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ABSTRACT

Forest health monitoring has become a global issue after increased fire events, droughts, and tree
diseases. Researchers developed techniques and approaches for determining a forest health index
(FHI). FHI is a tool that uses one or more indicators to measure and assess the different aspects of a
forest ecosystem, and it can vary depending on the goal of the assessment. Indicators in forest health
refer to ecological, meteorological, and other indicators, such as biological ones. Ecological indicators
include productivity, vitality, and biodiversity, while meteorological indicators include temperature,
humidity, and precipitation. Different techniques and methodologies have been developed for
measuring one or a group of these indicators. Remote sensing, field observation, and ground-based
sensor approaches create a forest health monitoring system by monitoring indicators and generating
indexes. Remote sensing, such as satellites, manned aircraft, and drones, is excellent for monitoring
the forest’s health status. However, relying on remote sensing alone to build a forest health monitoring
system is still unreliable. This review aims to define forest health and the FHI while identifying
various indicators and their relationship to creating an FHI. The paper describes several measurement
approaches for developing a forest health monitoring system and defines several applications. The
paper also examines the potential multi-data sources in developing a forest health monitoring system.
The result suggests that integrating different techniques could enhance forest health monitoring.

Keywords Forest Health Index, Forest Health Monitoring, Remote Sensing, Ground-based Sensor, Field Observation,
Multi-data Sources, UAV
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1 INTRODUCTION

1.1 Motivation and Contributions

Forest health is a term used without a generally accepted definition. Indeed, forest health cannot be defined unambigu-
ously as it reflects values from social, economic, and ecological aspects. Lausch et al. [1] covered several definitions of
forest health. Trumbore et al. [2] quoted one of these definitions: a “mosaic of successional patches representing all
stages of the natural range of disturbance and recovery.” According to the United Nations (UN), “more than 80% of all
land mammals, birds, insects, and plants inhabit forests. About one-third of humanity is estimated to depend on forests
and their products directly.”

The United States of America (USA) initiated a forest health monitoring program in 1990 to provide information about
forest conditions in the USA. The program investigated four interrelated activities: detection monitoring, evaluation
monitoring, research on monitoring techniques, and intensive site monitoring. The program’s primary goal is to be
aware of the changes in forests, to support decision-makers with accurate information, and to provide an annual review
of the health status of forests [3].

The United States Department of Agriculture (USDA) created a program called Forest Inventory and Analysis (FIA)
to monitor the status of the forest in the United States. The program depends on forest health indicators covering
human needs within the acceptance budget. FIA defines several indicators such as crown condition, tree mortality and
standing dead trees, tree damage, vegetation profile, and soil quality that can provide insights into forest health to forest
managers [4].

To study and understand the status of the forest, forest managers usually need to harvest a large area to define the area’s
health status by exploring various ecological indicators depending on the goal of this process. This harvesting needs
tools and experts to visit the field, requiring time and money. Developing a model to measure ecological indicators will
reduce the costs of this issue. For example, Näsi et al. [5] compared the ability of UAVs to detect beetle damage against
aircraft and found that UAVs can detect beetle damage better than aircraft in urban forests. Huo et al. [6] created a new
index to detect the bark battle attack on European spruce forests to measure and detect tree damage.

Human activities, natural stressors, and disturbances can affect all levels of biological organization in forest ecosystems
and their resilience. The relationships between factors, stressors, disruptions, and impacts are complex, often nonlinear,
and multidimensional at the temporal and spatial levels [7]. Both species- and region-specific adaptive processes for
forest species make it more challenging to understand causal stress responses and their effects on ecosystem resilience
[8]. To understand forest health, scientists must investigate the different factors of stressors and disturbances to support
forest managers and decision-makers in building their decisions upon a holistic approach. A holistic approach includes
several elements, such as data recording, analysis, monitoring, and assessment of forest health [2].

The paper highlights different measurement approaches and their cooperative role in assessing forest health. Field
observation, ground-based sensors, and remote sensing are key approaches used to measure various indicators that
provide insights into the current health status of forests. Each of these tools has its own set of features and drawbacks.
Field observations offer high accuracy and are considered one of the most reliable techniques for determining forest
health status. However, they can be time-consuming and costly. For instance, Park et al. [9] identified the difficulty of
accurately assessing tree attributes in tall, dense, multilayered forests.

Ground-based sensors provide valuable information regarding weather conditions and other indicators relevant to forest
health. However, they are subject to limitations such as power shortages or network issues, affecting their continuous
operation. Considering these limitations when relying on ground-based sensors for monitoring is essential.

Remote sensing enables measuring a wide range of forest health indicators at an acceptable cost. However, remote
sensing also has its limitations, including the need for permissions, resolution limitations, and data quality variations.
For instance, the resolution ability of satellite remote sensing in monitoring forest ecosystems sometimes needs
improvement within the limits of feasibility [10].

Our review focuses on providing and identifying several aspects and techniques to study forest health. Our main
contributions are the following:

• This review contributes by offering insights into forest health, forest index data, and innovative techniques for
creating forest systems.

• We reviewed and identified several forest indexes and indicators by illustrating each part in a separate section
and supporting it with examples. In addition, we presented the key considerations of a forest, the scales of the
forest, and external factors that affect the forest.
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• We explored various methodologies and techniques to address the challenges of forest health monitoring. The
authors provided multiple methods for forest health monitoring, including field observation, ground-based
sensors, and remote sensing. The authors identified several applications that have been used in forests. In
addition, we illustrated the multiple data sources and provided published papers that used data fusion to
enhance forest monitoring

• Lastly, we outlined the existing challenges and the future research direction of forest health.

1.2 Existing Surveys

Forest health has become an important topic to investigate regarding the impact of the forest on the ecosystem. In recent
years, techniques and approaches have been developed to measure the sustainability of forests and provide information
for forest management plans. However, they mainly focus on the measurement approaches to study forest health. This
paper explores the forest health indicators and FHI affecting forests and defines several measurement approaches.

Prior survey articles have reviewed many of the techniques and approaches that we examined in this article. One review
paper discussed implementing UAV-based on forest health, and the aim was to produce a review paper covering the
requirements for developing forest health monitoring [11]. The authors reviewed 99 papers related to UAV-based forest
health in the last 10 years. They identified the features and drawbacks of implementing UAVs in forests. As a result, the
authors clarified the value that drones provide in enhancing the techniques of forest health monitoring. However, it is
still hard to rely on UAVs alone to build a monitoring system for agriculture or forest.

Another review paper covered the criteria for developing forest health monitoring and discussed the methods of dealing
with various data sources and presenting these data to create a decision-support system [7]. The article has covered
several essential topics in developing a forest health monitoring system. In addition, it covered the technique of dealing
with different data and identifying the difficulties or needs of ground-truth data for validation purposes to develop a
monitoring system.

Further, Torres et al. [12] illustrated forest health issues using remote sensing techniques. The authors reviewed articles
from 2015 to 2020 to show forest health issues using remote sensing techniques. They found several key features, such
as the number of papers on this concern increased in recent years, the satellite method is one of the leading methods
in this part, and most of the papers focused on two aspects: evaluating the impact of a specific stress or disturbance
factor. By contrast, a few articles discussed the early warning technique. In addition, Camarretta et al. [13] studied the
ability of remote sensing to study forest restoration, identify several remote sensing platforms, and investigate each
forest structure attribute.

Another survey paper examined the importance of adding biodiversity as an indicator of forest management plans
[14]. The authors of that paper selected 94 papers from the 1990s to 2020 that fulfilled these criteria: aspects of
biodiversity (structure–composition–function) and four forest management categories (unmanaged, managed, plantation,
and silvopastoral). In addition, they used three criteria to evaluate the papers: cost, time, and ease of operation on forest
stand and landscape level. Lastly, Pause et al. [15] published a review paper that contained the value that satellite
remote sensing provides in monitoring forest health and the role of field observation in enhancing the remote sensing
technique for monitoring.

Most of the aforementioned papers explored the importance and ability of remote sensing in studying forests. However,
this paper aims to analyze remote sensing techniques with other measurement approaches’ techniques, such as field
observation and ground-based sensors, intending to provide knowledge regarding the ability of these techniques to
measure several indicators and the ability to use or develop an index. In addition, we highlight various parameters,
including forest health and FHI, identify ecological and meteorological indicators for forest health, and discuss key
considerations and factors that affect forest health. We distinguish our paper by providing an overview of forest health,
index, and measurement approaches. Our primary objective is to give readers insights into the forest index and the
development of forest monitoring systems. Table 1 compares the approaches of different review papers. In this table,
we present a comparison of various review papers, shedding light on their respective approaches to understanding the
concept of forest health.

Moreover, the table presents the number of papers considered and analyzed to provide valuable insights. Further, we
highlight if a paper covered the definition of forest health or if the authors clarified their paper’s analysis or evaluation
techniques. Lastly, the researchers described the multi-data sources approach in their article “Integration.”

1.3 Structure of the Paper

The obtained papers were categorized based on their relationship with the FHI and the data-gathering techniques.
Section 2, covers the methodology of collecting documents. Section 3, provides fundamentals of forest health by
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Table 1: Previous survey comparison. Our uniqueness is to study the three measurement approaches intending to
generate a forest index

Author Approach Year Studies Forest Health
RS SO GB Considered Analyzed Definition Methods Evaluation Integration

[15] ✓ ✓ 2016 ✓ ✓ ✓
[7] ✓ 2018 ✓ ✓

[13] ✓ 2020 ✓ ✓
[14] 2020 188 94 ✓ ✓
[12] ✓ 2021 3722 107 ✓ ✓
[11] ✓ 2022 1073 99 ✓ ✓

This paper ✓ ✓ ✓ 2023 210 90 ✓ ✓ ✓ ✓
RS: Remote Sensing. SO: Site Observation. GB: Ground-Based Sensor.

defining several elements that affect forests, including key considerations of forest, indicators, indexes, scales, and
external factors. Section 4 covers the measurement approaches of forest health, such as field observation, ground-based
sensors, and remote sensing. Section 5, covers multi-data sources. Section 6 covers the findings in this paper. Section 7
contains research challenges and directions—and finally, the conclusion section.

2 METHODOLOGY

This section discusses the survey method used in this work. To generate this review, the authors focused on the papers
related to studying forest health index. This paper focuses on more than just the measurement approach or tool. Still, it
discusses several indicators, indexes, and measurement approaches to provide a better vision of forest health monitoring
and forest index, which could lead to understanding forest health.

2.1 Research Questions

This review aims to provide insights into forest health, forest index, and measurement approaches that help enhance the
ability to monitor the forest health status. Accordingly, the study focuses on answering the following questions.
RQ 1. What is a forest health index? : Indexes offer valuable information regarding specific aspects of a forest,
for example, the normalized difference vegetation index (NDVI) and leaf area index (LAI). The NDVI quantifies the
presence of green vegetation in a defined area. Consequently, no definitive directive regarding creating or utilizing an
existence index exists. Instead, researchers typically select or create an index based on the objectives of their study,
such as an FHI.
RQ 2. What indicators are there for studying forest health? : Exploring various indicators becomes paramount in
the pursuit of understanding and safeguarding the health of our forests and ecosystems. These indicators span different
dimensions, encompassing biological, meteorological, and ecological factors. For instance, delving into meteorological
indicators like temperature patterns can revolutionize forest health monitoring. We can detect potential fire outbreaks in
their early stages by establishing a robust forest health warning system based on temperature fluctuations. Moreover,
using multiple indicators promises a more comprehensive and accurate understanding of a forest’s well-being. This
research explores the probability of combining these diverse indicators to enhance our forest monitoring capabilities,
ultimately contributing to the preservation and sustainability of these vital ecosystems.
RQ 3. What are the techniques for studying forest health? : In forest ecology, the choice of measurement techniques
is pivotal, with options ranging from remote sensing to ground-based sensors and traditional field observations. Our
research determines several techniques used to measure forest health. For example, the advent of drone and satellite
technology has substantially widened our horizons, enabling us to monitor expansive forested regions with unprece-
dented precision. Our study delves into these questions, aiming to provide valuable insights regarding measurement
techniques for forest indicators, ultimately advancing our understanding and conservation of these vital ecosystems.
RQ 4. How do multi-data sources help in monitoring forest health? : The multi-data sources approach in forest
health monitoring considers using different types of sensors to gather data regarding forest objects and the ecosystem.
Multi-sensor advantages include enhanced data accuracy, improved spatial coverage, and the ability to capture diverse
aspects of forest health.
Section 3 will answer the first two questions, Section 4 elaborates to answer question 3, and Section 5 covers question 4.
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2.2 Research Methods

To conduct this review, the authors searched several digital libraries, including Google Scholar, Web of Science, IEEE
Explore, ACM Computing Survey, and SpringerLink, using the following keywords and phrases: “Forest Health
Index,” “Physical Environmental Indicators,” “Forest Health Monitoring,” “Remote Sensing,” “UAV,” “Tree Health,”
“Field Observation,” “Site Observation,” “Ground-Based,” “Temperature,” “Precipitation,” “Stream Flow,” “Snowpack,”
“Ozone,” “Soil Moisture,” “Multi-Sensor Data Fusion,” and “Site Measurement.” This review used the Boolean operators
“AND” or “OR” to enhance the results. The study’s article search and selection method was divided into different stages.
The first stage was the search for forest health monitoring, indexes, and indicators. The second stage was the search
for remote sensing techniques and approaches for forest health monitoring. During this phase, we examined UAVs
more regarding several features that drones provide. The third stage was the investigation of the field observation tools
and techniques. The fourth stage was the exploration of the different ground-based sensors—finally, the multi-model
(multi-data sources) measurement approaches, especially data fusion.

A total of 210 research papers regarding forest health monitoring, FHI, and forest health measurement approaches were
reviewed. These papers were filtered by removing duplicate papers or focusing more on a wildfire or wildlife, reading
their title, abstract, and conclusion, and then filtered by full-text reading. This filtration resulted in 90 articles Figure 1.

Identification
Research

Identification
Research

Refinement

Screening
Observe
record 

(n= 329)

Record exclude
(n= 119)

Eligibility

Full-text articles
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Additional
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other sources
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Result
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Figure 1: Survey methodology overview: Review Process Illustration.

3 FOREST HEALTH

This section presents an overview of forest health, including the critical considerations of studying forest health (in
section 3.1); the authors illustrate the three key considerations of studying forest health (Evaluate the current state, Study
the area’s history to generate a future prediction system and Generate a warning system). Indicators (in section 3.2), we
discussed the three indicators (Ecological, Meteorological, and Biological ) as each feeds the idea of forest health from
different perspectives. Indexes (in section 3.3): In that particular section, we explore the two most popular indexes
(NDVI, LAI) and supply them with determining the published papers focusing on forest health and containing the FHI
in the paper’s title. Scale (section 3.4) describes the importance of scaling in studying forest health and identifies the
three scales (Single Tree, Stand scale, and Landscape-scale). External factors (in section 3.5) define the other factors
impacting forest health, such as natural phenomena.

3.1 Forest Key Considerations

There are various considerations for studying forest health. One crucial consideration of forest research involves
evaluating the current state of the forest, a practice often referred to as evaluation monitoring. This approach allows
researchers to assess various factors influencing forest ecosystems. For instance, in a study conducted by Frey et al.
[16], the impact of microclimate and vegetation levels on bird distribution in mountain landscapes in Oregon, USA, was
thoroughly investigated as the distribution of birds will help the bioscientist directly or undirect to have a sign about the
situation level on that area.

Evaluation monitoring plays a pivotal role in gaining insights into the health and dynamics of forests, helping researchers
and conservationists make informed decisions for preserving and managing these areas. It involves an examination
of ecological, climatic, and biological variables, contributing to a deeper understanding of the intricate relationships
within forest environments.

Another valuable consideration of forest research involves delving into forested regions’ historical trends and changes.
This exploration can encompass various parameters, including shifts in vegetation levels and alterations in water
availability. Understanding the historical context is instrumental in predicting future conditions in these areas, a task
often facilitated by applying machine learning models such as random forest.
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For example, Roshani et al. [17] employed the random forest technique to assess temporal changes in India’s
environmental conditions. By analyzing data from the Indian Meteorological Department from 1981 to 2020, their
study not only shed light on past transformations but also offered insights crucial for anticipating future developments.
Investigating the historical record of forests is a fundamental building block to ensure their continued health and
resilience.

The last consideration of forest research encompasses exploring warning systems, a focal component in forest man-
agement and conservation. These systems can be categorized into two fundamental types: first, the ability to trigger
an alarm when an unusual event occurs; second, the capacity to issue advance warnings based on predictive models.
The prediction of advanced warnings is greatly facilitated by applying statistical analysis techniques and machine
learning methodologies. For example, Chen et al. [18] harnessed the power of machine learning in the pursuit of precise
wildfire prediction. They leveraged a comprehensive dataset containing RGB and thermal fire images, demonstrating
how cutting-edge technology can significantly enhance our ability to forecast and mitigate forest-related disasters.
Understanding and refining warning systems in forest ecosystems not only aids in safeguarding these invaluable natural
resources but also holds the potential to reduce the impact of catastrophic events, thereby contributing to the sustainable
management of our forests for generations to come.

3.2 Forest Indicators

Ecological, meteorological, and biological indicators are elements that aid in studying forests and provide insights
to determine the health status of the woods. Figure 2 outlines the envisioned system structure of this review paper,
depicting the various factors that influence forest health and identifying the appropriate measurement approaches for
forestry. In this part, we will describe the indicators in detail; later, in section 4, we will explain the measurement
approaches. The first indicator is ecological indicators in the context of forests, which are measurable characteristics
or variables that provide insights into an ecosystem’s overall health, functioning, and dynamics. These indicators
assess forest ecosystems’ ecological condition, diversity, and sustainability. They help researchers, ecologists, and
land managers monitor and understand how ecosystems respond to environmental changes, disturbances, management
practices, and human impacts. Several indicators can be used to evaluate the environmental condition of a forest,
including vitality, productivity, and biodiversity. Vitality refers to the overall health and vigor of the forest. The quality
of tree attributes such as good growth rates, crown condition, and tree damage mainly represent it. Productivity is the
ability to produce resources such as timber, tree diameter, and tree height, which are crucial in measuring productivity
[19]. Biodiversity refers to the variety and abundance of species within a forest ecosystem [20]. For example, Arwanda
& Safe’i claimed that vitality, productivity, site quality, and biodiversity would help determine a forest’s health status
in Indonesia. The results showed that cluster plots 1, 2, and 4 were in good condition, and 3 were in bad condition.
Furthermore, Yang et al. [21] studied the national monitoring program in China to evaluate the ecological function and
compared it with other international programs.

Forest Health 

Indicators  Measurement Approaches

Remote Sensing

Ground-Based
Sensors

Field Observation

Temperature

Snowpack

precipitation

Birds

Mammals

Vitality

Productivity 

Biodiversity Ecological

Metrological

Biological 

Meter

Tape

Sheet

Binoculars

Temperature

Snow-pack

Soil Moisture

Ozone

Fire Risk

Satellite

Manned Aircraft

Unmanned Aerial Vehicles (UAV)

Figure 2: Forest health measurements approaches and indicators. The figure represents different factors that affect the
forest status and the techniques to measure these factors.

Second meteorological indicators, such as temperature, precipitation, and snowpack also affect the monitoring
system. Meteorological indicators in this context refer to specific weather-related variables and measurements that
play a crucial role in understanding the environmental conditions within forest ecosystems. Using these indicators,
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researchers, ecologists, and forest managers may evaluate the effects of meteorological conditions on the health,
development, and dynamics of forests. Meteorological indicators are essential for studying various ecological processes
and making informed decisions regarding forest management, conservation, and climate change adaptation. For instance,
temperature significantly affects the development of trees, which are crucial indicators for describing the health status
of the forest. Song et al. [22] explored the impacts of air temperature, tree species, and leaf size on the tree surface
temperature in tropical forests. They found that various tree species have different leaf and air temperature differences.
In addition, a tree’s temperature changes due to climate change depend on the size of its leaves and the amount of
air that it releases through tiny pores (stomata) on its surface. Trees with small leaves and high air release are less
affected by climate change. Furthermore, Marsh et al. [23] generated a model that studies the correlation between
forest structure and air temperature. The result showed that nearly all structural variables significantly differed between
vegetation plots, and they recorded a wide range of variation as they found variation by 15.2 °C between data loggers.
Moreover, there was a variation of 14.8 °C between data loggers simultaneously at different heights in the same tree.
Other meteorological indicators are precipitation and snowpack, which are essential for assessing water availability in a
given area [24].

The third biological indicator is living organisms or biological parameters used to assess the health of the forest.
Several researchers studied the impact of air temperature on the birds’ distribution and breeding phenology. For instance,
Shutt et al. [25] investigated the effect of microclimate air temperature on three different types of birds in a UK forest.
They found a connection between the microclimate air temperature and breeding phenology. In addition, the paper
investigated the spatial variance and measured several factors to understand the breeding phenology for all three birds.
Han et al. [26] studied the breeding habitats for black-necked cranes in Central Asia using ML. The result showed the
ability to predict the birds’ breeding distribution using the species distribution model. Furthermore, they presented the
rank of each factor that affects the bird. Iijima et al. [27] examined the dynamic seasonal change in bird assemblages.
Biological indicators offer essential information regarding the general condition of an ecosystem and the effects of
environmental changes or disturbances in the context of environmental monitoring or ecological evaluations. In Table 2,
the authors summarized several papers using the three indicator types. Also, the table illustrates the different objectives
for each and identifies various notes in each article.

Some other indicators or factors can be highlighted in this paper as they provide different points of view in studying
forests. These factors are elevation and distance from the road. Elevation often affects air temperature, as a higher
elevation will generally experience a cooler temperature. This factor can help in understanding the habitat preferences
of different species. For example, Wu et al. [28] studied the impact of elevation and the relation of temperature and
humidity on the growth of leaf phenology in three plant types in a subtropical forest in China. Huerta et al. [29] studied
snow depth at different elevations and locations within the forest. The distance from the road is another factor that
highlights the impact of humans on forests. At the same time, Han et al. [26] considered the distance from the road as a
factor when studying the breeding habitats for the black-necked crane. Mi et al. [30] used the distance from the road
to generate the best possible prediction habitat for great bustards. All of these factors can be classified into various
categories, such as physical characteristics or human impact.

Table 2: Summary of indicators
Paper Indicators Objective

E M B

[19] The paper aims to assess the health status of Panca Indah Lestari Community Plantation Forest, a plantation forest.
[20] The paper aims to study the health status of a Conservation forest in Indonesia.
[22] The paper aims to study the impact of meteorological events, especially air temperature, on plants.
[23] The authors are studying climate change in Indonesia’s degraded tropical forest.
[24] The paper aims to assess the bulk snow isotopic in forested (pine and birch) and open areas.
[25] The paper aims to investigate the impact of microclimate air temperature on three different types of birds in a specific UK forest.
[26] The paper aims to study the breeding habitats for Black-necked Cranes in Central Asia by using ML.
[27] The paper aims to study the dynamic seasonal change in bird assemblages in a specific mountain in Japan.

E:

Ecological. M: Meteorological. B: Biological. : Refers to the main focus of the paper. : Use as a support factors.

3.3 Forest Indexes

Scientists consider several indicators to study forest health by utilizing or creating indexes. Spectral indexes, such as
the NDVI and LAI, are commonly used to assess forest health. These indexes provide valuable information regarding
vegetation cover, health, and productivity, which are essential for forest ecosystems. The NDVI refers to the ability to
measure the amount of green vegetation in a given area, and it is calculated based on the reflectance of near-infrared
(NIR) and red light wavelengths captured by remote sensing. In remote sensing, bands refer to specific wavelength
ranges or channels in the electromagnetic spectrum captured by sensors or cameras. These bands recorded data and
captured information regarding the Earth’s surface or the observed objects. Landsat measured NDVI differences to
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assess the forest’s change to determine the forest’s health status in Italy [31]. Bolten et al. [32] used the NDVI with
other factors, such as soil texture, to monitor crop growth stage and condition and, subsequently, globally forecast
agricultural yields. However, we focused on identifying all forest indexes, not just spectral ones.

The LAI is another popular index in studying forestry, agriculture, climate change, and biodiversity. The LAI is defined
as the ground area covered by the plants [33]. The LAI is an essential factor in studying forest health. Although in
situ measurement is one possible technique to measure the LAI, it is time-consuming. Conversely, a remote sensing
technique can provide a solution to measuring the LAI with an acceptable accuracy rate. Pope & Treitz [34] showed the
importance of LiDAR in measuring the LAI. By contrast, both the NDVI and LAI are unsuitable for directly measuring
individual trees’ physical attributes.

We investigated several articles containing the “forest health index” between 2000 and 2022. We found a few papers
that have directly used the word FHI in their title. For example, Olthof & King [35] created an FHI (image-based
health index) regarding the most significant image spectral, textural, and radiometric fraction measures. Huo et al. [6]
developed a new index, Normalized Projected Red & SWIR (NRPS), to detect the bark beetle attack on European
spruce forests. The NRPS index used a red band and a shortwave infrared (SWIF) band to detect the bark battle on a
tree. Winarso et al. [36] proposed a new index aimed at developing a satellite-based Mangrove Index as an alternative
to NDVI. Unlike NDVI, which relies solely on one parameter, this novel index offers a more comprehensive approach
to monitoring mangrove forest health.

Most of the aforementioned papers used remote sensing to develop indexes, and they measured different scale sizes.
Table 3 summarizes selected papers focusing on the FHI.

Table 3: Summary FHI
Paper Index Aspect Time-Frame Sensor & Dataset Information

[35] Image-based health index Tree growth Mid of Augests 1997 Multispectral
[36] Satellite-based mangrove index Tree growth April 10, 2018 Landsat 8
[37] Tree July 27, 2009, Hyperspectral
[38] Floristic quality assessment index (FQAI) Species diversity 2018-2021 Existence dataset- survey collection
[6] Normalized projected red and SWIR (NPRS) Bark beetle (insect-disease) 04/07, 07/26 and 10/07 of 2019 Sentinel-2 satellite

Table 4 shows several indexes that can be used for several aspects. This table identifies several indexes and shows that
the primary index used is the NDVI, and the second is the LAI. The table exposes several elements. Indexes can help
study several aspects, for example, using the NDVI as a supporter factor to investigate the tree species or the probability
of fire predictions. At the same time, the Aspen Center for Environmental Studies has launched a website dedicated to
exploring and monitoring Colorado State’s forests. Recognizing these forests’ critical role in the local ecosystem, the
center’s mission is to aid in future planning and to safeguard this vital ecosystem component. To achieve this, they have
developed the FHI, a tool that annually measures 12 key indicators on a large scale. These indicators are temperature,
extreme temperature, precipitation, frost-free days, stream flow, bear mortality, snowpack, soil moisture, critical fire
risk, resource use, ozone levels, and insect and disease prevalence. This website is a valuable resource for understanding
and preserving the health of Colorado’s forests and the broader ecosystem they support [39].

In conclusion, forest health assessment involves a complex interplay of various factors such as the forest type,
geographical location, elevation relative to sea level, distance to roads, and prevailing climatic conditions. The diverse
nature of these elements within each forest presents a challenge when establishing a specific index for assessing or
monitoring a particular area’s health. Developing such an FHI demands effort and careful consideration. In addition to
the factors mentioned earlier, it is essential to emphasize the selection of appropriate indicators and tools.

3.4 Scales

Scaling is essential in studying environmental systems and a forest’s ecosystem. Understanding forest health requires
considering various scales, such as stand, landscape, and individual tree levels. Each scale offers unique insights into
ecological processes, impacts, and management strategies. Scales refer to different analyses and perspective levels of
forest health. For instance, a single tree refers to individual trees, a stand scale refers to a defined area, and a landscape
scale refers to a broader area than a stand scale. In addition, other words can be used to describe the size or the scale,
such as the fine scale, which mainly covers the same area as the stand scale. Several researchers identified directly or
indirectly the scale’s effect in developing the monitoring system model. For example, Ćosović et al. [14] identified the
remote sensing technique for data collection as more cost-effective and faster than the field at both stand and landscape
scales. Moreover, studying a tree as a validation indicator in different forest areas (production forest, protection forest,
and conservation forest) at the landscape level plays a role in understanding the forest’s status [57].
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Table 4: Summary of the indexes.
Paper Index Aspect Sensor Type

NDVI LAI VI NDWI SMI SDI TVDI FWI GNDVI NDSI RSI DSI R.A. CVI

[40] ✓ ✓ ✓ ✓ Crop Management- Agriculture Satellite
[32] ✓ Agriculture Satellite
[41] ✓ ✓ Soil Moisture Satellite
[42] ✓ Soil Moisture Satellite
[43] ✓ Forestry UAV
[44] ✓ Fire Detection UAV
[45] ✓ Canopy Fuels UAV
[46] ✓ Above Ground Biomass UAV
[47] ✓ Forest Tree Phenotype UAV
[48] ✓ ✓ Herbicides UAV
[49] ✓ ✓ ✓ ✓ ✓ ✓ Tree Defoliation UAV
[50] ✓ ✓ Tree Height UAV
[51] ✓ ✓ Generate Forest Maps Satellite
[52] ✓ ✓ Tree Damage Satellite
[53] ✓ Forest Health Satellite
[54] ✓ Tree Volume UAV
[55] ✓ Leaf UAV
[56] ✓ Crop Management- Agriculture Satellite
[57] ✓ Tree Status Satellite
[58] ✓ Fire Detection

UAV: Unmanned aerial vehicle.NDVI: Normalized difference vegetation index. LAI: Leaf area index. VI: Vegetation index. NDWI: Normalized difference water index. SMI: Soil moisture index.

SDI: Stand damage index. TVDI: Temperature vegetation dryness index. FWI: Fire weather index. GNDVI: Green normalized difference vegetation index. NDSI: Normalization of the different

spectral indices. RSI: Spectral ratio index. DSI: Differential spectral index. R.A.: Reflectance absorption index. It summarizes the indexes in the remote sensing approach section 4.3. CVI:

Cumulative vegetation index.

3.5 External Factors

Other factors must be highlighted in studying forest health, including natural disasters such as wildfires or floods, which
are hard to prevent. Still, scientists can provide solutions to minimize the loss due to these events. Researchers have
developed techniques to reduce the impact of natural disasters, or even prevent them when possible, by utilizing various
indicators. These techniques include building prediction models to forecast fires and developing systems to detect fires
in their early stages. For instance, one approach involves utilizing a drone equipped with a thermal camera to detect
wildfires [18], thereby minimizing forest damage. In addition, studies have been conducted to assess the capabilities of
UAVs in measuring canopy fuels and forest structures in the United States to mitigate wildfires in the region [45].

Flood is another natural phenomenon that can affect a city and a forest. Floods can significantly affect forests, disrupting
the delicate balance of these ecosystems. Accordingly, Kim et al. [59] generated a multi-sensor system to explore the
ability to examine the elements behind flood severity in Cambodia. The authors investigated the relationship between
deforestation and flooding in Cambodia, the ninth most vulnerable country to natural disasters in the world, in 2011.

4 MEASUREMENT APPROACHES

Forest health status monitoring has gained significant attention in recent years in public discourse. Scientists and
researchers have been actively exploring various methodologies and techniques to address the challenges of forest
health monitoring after defining forest health and the elements and attributes used to measure forest health in Section 3;
this section will cover three different approaches and tools to measure forest health. The first is field observations in
section 4.1, then ground-based sensors in section 4.2, and the last is remote sensing in section 4.3.

4.1 Field Observations

Field or site observation is a method to investigate specific phenomena in a particular location to measure a certain
aspect. It requires a physical presence on the site to gather data. Field observation plays a crucial role in forest health
monitoring as it provides the ability to assess the ecosystem of forests, allows accurate data collection, and aids in
developing a support decision system. The field observation or site observation in this review refers to researchers,
scientists, ecologists, or naturalists investigating the forest health status from certain aspects to provide information or
measure specific elements.

Data gathering for field or site observation usually requires specific tools and a certain amount of knowledge. This
technique involves being physically present in the field to study various aspects of the environment, including ecological
or biological indicators. Tools such as meters, cameras, tapes, binoculars, and sheets are examples of what a researcher
can carry during the investigation. For instance, binoculars are one of the tools that researchers usually carry during their
field observation to investigate different elements, such as the existence of birds, birds’ diversity, tree species, and the
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tree level of damage. Binoculars are used to explore bird diversity in Sabah, Malaysia, to determine the health condition
of the forest [60]. Furthermore, Doria et al. [61] claimed that studying primates’ existence indicates identifying this
area’s health status. During observing time, researchers may perform techniques such as visual observations, data
collection through sampling methods, recording measurements, taking photographs, or making sketches.

Human observations and laboratory work will help investigate the impact of pests and diseases on plantation forest health
in Vietnam [62]. Tree crown condition and diversity can be measured using a 50-m magic card, camera, note-taking pad,
stationery, and tally sheet [63]. Other tools can be used during field observations, such as a digital laser tape measure to
measure tree height or a camera to document the existence of birds or investigate tree diversity.

Figure 3 illustrates several tools that researchers can use, one or all, during the site observation. Also, we identified
several attributes that can be measured using these tools. The format refers to the techniques of cleaning the data to
make it more beneficial. Then, the authors define two analysis techniques as an example to process the data and provide
an idea about the health status of the specific area.

Meter Tape Binoculars SheetResearecher Camera

Tools Applied Analysis Techniques 

Understand the Health
Status in this Plot

Statistical Analysis

Spatial Analysis

Tree Hight  Tree Species BirdsTree Diameter 
Data 

Format

Data Storage

Figure 3: Overview of field observation system structure.

Field observation involves collecting and analyzing data to gain insights into ecological processes to validate existing
theories or hypotheses, species interactions, and environmental changes. There are several techniques to study field
observation data, such as descriptive statistics, spatial analysis, data mining, and machine learning. These techniques
can help generate a system to measure a particular area in a forest. For example, Pranolo & Widyastuti [64] developed
an intelligent agent for urban forest health monitoring using the simple additive weighting (SAW) method. The authors
used the iLIS software to represent the collected data to the users and used SAW to analyze the data. As a result, the
authors help the end users document their work and understand the health status of a particular area from a certain point.
In addition, the machine learning approach played a role in developing a model ( boosted regression tree models) to
study the variables that influence the vegetation plots and the air temperature [23].

Field observation can provide accurate information regarding a specific phenomenon or situation and is used as ground-
truth data to validate the results from other approaches. In addition, it can measure different ecological or biological
indicators essential to forest health management. By contrast, the drawbacks of this method are high cost and limited
accessibility, which make scientists investigate other techniques to evaluate, predict, and monitor the health condition of
a forest. One of these techniques is remote sensing, which can streamline data collection, allowing more information to
be assessed more accurately and efficiently [14]. However, further research must ensure that these tools are accurate
enough to be reliably used in various ecologies across different geographical scales. Until then, researchers can rely on
data collected from physical surveys of forest stands (looking at factors such as tree size and density) to help inform
management plans and decision-makers and to prepare forests for an uncertain future.

4.2 Ground-Based Sensors

Ground-based sensors refer to sensors installed in a forest to gather data regarding the environment of this plot. Ground-
based sensors play an essential role in determining a forest’s health condition. These sensors measure temperature,
soil, humidity, snowpack, and vibration. Soil moisture is identified by FIA as one of the indicators for forest health
monitoring in the United States. In addition, temperature dramatically affects tree growth, vegetation level, and tree
crown condition. Regarding ground-based sensors, we overview the system structure in Figure 4. A network of diverse
sensors is strategically positioned in the field to continuously monitor real-time data, encompassing variables like
temperature, humidity, and soil moisture. The gathered data seamlessly transfers to the nearest computing or edge
node through wireless communication protocols such as WiFi, LoRaWAN, and NB-IoT. Subsequently, the edge node
undertakes the crucial task of pre-processing the data before promptly transmitting it to the designated server in the
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cloud via the Internet gateway. Within the cloud infrastructure, one or more servers serve as a database and data
processing hub, efficiently handling all collected data from the field. Concurrently, this setup facilitates the visualization
of post-processed data on a user-friendly dashboard.

Internet Gateway 

Power Supply

 Edge Computing Node 

Server

Data Processing

Forest Health Monitoring
Dashboard

Symbol Key
Humidity Soil Moisture Temperature Vibration Sound WirelessWire

Figure 4: Overview of ground-based sensors system structure.

This section investigates and targets different indicators that are related to ground-based sensors. Those indicators,
like temperature, snowpack, stream flow, precipitation, ozone, soil moisture, and fire risk, are identified by the Aspen
Centre for Environmental Studies. The center studies the FHI in Colorado. The center identified 12 indicators that
provide information regarding the health status of the forest to the forest management department on their website
[39]. In addition, it influences other countries and societies to develop a forest health monitoring system, especially in
places that are affected by wildfires. This section targets different meteorological indicators and other indicators that are
related to ground-based sensors. Temperature is an essential parameter in meteorology and is commonly measured
using various types of temperature sensors. Choosing the type and style of the sensors relates to the project’s objective,
the techniques for collecting data, and the budgetary cost of the project; all of these factors play a role in determining the
type of sensors. By collecting temperature data, we can have insights into the health condition in that area by applying
different types of analysis. The authors generated a Sankey diagram for ground-based sensors with different indicators.
The summary is shown in Figure 5. The first level is the approaches, followed by the second level for sensor types, the
third level for the applied model, the fourth for the domain, the fifth for the research subject, and the forest health.

Figure 5: Sankey diagram for ground-based sensors with different indicators summary.
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• Temperature plays a role in tree leaf phonology, as Wu et al. [28] studied the impact of elevation and the
relation of temperature and humidity on the growth of leaf phonology in three plant types in a subtropical forest
Chain. Xu et al. [65] used air temperature as a factor to generate a model to predict leaf growth. Studying
temperature leads to understanding ecosystems; different forests react differently to weather. Wiesner et al.
[66] investigated the ecosystem’s response to extreme heat and cold events in three long leaves in the savanna
to explore the impact of climate on forest health. Also, temperature plays a role in birds’ breeding phonology
as it is affected by the temperature as Shutt et al. [25] provided a research paper regarding territory-level
temperature influences on breeding phonology and reproductive output in three forest pas-serine birds. In
addition, several researchers have approved the impact of temperature on bird distribution [16] and [67] bird
abundance.
As we discussed above, the impact of temperature sensors in understanding the forest, here we illustrate several
types of sensors: ATMOS-14, Ther-machron iButton DS1921G, HOBO UA-002–08 8 K Pendant Temperature,
SM2110, and SHT31 sensors. In Table 5, we will summarize several papers covering different sensors in the
ground-based. Moreover, they illustrate several indicators and define the models, aspects, and study areas.

Table 5: Summary of several indicators for ground-based sensors
Paper Indicators Model Aspect Location

T P S SM FR

[28] ✓ LR Tree leaf growth Chain
[65] ✓ AAT Tree leaf growth China
[68] ✓ MG Tree leaf growth USA
[25] ✓ LM Breeding phonology U.K.
[16] ✓ DO Birds distribution USA
[67] ✓ N-mixture - PCA Bird abundance USA
[23] ✓ ML- BRT Forest structure Indonesia
[69] ✓ Forest ecosystem China
[70] ✓ RF Water stress index China
[66] ✓ Agriculture USA
[22] ✓ LR Plant productivity China
[71] ✓ ✓ Cycling of precipitation Switzerland
[24] ✓ MLR Water isotope Siberian
[72] ✓ Semivariogram Scaling Canada
[73] ✓ SNOW-17 Watersheds USA
[74] ✓ Hydrological, meteorological Canada
[75] ✓ CLS Cold content Canada
[29] ✓ MLR - LPL Interaction between vegetation and snow processes Chile
[76] ✓ LM Bark beetle
[77] ✓ PC Volumetric soil water content Malaysia
[78] ✓ TPHT Soil respiration India
[79] ✓ RMSD- CC Soil moisture Mexico
[80] ✓ LM Depth to water Canada
[81] ✓ MLR Fire risk Brazil
[82] ✓ ML Fire risk Brazil
[83] ✓ ML Fire risk Thailand
[84] ✓ ML Fire risk Algeria
[85] ✓ ML Fire risk Lebanon

T:

Temperature. P: precipitation. S: Snowpack. SM: Soil Moisture. FR: Fire Risk. "LR": Linear regression. "LM": Linear mixed. "ML" : Machine learning. "BRT": Boosted regression trees. "RF":

Random forest. "AAT": Accumulated temperature. "PCA": Principal component analysis. "MLR": Multiple regression. "RMSD": Root Mean Square Deviation. "Micrometeorological": MG.

"DO": Dynamic Occupancy. "CLS": Canadian land surface scheme. "LPL":local polynomial. "PC": Pearson correlation. "TPHT": ANOVA-Tukey post hoc test. "CC": Correlation coefficient

• Snowpack refers to the amount of snow on a mountain during winter. This meteorology indicator provides
an angle for understanding the expected amount of water in a specific place. This indicator can be detected
using different approaches, but we focus here on ground-based sensors. Studying the snow’s water isotopes
will help trace hydrological and ecological processes. Exploring the impact of the forest canopy in snow bulk
can help understand hydrological and environmental processes in forested (pine and birch) and open areas
[24]. Moreover, scaling and location affect snowpack melting. Beaton et al. [72] investigated scaling issues by
measuring the snowpack in a northern Great Lakes-St Lawrence forest. Another aspect that influences the
snowpack is the type of snowpack, as they are a factor in investigating the amount of net water input to the soil
[73]. Various ground-based sensors are there to measure the snowpack, such as a 60 cm snow coring sampler
VS-43, SR50, and an ultrasonic snow depth sensor.
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• Soil moisture’s stability is an essential indicator of forest health and is considered a fundamental data source
for agriculture. In addition, soil moisture is critical in the study of climate change [86]. Soil moisture refers
to the amount of water being held in the ground. Remote sensing and ground-based sensors are the most
common techniques for measuring soil moisture. There are several published articles regarding remote sensing
techniques measuring soil moisture from different perspectives, for example, [87], [88], and [32]. Another
technique is a ground-based sensor where [77] used PR2 sensors to investigate the spatial distribution of
volumetric soil water content (VSWC) in tropical rainforests. Further, many soil moisture sensors are available
to measure soil moisture, including PR2, ADR, and Q-Box SR1LP.

• Fire risk is another indicator for forest health monitoring. (The European Forest Fire Information System) saw
an average of 1 million acres burned annually between 2010 and 2019, including countries from the Middle
East and Northern Africa (CDP, 2022). As a result of the wildfire, Delgado et al. [81] created a new forest fire
index in Brazil to reduce forest damage. In addition, Dubey et al. [89] explored the ability to detect fire in an
early stage to reduce the amount of damage. Moreover, Kelleher et al. [90] developed a low-cost system to
evaluate PM2.5 to study the forest fire risk. In line with Lertsinsrubtavee et al. [83], the researchers employed
a cost-effective wireless sensor network to identify forest fire incidents in Thailand, focusing on the PM2.5
and CO parameters. They utilized the J48 classification algorithm and introduced a decision tree model to
predict the risk of forest fires. Additionally, other studies [84] [82] also adopted the J48 classification model,
incorporating meteorological variables such as temperature, relative humidity, and wind speed to detect forest
fires in Algeria and Brazil, respectively. In a distinct approach, Karouni et al. [85] utilized the ID3 algorithm
for forest fire detection in Lebanon, relying solely on temperature and relative humidity.

• Ozone refers to a chemical (O3) compound found on the upper level of the atmosphere. Ozone affects different
attributes of a forest as it directly affects tree growth. Investigating the effect of temperature and ozone on tree
health can give insights into the impact of ozone on forest health [91].

4.3 Remote Sensing

Over the past decade, remote sensing has revolutionized the ability to monitor forests with an acceptable accuracy rate.
With different accuracy capabilities, remote sensing can measure several forest attributes, such as the vege Remote
level and tree crown. Remote sensing has different definitions: for example, Mcroberts et al., 2010 [51] defined it as
observing and sensing the Earth’s surface from a distance. In addition, Nicholas M. Short [92] described it as detecting
and measuring radiation, particles, and fields from things beyond the location of the sensor device. Another definition
of remote sensing is science, art, tool, or technique [93]. Satellites, manned aircraft, or near-surface (drone) sensors are
tools utilized in remote sensing. Figure 6 illustrates the three measurement approaches, the relation between operations,
the spatial resolutions, and the different scales.

High

Moderate

Single Tree Stand Scale
Landscape

Scale

Spatial
Resolution

Landscape
Scale: Refers to a
wider area than
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Single Tree: Refers
to individual trees.
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to a defined area.

Figure 6: Different approaches of remote sensing.

4.3.1 A satellite

is an object intentionally placed into orbit for several purposes, including communication, weather monitoring, and
scientific research. A satellite in this review relates to collecting information regarding forests from different perspectives,
such as vegetation level, environmental change, or other goals. Satellite usage dramatically affects studying various
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forest parts, including forest health monitoring, generating a warning system, and developing a prediction model. We
illustrate several published papers demonstrating the use of several satellite applications that have contributed to various
forest aspects. For example, for crop management and agriculture, Becker-Reshef et al. [40] discussed the GLAM
monitoring system’s operational components and new developments and the future role of Earth observations in global
agricultural monitoring, especially in studying timely food supply information.

Mohamed et al. [56] studied the relationship between the amount of soil moisture in the ground and crops in Egypt,
specifically the Nile Delta, based on remote sensing data and synthetic aperture radar (SAR) Sentinel. In addition, Chen
et al. [41] and Ahmad et al. [42] investigated soil moisture using satellite remote sensing. Chen et al. studied if the
temperature vegetation dryness index is suitable for estimating soil moisture and if soil moisture is significantly affected
by tree species in the Laoshan forest. Ahmad et al. studied the ability to evaluate soil moisture content using remote
sensing data for the selected Lower Colorado River Basin sites.

Lu et al. [53] focused on five forest farms in Beijing, identified the influencing factors of forest health, and examined
how they contribute to revitalizing rural areas. The research paper explored the pattern of health conditions for different
types of forests, based on their age and category, such as young, middle-aged, near-mature, mature, and over-mature
forests. In addition, it looks at the conditions in the “shelter forests” and “special-purpose forests” categories. Anwar
et al. [57] aimed to understand the characteristics of three types of forests by identifying landscape characteristics
regarding the levels of damage to particular kinds of trees in three different forest functions. Tian et al. [94] explored
how different sensors, such as satellite and aerial stereo camera systems, can monitor and detect changes in forest
areas. Moreover, satellites can detect and monitor insect attacks and catch fire. For example, Sahin [52] observed the
larch forest insect in the early stage, and Wang et al. [58] proposed the used of classified animal tracking data and
thermal data for forest fire detection, using animals as mobile biological sensors(MBS). Stojanova et al. [95] leveraged
datasets representing various regions of Slovenia, namely Kras, Primorska, and Continental Slovenia. Their approach
encompassed the utilization of several variables for the purpose of forest fire detection, incorporating a comprehensive
array of data sources such as geographic information systems (GIS), MODIS imagery, and meteorological data.

There are several features and drawbacks to satellite monitoring a forest. One feature that satellites provide is the ability
to monitor a wide range of areas. However, one of the drawbacks of a satellite presented by Ecke et al. [11] is that
satellite imagery, used successfully in temperate and boreal regions to record phenological patterns and their changes in
response to climate, is more difficult to interpret in tropical forests. In addition, weather conditions and cloud cover
make it hard to collect continuous time series data for multispectral imagery.

4.3.2 Manned aircraft

or human-crewed aircraft is a remote sensing technique requiring a pilot. It is a tool used to gather information
regarding one or more objects from a distance. The drawbacks of this technique make it unfavorable to use, such as
cost, permission in most cases, and the quality of the image “resolution” negotiable. Guimarães et al. [96] claimed that
satellite data’s spatial and temporal resolutions are often unsuitable for achieving regional or local forest objectives with
traditional aerial and space-based SAR platforms. By contrast, even if their products have a more suitable spatial scale,
manned aircraft are expensive when they are frequent. Time series monitoring is desirable. In addition, Xiang et al.
[97] described the data from manned aircraft and satellite platforms as susceptible to cloudy sky conditions, which
attenuate electromagnetic waves and lead to loss of information and data degradation.

4.3.3 UAVs

Ecke et al. [98] defined it as a drone or unmanned aircraft. A drone is a type of aircraft that operates with a remote
control, or that is auto-programmed, and it has been used in various forest applications. It is important to note that the
Department of National Defense and Canadian Armed Forces (DND/CAF) has exchanged the term “unmanned air
vehicle” for “uncrewed air vehicle” to ensure gender-neutral terminology [11]. Accordingly, Seifert et al. [99] identified
that drones use two types of sensors in a forest: the first is laser scanning or airborne LiDAR (ALS). Unmanned airborne
vehicles are low-altitude remote sensing platforms, less affected by atmospheric factors during data acquisition. They
offer the advantages of affordability, simple operations, fast imaging speed, and high spatial and temporal resolutions
[49]. The second is image-based sensors UAV, which provide unprecedented spatial and temporal resolution imagery
[100]. In Figure 7, the authors identified the satellite and UAV remote sensing techniques and represented several
models and aspects connecting remote sensing with forest health. In Table 6, the authors compare the three remote
sensing approaches from different perspectives: cost, permission, distance, weather conditions, temporal resolution, and
spatial resolution. This table presents fundamental trends, but their manifestation may vary depending on the project’s
objectives, tools, and methodologies.
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Figure 7: Sankey diagram for remote sensing.

Table 6: Compares different techniques of remote sensing
Satellite Manned Aircraft Near-Surface Remote Sensing (UAV)

Cost High High Low to Moderate
Permission May required Need permission No need in most cases
Distance Large area Medium area for fuel reasons Small area for batteries reasons

Weather Conditions Low sensitive Sensitive Sensitive
Temporal Resolution Moderate to High Moderate to High High

Spatial Resolution Moderate to High High High

UAV Applications UAV applications have become an increasingly popular forest monitoring and management tool,
with applications ranging from wildfire prevention to tree damage detection. UAVs are valuable tools in studying forests
and ecosystems—UAVs performed in several applications, such as UAVs for wildfires or UAVs for trees. First, the use
of UAVs for wildfires has become a growing concern due to their severe impact on ecosystem degradation. Researchers
have developed various techniques to address this issue, including using satellites, crewed aircraft, and UAVs to monitor
and detect wildfires. Recently, UAVs have been a technique that researchers focus on to detect wildfires with the ability
to cover a wider area and within an acceptable cost. A multi-model UAV-collected dataset of dual-feed side-by-side
videos, including RGB and thermal images, has achieved higher accuracy than single-channel video feeds using a deep
learning-based methodology [18].

Moreover, researchers emphasize the importance of studying forest fires and their impact on ecological degradation.
Researchers suggest that the current observation of forest fires requires constant monitoring of all potential locations,
particularly those with high fire risk [44]. UAVs have proven invaluable in monitoring and enhancing the quality of
wildfire detection. In this regard, researchers proposed a color code identification, smoke motion recognition, and fire
classification algorithm to improve the accuracy of detecting forest fires. Given the possibility of false alarms, the
authors investigated methods to increase the accuracy of detecting forest fires [44].

Second, UAVs for trees from an ecological perspective can monitor weed vegetation, measure tree height, and
estimate deforestation rates. Nowadays, many scientists use UAVs to investigate the status of the forest through tree
characteristics, to evaluate soil moisture, or to enhance the quality of the citizen’s property or public forest by developing
irrigation techniques. Above-ground biomass (AGB) is a critical parameter for many environmental studies in reducing
forest degradation. UAVs can measure the AGB in tropical mountain forests using Structure from Motion (SfM) with
RGB sensors to estimate the tree height and the breast height (DBH) diameter, which are the inputs in calculating the
AGB [46]. In addition, Brede et al. [54] studied the capability of estimating AGB using UAV-laser scanning. They
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found that measuring the AGB for a single tree using traditional forest inventory methods that use allometric equations
has low accuracy, is hard to implement, and is expensive. As a result, the author is investigating the ability to estimate
AGB using UAV-LS.

The attributes of trees, including their height, canopy cover, and degree of defoliation, are important indicators of forest
health, as they provide information on the ecological and environmental conditions of the ecosystem. Measuring the
tree height for intensive forest monitoring using UAV-photogrammetric showed the ability to measure the tree height
with the same accuracy level as field measurement [101]. In addition, UAVs can measure the physical attributes of
Pinus halepensis trees [47]. Zhang et al. [49] tested the ability of UAV-Hyperspectral to measure the defoliation of trees
during the Dendrolimus tabulaeformis Tsai et Liudisaster.

Other areas that UAVs have discovered in the forest ecosystem, such as Näsi et al. [5], identify bark beetle damage
at the individual tree level of an urban forest. In addition, Camarretta et al. [13] studied the capability of active and
passive sensors to measure the structure of the forest and the ability to restore it. Furthermore, Lu et al. [53] determined
the effects of forests on revitalizing rural areas in five forest farms in Beijing, and Shin et al. [45] studied the capability
of UAVs to measure the canopy fuels and forest structure in the United States. Lastly, the UAVs showed the ability to
measure the physical attributes of a tree.

UAV Approaches UAVs are becoming more commonly used in forestry because of their advantages, such as spatial
resolution, cost-effectiveness, adaptability, and more frequent visitations to relatively small areas. Ecke et al. [11]
identified different approaches to UAVs: first, an image-based approach (passive approaches), which includes RGB,
multispectral, hyperspectral, and thermal. Second is Laser scanning, or airborne LiDAR (active sensors). Figure 8
shows four different sensor types for the image-based approach.

Thermal Multispectral HyperspectralRGB

Figure 8: UAV sensors type.

• Image-based approach (Passive approaches)
– RGB: a camera that can be connected to a drone flying to a high altitude and can capture various aspects

by considering several steps, such as applying a filter to get a better result. In addition, the visible portion
of the electromagnetic spectrum spans frequencies between 400 and 700 nm. The RGB, considering the
preprocessing steps, will help researchers calculate plant vegetation.

– Thermal: Camera sensors for thermal imaging can detect infrared light with a wavelength between 7,500
and 13,500 nm. A thermal sensor can translate the observed energy into a temperature measurement.
Modern cameras can detect numerous infrared energy bands, a capacity known as multispectral or
hyperspectral. However, it frequently comes at the expense of reduced spatial resolution.

– Multispectral: In the 400–1000 nm range, multispectral sensors frequently measure certain “bands” of
light, such as blue, green, red, red edge, and near-infrared. These bands will measure various vegetative
traits, including stress and health. As a result, multispectral can assess the condition of a forest.

– Hyperspectral: Sensors can evaluate the vegetation level better than multispectral sensors, which can
measure large amounts of data. The number of data that the hyperspectral can process increases the
accuracy rate.

Table 7 summarizes the differences between the wavelengths of each image-based approach type. Wavelengths
refer to the electromagnetic radiation (light) bands used for data collection and analysis. Wavelengths are
important in drone-based remote sensing because they enable researchers to collect information regarding the
Earth’s surface and features.

• Laser scanning, or airborne LiDAR (active sensors)
Airborne laser scanning (ALS) can be used in forest inventory. Many countries around the world use ALS in
forest inventories. Nevertheless, acquiring ALS data requires a degree of planning and investment, making
these data sources cost-effective only on a large scale.
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Table 7: Sensor types and corresponding wavelengths
Sensor Type Wavelengths

RGB 400–700 nanometers (nm) band
Multispectral 400–1000 (nm) band
Hyperspectral Similar spectra as multispectral sensors but significantly differ in band numbers and widths.

Thermal 7500 and 13,500 (nm) band

UAV Parameters UAVs have significantly helped improve the techniques for measuring and monitoring forests.
Accordingly, we illustrate several factors that affect the use of UAVs in monitoring or evaluating a forest. The UAV
factors are summarized in these factors: altitude, overlap, speed, resolution, and weather conditions. Therefore, the
success of UAVs in forest monitoring relies heavily on their flight parameters, including altitude, overlap, speed,
resolution, and weather conditions. These factors play a crucial role in the accurate reconstruction and extraction of
data. Recent studies have searched for the impact of these parameters on UAV image extractions, such as the research
conducted by Seifert et al.[99]. Similarly, Tmušić et al. [102] identified a range of parameters that affect UAV flight
time, such as weather conditions, payload, battery power or engine fuel, and UAV type. These findings highlight the
importance of carefully considering UAV flight parameters when developing a forest health monitoring system. Table 8
summarizes several UAV parameters.

Table 8: UAV characteristics
Paper Overlap Altitude Flight Speed Sensor Type UAV Type

[47] 80% 100 m RGB-Multispectra-Thermal Mikrokopter OktoXL
[46] 90% 300 m 9 m/s RGB-Multispectral DJI Inspire I
[45] 85-90% 120 m 40–90 km/h Multispectral SenseFly eBee fixed-wing UAV
[48] 85% 90 m Multispectral A co-axial quad-copter UAV
[50] 75% 75 m 4 m/s Multispectral JI Matrice 600
[49] 70-60% 100 m Hyperspectral DJI Spreading Wings S1000+multi-rotor octocopter
[5] 75% 500 m Hyperspectral

[103] 90% 55 m 8 m/s LiDAR-Hyperspectral DJI M600 ProUAV
[104] 100% 50 m 2.0–4.0 m/s Laser sensor Riegl RiCOPTER with VUX-1UAV
[105] 40 /150 m 3.6 m/s Laser sensor Eight-rotor UAV
[54] 90 m Laser sensor VUX-1UA
[106] 90% 109 m UAV with in-built true colour camera JI Phantom 3 Professional quadcopter
[101] 80% 75 m Octo XL 6 12 Octocopter mounted with a fixed lens
[55] 90-60% 300 m DJI spreading wings S900

UAV Data Data acquisition approaches in UAVs consider different parts, such as the specific task to which the drone
flies to achieve, determining the area of this task, weather conditions, and other parameters such as altitude (flight
height), speed, and overlap (which help in improving image quality) [69]. The DJI UAV used Inspire 1 to collect data for
24 hours. The software was designed for precision flight to enhance flight characteristics. Data processing occurs after
gathering the data and translating them into valuable data. Most of the review studies in this paper relied on commercial
SfM software to create data products. Data analysis is a specific technique to measure and illustrate data to achieve
a particular result, and different algorithms are considered in UAVs, such as the automatic tree detection and crown
segmentation algorithm. Furthermore, machine learning has an impact on image recognition and tree classification.
Figure 9 illustrates the process of monitoring a forest.

FTP

FTP

FTP

Database
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Figure 9: Overview of remote sensing system structure.

In summary, remote sensing has demonstrated the ability to monitor forests under different circumstances. However,
relying on remote sensing to monitor forest health remains challenging. Dainelli et al. [107] clarified that in their
reviewed papers, 60% of the studies in the entire dataset collected ground data. This type of data is gathered by carrying
out field campaigns and measuring properties such as the size of trees, the species of trees present, and their health
status. It is often also collected using GPS to help with the accuracy of imagery products. Collecting ground data takes
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up many resources, such as time and money, and can be challenging over large areas and long periods. Further, Ecke et
al. [11] define in their paper that drone surveys can help to simplify and sometimes even substitute for specific tasks in
the field. However, drones’ general replacement of ground surveys for FHM still needs more investigation to replace the
field measurement. In Table 9, the authors illustrate several published papers regarding RS approaches by considering
each paper’s data acquisition techniques, tools, and aspects.

Table 9: Summarizes remote sensing measurement approaches
Paper Application Approach Aspect Sensor Type Data Acquisition Time-Frame

[40] Tree Image-based Agriculture Satellite NASA
[32] Tree Image-based Agriculture Satellite NASA 5 Years
[56] Tree Image-based Agriculture Satellite Synthetic Aperture Radar 1 Day
[57] Tree Tree Damage Satellite Global Navigation Satellite 4 months
[53] Tree Image-based Forest Structure Near-Surface Multispectral 2004, 2009, 2014

[106] Tree Image-based Vegetation Drone UAV data 1 Month
[9] Tree Image-based Tree Drone UAV data 3 Days

[46] Tree Image-based Tree Drone UAV data
[55] Tree Image-based Leaf Index Drone UAV data 20 Days
[49] Tree Image-based Tree Damage Drone UAV data 1 Month
[44] Wildfire Image-based FireRisk Drone UAV data

UAV Features, Drawbacks, and Challenges Advances in UAV technology are rapidly being adopted and imple-
mented for forests. As with any technology, UAVs offer benefits and limitations for forest monitoring and management.
Flexibility, relatively low costs, and the possibility of flying below the cloud cover. Furthermore, it provides a unique
spatial resolution and angle of view data and can offer lower ground sample distances (GSDs) [11]. In addition,
compared to traditional inventory surveys, UAVs cause less disturbance to the sample area’s flora and animals [106].

UAV observations also provided a unique insight and a historical record with the capacity for near real-time reporting
and validation of change events and processes in a forest. Despite the many advantages of UAVs, some shortcomings
are found. Ecke et al. [11] identified these drawbacks; the long-term monitoring of forests needs to be better presented.
The data pipeline from acquisition to final analysis often relies on commercial software at the expense of open-source
tools. In addition, other drawbacks related to the hardware include flights such as battery duration, payload weight, and
sensitivity to terrible weather conditions. Further, several challenges have been addressed in the UAV approach, such
as the lack of accuracy in detecting tree height, measuring AGB, and determining the flight time of the UAV. Other
challenges include the limitation of accessing underground attributes and battery duration. Despite all of the critical
challenges listed above, the advantages of using UAVs instead of other remote sensing platforms far outweigh the
drawbacks if used appropriately.

5 MULTI DATA SOURCES

The multi-data sources approach in forest health monitoring uses different types of sensors to gather data about certain
objectives. This technique gives researchers and forest managers better knowledge of a forest as it can cover various
aspects. Some common types of sensors are used in forest health monitoring (remote sensing sensors and ground–based
sensors). Remote sensing sensors, such as satellites, aircraft, or drones, can capture images and data regarding forests
from above. Conversely, Ground-based sensors are installed in a forest to capture environmental data. Combining
different types of these techniques or combining the same tools with varying types of sensors can lead to a better version
of forest monitoring.

Multi-data sources depend on integrating different tools, sensor types, or data collection methods. There are several
general techniques commonly used in the multi-data sources approach. One of these techniques is in-site, which collects
data regarding different local environments. Another approach is remote sensing, which detects an object from above.
The third approach is data fusion, which combines data from multiple sensors and sources to monitor a specific aspect
of a forest. Ultimately, machine learning can analyze, classify, and predict particular events from multi-data source
systems.

Data fusion is the third approach, and this technique has provided a wide range of vision in forest health monitoring in
recent years. Data fusion combines data from multiple sources to achieve a goal in a specific aspect. Data fusion has
been defined by Hall & Llinas [108] as “data fusion techniques that combine data from multiple sensors, and related
information from associated databases, to achieve improved accuracies and more specific inferences than could be
achieved by using a single sensor alone.” In addition, they defined the levels of fusing the data. The first level is a row
of sensor data when the sensor data are commensurate. However, when they are not commensurate, we move to the
other two levels, which work with the same feature/state vector level or decision level. To illustrate the idea, we provide
an example of row sensor data when gathering information for the same object, such as two visual images. Another
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example of a feature level is when you extract a feature from this object, such as tree crown detection. An example of
decision-level fusion methods example is weighted decision methods (voting techniques).

Data fusion and multi-sensor techniques showed the ability to monitor or create a decision support system. For example,
Yang et al. [109] generated a multi-system data fusion model that can analyze drought-induced mortality in a temperate
forest by estimating daily 30-m resolution evapotranspiration (ET) and the associated Evaporative Stress Index (ESI).
The paper studied the techniques in two different scales and used different satellite and measurement techniques to
detect and predict forest mortality due to drought. Further, multi-sensors can investigate the relationships between flood
severity, precipitation, and deforestation, which can increase the ability to understand the reason behind floods and can
reduce the damages [59]. The authors applied regression analysis techniques to measure the impact of precipitation and
deforestation on floods. The authors found that there is a significant relationship between precipitation and flood. At the
same time, flood and deforestation have no tangible relation.

Besides mortality and flood, tree diversity and species are other signs of forest health. UAVs and satellites have
played a role in enhancing the capability of detecting tree species. For example, Hartling et al. [110] used data fusion
and machine learning methods to investigate UAV-based multi-sensory ability to classify tree species in an urban
environment. The authors have explained the techniques for gathering data from UAVs with different types of sensors,
such as hyperspectral and multispectral. They also explained the role of machine learning random forest and Support
vector machine in this process. In addition, the authors provided the overall accuracy of this process in specifying
the classification of the trees and identifying the limitations and future work in this area. Moreover, Host et al. [111]
investigated the presence and abundance of ash trees in Minnesota forests. The authors used different satellite techniques
and combined a Landsat image with LiDAR to determine the existence of an ash tree. As a result, the authors found that
the overall accuracy of detecting an ash tree is 64% for all ash species and 72% for black ash, and accuracy increased
with the length of the time series. Table 10 identifies several methods and aspects for using data fusion in forest health
monitoring.

Table 10: Summarizes published papers regarding data fusion
Paper Sensor Type Aspect Location

[110] UAV- Different approaches Tree Species USA
[112] Field - Satellite - UAS (Drone) Forest Disturbances (Diseases) USA
[113] Field - Satellite - UAV (Drone) Crop Management USA
[114] Different Satellite Tree Species USA
[109] Different Satellite Tree Mortality USA
[59] Different Satellite Flood Severity Cambodia

[115] Different Satellite Crop Management Vietnam - Lebanon

Crop management is another field in which data fusion has increased the potential to work. Exploring the ability of
UAVs and satellites to measure soybean LAI, AGB, and leaf nitrogen concentration (N) [113]. The authors gathered
information regarding the canopy spectral information with canopy structure features using satellites and UAVs. The
authors applied different techniques (partial least squares regression, random forest regression, support vector regression,
and extreme learning regression with a newly proposed activation function) separately to UAV and satellite and then
integrated them to measure the accuracy of monitoring crops. As a result, the authors found that the overall accuracy
increased when they combined the UAV with satellite techniques rather than using them alone.

6 DISCUSSION

In this section, we synthesize the findings from this paper on the application of forest health. We identify common
themes and key insights for each section.

• Forest Health: The research has yielded valuable insights into the complexity of developing a forest index or
monitoring system, underscoring the significance of considering various factors. These factors encompass the
type of forest, geographical location, elevation, distance from roads, and local climatic conditions. Equally
critical is the objective of the index, project timelines, and the tools employed for its creation. When establishing
a forest index, thoughtful consideration of these elements positively influences ecosystem health, reduces the
risk of forest fires, and enhances habitat quality for diverse organisms. This, in turn, facilitates informed future
planning based on historical data. For instance, Winarso et al.[36] suggested that a satellite-based mangrove
index is an alternative to the widely utilized NDVI. It is important to note a finding: no comprehensive
framework or guideline exists for generating an index that characterizes a forest’s condition. However, as
mentioned before, some researchers investigate techniques to generate an index.

• Measurement Approaches: The authors have presented a review of the usage of each measurement and
provide several examples of using these technologies in studying forests. Figure 10 shows that remote sensing
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has garnered the highest number of reference articles, highlighting the significance of this technology in
modern research. Extensive references demonstrate the widespread use and recognition of remote sensing as
a powerful tool for studying various aspects of the environment. Remote sensing has shown its remarkable
ability to investigate diverse areas, including but not limited to tree damage assessment and wildfire monitoring.
These findings emphasize remote sensing’s invaluable role in enabling researchers to gather crucial data from
vast and inaccessible regions, offering unparalleled insights into ecological changes and natural disasters.

Figure 10: Techniques and aspects.

First, field observation is one of the techniques that researchers and scientists rely on during forest investigation.
We found that field observation has been used in most of the reviewed papers for collecting data or validation.
Field observations have proven their role in generating accurate forest health by showing the ability to measure
various indicators, including biological or ecological. For example, Ranau et al. [60] used the bird as a
biological indicator to understand the quality of specific areas. However, finding a recent research paper
describing field observation takes time and effort.
Second, ground-based sensors are another technique used in studying forest health. This technique facilitates
informed decision-making by enabling stakeholders to implement protective measures and enhance their
comprehension of forest ecosystems. We used various published studies covering the importance of ground-
based sensors in studying forest health to highlight the knowledge of the impact of this approach in studying
forests. For example, Marsh et al. [23] showed that the relationship between canopy cover, forest structure,
and microclimate leads to understanding the degradation of forests and expecting climate change. This
technique has indisputable value in expanding our comprehension of forest health evaluation. Third, the remote
sensing technique stands among the forefront methodologies driving research in forest health assessment.
This technique provides the ability to investigate several factors and attributes of forests. Sudhakar et al. [44]
studied the ability of UAVs to enhance the warning system for fire risk. In summary, remote sensing has
demonstrated undeniable utility in advancing our understanding of forest health assessment, and researchers
suggest collaborating remote sensing with field observations can enhance the technique of studying forest
health from several perspectives.
Furthermore, as the exact figure, ground-based sensors and field observations are vital components in forest
health monitoring. These methods offer distinct advantages, allowing researchers to measure forest health
accurately. Ground-based approaches provide valuable on-the-ground data that complement and validate
remote sensing findings, contributing to a more comprehensive and reliable assessment of forest ecosystems.
Figure 11 complements the findings by visually representing the geographical distribution of the article
references. Each country’s proportionate presence on the graph reflects scientific interest and involvement in
studying various environmental aspects. The varying sizes of the bars corresponding to different countries
signify the relative emphasis and contribution of each nation’s research efforts in advancing the field of
environmental monitoring and management. As we observe in that figure, the distribution percentages show
that this review’s findings have wide-reaching implications for global conservation strategies and sustainable
practices in diverse forest ecosystems worldwide.

• Multi Data Sources: Utilizing multiple sensors provides researchers and forest managers with a comprehensive
understanding of forest dynamics, enabling the assessment of various critical aspects. For instance, Yang
et al. [109] introduced a data fusion model capable of analyzing drought-induced mortality in temperate
forests. This model estimates daily 30 m resolution evapotranspiration (ET) and the associated ESI. In addition,
multi-sensor technology proves valuable in studying natural phenomena such as floods, as demonstrated by
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Figure 11: Geographical locations.

Kim et al. [59]. Collectively, these studies underscore the immense potential of multi-data source systems in
developing forest indexes and their applications.

7 Research Challenges and Directions

The increasing trend of forest health demands a prediction, evaluation, and monitoring strategy. Considering the various
factors that affect forest health, modeling forest health with more than one contributing factor will help develop an
assessment, prediction, or warning system. Several approaches and techniques exist for creating an index that can
observe and quantify various indicators, ranging from avifauna diversity to overall ecosystem vitality. In addition,
deciding which tools, techniques, and indicators to use is challenging. Thus, in this section, the authors will clarify
some discussed gaps in existing research and will identify challenges. In Section 7.1, the authors will describe the
difficulties in determining the indicators. In Section 7.2, we will cover the challenges of the measurement approaches.
Lastly, in Section 7.3, we will highlight the impact of the time frame in an outdoor environment.

7.1 Standardization

From our knowledge perspective, we found difficulties in exploring the indicators that are used to study forest health.
Because of the presence of many factors that affect the health of forests, the authors found it a great challenge to know
these indicators and determine the appropriate indicators to study forest health in a particular area. Accordingly, there
are no well-accepted methodologies used to measure forest health. Some frameworks, such as (foresthealthindex.org)
or the USDA reporter, highlight it [4]. Many of these factors encompass ecological, meteorological, and biological
indicators, offering unique insights into forest health. Combining two or more indicators can yield an index that provides
a view of forest quality. For example, Marsh et al. [23] generated a model that studies the correlation between forest
structure and air temperature. However, the challenges do not end with the identification of the indicators. Selecting the
most suitable experimental plots is an equally formidable challenge, given the many of factors that must be carefully
considered beforehand, including securing the necessary permissions.

Therefore, several approaches can be considered to get over these challenges. Expert insights can help in navigating the
intricate landscape of forest health assessment. Additionally, researchers can draw inspiration from various websites
and organizations dedicated to forest health research, leveraging the knowledge and methodologies already developed
and tested in the field. By organizing our discussion in this manner, we aim to provide a structured exploration of the
challenges faced in forest health assessment, starting with identifying indicators and concluding with the practical
considerations of selecting suitable experimental plots.

7.2 Measurement Approaches

Another challenge in studying forest health assessment is determining the tools or approaches. Several approaches exist
to check forest health, including field observations, ground-based sensors, remote sensing, and multi-sensor methods
integrating more than one sensor. Each tool has features, drawbacks, and challenges. This part will discuss these
approaches.

Despite the importance of field observation, several challenges can be detected in this technique, including accessibility,
time, human mistakes, and cost constraints. Accessibility, time-consuming, and a high chance of a human mistake;
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we all know that there is a chance that human eyes or ears could record something that is not right—finally, the cost
constraints for preparing and sending a research group to a forest. As a result, Park et al. [9] identified that measuring
tree crowns for individual tree leaves is doable but labor-intensive. In addition, it is hard to accurately assess the tree
attributes in tall, dense, multi-layered forests. Further, Ampatzidis & Partel, [50] claimed that evaluating the field’s
phenotype from these perspectives is labor-intensive and time-consuming, mainly when covering large areas. In contrast,
the ability to use remote sensing approaches such as a satellite or drone could help to overcome some of these challenges
as it showed the ability to measure tree crowns with different accuracy rates.

Since ground-based sensor is a crucial technique, it is essential to acknowledge and address their challenges, such as
sensor placement, maintenance, power supply, and cost constraints. All of these challenges are impacting the decision
to use this technique. The first challenge involves the difficulty of building a station or installing and maintaining the
sensors in an outdoor environment. Other risks include the attacks of bugs and animals and harsh weather conditions.
It could also require special permission to install the sensors. The second challenge is to consider the impact of
ground-based sensors on the growth of trees or plants. The third challenge is the cost of creating and maintaining a
station to monitor the forest’s health. Finally, network coverage plays a crucial role in the ground-based approach. For
example, regarding budgetary restrictions, Marsh et al. [23] reduced the number of air temperature data loggers during
the experiment. However, these challenges can be solved one way or another depending on the importance and value
this approach adds to the project. For example, generating a wireless sensor network can solve the problem [116]. As
a future direction, several potential works could be done in this field, such as investigating the ability to generate a
wireless sensor network in rural areas. Developing a ground-based sensor to monitor illegal logging using the sound of
chainsaws.

Over the past decade, remote sensing has revolutionized the ability to monitor forests with an acceptable accuracy
rate on a large spatial scale. But it also comes with several challenges, such as cost, accessibility, and other technical
challenges regarding spatial and temporal resolution or the battery duration and payload weight with a drone. Ecke et
al. [11] identified several challenges and future work regarding remote sensing. One of these future works is looking
at the flight parameters, which requires more attention from the author’s perspective during influence data quality.
Highlighting that the resolution ability of the satellite remote sensing for monitoring forest ecosystems sometimes
needs to be improved during the limits of feasibility [10]. Moreover, Lausch et al. [1] explored that linking terrestrial
and remote sensing-based approaches is an issue that needs to be addressed, which could provide a better vision of
monitoring a forest.

Multi-data source is a technique researchers have provided as a future direction of forest health monitoring, with
the capability to cover several issues, such as enhancing the accuracy or reducing the cost. Still, various challenges
are addressed, such as data integration, temporal synchronization, data fusion, and model selection. Data integration
requires understanding the data format from different sensors and dealing with temporal synchronization, which refers
to gathering the data at the exact time. Data fusion and model selection refer to the difficulty of choosing the methods
and techniques for a multi-sensor system. So, regarding the aforementioned, Hartling et al. [110] addressed the issues of
applying multiple UAV sensors for tree species to create a robust training model that can be used in multiple locations.
Also, there are several challenges in accurately engaging data fusion methods between UAV and other sensors; for
example, collecting imagery from both data sources on the same date [112].

7.3 Data Collection

In the context of outdoor environments, especially within forest ecosystems, the timing of a research project emerges
as a crucial factor warranting closer scrutiny. The temporal dimensions of data collection substantially influence
various facets of the research process, encompassing project budgeting and experimental planning. Take, for instance,
the investigation by Han et al. [26], which delved into breeding areas within forest ecosystems. Their experiment,
conducted in late March, illustrates the critical role of timing, particularly when studying breeding activities. The timing
directly affects the availability and behavior of the species under investigation. If a research team must synchronize
their data collection with the breeding season, any deviation from the optimal timing might necessitate postponing
experiments for nearly a year. Such delays can significantly impact project timelines and resource allocation.

Another illustration of data collection constraints arises when researchers study the effects of seasonal variations in
vegetation levels. Such investigations requiring a long period of time necessitate meticulous planning to capture the
subtle yet critical changes that unfold over time. This type of project needs to be considered, especially for researchers
who have a specific period of time to finish the project. In addition, adhering to the appropriate timing can have profound
implications for project timelines and resource allocation.

Researchers can explore various strategies to mitigate these temporal challenges, including leveraging existing datasets.
As demonstrated by Han et al. [26] in their previous work, tapping into data from previously published studies to
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support their collected data makes it more valuable. This approach offers a pragmatic solution and contributes to the
accumulation of knowledge within the research community. Lastly, researchers need to expect bias and damage that can
happen during data collection.

8 CONCLUSIONS

Forests, as the habitats for most land mammals, birds, insects, and plants, play a crucial role in supporting life on
our planet. In addition, the well-being of a substantial portion of the global population is intricately tied to forests
and their resources [117]. In light of the increasing challenges posed by wildfires and deforestation, scientists and
decision-makers have intensified their efforts toward developing effective forest health monitoring systems. However,
creating such monitoring systems in outdoor environments has complexities, demanding both time and financial
resources. Consequently, there is a growing need to explore innovative methodologies that enhance the accuracy of
forest health monitoring while minimizing time and cost implications.

This review examined the FHI concept, highlighting the various factors influencing its development. Furthermore, it
delved into multiple indicators that offer insights into forest structure and condition. In addition to this, it explored
diverse techniques and approaches for establishing forest health monitoring systems. Among these, field observations
are a valuable tool, although they are hindered by limitations such as restricted access to certain areas at specific times.
Another approach involves the deployment of ground-based sensors within the forest environment. Lastly, remote
sensing methods, including satellite imagery, crewed aircraft, and drones, have demonstrated significant potential in
assessing forest health, particularly concerning ecological indicators such as tree damage, height, and vegetation cover.
However, it is still hard to rely on remote sensing techniques to determine the health status of an area.

The findings of this review have identified several areas for improvement in current research. One notable gap concerns
the temporal scope of experiments, with many studies focusing on a single year’s data [118]. Researchers are also
actively exploring incorporating classification filters and textural features to automate the identification process, aiming
for improvements [49]. In addition, enhancing the accuracy of canopy height models presents a promising avenue
for future research [105]. To address limitations in dense canopy areas, researchers are considering strategies such as
increasing point cloud density through repeated flights and optimizing flight paths to maximize trunk visibility [54].
Lastly, harmonizing multimode data fusion with practical operational feasibility remains a critical research challenge
[112]. In light of these research gaps, an intriguing avenue for future exploration involves the feasibility of integrating
various techniques to construct a robust FHI utilizing multiple sensors. This approach can overcome some of the
challenges outlined in this review. I want to emphasize that open questions persist in forest health monitoring and forest
health indexing. Furthermore, it is worth noting that although many studies describe the capabilities of monitoring
tools for specific aspects of forest health, only a few integrate these findings directly into the broader context of forest
monitoring or forest index. In conclusion, the research reviewed here underscores the critical importance of preserving
the health of our forests, given their profound ecological and societal significance. The road ahead involves pursuing
innovative approaches that leverage the strengths of various monitoring techniques to create a comprehensive and
cost-effective forest health assessment system. As we navigate these challenges, it is clear that exploring these open
questions will continue to shape the future of forest health index research.
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[102] Goran Tmušić, Salvatore Manfreda, Helge Aasen, Mike R James, Gil Gonçalves, Eyal Ben-Dor, Anna Brook,
Maria Polinova, Jose Juan Arranz, János Mészáros, et al. Current practices in uas-based environmental monitoring.
Remote Sensing, 12(6):1001, 2020.

[103] Ana Paula Dalla Corte, Franciel Eduardo Rex, Danilo Roberti Alves de Almeida, Carlos Roberto Sanquetta, Car-
los A Silva, Marks M Moura, Ben Wilkinson, Angelica Maria Almeyda Zambrano, Ernandes M da Cunha Neto,
Hudson FP Veras, et al. Measuring individual tree diameter and height using gatoreye high-density uav-lidar in
an integrated crop-livestock-forest system. Remote Sensing, 12(5):863, 2020.

[104] Xinlian Liang, Yunsheng Wang, Jiri Pyörälä, Matti Lehtomäki, Xiaowei Yu, Harri Kaartinen, Antero Kukko,
Eija Honkavaara, Aimad EI Issaoui, Olli Nevalainen, et al. Forest in situ observations using unmanned aerial
vehicle as an alternative of terrestrial measurements. Forest ecosystems, 6(1):1–16, 2019.

[105] Dameng Yin and Le Wang. Individual mangrove tree measurement using uav-based lidar data: Possibilities and
challenges. Remote Sensing of Environment, 223:34–49, 2019.

[106] V Otero, R Van De Kerchove, B Satyanarayana, C Martínez-Espinosa, and M Amir Bin Fisol. Rodila bin
ibrahim m, sulong i, mohd-lokman h, lucas r, dahdouh-guebas f. managing mangrove forests from the sky: forest
inventory using field data and unmanned aerial vehicle (uav) imagery in the matang mangrove forest reserve,
peninsular malaysia. Forest Ecology and Management, 411:35–45, 2018.

[107] Riccardo Dainelli, Piero Toscano, Salvatore Filippo Di Gennaro, and Alessandro Matese. Recent advances in
unmanned aerial vehicles forest remote sensing—a systematic review. part ii: Research applications. Forests,
12(4):397, 2021.

[108] David L Hall and James Llinas. An introduction to multisensor data fusion. Proceedings of the IEEE, 85(1):6–23,
1997.

[109] Yun Yang, Martha C Anderson, Feng Gao, Jeffrey D Wood, Lianhong Gu, and Christopher Hain. Studying
drought-induced forest mortality using high spatiotemporal resolution evapotranspiration data from thermal
satellite imaging. Remote sensing of environment, 265:112640, 2021.

[110] Sean Hartling, Vasit Sagan, and Maitiniyazi Maimaitijiang. Urban tree species classification using uav-based
multi-sensor data fusion and machine learning. GIScience & Remote Sensing, 58(8):1250–1275, 2021.

[111] Trevor K Host, Matthew B Russell, Marcella A Windmuller-Campione, Robert A Slesak, and Joseph F Knight.
Ash presence and abundance derived from composite landsat and sentinel-2 time series and lidar surface models
in minnesota, usa. Remote Sensing, 12(8):1341, 2020.

[112] Benjamin T Fraser and Russell G Congalton. Monitoring fine-scale forest health using unmanned aerial systems
(uas) multispectral models. Remote Sensing, 13(23):4873, 2021.

[113] Maitiniyazi Maimaitijiang, Vasit Sagan, Paheding Sidike, Ahmad M Daloye, Hasanjan Erkbol, and Felix B
Fritschi. Crop monitoring using satellite/uav data fusion and machine learning. Remote Sensing, 12(9):1357,
2020.

[114] Rajeev Bhattarai, Parinaz Rahimzadeh-Bajgiran, and Aaron Weiskittel. Multi-source mapping of forest suscepti-
bility to spruce budworm defoliation based on stand age and composition across a complex landscape in maine,
usa. Canadian Journal of Remote Sensing, 48(6):873–893, 2022.

[115] Minh D Nguyen, Oscar M Baez-Villanueva, Duong D Bui, Phong T Nguyen, and Lars Ribbe. Harmonization
of landsat and sentinel 2 for crop monitoring in drought prone areas: Case studies of ninh thuan (vietnam) and
bekaa (lebanon). Remote Sensing, 12(2):281, 2020.

[116] Mihai T Lazarescu. Design of a wsn platform for long-term environmental monitoring for iot applications. IEEE
Journal on emerging and selected topics in circuits and systems, 3(1):45–54, 2013.

[117] Satoru Miura, Michael Amacher, Thomas Hofer, Jesús San-Miguel-Ayanz, Richard Thackway, et al. Protective
functions and ecosystem services of global forests in the past quarter-century. Forest Ecology and Management,
352:35–46, 2015.

[118] Narayan Kayet, Khanindra Pathak, Abhisek Chakrabarty, Subodh Kumar, Vemuri Muthayya Chowdary, and
Chandra Prakash Singh. Risk assessment and prediction of forest health for effective geo-environmental planning
and monitoring of mining affected forest area in hilltop region. Geocarto International, 37(11):3091–3115, 2022.

29


	INTRODUCTION
	Motivation and Contributions
	Existing Surveys
	Structure of the Paper

	METHODOLOGY
	Research Questions
	Research Methods

	FOREST HEALTH
	Forest Key Considerations
	Forest Indicators
	Forest Indexes
	Scales
	External Factors

	MEASUREMENT APPROACHES
	Field Observations
	Ground-Based Sensors
	Remote Sensing
	A satellite
	Manned aircraft
	UAVs


	MULTI DATA SOURCES
	DISCUSSION
	Research Challenges and Directions
	Standardization
	Measurement Approaches
	Data Collection

	CONCLUSIONS

