Arctic sea ice on the Greenland Ice
Sheet and permafrost

Besides an interaction with AMOC, melting Arctic sea ice
cover has a direct effect via regional warming on further
high-latitude tipping elements such as the Greenland Ice
Sheet and the permafrost. In the case of Arctic summer sea
ice loss, which may occur during the second half of this cen-
tury (Niederdrenk and Notz, 2018), additional warming lev-
els caused by this loss are on the order of 0.3–0.5 ◦C region-
ally over Greenland and the permafrost (Wunderling et al.,
2020). Regional warming levels may be higher if Arctic win-
ter sea ice additionally disappears. Further, it has been found
that partial Arctic sea ice loss has a limited effect for Green-
land warming patterns and is mainly relevant for coastal parts
of Greenland (Pedersen and Christensen, 2019).

At the same time, Arctic sea ice loss leads to increased
coastal permafrost erosion (Nielsen et al., 2022; Hošeková
et al., 2021; Casas-Prat and Wang, 2020; Nielsen et al.,
2020), which operates as follows: (1) abrupt changes in
summer–autumn sea ice retreat from the permafrost coast
lead to (2) an increase in waves, resulting in (3) abrupt in-
creases in erosion rates (2–4 times higher). Thus, (4) there
is a potential cascading risk of carbon releases locally to the
ocean and atmosphere due to the coastal permafrost collapse
(e.g., Nielsen et al., 2022). For more details, see the Supple-
ment (Fig. S1).

2.4 Effects of AMOC changes on the Amazon rainforest

The strength of the AMOC exerts a substantial influence on
the climate of tropical South America, most importantly on
rainfall and its seasonal distribution. This in turn affects the
state and stability of another potential tipping element in the
Earth system: the Amazon rainforest.

The most important large-scale effect of the AMOC on
rainfall in the Amazon works via the pattern of SSTs in the
Atlantic and the associated shifts in the ITCZ (Intertropi-
cal Convergence Zone) and the tropical rain belt. There is
widespread agreement that a reduction or even collapse of the
AMOC would lead to reduced SSTs in the North Atlantic and
increased SSTs in the South Atlantic (Bellomo et al., 2023;
Manabe and Stouffer, 1995). This change is caused by the re-
duction in the AMOC-related northward ocean heat transport
and is amplified by wind–evaporation feedbacks (Orihuela-
Pinto et al., 2022a). The changed SST pattern in turn affects
atmospheric circulation by strengthening the Northern Hemi-
sphere Hadley cell, particularly during boreal winter (Bel-
lomo et al., 2023). As the location of the tropical rain belt de-
pends on the cross-equatorial energy flux and the atmosphere
energy input close to the Equator (Bischoff and Schneider,
2014; Schneider et al., 2014), a weakened AMOC together
with a persistent Southern Ocean warming lead to a south-
ward migration of the tropical rain belt, depending on the
CO2 forcing trajectory (Kug et al., 2022). Hence, AMOC

weakening may cause a tropical rain belt shift. This south-
ward shift would cause a substantial reduction in rainfall
over northern South America and an increase in rainfall over
the portion of the Amazon located in the Southern Hemi-
sphere, as well as over northeastern Brazil, which is directly
affected by the tropical rain belt (Jackson et al., 2015). Nev-
ertheless, over the Amazon basin, the extent of this migration
is model-dependent (e.g., Swingedouw et al., 2013; Stouffer
et al., 2006). Indeed, while the northern part of the Amazon
might experience a decrease in precipitation, the southern
part, in contrast, might see enhanced precipitation, which has
the potential to stabilize the rainforest there (Ciemer et al.,
2021) with consequences for the carbon inventory (Bozbiyik
et al., 2011). The limit between the two regions is where
model dependency is strongest, resulting in a large uncer-
tainty concerning the potential impact of AMOC weakening
in the Amazon rainforest dieback.

To conclude, although different Earth system models have
different biases in the location, shape, and strength of the
tropical rain belt, they generally agree on the AMOC-
collapse-induced increase in precipitation over the southern
portion of the Amazon and northeastern Brazil (Bellomo
et al., 2023; Nian et al., 2023; Orihuela-Pinto et al., 2022a;
Liu et al., 2020). Given that the forests in the southern half of
the basin contribute mostly to the rainfall generation over the
basin (Staal et al., 2018), one could speculate that this would
lead to a stabilization of the Amazon, given that a substantial
fraction (24 %–70 %, Baudena et al., 2021, and references
therein) of the rainfall of the basin is nonetheless produced
by local moisture recycling. Furthermore, it has been shown
that the altered tropical rain belt dynamics throughout the
year would mean a reduction of rainfall mostly during the
current wet season (peaking around March) and an increase
in the dry season, peaking around September (Campos et al.,
2019; Parsons et al., 2014). Importantly, the consequences
for the rainforest of a more equalized annual cycle are un-
clear. More generally, the full spectrum of rainforest stressors
including societal-driven pressures, such as land use changes
driving deforestation, has to be taken into account when as-
sessing AMOC effects over the Amazon rainforest (Lovejoy
and Nobre, 2018).

2.5 Influences of ENSO on proposed tipping elements

The El Niño–Southern Oscillation (ENSO) is the most im-
portant mode of climate variability on interannual timescales,
fundamentally affecting regional and global atmospheric and
oceanic circulation (McPhaden et al., 2006). The response to
climate change of ENSO itself still remains debated, mainly
because there are multiple (positive and negative) feedback
processes in the tropical Pacific ocean–atmosphere system,
whose relative strength determines the response of ENSO
variability (Timmermann et al., 2018; Cai et al., 2015). Fur-
ther, recent studies disagree about the future frequency of El
Niño phases under global warming (Cai et al., 2021; Wen-
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gel et al., 2021). In particular, a decreasing frequency of El
Niño phases under global warming was suggested by a global
climate model resolving mesoscale oceanic eddies and con-
sequently reduced biases in the tropical oceanic mean state
(Wengel et al., 2021). Although it is debated or even un-
likely whether ENSO should be considered a tipping ele-
ment itself (Armstrong McKay et al., 2022), it exerts impor-
tant feedbacks on other global tipping elements. Through its
global teleconnections, ENSO has the potential to influence
multiple Earth system components including the AMOC,
the Amazon rainforest, and the West Antarctic Ice Sheet.
Changes in ENSO amplitude or frequency could alter the
strength of (stabilizing or destabilizing) feedbacks within
other (remote) tipping elements. Therefore, in this section,
we discuss possible interactions between ENSO and other
tipping elements.

2.5.1 Interactions between ENSO and AMOC

Various physical mechanisms have been discussed to ex-
plain how a decline in strength or complete shutdown of the
AMOC could affect ENSO variability, mostly in terms of the
amplitude of ENSO. An AMOC decline typically leads to
cooling in North Atlantic surface temperatures, which affects
the global atmospheric circulation, including the trade winds
in the tropical Pacific. In many GCMs, upon decline of the
AMOC, the northeasterly trade winds are intensified and the
Intertropical Convergence Zone (ITCZ) is displaced south-
wards, eventually leading to an intensification of ENSO am-
plitude through nonlinear interactions (Timmermann et al.,
2007). While the response of the trade winds and ITCZ to
AMOC decline seems to be relatively robust within different
(generations of) GCMs, the response in ENSO magnitude
or frequency is much more model-dependent: trade winds
can also affect the thermocline depth in the eastern tropical
Pacific, thereby weakening the ENSO (Timmermann et al.,
2007). By that, the zonal structure of winds and stratification
is affected, leading to zonal shifts of variability patterns but
no significant change in amplitude (Williamson et al., 2018).
Alternatively, weaker air–sea coupling due to altered trade
winds affects the relevant tropical Pacific feedback balance
such that the growth rate of ENSO is significantly reduced
(Orihuela-Pinto et al., 2022b). In another model study, where
physically based, conceptual models of the AMOC (Stom-
mel box model, Stommel, 1961) and ENSO (Zebiak–Cane
model, Zebiak and Cane, 1987) are coupled via the trade
wind strength, it was found that an AMOC collapse intensi-
fies the tropical Pacific trade winds and shifts the ENSO sys-
tem further into its oscillatory mode (i.e., amplitude increase)
(Dekker et al., 2018). It should be noted that most GCMs still
exhibit severe biases in tropical temperature patterns, partly
caused by oceanic mesoscale processes that are not properly
resolved (Wengel et al., 2021), which complicates the under-
standing of the fate of ENSO under greenhouse gas increase,
but also under AMOC changes.

The reversed pathway, i.e., ENSO impacting the AMOC,
likely also exists, but also depends on several atmosphere–
ocean processes which may not be adequately resolved in
models. A relatively robust teleconnection exists between
an El Niño event and the negative phase of the North At-
lantic Oscillation (NAO) in (late) winter (Ayarzagüena et al.,
2018; Brönnimann et al., 2007). The statistical relationship
between the AMOC and the NAO in GCMs depends on the
subpolar North Atlantic background state; the AMOC is less
sensitive in models that have extensive sea ice cover in deep-
water formation areas, while in models with less sea ice
cover, the background upper-ocean stratification largely de-
termines how sensitively the AMOC reacts to surface buoy-
ancy forcing (Kim et al., 2023). As for ENSO, the unbiased
representation of the North Atlantic mean state represents a
significant challenge for GCMs, in part due to insufficient
resolution of mesoscale ocean eddies.

2.5.2 Influences of ENSO on the Amazon rainforest

The frequency and amplitude of ENSO variability have
changed on decadal to centennial timescales in the past
(Cobb et al., 2013). In recent years, extreme El Niño events
combined with global warming have become increasingly as-
sociated with unprecedented extreme drought and heat stress
across the Amazon basin (Jiménez-Muñoz et al., 2016), lead-
ing to increases in tree mortality, fire, and dieback (Nobre
et al., 2016). Imposing the surface temperature pattern of
a typical El Niño event in a global atmosphere–vegetation
model suggests increased drought and warming in the Ama-
zon rainforest region (Duque-Villegas et al., 2019), which
could enhance rainforest dieback and transition to degraded
and fire-prone, savanna-like ecosystems in some regions.
This could turn further parts of the Amazon rainforest from
a carbon sink to a carbon source.

These destabilizing effects from ENSO on the Amazon
rainforest are overlaid with direct climate change effects,
land use change, deforestation, and human-made fires in the
Amazon rainforest because the Amazon rainforest produces
much of its own rainfall (e.g., Staal et al., 2020; Aragão,
2012). Parts of the Amazon rainforest have already turned
from a carbon sink to a carbon source (Gatti et al., 2021).

2.5.3 Influences of ENSO on the WAIS

Recent significant surface melt events on West Antarctica
were associated with strong El Niño phases (Scott et al.,
2019; Nicolas et al., 2017). It has been proposed that these
melt events were caused by atmospheric blocking, eventu-
ally leading to warm air temperature anomalies over West
Antarctica that pass the melt point of parts of the ice sheet
(Scott et al., 2019). Using reanalysis data, satellite observa-
tions, and hindcasting methods, strong indications have been
found that the Ross and Amundsen Sea embayment regions
are most affected by El Niño phases (Scott et al., 2019; Deb

Earth Syst. Dynam., 15, 41–74, 2024 https://doi.org/10.5194/esd-15-41-2024



N. Wunderling et al.: Climate tipping point interactions and cascades: a review 53

et al., 2018). In addition, it has been observed that, while ice
shelves experience an increase in height (because accumula-
tion height gains exceed basal melt height losses), they suf-
fer from a decrease in mass (because basal ice loss exceeds
ice gain from accumulation) due to increased ocean melting
during significant El Niño occurrences in the Amundsen and
Ross Sea area (Paolo et al., 2018). Further, it is important to
note that El Niño phases are not immediately transferred to
surface melting in Antarctica but only after some time lag on
the order of months (Donat-Magnin et al., 2020).

Taken together, this adds to the growing body of litera-
ture indicating that a disintegration of the West Antarctic Ice
Sheet, especially along the Ross–Amundsen sector, would be
favored by strong El Niño phases and tipping risks may in-
crease if El Niño phases become more frequent or intense
under ongoing climate change (Cai et al., 2021; Wang et al.,
2017; Cai et al., 2014). This may be concerning in particu-
lar because the Amundsen region is where the most vulnera-
ble glaciers of the West Antarctic Ice Sheet are located such
as the Pine Island or Thwaites glacier (Favier et al., 2014;
Joughin et al., 2014).

2.5.4 Influences of ENSO on warm-water coral reefs

ENSO drives abnormally high sea surface temperatures (sea-
sonal heat waves above summer maxima baselines), which
are superimposed on already warming oceans. Anomalous
heat destabilizes the relationship between host corals and
their symbiotic dinoflagellate algae (zooxanthellae), result-
ing in severe bleaching and mortality across multiple species
of corals on spatial scales exceeding thousands of kilometers.
While ENSO is geographically modulated by other ocean
dipoles (e.g., Atlantic oscillation, Indian Ocean) (Houk et al.,
2020; Krawczyk et al., 2020; Zhang et al., 2017), the Pa-
cific signal is dominant and El Niño warm phases have
been related to global episodes of extreme heat stress since
the 1970s, e.g., 1979–1980, 1997–1998, and 2014–2017
(Krawczyk et al., 2020; Muñiz-Castillo et al., 2019; Lough
et al., 2018; Le Nohaïc et al., 2017). As global warming
progresses and oceans become significantly warmer, the in-
cidence of mass bleaching is decoupling from the El Niño
warm phase (Veron et al., 2009), with warmer conditions
compared to 3 decades ago (McGowan and Theobald, 2023;
Muñiz-Castillo et al., 2019). The global recurrence of bleach-
ing has been reduced to an average of 6 years (Hughes
et al., 2018), sooner than expected from climate models and
satellite-based sea temperatures. With warming temperatures
and shortened intervals between major bleaching, multiple
human stressors, and ocean acidification, the recovery time
for mature assemblages of corals is now insufficient across
most regions (Hughes et al., 2018). At the scale of the Great
Barrier Reef the emission of volatile sulfur compounds by
corals adds to the local atmospheric aerosol load, increas-
ing low-level cloud albedo and reducing warming (Jackson
et al., 2018). This breaks down during physiological stress

and bleaching, potentially reinforcing thermal stress in a pos-
itive feedback loop. The potential contribution of this bi-
ologically derived feedback loop to local clouds, sea sur-
face temperature, and coral bleaching is uncertain; this, how-
ever, needs validation in other locations and determination
of any contribution to climatic conditions at larger spatial
and temporal scales. While recovery from repeated bleach-
ing events has been observed (Palacio-Castro et al., 2023;
Obura et al., 2018), the thresholds of global mean warming
of 1.5 ◦C (70 %–90 % loss of coral reefs globally) and 2 ◦C
(90 %–99 % loss) appear to still hold (Lough et al., 2018;
Schleussner et al., 2016; Frieler et al., 2013).

2.6 Effects of AMOC and ENSO changes on tropical
monsoon systems

Future climate projections show a weakening of the AMOC,
which can be substantial in its impact on the regional and
global climate via ocean–atmosphere connection (IPCC,
2019). Evidence from modeling and paleo-reconstructions
has shown interhemispheric, low- to high-latitude climate
connections via ocean–atmosphere linkage for heat and
moisture transport (e.g., Nilsson-Kerr et al., 2022; Orihuela-
Pinto et al., 2022a; Clemens et al., 2021; Shin and Kang,
2021).

As described above, AMOC weakening leads to a south-
ward shift of the ITCZ (Defrance et al., 2017; Swingedouw
et al., 2013; Stouffer et al., 2006), which impacts the vari-
ous monsoon systems worldwide (Chemison et al., 2022), as
also visible in paleorecords (e.g., Sun et al., 2012). For in-
stance, the West African monsoon would strongly decrease
for the West African part due to AMOC collapse (Defrance
et al., 2017). Further, Nilsson-Kerr et al. (2019) compiled
paleo-reconstructions of Heinrich stadial 11 of the penulti-
mate deglaciation between 135 and 130 thousand years ago,
suggesting an increase in the transport of latent heat from the
Southern Hemisphere to the Northern Hemisphere, causing
transient warming in the Northern Hemisphere (termination
II interstadial, TII IS) and an increase in Indian summer mon-
soon rainfall. This transient warming facilitated the North-
ern Hemisphere ice sheet melting, which then might have
reduced or shut down the AMOC, causing cooling of the
Northern Hemisphere and East Asia and a subsequent reduc-
tion of the length of the monsoon rain season (e.g., Wassen-
burg et al., 2021). Mechanistically, a reduction of the AMOC
strength either via warming and induced ice sheet melting
or increased Eurasian–Arctic river runoff (e.g., Zhang et al.,
2013) cools the Northern Hemisphere and shifts the ITCZ
southward (Chemke et al., 2022), affecting spatial rainfall
patterns as well as the distribution and amount of rainfall in
the Northern Hemisphere semi-arid and tropical monsoon re-
gions of India and Asia.

An AMOC weakening has also been shown to strengthen
the Indo-Pacific Walker circulation via cooling of the equa-
torial Pacific and warming of the Southern Hemisphere–
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Antarctic climate on a multi-decadal timescale (e.g.,
Orihuela-Pinto et al., 2022a). The observed AMOC weaken-
ing during the last decades might be partially affected by in-
terannual ocean–atmosphere interactions, such as the ENSO.
These superimposed effects, operating across timescales, al-
ter relationships between the ENSO and tropical monsoons
and thereby regional rainfall patterns in a warmer climate
(Mahendra et al., 2021; Pandey et al., 2020). For example,
while the linear effect of ENSO on the Indian summer mon-
soon rainfall has weakened, the effect of ENSO on the West
African monsoon has increased in recent decades (Srivastava
et al., 2019).

Both relationships, between ENSO and the Indian sum-
mer monsoon and also between ENSO and the West African
monsoon, need to be further tested in paleoclimate recon-
structions from both warm and cold climate states to gain a
better understanding of how an abrupt change in AMOC may
have an effect on ENSO and/or on tropical monsoon systems.
This would allow for a more robust predictability of tropical
monsoon rainfall patterns in the future.

2.7 Effects of permafrost regions on the global
hydrological cycle

The permafrost regions have accumulated substantial
amounts of ice in the soils. With ground ice melting away
in a warmer climate, permafrost landscapes are experiencing
drastic hydrological changes. The presence of ice modulates
the thermophysical soil properties as well as infiltration rates
and the vertical and lateral movement of water through the
ground, which is often poorly represented in current Earth
system models and therefore exhibits large inter-model dif-
ferences. Hence, uncertainty exists about high-latitude re-
gions becoming wetter or drier in the future due to soil hy-
drology representation in state-of-the-art Earth system mod-
els (de Vrese et al., 2023). They could either (i) turn into a
wetter and cooler state with many freshwater systems and
lakes, which support increasing land–atmosphere moisture
recycling and cloud cover, reducing ground temperatures, or
(ii) turn into a drier state as newly formed lakes could drain,
with less moisture recycling supporting less cloud cover and
a warmer surface (Nitzbon et al., 2020; Liljedahl et al., 2016).
Which parts of the Arctic will be wetter or drier in the future
is uncertain, but the differences between the potential Arc-
tic hydroclimatic futures could be very pronounced. As re-
cently shown by de Vrese et al. (2023), the drier and warmer
permafrost state would lead to less sea ice, a reduced pole-
to-Equator temperature gradient, and a weaker AMOC. The
drier state has more boreal forest extended to the north, with
a higher frequency and extent of forest wildfires. In compar-
ison with the wetter state, the drier Arctic state also shifts
the position of the Intertropical Convergence Zone, which
results in higher precipitation in the Sahel region and poten-
tially also in the Amazon rainforest region. Increased forest
and vegetation cover in these regions would be the conse-

quence (de Vrese et al., 2023). Therefore, shifts in permafrost
hydrology could affect climate tipping elements far beyond
Arctic boundaries. Permafrost changes may impact the hy-
drological cycle with far-reaching impacts.

2.8 Interactions between multiple tipping elements and
planetary-scale cascades

Assembling the individual links mentioned before in
Sect. 2.2–2.7 gives rise to the possibility of tipping cas-
cades involving more than two elements. These could lead
to large changes at the regional and even planetary scale.
Plausible examples are Dangaard–Oeschger (D/O) events
(Sect. 3.2.2). Another example comes from the study of the
last interglacial period, for which proxies for sea ice, po-
lar ice sheets, AMOC, boreal forest, and permafrost indicate
abrupt changes (Thomas et al., 2020). Although the dating
uncertainties make it difficult to determine the causal struc-
ture of a potential cascade, positive feedbacks between these
TEs could explain the amplified polar temperatures and sea
level rise obtained from reconstructions (+8 ◦C in Greenland
and +6–9 m sea level rise compared to today) (Dutton et al.,
2015; NEEM community members, 2013).

On a larger scale, tipping cascades could be responsible
for driving the Earth system into completely different cli-
matic states that have been identified in paleo-data (Wester-
hold et al., 2020), climate models of intermediate complexity
(Lucarini and Bódai, 2017), and general circulation models
at coarse spatial resolution (Brunetti et al., 2019; Popp et al.,
2016; Ferreira et al., 2011; Voigt and Marotzke, 2010). For
example, a tipping cascade involving ocean circulation and
ice sheets might have been responsible for a transition from
a greenhouse to an icehouse state at the Eocene–Oligocene
boundary (Sect. 3.1).

While unlikely, a major concern regarding the future may
be that a cascade involving several tipping elements and
feedbacks could lock the Earth system in a pathway to-
wards a hothouse state with conditions resembling those of
the mid-Miocene (hothouse hypothesis:+4–5 ◦C,+10–60 m
sea level compared to the pre-industrial baseline) (Burke
et al., 2018; Steffen et al., 2018). Feedbacks that affect global
temperature could involve albedo changes (e.g., through ice
sheet or sea ice loss), and additional CO2 and CH4 emissions
(through permafrost thawing, methane hydrates release) may
lead to additional warming on medium to long timescales
(Wunderling et al., 2020; Steffen et al., 2018). In a worst-case
(and unlikely) scenario, it has been speculated that a regional
breakup of stratocumulus decks at atmospheric CO2 levels
above 1200 ppm could translate into a large-scale tempera-
ture feedback leading to a warming of roughly 8 ◦C (Schnei-
der et al., 2019).

Timescales are crucial when discussing hothouse scenar-
ios. A potential hothouse state in the next centuries seems
implausible in light of the current state of research. For ex-
ample, in climate projections up to 2100, CMIP6 (Coupled
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Model Intercomparison Project) GCMs show no evidence of
nonlinear responses on the global scale. Instead, they show
a nearly linear dependence of global mean temperature on
cumulative CO2 emissions (Masson-Delmotte et al., 2021).
Similarly, in a recent assessment, Wang et al. (2023) con-
cluded that a tipping cascade with large temperature feed-
backs over the next couple of centuries remains unlikely and
that while the combined effect of tipping elements on temper-
ature is significant for those timescales, it is secondary to the
choice of anthropogenic emissions trajectory. However, this
does not completely rule out the possibility of a hothouse
scenario in the longer term. Indeed, tipping events are not
necessarily abrupt on human timescales. Positive feedbacks
could have negligible impacts by 2100, for example on global
mean temperature and sea level rise, but still influence Earth
system trajectories on (multi-)millennial timescales (Kemp
et al., 2022; Lenton et al., 2019; Steffen et al., 2018). To the
authors’ knowledge, no multi-millennial simulation with a
model incorporating the elements and feedbacks described
above has yet been conducted to test this scenario. This calls
for experiments across the model hierarchy. EMICs (Earth
system models of intermediate complexity) in particular, and
AOGCMs at coarse spatial resolution, offer an interesting
trade-off as they include representations of most tipping ele-
ments while still allowing for multi-millennial simulations.

3 Possible examples of interactions between tipping
elements from a paleoclimatic perspective

In this section, we outline tipping sequences that have been
observed in the distant and less distant past. We discuss
how the Eocene–Oligocene transition and interactions since
the last (inter)glacial periods (Bølling–Allerød, Dansgaard–
Oeschger, Heinrich events) may fit into the framework of a
tipping cascade.

3.1 Interactions in the distant past: Eocene–Oligocene
transition

The formation of a continent-scale ice sheet on Antarctica
during the Eocene–Oligocene transition about 34 million
years ago is known as Earth’s greenhouse–icehouse transi-
tion (see Fig. 3). Following a cooling over tens of millions of
years, this shift to a new climate state would have been visi-
ble from space, as Antarctic forests were replaced by a blan-
ket of ice, and seawater receded from the continents, chang-
ing the shapes of coastlines worldwide. The climate transi-
tion is recorded as a shift in the oxygen isotopic composition
of microscopic fossil shells in marine sediment cores, which
reflects a combination of deep-sea cooling and continental
ice growth (Coxall et al., 2005). It had global consequences
for Earth’s flora and fauna, both in the oceans and on land
(Hutchinson et al., 2021).

This climate transition has been identified as a possible pa-
leoclimate example of cascading tipping points in the Earth

system (Dekker et al., 2018; Tigchelaar et al., 2011). Ex-
amples of climatic tipping elements in this case consist of
global deep-water formation, the Antarctic Ice Sheet, polar
sea ice, monsoon systems, and tropical forests. In a con-
ceptual model, the first part of the oxygen isotope shift is
attributed to a major transition in global ocean circulation,
while the second phase reflects the subsequent blanketing of
Antarctica with a thick ice sheet (Tigchelaar et al., 2011).

The global ocean circulatory system was showing tentative
signs of change a few million years before the climate transi-
tion, likely caused by changing ocean gateways in the North
Atlantic (Coxall et al., 2018). Neodymium isotopes do sug-
gest that a precursor to North Atlantic Deep Water reached
the Southern Hemisphere close to the Eocene–Oligocene
transition, perhaps signaling the onset of Atlantic Merid-
ional Overturning Circulation (AMOC) (Via and Thomas,
2006). However, the exact timing remains uncertain and may
not correlate with the onset of the oxygen isotope shift. In-
deed, the first part of the isotope shift is associated with a
cooling of both deep-sea temperatures and low-latitude sea
surface temperatures, which therefore more likely reflects a
change in radiative forcing (Kennedy et al., 2015; Lear et al.,
2008). However, this does not preclude AMOC onset pre-
conditioning the system for glaciation through heat piracy in
the Southern Ocean, with the exact timing of the transition
set later by a favorable orbital configuration (Coxall et al.,
2005).

In general, biomes in Earth’s greenhouse state reflect
warmer and wetter conditions than the icehouse state of
the early Oligocene, but many of these seemed to have
changed gradually as climate cooled in the Eocene, mak-
ing it difficult to identify vegetation tipping elements fol-
lowing the glaciation of Antarctica (Hutchinson et al., 2021).
The mammalian fossil record, which is coupled to vegeta-
tion through diet, suggests more acute changes in the early
Oligocene. The Grande Coupure (i.e., “the Big Break”), is
a long-known mammalian extinction–origination event dur-
ing Eocene–Oligocene times involving large-scale migra-
tions of Asian mammals into Europe (Hooker et al., 2004).
Thought to signal a combination of changing climate and flo-
ral changes, this abrupt faunal turnover might reflect cross-
ing of an ecosystem tipping point caused by the crossing of
a climate tipping point: a climate–ecology tipping cascade.
Mammal extinctions seem to be particularly widespread in
Afro-Arabia and linked to loss of dietary diversity (de Vries
et al., 2021). This finding is consistent with the idea that
biomes in this subtropical region are tippable elements (Arm-
strong McKay et al., 2022; Lenton et al., 2008). Other ev-
idence of vegetation biomes having tipped includes a tran-
sition from warm–temperate to cool–temperate rainforests in
southeastern Australia (Korasidis et al., 2019). Monsoon sys-
tems, sensitive to forcing and to large-scale reorganizations
of the climate system, might have been important for explain-
ing the shifts in these respective vegetation biomes. More-
over, simulations of the late Eocene climate suggest the ex-
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Figure 4. Conceptual linkages between changes in the Earth system associated with the Eocene–Oligocene transition 34 million years
ago. External drivers were the slow changes in ocean gateways caused by tectonic plate movement and slow changes in Earth’s orbital
configuration. The interactions and feedbacks within the Earth system act on different timescales, which makes the complete sequence of
events complicated, but overall these processes resulted in Earth’s greenhouse–icehouse transition. Since all links are uncertain, they are
denoted with dashed lines (compare Fig. 5).

istence of a strong monsoon-like climate over the Antarctic
continent; without a major reorganization of such an atmo-
spheric circulation regime, ice growth on Antarctica seems
very unlikely (Baatsen et al., 2024, 2020).

The glaciation of Antarctica also produced a sea level fall
of several tens of meters (Lear et al., 2008), causing shal-
low seaways to recede, turning many marine regions into
continental habitats, which experienced particularly strong
seasonality (Toumoulin et al., 2022). The associated reduc-
tion of the marine carbonate factory in previously submerged
tropical shelf seas caused the calcite compensation depth to
deepen by more than 1 km, turning enormous swathes of
seafloor white as the sinking calcite shells of plankton no
longer dissolved in shallow depths (Coxall et al., 2005).

In summary, Earth’s greenhouse–icehouse transition was
likely associated with a range of interactions between com-
ponents of the Earth system that are debated as potential tip-
ping elements. Determining the extent to which these reflect
a cascading series will require a major data-modeling effort,
with improved correlations between marine and terrestrial
records, as well as better constraints on the rate and mag-
nitude of change within a range of tipping elements.

3.2 Interactions during and since the last glacial period

3.2.1 Bølling–Allerød

Towards the end of the last ice age, a very prominent event
is recorded in numerous geological archives. The Bølling–
Allerød (B/A) started at 14.7 ka with abrupt warming in the
Northern Hemisphere (with polar atmospheric circulation
shifts over a few years followed by temperature increase in
Greenland of around 10 ◦C in the subsequent decades – Wolff
et al., 2010; Steffensen et al., 2008; Landais et al., 2005; Sev-

eringhaus and Brook, 1999) in response to a reinvigoration of
the AMOC (McManus et al., 2004) and lasted until 12.9 ka.
The B/A is an example of pronounced interactions between
Earth system components and cascading impacts in the Earth
system (Brovkin et al., 2021). At the onset of the B/A, atmo-
spheric CO2 and CH4 concentrations rapidly increased over
a few decades (Marcott et al., 2014) in response to AMOC
strengthening, abrupt warming and permafrost thaw (Köh-
ler et al., 2014), and moisture changes (e.g., Kleinen et al.,
2023). This was followed by fast changes in vegetation com-
position (Novello et al., 2017; Fletcher et al., 2010). In the
ocean, surface warming and circulation changes were prop-
agated downward, leading to sedimentary anoxia across the
North Pacific (Praetorius et al., 2015; Jaccard and Galbraith,
2012) as well as more severe hypoxia in the Cariaco Basin
(Gibson and Peterson, 2014) and Arabian Sea (Reichart et al.,
1998), indicating a link between climate warming and ocean
deoxygenation.

The trigger for the rapid amplification of ocean circulation
and the associated abrupt impacts at the B/A transition has
been a focus of debate, with opinions divided between an es-
sentially linear response to the (possibly abrupt) cessation of
freshwater forcing (e.g., Liu et al., 2009) versus a nonlinear
response to more gradual forcing (i.e., a tipping point, e.g.,
Barker and Knorr, 2021; Knorr and Lohmann, 2007).

Gradual changes observed in key climatic variables (e.g.,
CO2 and global temperature) during sustained periods of
cold across the surface North Atlantic (as occurred prior to
the B/A onset) were a persistent feature of glacial termina-
tions throughout the last 800 kyr (e.g., Barker et al., 2019),
as well as during the massive ice-rafting events of the last
glacial period (known as Heinrich events). Each of these pe-
riods is thought to have been followed by the rapid resump-
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tion of ocean circulation and other events associated with the
B/A (e.g., a rapid rise of CO2 and CH4).

3.2.2 Dansgaard–Oeschger events

Equally rapid as B/A and of comparable magnitude, transi-
tions known as Dansgaard–Oeschger (D/O) events (Fig. 4)
occurred repeatedly during glacial periods throughout much
of the late Pleistocene (e.g., Barker et al., 2011; Hodell et al.,
2023). In general, these consist of an abrupt (on the order
of decades) warming from stadial to interstadial conditions,
followed by gradual cooling over the course of hundreds of
years to a few thousand years, before a rapid transition back
to cold stadial conditions. Evidence from Greenland ice cores
and North Atlantic sediments suggests that the abrupt cool-
ing transitions (from warm interstadial to cold stadial con-
ditions) were systematically preceded and possibly triggered
by more gradual cooling across the high-latitude Northern
Hemisphere (e.g., NGRIP partners; Barker et al., 2015). The
abrupt transitions from stadial to interstadial conditions were
also preceded by more gradual changes elsewhere (for ex-
ample increasing Antarctic and deep-ocean temperatures and
decreasing dustiness; Barker and Knorr, 2007), leading to the
idea that both types of transitions may be predictable to some
extent (Lohmann, 2019; Barker and Knorr, 2016). Each event
was also paired with rapid changes in ocean circulation, ter-
restrial hydroclimate, atmospheric composition, and ocean
oxygenation in much the same way as observed during the
B/A. Thus, the occurrence and interactions among many sub-
systems that show abrupt changes make it plausible to con-
sider it a cascade and are a ubiquitous and common feature
of late Pleistocene climate variability.

During the abrupt warming phases of D/O cycles, an
abrupt decrease in Arctic and North Atlantic sea ice cover
likely contributed to the onset of convection and a rapid
resurgence of a much weaker, and potentially even collapsed,
AMOC (Gildor and Tziperman, 2003; Li et al., 2010). D/O-
type changes in coupled climate models also feature a rapid
disappearance of sea ice that precedes the abrupt AMOC
strengthening (Vettoretti and Peltier, 2016; Zhang et al.,
2014). Lastly, D/O could also be self-sustained oscillations
as recent literature pointed out (Vettoretti et al., 2022). Thus,
the D/O warmings may potentially comprise a tipping cas-
cade (Lohmann and Ditlevsen, 2021). However, such a cas-
cading interaction may depend on the climate background
state, and it is unclear whether North Atlantic sea ice cover
during the last glacial period can be considered a tipping el-
ement.

3.2.3 Heinrich events

While the exact causes and mechanisms of the B/A transition
and D/O events are still under debate, Heinrich events are
better understood. They occurred during some of the cold sta-
dial phases mentioned above and were associated with major

reorganization of ocean circulation in the North Atlantic (for
a review see Clement and Peterson, 2008). During Heinrich
events, large masses of ice were released from the Lauren-
tide Ice Sheet, leading to a dramatic freshening of the North
Atlantic Ocean and enhanced suppression of deep-water for-
mation and the AMOC.

They can be understood as a phenomenon involving two
tipping elements, the Laurentide Ice Sheet and the AMOC.
The ice fluxes from the Laurentide Ice Sheet have been de-
scribed as a binge–purge oscillator (MacAyeal, 1993), where
a period of strong ice accumulation (the binge phase) is fol-
lowed by a period of rapid ice loss (the purge phase). Dur-
ing the binge phase, ice is generally thought to be frozen
to the bottom and thus immovable. As the ice sheet gets
thicker, basal temperatures increase until the pressure melt-
ing point of the basal ice is reached. The resulting meltwater
production lubricates the bed and enables sliding of the ice.
This may already be sufficient to initiate the purge phase,
though further triggers like ocean subsurface warming prob-
ably also played an important role in destabilizing marine-
terminating portions of the Laurentide Ice Sheet (Max et al.,
2022; Alvarez-Solas et al., 2013). The purge phase lasts until
the ice sheet has become too thin to maintain basal temper-
atures above the pressure melting point, thus refreezing and
stopping the ice flow. The resulting ice stream flows into the
Atlantic Ocean, and as the resulting icebergs melt, Atlantic
surface waters are freshened to the point where the AMOC
cannot be sustained and collapses.

The mechanisms sketched above have been demonstrated
in a number of transient model experiments using Earth
system models of intermediate complexity (Calov et al.,
2010, 2002) and complex ice sheet–atmosphere–ocean gen-
eral circulation models (Schannwell et al., 2023; Ziemen
et al., 2019). However, not all details have yet been resolved;
the exact trigger mechanism (and threshold) initiating the
purge phase, for example, has not yet been identified (Schan-
nwell et al., 2023).

3.3 A paleoclimate perspective on the resilience of the
Amazon rainforest

Two historical analogs have provided some (albeit not fully
consistent) insights into the response of the Amazon to re-
ductions in rainfall: Heinrich events during the last glacial
period and the mid-Holocene. As mentioned in the previ-
ous section, Heinrich events are remarkable intervals during
the last glacial period in which the AMOC seems to have
substantially weakened in response to iceberg release in the
North Atlantic (Henry et al., 2016). Paleoclimate data from
these events are of great help to evaluate the processes sug-
gested by climate model simulations of AMOC slowdown.
Häggi et al. (2017), using an isotope proxy from a sedi-
ment core collected offshore of the Amazon River mouth,
showed savanna intrusions into the Amazon rainforest dur-
ing repeated Heinrich events. The intrusions of savanna oc-
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Figure 5. Interactions at the end of Heinrich Stadial 4 (HS4). (a) Climate proxy indices spanning the transition from HS4 into Dansgaard–
Oeschger (D/O) event 8 (time goes from left to right). From top to bottom: AMOC strength (Henry et al., 2016), Norwegian Sea ice cover
(Sadatzki et al., 2020), Greenland temperature (North Greenland Ice Core Project members (NGRIP), 2004), North Atlantic SST (Martrat
et al., 2007), dust accumulation in Greenland (Ruth et al., 2007), Asian monsoon intensity (Cheng et al., 2016), and South American monsoon
intensity (Kanner et al., 2012). The horizontal red bar indicates the period when the ITCZ assumed a more southerly position (Wang et al.,
2004). The hatched region spans the transition from HS4 to D/O8 and represents an estimate of the relative age uncertainty among the records
shown (i.e., it is generally not possible to tell which changes occurred earlier or later within the overall sequence). Vertical arrows indicate
the direction of increase for each parameter. (b) Interactions between the ocean, atmosphere, and land during the end of HS4. Linkages with
comparably high uncertainty are denoted with dashed arrows.

curred in northern Amazonia (Zular et al., 2019; Häggi et al.,
2017) and validate the suggested decrease in precipitation
over that region in response to AMOC weakening (Campos
et al., 2019). Further precipitation and, even more impor-
tantly, vegetation reconstructions with appropriate age mod-
els and sufficient temporal resolution will help clarify the
southward extent of the drying of northern Amazonia due
to an AMOC collapse, as well as its consequences for the
rainforest.

Kukla et al. (2021) used pollen, charcoal, and speleothem
oxygen isotope proxy data to reconstruct the response of the
Amazon forest during the mid-Holocene, when precipitation
was relatively low (Prado et al., 2013). Their analysis sug-
gests that the Amazon was resilient to rainfall reductions as
high as projected by climate models for the rest of the cen-
tury. However, it also has to be considered that in the study of
Kukla et al. (2021) temperature and land use were similar to

pre-industrial conditions, whereas future warming and defor-
estation will act as additional stressors that affect the surface
water balance by increasing potential evapotranspiration and
decreasing precipitation recycling (Zemp et al., 2017), while
also increasing the chances of fire and thus the possibility of
the Amazon being converted into a degraded, open ecosys-
tem.

4 Modeling tipping element interactions and
cascading transitions

Modeling interactions between tipping elements and po-
tential tipping cascades in the climate system is a diffi-
cult task. A key challenge is to accurately capture feedback
mechanisms between different climatic components. In addi-
tion, each climate subsystem evolves over spatial scales and
timescales that can span orders of magnitude from decades
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to centuries for biosphere components and from centuries to
millennia for the large ice sheets on Greenland and Antarc-
tica (see Fig. 2). The ideal tool to study the interaction be-
tween tipping elements would therefore be a high-resolution,
comprehensive Earth system model based on general circu-
lation models for the atmosphere and ocean, with a sea ice
component, dynamic vegetation, and interactive ice sheets
and carbon cycle. Moreover, the model should be computa-
tionally fast to allow the representation of the slow processes
and to run comprehensive ensembles for taking into account
the uncertainties in key parameters (Murphy et al., 2004).
However, such a universal tool does not exist. Instead, a hi-
erarchy of models of different complexity is needed to ex-
plore the interactions between tipping elements on different
temporal and spatial scales (Fyke et al., 2018). The state-of-
the-art Earth system models that are usually employed in cli-
mate change projections, the models in the CMIP6 (Eyring
et al., 2016), are the first choice to investigate processes de-
veloping over centennial timescales. Since these models usu-
ally include dynamic vegetation, they are suitable to explore
the interactions between abrupt changes in ocean circulation,
Arctic sea ice, and vegetation cover. However, CMIP6 GCMs
are computationally expensive and most of them do not in-
clude interactive ice sheets, which limits the applicability of
these models to study interactions between tipping elements
and potential tipping cascades that involve slow deep-ocean
dynamics or ice sheets. Also, they show some limitations to
how vegetation is represented, especially in tropical areas
(e.g., D’Onofrio et al., 2020). Recently, progress has been
made in including interactive ice sheets in a few CMIP6
models for studying the coupled climate–Greenland evolu-
tion (Madsen et al., 2022; Ackermann et al., 2020; Muntjew-
erf et al., 2020) on centennial timescales.

For studying feedbacks on millennial timescales or longer,
one possible solution is to use Earth system models with
coarser spatial resolution, allowing for faster simulations
(Brunetti and Ragon, 2023; Brunetti et al., 2019; Ferreira
et al., 2011; Hawkins et al., 2011), or Earth system models
of intermediate complexity (EMICs, Claussen et al., 2002).
A downside of these models is that the interactions between
tipping elements are necessarily less realistic and some non-
linear processes need to be parameterized at sub-grid level. In
particular, EMICs are faster than GCMs of comparable spa-
tial resolution, since they make use of some approximations
in the representation of the atmosphere and/or ocean dynam-
ics and can, for instance, be applied to investigate climate–
ice sheet interactions on multi-millennial timescales (Willeit
et al., 2022; Quiquet et al., 2021; Choudhury et al., 2020).

An alternative technique to speed up complex models,
and therefore enable them to explore feedbacks on longer
timescales, is offline (asynchronous) coupling, which has
been applied to represent vegetation–climate (Betts et al.,
1997; De Noblet et al., 1996; Claussen, 1994) and ice sheet–
climate interactions (Scherrenberg et al., 2023; Pohl et al.,
2016; Herrington and Poulsen, 2011; Pollard, 2010). One

example of asynchronous coupling is when the atmosphere
evolves with fixed vegetation cover and eventually the latter
is updated to the equilibrium conditions of the former (Fo-
ley et al., 1998). However, despite being less computation-
ally expensive, feedback mechanisms and thus tipping phe-
nomena and cascades are better represented when dynamical
(synchronous) coupling is implemented (Drüke et al., 2021;
Fisher et al., 2018; Fyke et al., 2018; Bonan et al., 2003).

It is important to note that such complex process-based
models with sufficient integration of tipping elements (e.g.,
in EMICs or GCMs) are now starting to become available,
for instance when ice sheet models are dynamically inte-
grated in Earth system models or when new versions of
EMICs are developed (Pöppelmeier et al., 2023; Willeit et al.,
2022; Kreuzer et al., 2021). This will open up new possibili-
ties for the simulation of cascading transitions.

Tipping phenomena and cascades at the regional scale,
however, may be investigated with different approaches
(Bastiaansen et al., 2022). For instance, they can be investi-
gated using observation-based simulations coupled to energy
or hydrological balance models at high spatial resolution as
has been done for tipping cascades in the Amazon rainforest
(Wunderling et al., 2022). Regional implementations of ice
shelf–ocean interaction exist to obtain improved estimates of
basal melt and to include small-scale processes, like the pres-
ence of ocean eddies (Dinniman et al., 2016) that can affect
the overall stability of the system and potentially intensify
transitions or cascades. It is indeed possible to run regional
climate models (RCMs) (Noël et al., 2018; Rae et al., 2012)
at horizontal grid resolutions of a few kilometers, thus pro-
viding more accurate spatiotemporal distributions of climatic
variables like precipitation and temperature than GCMs. An
alternative modeling framework is to apply grid refinement
over a specified region of interest in a GCM, which avoids
inconsistencies between the different dynamical cores and
physical parameterizations used in RCMs and GCMs, and
(more importantly for tipping phenomena or cascades) it al-
lows for two-way interactions between the refinement region
and the global domain (van Kampenhout et al., 2019). With
such regionalized modeling approaches it could be possi-
ble to empirically detect local to super-regional (cascading)
regime shifts (Rocha et al., 2018).

Also, more conceptual approaches based on differential
equations or box models are frequently used for studying tip-
ping events and cascades for present-day climate and paleo-
climates (Lohmann et al., 2021; Wunderling et al., 2021b;
Wood et al., 2019; Boers et al., 2018). While such models
offer a unique way of unraveling the complex dynamics of
interacting tipping elements, it is not guaranteed that results
of conceptual models can be confirmed by complex models,
since the former consider only a limited subset of dynami-
cal variables and nonlinear processes of the climate system
(Bathiany et al., 2016). For example, simple models that do
not include space are suggested to overpredict the existence
of tipping points, while spatial pattern formation phenomena

https://doi.org/10.5194/esd-15-41-2024 Earth Syst. Dynam., 15, 41–74, 2024



60 N. Wunderling et al.: Climate tipping point interactions and cascades: a review

might prevent such tipping when space is explicitly included
(Rietkerk et al., 2021).

Lastly, modeling of cascading effects from the physical
system to society and the economy as well as vice versa is
still missing from most state-of-the-art Earth system models,
requiring urgent development (Franzke et al., 2022; Steffen,
2021; Beckage et al., 2020)

5 Discussion and conclusion

As anthropogenic global warming continues, tipping el-
ements are at risk of crossing critical thresholds (Arm-
strong McKay et al., 2022). Several assessments have in-
vestigated the risk of crossing critical thresholds of individ-
ual tipping elements, whereas interactions between tipping
elements have only more recently been taken into account,
mostly by conceptual models (e.g., Sinet et al., 2023; Wun-
derling et al., 2023; Dekker et al., 2018). In this review, we
summarize the current state of the literature of many cen-
tral tipping element interactions. Tipping elements interact
across scales in space and time (see Figs. 1 and 2), spanning
from sub-continental to nearly planetary spatial scales from
sub-yearly up to millennial timescales. We summarize the
discussed interactions between tipping elements in Table 1.
Altogether, we conclude the following.

1. Out of the discussed interactions in this review, 13 are
assessed as destabilizing, while 2 are stabilizing and
4 are of unclear sign (see Figs. 1 and 3). This means
that the majority of interactions are destabilizing. While
confirmation or rejection through future research is nec-
essary, the possibility cannot be ruled out that inter-
actions between climate tipping elements destabilize
the Earth system in addition to climate change effects
on individual tipping elements. Therefore, tipping cas-
cades cannot be ruled out when tipping thresholds of the
first tipping elements are transgressed through ongoing
global warming.

2. The core tipping elements with the lowest thresholds are
the large ice sheets on Greenland and West Antarctica.
They have been suggested as the initiators of tipping
cascades (Wunderling et al., 2021a). However, those are
also the tipping elements with the largest tipping time
(several centuries up to millennia). Thus, if their tip-
ping points are only transgressed for a limited amount
of time (overshoot), cascading tipping risks are also re-
duced (Wunderling et al., 2023, see the Supplement).

3. However, if global temperatures reach global warming
levels beyond 2.0 ◦C (or stay between 1.5 and 2.0 ◦C for
a centennial timescale), more and more fast tipping ele-
ments like the AMOC or the Amazon rainforest would
also be at risk of tipping and could then initiate a cascad-
ing transition on a faster timescale (Wunderling et al.,
2023, see the Supplement).

As such, our results are in line with earlier assessments, in
particular on timescales of tipping element interactions and
possible cascading transitions, but also the current state of
our knowledge gaps for tipping cascade risks (Wang et al.,
2023). Summarized, much uncertainty remains and most
studies as of now rely on conceptual models rather than de-
tailed process-based Earth system models. Further, it is im-
portant to point out that most of the agreement and evi-
dence in Table 1 refer to interactions in the context of nat-
ural climate variability or gradual forced climate change. To
what extent the climate system can be considered nonlinear
enough to produce tipping points, but on the other hand lin-
ear enough to extrapolate these interactions from small am-
plitudes to extreme changes related to tipping, needs to be
tested. Therefore, assessing the overall stability of the Earth
system, and the possibility of a chain of nonlinear transitions,
will require more detailed assessments of interactions, their
effect strengths, timescales, and state dependence.

While there is more and more research on individual
thresholds of climate tipping elements, substantial uncertain-
ties prevail in the existence and strength of many links be-
tween tipping elements. In order to decrease such uncertain-
ties, we propose four possible ways forward. (i) Observation-
based approaches: satellite observations, reanalysis, and pa-
leoclimate data sets may be evaluated using correlation mea-
sures (Liu et al., 2023) or more advanced causal inference ap-
proaches (e.g., Runge et al., 2019a; Kretschmer et al., 2016;
Runge et al., 2015; Van Nes et al., 2015). (ii) Approaches
based on Earth system models: with recent progress, Earth
system models of full or intermediate complexity could be
used to evaluate interactions between climate tipping ele-
ments in process detail and quantify their interactions us-
ing specifically designed experiments. (iii) Risk analysis ap-
proaches: since relevant parameter and structural uncertain-
ties are large within Earth system models, analyzing model
ensembles with a considerable number of ensemble members
is very helpful in order to comprehensively propagate un-
certainties for risk assessments (Daron and Stainforth, 2013;
Stainforth et al., 2007; Murphy et al., 2004). While this ap-
proach often requires more simplified or emulator models
designed for large-scale Monte Carlo analyses, it does not
reduce model or data uncertainties per se. Therefore, it is
still possible to evaluate the risk of emerging tipping events
or cascades as well as the role of interactions between tip-
ping elements. (iv) Expert elicitation: an expert elicitation
on tipping element interactions would be valuable to update
and move beyond early investigations of this kind (Kriegler
et al., 2009), since all the three aforementioned approaches
(i)–(iii) have important limitations that would benefit from
direct expert input.

Clearly all of these strategies have their strengths and lim-
itations. Both (i) and (ii) could benefit from extending the
established notion of correlation measures in climate net-
works (Liu et al., 2023; Ciemer et al., 2021; Armstrong et al.,
2019; Svendsen et al., 2014; Chen et al., 2010) to causal
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measures such as causal inference methods, for instance in-
formed by Granger causality or conditional (in)dependences
(Pearl, 1985; Granger, 1969). A prominent approach for
causal inference has been applied in climate science using the
so-called PCMCI algorithm (Runge et al., 2019b), which is a
constraint-based method that considers (lagged) partial cor-
relation to establish links between the considered variables.
Such methods can be used to check whether identified cor-
relations indeed correspond to a causal relation, where it is
important to take into account all possible confounding fac-
tors. To do that one needs to start from the physical processes
involved, for instance informed by conceptual models, and
test this as a hypothesis for the causal relations (Kretschmer
et al., 2021; Di Capua et al., 2020). Another example of
such a causal method is the Liang–Kleeman information flow
method, which is based on the rate of information trans-
fer in dynamical systems and has been rigorously derived
from the propagation of information entropy between vari-
ables (Liang, 2021; Liang and Kleeman, 2005). The method
has been recently applied to Earth system processes, includ-
ing Antarctic surface mass balance (Vannitsem et al., 2019)
and Arctic sea ice (Docquier et al., 2022). However, to apply
such methods to the tipping point context it is important to
know the limitations. One of the assumptions made is that
of stationarity of the links between the variables considered,
which may not be true once a tipping point is crossed. An-
other difficulty may be the different timescales of the tipping
elements where, e.g., ice sheets are very slow compared to
the Amazon rainforest or AMOC.

Limitations of the approaches (i)–(iv) further include the
following. First, data from recent Earth observation efforts
(e.g., for AMOC by RAPID and OSNAP – Srokosz and Bry-
den, 2015 – or for ice stream velocities by satellite laser al-
timetry from ICESat/ICESat-2 – Abdalati et al., 2010; Schutz
et al., 2005) may need to be extended to cover more vari-
ables relevant to Earth system tipping elements as well as
better covering the relevant temporal and spatial scales. Pa-
leoclimate data can partially compensate for such disadvan-
tages at the cost of the data being hard to retrieve with
availability and abundance far from perfect. Second, com-
plex Earth system models may not include all relevant in-
teraction processes between tipping elements or are often
computationally too expensive to run large-scale ensembles
that could take into account and propagate all relevant un-
certainties. However, kilometer-scale models are under de-
velopment and tipping point simulations on this scale will
likely become feasible within the next decade due to cur-
rent developments and further growing computational re-
sources (Hewitt et al., 2022; Slingo et al., 2022). And third,
risk analysis approaches include accounting for theoretical
knowledge properties of these types of physical dynamical
systems. Therefore, different approaches should complement
each other, requiring experts to combine observations, recon-
structions, and novel computational strategies individually,
but also potentially through a formalized elicitation. Taken

together, all approaches mentioned above are required to ob-
tain more reliable estimates of existential risks such as those
posed by potential tipping events or even cascades (Kemp
et al., 2022; Jehn et al., 2021). They could be used to inform
an emulator for tipping risks taking into account properties
of individual tipping elements as well as their interactions. In
addition, there are also large uncertainties among the known
interactions as discussed above, and also not all interactions
are known or quantified (known unknowns versus unknown
unknowns).

Further, in certain systems, there are forcings of non-
climatic origin that could interact with climate change and
lead to tipping and thus to interactions and possibly cas-
cades with other elements. For instance, land use change and,
specifically, deforestation are threatening the Amazon and
decreasing its resilience to climate change (e.g., Staal et al.,
2020), since the Amazon is transpiring large parts of its own
rainfall. Recent studies also indicate that the Amazon and
other humid forests might also affect the atmospheric con-
vergence of moisture (Makarieva et al., 2023), which might
possibly affect other climate and ecosystem elements. There-
fore, non-climate-related factors might also trigger cascading
tipping, which would require further research to be inves-
tigated. Lastly, systems do not necessarily tip fully in one
go, but there can also be stable intermediate states (such as
through the formation of spatial patterns). This has mostly
been reported in ecological systems but is not limited to them
(Rietkerk et al., 2021; Bastiaansen et al., 2020).

Taken together, assessing and quantifying tipping element
interactions better have great potential to advance suitable
risk analysis methodologies for climate tipping events and
cascades, especially because it is clear that tipping elements
are not isolated systems and appropriate risk assessment tools
are yet to be developed.

Data availability. The data sets used in Fig. 5 can be found in the
following references for (top to bottom) AMOC strength (Henry
et al., 2016), Norwegian Sea ice cover (Sadatzki et al., 2020),
Greenland temperature (North Greenland Ice Core Project members
(NGRIP), 2004), North Atlantic SST (Martrat et al., 2007), dust ac-
cumulation in Greenland (Ruth et al., 2007), Asian monsoon inten-
sity (Cheng et al., 2016), and South American monsoon intensity
(Kanner et al., 2012).
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