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Abstract

Relations such as “is influenced by”, “is known
for” or “is a competitor of” are inherently
graded: we can rank entity pairs based on how
well they satisfy these relations, but it is hard
to draw a line between those pairs that satisfy
them and those that do not. Such graded rela-
tions play a central role in many applications,
yet they are typically not covered by existing
Knowledge Graphs. In this paper, we consider
the possibility of using Large Language Mod-
els (LLMs) to fill this gap. To this end, we
introduce a new benchmark, in which entity
pairs have to be ranked according to how much
they satisfy a given graded relation. The task
is formulated as a few-shot ranking problem,
where models only have access to a description
of the relation and five prototypical instances.
We use the proposed benchmark to evaluate
state-of-the-art relation embedding strategies
as well as several publicly available LLMs and
closed conversational models such as GPT-4.
We find that smaller language models struggle
to outperform a naive baseline. Overall, the
best results are obtained with the 11B parame-
ter Flan-T5 model and the 13B parameter OPT
model, where further increasing the model size
does not seem to be beneficial. For all models,
a clear gap with human performance remains.

1 Introduction

Language Models (LMs) capture an abundance of
factual and commonsense knowledge about the
world (Petroni et al., 2019; Roberts et al., 2020;
Heinzerling and Inui, 2021; West et al., 2022; Hao
et al., 2022; Cohen et al., 2023). Given two entities,
Large Language Models (LLMs) can straightfor-
wardly be used to obtain a description of how these
entities are related, although with some caveats for
less popular entities (Mallen et al., 2022). However,
relations are often a matter of degree (Rosch, 1975;
Turney, 2006; Vulić et al., 2017). For instance, sup-
pose we are interested in modelling whether one

entity has been influenced by another one. While
we could argue that most contemporary pop music
has been influenced by the Beatles, clearly there are
some bands that have been influenced more directly
than others. Graded relations such as influenced by,
competitor of or similar to are typically not found
in traditional Knowledge Graphs (KGs), while they
can nonetheless be of central importance to applica-
tions. For instance, in the context of financial NLP,
we may need to know which companies are leaders
and which are followers in a given field, who is
competing with whom, and what strategic alliances
exist. As another example, music recommendation
systems often suggest artists based on the user’s
listening history, but these suggestions would be
more helpful if the system could identify artists
that have influenced or were influenced by artists
the user already likes, as opposed to merely identi-
fying similar artists. Studying how such relations
can be modelled is thus clearly an important but
under-explored research problem.

The subjective nature of graded relations makes
it difficult to include them in traditional KGs. More-
over, for many of these relations, it would simply
not be feasible to list all the (graded) instances
in a comprehensive way. Taking inspiration from
existing work on extracting KGs from LLMs, we
therefore ask the following question: are current
LLMs capable of modelling graded relations be-
tween named entities in a meaningful way? The
task of modelling graded relations offers a num-
ber of unique challenges for LLMs. First, since
this is essentially a ranking task, designing suit-
able prompts is not straightforward. Second, the
task requires making very fine-grained distinctions.
For instance, while we can say that Microsoft is
known for Windows and Apple is known for MacOS,
the former statement represents a more prototyp-
ical instance of the known for relation, as Apple
is perhaps best known for its hardware products
(e.g. iPhone). It is currently unclear to what ex-



tent LLMs are able to capture such subtle differ-
ences. Finally, modelling graded relations requires
comparing entities of different types. For instance,
the known for relation has instances such as (Mi-
crosoft,Windows), (the Beatles, Hey Jude) and even
(France,wine). Comparing instances of such a di-
verse nature poses a particular challenge, as such
comparisons are almost never expressed in text.

In this paper, we introduce RELENTLESS1, a
new dataset aimed at furthering the study of graded
relations between named entities. Our dataset cov-
ers five common graded relations: competitor/rival
of, friend/ally of, influenced by, known for, and
similar to. We evaluate the ability of LLMs to rank
entity pairs according to how much they satisfy
these relations, given a description of the relation
and five prototypical examples. Analysing the per-
formance of several recent LLMs (Chung et al.,
2022; Iyer et al., 2022), including GPT-4 (OpenAI,
2023), we find the best models to achieve a Spear-
man rank correlation of around 0.6. This shows
that recent LLMs capture fine-grained relational
knowledge to a meaningful extent, while at the
same time still leaving a significant gap with hu-
man performance. For the open-source LLMs, we
find that while the largest models achieve strong
results, smaller models fail to outperform a naive
baseline based on fastText vectors (Bojanowski
et al., 2017). GPT-3 performs well, albeit slightly
below the best variants of Flan-T5 and OPT. Fi-
nally, we found ChatGPT and GPT-4 hard to use
for this task, since the OpenAI API2 does not allow
computing perplexity scores. As a result, we were
not able to outperform GPT-3 with these models.

2 Related Work

Benchmarks for Graded Relations RELENT-
LESS was inspired by the SemEval 2012 Task 2
dataset on modelling relational similarity (Jurgens
et al., 2012), which we will refer to as RelSim. Rel-
Sim covers 79 fine-grained relations, which are or-
ganised into 10 categories, such as part-whole (e.g.
car:engine), attribute (e.g. beggar:poor) and cause-
purpose (enigma:puzzlement). For each of the fine-
grained relations, a ranking of concept pairs is pro-
vided, which reflects how prototypical these pairs
are as instances of the relation. However, RelSim

1The name RELENTLESS refers to Relations between
Entities, where Less refers to the idea of ordering. The
dataset is available at https://huggingface.co/datasets/
cardiffnlp/relentless.

2https://openai.com/blog/openai-api

only considers concepts, whereas our focus is on
named entities. To the best of our knowledge, the
problem of modelling relational similarity between
named entities has not yet been considered.

HyperLex (Vulić et al., 2017) is focused on mod-
elling hypernymy as a graded relation. It involves
ranking concept pairs according to how prototyp-
ical they are of the hypernymy relation. As for
RelSim, named entities were explicitly excluded
from this dataset. More broadly, word similarity
benchmarks also follow the format of ranking con-
cept pairs according to the degree to which a graded
relation is satisfied, i.e. similarity.

Benchmarks with analogy questions (Turney
et al., 2003; Ushio et al., 2021b; Chen et al., 2022)
also relate to the problem of modelling graded
relations. These benchmarks typically follow a
multiple-choice format, where one word pair is
given (e.g. eye:seeing), and the system has to pre-
dict which among a given set of candidate an-
swer pairs is most analogous to the query pair (e.g.
ear:hearing). Most existing benchmarks again fo-
cus on concepts. Moreover, where named entities
are involved, the task degenerates to predicting
whether two entity pairs have the same relation, i.e.
the problem of measuring degrees of relatedness is
not considered for named entities.

Language Models as Knowledge Bases The
idea of using language models as knowledge bases
was popularised by Petroni et al. (2019), and has
gained considerable further traction with the advent
of LLMs. For instance, several authors have pro-
posed strategies for extracting knowledge graphs
from LLMs (West et al., 2022; Hao et al., 2022;
Cohen et al., 2023). While the idea of modelling
graded relations has not been considered, Hao et al.
(2022) focused on relations that are not covered by
traditional knowledge graphs, such as “is capable
of but not good at”. Similarly, our motivation for
studying graded relations between named entities
is also to complement what is captured by KGs.

3 Dataset

We consider the five relations which are shown in
Table 1. These relations were chosen because of
their graded character and because they can apply
to a broad range of entities. We created a dataset
with annotated entity pairs for each of the relations
in three phases. We recruited a diverse annotation
team in terms of age, gender, ethnicity and national-
ity; however, all annotators come from an academic

https://huggingface.co/datasets/cardiffnlp/relentless
https://huggingface.co/datasets/cardiffnlp/relentless
https://openai.com/blog/openai-api


Relation Type Val Test Prototypical examples Middle rank examples

competitor/rival of 20 84
Dell : HP, Sprite : 7 Up, Israel : Pales-
tine, Liverpool FC : Manchester United,
Microsoft Teams : Slack

Macallan : Suntory, Marvel Comics : D.C.
Comics, Borussia Dortmund : PSG, UK :
France, Doctor Who : Game of Thrones

friend/ally of 20 88
Australia : New Zealand, Aznar : Bush,
Extinction Rebellion : Greta Thunberg,
Elsa : Anna, CIA : MI6

Kylo Ren : Rey, UK : Commonwealth,
Darth Vader : Emperor Palpatine, The
Beatles : Queen, Mark Drakeford : Rishi
Sunak

influenced by 20 90
Europe : European Union, Plato : Socrates,
Ethereum : Bitcoin, Messi : Maradona,
Impressionism : Edouard Manet

Mike Tyson : Muhammad Ali, US : NASA,
Acer : Asus, Vincent van Gogh : Bipo-
lar disorder, Conservative Party : Labour
Party

known for 20 105
Russell Crowe : Gladiator, Cadbury :
chocolate, Paris : Eiffel Tower, Leonardo
Da Vinci : Mona Lisa, Apple : iPhone

New Zealand : sheep, Le Corbusier :
purism art, Sean Connery : Finding For-
rester, Qualcomm : smartphones, Nikola
Tesla : robotics

similar to 20 89
Coca-Cola : Pepsi, Ligue 1 : Bundesliga,
Australia : New Zealand, The Avengers :
The Justice League, Tesco : Sainsburys

NATO : United Nations, Iraq : Iran, ce-
ment : concrete, Cornwall : Brittany,
Adele : Ed Sheeran

Table 1: Overview of the considered relations, showing the numbers of entity pairs in the validation and test sets,
the five prototypical training examples, and five examples from the middle of the ranking of the entity pairs in the
validation set.

5: This is clearly a positive example, and I would expect
everyone to agree with this view.

4: I consider this to be a positive example, but I would not
be surprised if some knowledgeable people consider
this word pair to be borderline.

3: I consider this to be a borderline case: I find it hard to
decide whether this is a positive or a negative example.

2: I consider this to be a negative example, but I would not
be surprised if some knowledgeable people consider
this word pair to be borderline.

1: This is clearly a negative example, and I would expect
everyone to agree with this view.

Table 2: Rating scale for the 2nd annotation phase.

setting: four undergraduate students, one PhD stu-
dent and two faculty members. The students were
recruited through an internal student employment
service and were offered a remuneration of around
$20 per hour. The total annotation effort was about
160 hours. The annotation process was split into
three phases.

First phase In the first phase, the annotators were
asked to provide 15 entity pairs for each of the five
relations. Specifically, the aim was to provide 5
prototypical examples (i.e. entity pairs that clearly
satisfy the relationship), 5 borderline positive pairs,
which only satisfy the relationship to some extent,
and 5 borderline negative pairs, which do not sat-
isfy the intended relationship but are nonetheless
related in a similar way. After removing duplicates,

this resulted in an average of 114 entity pairs for
each relation, and 573 pairs in total. We augmented
these entity pairs with the same number of ran-
domly chosen entity pairs as the annotated pairs in
each relation type. The entities for these random
pairs were selected from the 50,000 most popular
Wikidata entities, in terms of the number of page
views of the associated Wikipedia article.

Second phase In the second phase, each anno-
tator scored all the entity pairs that were provided
in phase 1, using the 5-point scale shown in Ta-
ble 2. For this phase, annotators were encouraged
to consult web sources (e.g. search engines such
as Google) for a limited time in order to famil-
iarize themselves with the considered entities, if
needed. This was the most time-consuming annota-
tion phase, taking almost 10 hours on average per
annotator to complete.

Third phase The third and final phase was aimed
at resolving disagreements between the annotations
from the second phase. Specifically, for each en-
tity pair where there was a difference of 3 points
between the highest and the lowest score, the anno-
tator(s) with a diverging view were asked to check
their previous annotation, and to either update their
score or to provide a justification. A total of 255
unique entity pairs were checked in this way (310
scores were checked in total). We subsequently
verified the justifications that were provided. In



A B C D E F G Others

A 100 62 81 71 75 75 75 84
B 62 100 61 57 62 57 60 66
C 81 61 100 73 72 74 75 84
D 71 57 73 100 67 67 70 77
E 75 62 72 67 100 70 72 77
F 75 57 74 67 70 100 69 76
G 75 60 75 70 72 69 100 79

AVG 77 66 77 72 74 73 74 77

Table 3: Spearman correlation (%) between each pair of
annotators (A,...,G), and between each annotator and the
average score provided by the other six averaged over
all the five relation types after the 3rd and final quality
enhancement annotation round.

13 cases, the justifications suggested that the other
annotators might have missed a salient point. For
these cases, the annotators with the opposite view
were asked to re-check their previous annotation.
The final ranking for each relation was obtained by
averaging the scores of the 7 annotators.

Table 3 summarises the agreement between the
annotators in terms of Spearman’s rank correla-
tion.3 The table shows the correlation between the
individual annotators, as well as the correlation be-
tween each annotator and the average of the scores
from the six other annotators. The reconciliation
step improved the average agreement over all the
annotators from 70 to 77.4

We split the annotated entity pairs as follows.
First, we selected a small training set consisting
of five prototypical pairs for each relation. This
training set could be used, for instance, for few-
shot prompting strategies. The entity pairs were
selected (i) to be among the top-ranked entity pairs
and (ii) to be sufficiently diverse (i.e. including
entities of different types). Next, for each relation,
we randomly selected 20 of the remaining entity
pairs to be used as a validation set.5 The remaining
entity pairs constitute the test set. Table 1 shows the
prototypical entity pairs that were selected for each
relation, as well as five examples of entity pairs
from the validation set. The latter were selected
from the middle of the ranking, typically with an
average score of 3 to 4. We use the Spearman rank

3In Appendix A, we include the breakdown of the annota-
tor agreement scores per relation type.

4Details about the agreement before the reconciliation step
can be found in the appendix.

5This validation set was not used in our main experiments,
but it was considered in the few-shot analysis (see subsec-
tion 6.2). However, we release the full validation set so it can
be used for further testing and experimentation without the
risk of overfitting on the test set

correlation between the predicted ranking and the
ground truth ranking as the evaluation metric.6

4 Baselines

Human Performance As a proxy for human per-
formance, we report the average Spearman rank
correlation between each annotator and the aver-
age of the other annotators, referred to as Human
Upperbound. Please note that this upperbound is
computed based on the test set, and thus slightly
differs from the average agreement in Table 3. Fur-
thermore, note that we only estimate human perfor-
mance to provide a reference for interpreting the
results. Doing this accurately is challenging. For
instance, we can already see large differences in
agreement across the different annotators, suggest-
ing that the best annotators would perform much
better than what is suggested by the given upper-
bound. Conversely, one may also argue that be-
cause of the reconciliation step in the third phrase,
we are overestimating human performance.

4.1 Embedding Models

Word Embedding. First, we consider the fast-
Text (Bojanowski et al., 2017) embeddings that
were trained on Common Crawl with subword in-
formation7. Inspired by the tradition of modelling
word analogies using vector differences (Mikolov
et al., 2013), we represent each entity pair by sub-
tracting the fastText embedding of the first entity
from the embedding of the second entity. We re-
fer to the resulting vector as the fastText relation
embedding. For a given relation, we score an en-
tity pair by taking the maximum cosine similarity
between its fastText relation embedding and the
embedding of the five prototypical examples.8 We
use the maximum, rather than e.g. the average, due
to the diverse nature of these prototypical examples.
We refer this approach as fastTextpair.

As a naive baseline, we also consider a variant in
which an entity pair is scored by taking the cosine
similarity between the word embeddings of the
two entities. Note that this baseline ignores both
the description of the relation and the prototypical
examples. It is based on the idea that prototypical
pairs often involve closely related entities. We refer

6The final annotated dataset, along with the guidelines
provided to annotators in each phase, are available in the
supplementary material.

7https://fasttext.cc/
8Empirically, we confirmed that indeed using the maxi-

mum leads to better results overall.

https://fasttext.cc/


to this approach as fastTextword.

RelBERT. RelBERT (Ushio et al., 2021a) is a
RoBERTa model that was fine-tuned to encode
word pairs such that analogous word pairs are repre-
sented by similar vectors. We use RelBERT models
that were initialised from RoBERTaBASE

9 and from
RoBERTaLARGE

10. For a given relation, we score
each entity pair as the maximum cosine similarity
between its RelBERT encoding and the RelBERT
encoding of the five prototypical examples.

4.2 Language Models

To score entity pairs using LMs, we create a prompt
from the description of the relation and the five pro-
totypical examples. The score of the entity pair
then corresponds to the perplexity of the prompt.
We consider two prompt templates: a binary ques-
tion answering (QA) template similar to the instruc-
tions provided to Flan-T5 for the task (Longpre
et al., 2023), and a targeted list completion tem-
plate (LC). Writing the five prototypical examples
as [Ai, Bi]i=1...5 and the target entity pair as [C,D],
the QA template has the following form:

Answer the question by yes or no. We
know that [A1, B1], . . . , [A5, B5] are ex-
amples of <desc>. Are [C,D] <desc>
as well?
Yes

The LC template has the following form:

Complete the following list with exam-
ples of <desc>
[A1, B1]
:
[A5, B5]
[C,D]

In both templates, <desc> is the description of the
relation, as follows:

• Rival: entities that are competitors or rivals

• Ally: entities that are friends or allies

• Inf: what has influenced different entities

• Know: what entities are known for

• Sim: entities that are similar
9https://huggingface.co/relbert/

relbert-roberta-base
10https://huggingface.co/relbert/

relbert-roberta-large

We use the following LMs: OPT (Zhang et al.,
2022), OPT-IML (Iyer et al., 2022), T5 (Raffel
et al., 2020), Flan-T5 (Chung et al., 2022), and
Flan-UL2 (Tay et al., 2023), where the model
weights are obtained via HuggingFace (Wolf et al.,
2020)11. We also use GPT-3 (Brown et al., 2020),
which is a private model and subject to be changed
every six months; we use davinci, which is the
most powerful GPT-3 model available via the Ope-
nAI API 1213. We compute the perplexity over the
whole input text for OPT, OPT-IML and GPT-3,
while we use the last line of the input text (i.e.,
“Yes” for the QA template and [C,D] for the LC
template) to compute the perplexity on the decoder
for T5, Flan-T5, and Flan-UL2.

We test two conversational LMs: ChatGPT (or
gpt-3.5-turbo) and GPT-4 (gpt-4). These mod-
els are only available through the OpenAI API.
Unfortunately, for these models, the API does not
allow us to obtain the log-likelihood of each token.
Therefore, we instead use a prompt which asks to
sort the list of entity pairs directly. Writing the list
of target word pairs as [Ci, Di]i=1...n, our prompt
has the following form:

Consider the following reference list of
<desc>:
[A1, B1]
:
[A5, B5]
Now sort the entity pairs from the follow-
ing list based on the extent to which they
also represent <desc> in descending or-
der. Do not include the pairs from the
reference list. The output should contain
all the entity pairs from the following list
and no duplicates:
[C1, D1]
:
[Cn, Dn]

These conversational models often omit entity pairs
from the output, especially those with lower sim-
ilarity to the reference pairs. To deal with this,
we simply concatenate those removed pairs to the
bottom of the sorted output list.

https://huggingface.co/relbert/relbert-roberta-base
https://huggingface.co/relbert/relbert-roberta-base
https://huggingface.co/relbert/relbert-roberta-large
https://huggingface.co/relbert/relbert-roberta-large


Inst-FT Model Size Rival Ally Inf Know Sim Average

Human Upperbound 75.9 78.0 70.5 82.0 80.2 77.3

Embedding

fastTextword - 25.0 10.0 7.0 24.0 20.0 17.0
fastTextpair - 28.0 12.0 3.0 20.0 21.0 17.0
RelBERTBASE 110M 58.0 15.0 30.0 24.0 28.0 31.0
RelBERTLARGE 335M 64.0 20.0 20.0 44.0 53.0 40.0

LM

LC
te

m
pl

at
e

T5

T5SMALL 60M 20.0 33.0 24.0 11.0 10.0 19.0
T5BASE 220M 35.0 35.0 38.0 20.0 13.0 28.0
T5LARGE 770M 29.0 8.0 26.0 11.0 22.0 19.0
T5XL 3B 47.0 28.0 50.0 33.0 26.0 37.0
T5XXL 11B 33.0 8.0 24.0 18.0 15.0 19.0

Flan-T5SMALL ✓ 60M 38.0 33.0 24.0 16.0 7.0 24.0
Flan-T5BASE ✓ 220M 36.0 31.0 28.0 17.0 -0.0 22.0
Flan-T5LARGE ✓ 770M 41.0 19.0 36.0 24.0 22.0 29.0
Flan-T5XL ✓ 3B 40.0 17.0 35.0 27.0 31.0 30.0
Flan-T5XXL ✓ 11B 61.0 32.0 47.0 44.0 40.0 45.0

Flan-UL2 ✓ 20B 60.0 28.0 49.0 53.0 37.0 45.0

OPT

OPT125M 125M 41.0 37.0 51.0 23.0 13.0 33.0
OPT350M 300M 41.0 33.0 47.0 36.0 18.0 35.0
OPT1.3B 1.3B 58.0 39.0 54.0 45.0 42.0 48.0
OPT2.7B 2.7B 65.0 41.0 58.0 56.0 42.0 52.0
OPT6.7B 6.7B 71.0 42.0 59.0 61.0 47.0 56.0
OPT13B 13B 72.0 41.0 55.0 70.0 55.0 59.0
OPT30B 30B 71.0 39.0 57.0 69.0 53.0 58.0

OPT-IML1.3B ✓ 1.3B 57.0 39.0 56.0 51.0 35.0 47.0
OPT-IML30B ✓ 30B 65.0 36.0 55.0 70.0 47.0 55.0
OPT-IMLMAX-1.3B ✓ 1.3B 55.0 37.0 57.0 49.0 33.0 46.0
OPT-IMLMAX-30B ✓ 30B 62.0 36.0 57.0 67.0 46.0 53.0

GPT GPT-3davinci* - 72.0 39.0 64.0 73.0 47.0 59.0

Q
A

te
m

pl
at

e

T5

T5SMALL 60M 10.0 -13.0 17.0 -6.0 8.0 3.0
T5BASE 220M 15.0 -7.0 6.0 -12.0 14.0 3.0
T5LARGE 770M -3.0 4.0 -12.0 -19.0 -1.0 -6.0
T5XL 3B -2.0 12.0 -8.0 17.0 -14.0 1.0
T5XXL 11B 7.0 1.0 -1.0 11.0 -4.0 3.0

Flan-T5SMALL ✓ 60M 31.0 -0.0 21.0 -3.0 8.0 11.0
Flan-T5BASE ✓ 220M 41.0 28.0 46.0 17.0 22.0 31.0
Flan-T5LARGE ✓ 770M 67.0 39.0 24.0 49.0 56.0 47.0
Flan-T5XL ✓ 3B 75.0 44.0 44.0 61.0 63.0 57.0
Flan-T5XXL ✓ 11B 74.0 56.0 44.0 70.0 66.0 62.0

Flan-UL2 ✓ 20B 79.0 51.0 47.0 67.0 57.0 60.0

OPT

OPT125M 125M 35.0 31.0 46.0 10.0 9.0 26.0
OPT350M 350M 38.0 35.0 37.0 21.0 19.0 30.0
OPT1.3B 1.3B 44.0 33.0 46.0 29.0 31.0 37.0
OPT2.7B 2.7B 54.0 32.0 50.0 38.0 32.0 41.0
OPT6.7B 6.7B 53.0 33.0 39.0 46.0 34.0 41.0
OPT13B 13B 63.0 39.0 43.0 61.0 43.0 50.0
OPT30B 30B 61.0 38.0 48.0 62.0 45.0 51.0

OPT-IML1.3B ✓ 1.3B 45.0 27.0 42.0 21.0 26.0 32.0
OPT-IML30B ✓ 30B 57.0 37.0 36.0 53.0 35.0 44.0
OPT-IMLMAX-1.3B ✓ 1.3B 42.0 25.0 38.0 16.0 29.0 30.0
OPT-IMLMAX-30B ✓ 30B 58.0 36.0 39.0 43.0 42.0 43.0

GPT GPT-3davinci* - 67.0 35.0 50.0 61.0 35.0 50.0

Conv. LM ChatGPT* - -0.9 32.5 17.5 15.5 14.7 17.9
GPT-4* - 62.5 55.8 35.9 60.8 69.3 56.9

LM Ensemble - 78.9 50.1 61.6 75.5 65.9 66.4

Table 4: Spearman’s rank correlation (%) on the test set. The LMs are grouped by the template (QA or LC), the
model family, and instruction-fine-tuned or not. The best correlation in each relation type is highlighted by bold
characters, except for LM ensemble emphasized by italic. Model size is measured as the number of parameters.
Models marked with * are not openly available.



5 Results

Table 4 summarises the results. The best result
is achieved by Flan-T5XXL with the QA template,
which scores 62.0%. In general, the performance
of this model remains far below the performance
upper bound suggested by the inter-annotator agree-
ment (77%). Surprisingly, however, for the rival of
relation, the human upper bound is outperformed
by Flan-UL2. In contrast, the friend/ally of rela-
tion appears to be particularly challenging. Among
the LM methods, the LC template generally leads
to the best results, but not for Flan-T5 and Flan-
UL2. This is not entirely surprising given that Flan
models have been fine-tuned using instructions sim-
ilar to the QA template (see subsection 4.2). Be-
yond the encoder-decoder LMs, OPT13B and GPT-
3davinci perform the best, even outperforming the
instruction fine-tuned OPTs (OPT-IML and OPT-
IMLMAX). GPT-3davinci is the best model in the in-
fluenced by and known for relations. Although Flan-
T5XXL and Flan-UL2 perform best on average, they
perform poorly on the influenced by relation, un-
derperforming GPT-3davinci and OPT13B by a wide
margin. Among the embedding based models, fast-
Text generally performs poorly. The performance
of RelBERTLARGE is remarkably strong, consider-
ing that this is a small concept-based relation model
that was not trained on relations between named en-
tities. As far as the OpenAI conversational models
are concerned, we can see that GPT-4 achieves the
best result on the similar to relation. The poor per-
formance of ChatGPT suggests that the considered
list ranking prompt may be hard to understand for
this model, or that the task of ranking around 100
pairs may be too complicated. We also observed
that ChatGPT tends to omit more pairs from its out-
put than GPT-4 (see Table 5 that shows the results
and percentage of retrieved pairs of the conversa-
tional LMs. ).

We also report the result of a simple model en-
semble (denoted as LM ensemble on Table 4),
where we choose the top-5 models regarding to
the average accuracy (Flan-UL2 with QA template,
Flan-T5XXL with QA template, OPT13B with LC
template, OPT30B with LC template, and GPT-
3davinci with LC template), and we use the averaged
perplexity across these five models to compute the

11A complete list of the models on huggingface we used
can be found in Appendix B.

12https://openai.com
13All the OpenAI models are from the checkpoint that was

live during May 2023.

ChatGPT GPT-4

Rival -0.9 (0.0%) 62.5 (100.0%)
Ally 42.5 (56.8%) 55.8 (100.0%)
Inf 17.5 (91.1%) 35.9 (94.4%)
Know 15.5 (86.7%) 60.8 (100.0%)
Sim 14.7 (80.9%) 69.3 (98.9%)

AVG 17.9 (63.1%) 56.9 (98.7%)

Table 5: Spearman’s rank correlation (%) on the test
set for conversational LMs with the percentage of word
pairs included in the output.

(a) QA template (b) LC template

Figure 1: Average Spearman’s rank correlation results
among the five relation types along with the model size.

ranking. As can be seen in Table 4, this indeed
leads to better results on average, although not con-
sistently for all relations.

6 Analysis

We now aim to gain a better understanding of the
behaviour of LMs. First, we analyse the effect of
model size (subsection 6.1). Then, we experiment
with different zero-shot and few-shot learning set-
ups (subsection 6.2), and we present a qualitative
analysis of the predictions (subsection 6.3). For the
latter two analyses, we focus on the best perform-
ing models for each LM family from the main ex-
periment, using their optimal prompts: Flan-UL2,
Flan-T5XXL, OPT13B, and GPT-3davinci.14

6.1 Model Size
In this section, we analyse the effect of model size.
Figure 1 visualises the performance of the differ-
ent model families in function of model size. For
Flan-T5, OPT, and OPT-IML we can see a strong
correlation between performance and size. Never-
theless, the result of the largest OPT models sug-
gests that a plateau in performance may have been

14Note that we omit Flan-UL2 from the model size analysis
as there is only a single Flan-UL2 model.

https://openai.com


(a) QA template (b) LC template

Figure 2: Spearman’s rank correlation averaged over
the five relation types with different number of the pro-
totypical examples. For 1-shot and 3-shot examples, we
report each correlation of the three individual runs.

reached at 13B. Moreover, for T5 we do not see an
improvement in performance for larger models15.

6.2 Zero-shot/Few-shot Learning
In the main experiments, for each relation, models
had access to a description as well as five prototyp-
ical examples. To analyse the impact of these five
examples, we now describe experiments in which
only the description is provided (i.e. zero-shot) or
where only 1 or 3 examples are given (few-shot).
For the few-shot setting, we use the same QA and
LC templates as in the main experiment. For the
3-shot experiments, we randomly choose 3 of the 5
examples, and similar for the 1-shot experiments.
Since this introduces some randomness, we report
results for three different samples.

The QA template for zero-shot/few-shot learning
are:

Answer the question by yes or no. Are
[C,D] <desc>?
Yes

while the zero-shot LC template has the following
form:

Complete the following list with exam-
ples of <desc>?
[C,D]

Figure 2a shows the results for the QA template.
We can see that all models improve when more pro-
totypical examples are provided, with the zero-shot
performance of Flan-UL2 being an outlier. Remark-
ably, Flan-UL2 achieves 62.5% accuracy in the

15In Appendix C we include a more detailed breakdown of
the results of this model size experiment by relation type.

zero-shot setting, which is competitive with the 5-
shot results in Table 4. Flan-T5XXL also achieves a
zero-shot result of 54.5%, which is better than most
of the models in the main (5-shot) experiments. In
the zero-shot setting, OPT13B performs better than
GPT-3davinci, but GPT-3davinci quickly improves as
more examples are provided, clearly outperform-
ing OPT13B in the 5-shot setting. Figure 2b shows
the results for the LC template. We again see that
providing more examples benefits all models. Un-
like for the QA template, however, Flan-T5XXL
performs poorly in the zero-shot setting. Moreover,
OPT13B now sees the largest improvement between
the zero-shot and 5-shot settings.

6.3 Qualitative Analysis

To better understand the predictions of the models,
we analyse the most flagrant mistakes. Specifically,
we focus on those entity pairs whose predicted rank
is in the top 30%, while being in the bottom 30%
of the gold ranking, and vice versa. Table 6 and
Table 7 show the entity pairs from the test set for
which this was the case. For this analysis, we look
at the models with their optimal templates: i.e.,
Flan-T5 and Flan-UL2 with the QA template, and
the other models with the LC template.

When looking at the instances that mistakenly
end up in the top 30%, we see entities which are
closely related (e.g. “Coca-Cola : Pepsi”) while
not actually satisfying the intended relation. We
can see several cases where entities with similar
names are mistakenly predicted to be similar (e.g.
sphinx : sphynx, New York : York, cannoli : can-
neloni). Several models also mistakenly predict
“Serena Williams : Andy Murray” as an instance of
the rival-of relation, presumably because the model
has learned that players from the same sport are
often rivals. When looking at the examples from
the bottom 30%, we can see entities which only
recently became prominent (e.g. FTX and Alameda
Research), highlighting the limitation of using lan-
guage models that have not been trained on the
most recent data. The “Corsica : Napoleon Bona-
parte”, “Prince Harry : Monarchy” and “trending
music : TikTok” examples illustrate how the mod-
els can struggle with cases involving entities of
different semantic types.

7 Conclusions

In this paper, we have proposed the task of mod-
elling graded relations between named entities,



Incorrectly predicted to be in the top 30%
Fl

an
-T

5 X
X

L

Ally Armenia : Azerbaijan, Liam Gallagher : Noel Gal-
lagher, Russia : Georgia

Inf
Harry Potter : Wizard of Oz, heavy metal : punk
music, Luke Bryan : Hank Williams, James Brown
: Michael Jackson

Sim sphinx : sphynx, New York : York, cannoli : can-
neloni

Fl
an

-U
L

2

Rival Serena Williams : Andy Murray

Ally Liam Gallagher : Noel Gallagher, Google : Sam-
sung

Inf Harry Potter : Wizard of Oz, heavy metal : punk
music, James Brown : Michael Jackson

Know Belgium : wine

Sim sphinx : sphynx, cannoli : canneloni

O
PT

13
B

Rival Serena Williams : Andy Murray

Ally Joseph Stalin : Josip Broz Tito, Armenia : Azerbai-
jan, Sophia Loren : Marlon Brando

Inf Joe Biden : Donald Trump, Harry Potter : Wizard
of Oz, Singaporean food : Malaysian food

Know Coca-Cola : Pepsi, Steve Jobs : AirPods

G
PT

-3
da

vi
nc

i

Rival Serena Williams : Andy Murray

Ally Joseph Stalin : Josip Broz Tito, Armenia : Azerbai-
jan, Liam Gallagher : Noel Gallagher

Inf Harry Potter : Wizard of Oz

Know Coca-Cola : Pepsi

Sim Nicolae Ceaus, escu : Javier Hernández

Table 6: Test examples of incorrect predictions made by
the three best models in the top 30%.

with a new dataset. The task consists in ranking
entity pairs according to how much they satisfy
a given graded relation, where models only have
access to the description of the relation and five
prototypical instances per relation. To assess the
difficulty of the task, we analysed a large num-
ber of baselines, including public LLMs of up to
30B parameters, state-of-the-art relation embed-
ding models, and closed LLMs such as GPT-4. We
found significant performance differences between
the largest LMs and their smaller siblings, which
highlights the progress achieved in NLP in the last
few years by scaling up LMs. However, even the
largest models trail human performance by around
15 percentage points.

Limitations

Our dataset is aimed at testing the ability of LMs
to understand graded relations between named en-
tities. In particular, the size of the dataset makes

Incorrectly predicted to be in the bottom 30%

Fl
an

-T
5 X

X
L

Rival Isaac Newton : Gottfried Leibniz

Ally China : North Korea, Ron Weasley : Neville Long-
bottom, Windows : Xbox

Inf
Prince Harry : Monarchy, trending music : TikTok,
Coca-Cola : Pepsi, Apple Music : Spotify, Pepsi :
Coca-Cola, Hoover : Dyson

Know Corsica : Napoleon Bonaparte, France : cheese

Sim Suits : Law&Order, Shark : Bush

Fl
an

-U
L

2

Ally
Tata Motors : Jaguar, China : North Korea, HSBC
: BlackRock, Coca-Cola : McDonald’s, Huawei :
China

Inf Prince Harry : Monarchy, trending music : Tik-
Tok, Wales : Westminster, Theresa May : David
Cameron

Know Europe : The Final Countdown, Corsica :
Napoleon Bonaparte, OpenAI : ChatGPT

Sim Minnesota : Wisconsin, Shark : Bush, Glastonbury
: Roskilde

O
PT

13
B

Ally
FTX : Alameda Research, Red Bull : GoPro,
HSBC : BlackRock, Microsoft : LinkedIn, Win-
dows : Xbox

Inf Prince Harry : Monarchy, trending music : TikTok,
Wales : Westminster

Know OpenAI : ChatGPT, UK : rain

Sim pill : tablet, Great Britian : British Empire, fusilli :
rotini, Shark : Bush

G
PT

-3
da

vi
nc

i

Rival Netflix : Disney Plus

Ally FTX : Alameda Research, Rishi Sunak : Joe Biden,
Microsoft : LinkedIn, Windows : Xbox

Inf Prince Harry : Monarchy, trending music : TikTok,
Stephen King : Arthur Machen

Know OpenAI:ChatGPT

Sim Homebase : IKEA, fusilli : rotini, Shark : Bush,
Primark : Shein

Table 7: Test examples of incorrect predictions made by
the three best models in the bottom 30%.

it unsuitable for training models (beyond the few-
shot setting). Furthermore, our dataset is limited
to five relation types. We believe these relations
to be among the most prominent graded relations
between named entities. Nonetheless, there are
clearly various other relations that could be consid-
ered, especially in domain-specific settings. While
the annotation process involved comprehensive
quality control mechanisms, the dataset may have
inherited some of the biases of the annotators. The
annotators were diverse in terms of gender, nation-
ality and cultural background, but all came from
the the same academic setting. Since the annota-
tion is inherently subjective, this may be reflected



in the final dataset. Finally, the task may have a
temporal component in which some relationships
may change over time. Our annotations represents
the views of the annotators at a particular moment
in time. In future, the dataset could be extended, to
provide different temporal snapshots, which would
allow an evaluation of ability of LMs to model
temporal context.
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A B C D E F G Others

A 100 55 79 69 74 78 79 86
B 55 100 46 35 58 57 50 54
C 79 46 100 75 67 73 75 80
D 69 35 75 100 52 66 68 74
E 74 58 67 52 100 69 67 74
F 78 57 73 66 69 100 65 79
G 79 50 75 68 67 65 100 79

AVG 76 57 74 66 70 73 72 75

Table 9: Spearman correlation (%) on the competi-
tor/rival of relation between each pair of annotators
(A,...,G), and between each annotator and the average
score provided by the other six after the 3rd and final
quality enhancement annotation round.

A B C D E F G Others

A 100 73 85 69 74 78 73 87
B 73 100 74 52 64 72 65 75
C 85 74 100 68 72 77 74 87
D 69 52 68 100 63 59 65 69
E 74 64 72 63 100 67 70 76
F 78 72 77 59 67 100 75 80
G 73 65 74 65 70 75 100 78

AVG 79 71 78 68 73 76 75 79

Table 10: Spearman correlation (%) on the friend/ally
of relation between each pair of annotators (A,...,G),
and between each annotator and the average score pro-
vided by the other six after the 3rd and final quality
enhancement annotation round.

A B C D E F G Others

A 100 50 76 68 69 59 71 76
B 50 100 55 63 49 32 54 55
C 76 55 100 74 70 69 76 84
D 68 63 74 100 65 52 70 76
E 69 49 70 65 100 65 71 71
F 59 32 69 52 65 100 62 61
G 71 54 76 70 71 62 100 78

AVG 70 58 74 70 70 63 72 71

Table 11: Spearman correlation (%) on the influenced
by relation between each pair of annotators (A,...,G),
and between each annotator and the average score pro-
vided by the other six after the 3rd and final quality
enhancement annotation round.

relation types before the 3rd and final quality en-
hancement annotation round. Table 9, Table 10,
Table 11, Table 12, and Table 13 show the Spear-
man correlation for each relation type after the 3rd
and final quality enhancement annotation round.

B Models on HuggingFace

Table 14 shows the model alias on the HuggingFace
of the LMs we used in our experiment.

A B C D E F G Others

A 100 74 84 78 80 80 77 88
B 74 100 71 70 73 65 70 76
C 84 71 100 77 77 75 80 88
D 78 70 77 100 76 82 75 83
E 80 73 77 76 100 71 76 81
F 80 65 75 82 71 100 71 80
G 77 70 80 75 76 71 100 82

AVG 82 75 81 80 79 78 78 83

Table 12: Spearman correlation (%) on the known for
relation between each pair of annotators (A,...,G), and
between each annotator and the average score provided
by the other six after the 3rd and final quality en-
hancement annotation round.

A B C D E F G Others

A 100 58 82 74 79 78 73 82
B 58 100 61 64 64 59 61 68
C 82 61 100 74 75 74 70 79
D 74 64 74 100 77 77 73 83
E 79 64 75 77 100 75 78 84
F 78 59 74 77 75 100 74 79
G 73 61 70 73 78 74 100 78

AVG 78 67 76 77 78 77 75 79

Table 13: Spearman correlation (%) on the similar to
relation between each pair of annotators (A,...,G), and
between each annotator and the average score provided
by the other six after the 3rd and final quality en-
hancement annotation round.

(a) QA template (b) LC template

Figure 3: Spearman’s rank correlation for the competi-
tor/rival of relation type along with the model size.

C Additional Results

Figure 3, Figure 4, Figure 5, Figure 6, and Figure 7
show the performance improvement along with the
model size for individual relation types. Figure 8,
Figure 9, Figure 10, Figure 11, and Figure 12 show
the zero-shot and few-shot evaluation result for
individual relation types.



Model Name on HuggingFace

RelBERTBASE relbert/relbert-roberta-base
RelBERTLARGE relbert/relbert-roberta-large

OPT125M facebook/opt-125m
OPT350M facebook/opt-350m
OPT1.3B facebook/opt-1.3b
OPT2.7B facebook/opt-2.7b
OPT6.7B facebook/opt-6.7b
OPT13B facebook/opt-13b
OPT30B facebook/opt-30b
OPT66B facebook/opt-66b

OPT-IML1.3B facebook/opt-iml-1.3b
OPT-IML30B facebook/opt-iml-30b
OPT-IMLMAX-1.3B facebook/opt-iml-max-1.3b
OPT-IMLMAX-30B facebook/opt-iml-max-30b

T5SMALL t5-small
T5BASE t5-base
T5LARGE t5-large
T5XL t5-3b
T5XXL t5-11b

Flan-T5SMALL google/flan-t5-small
Flan-T5BASE google/flan-t5-base
Flan-T5LARGE google/flan-t5-large
Flan-T5XL google/flan-t5-xl
Flan-T5XXL google/flan-t5-xxl
Flan-UL220B google/flan-ul2

Table 14: The language models used in the paper and
their corresponding alias on HuggingFace model hub.

(a) QA template (b) LC template

Figure 4: Spearman’s rank correlation for the friend/ally
of relation type along with the model size.

(a) QA template (b) LC template

Figure 5: Spearman’s rank correlation for the influenced
by relation type along with the model size.

(a) QA template (b) LC template

Figure 6: Spearman’s rank correlation for the known for
relation type along with the model size.

(a) QA template (b) LC template

Figure 7: Spearman’s rank correlation for the similar to
relation type along with the model size.



(a) QA template (b) LC template

Figure 8: Spearman’s rank correlation for competi-
tor/rival of relation with different number of the proto-
typical examples.

(a) QA template (b) LC template

Figure 9: Spearman’s rank correlation for friend/ally
of relation with different number of the prototypical
examples.

(a) QA template (b) LC template

Figure 10: Spearman’s rank correlation for influenced
by relation with different number of the prototypical
examples.

(a) QA template (b) LC template

Figure 11: Spearman’s rank correlation for known for
relation with different number of the prototypical exam-
ples.

(a) QA template (b) LC template

Figure 12: Spearman’s rank correlation for similar to
relation with different number of the prototypical exam-
ples.
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