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A B S T R A C T

Picking up an entangled object is a difficult manipulation task due to its rich contact dynamics. Most existing
solutions fail to produce grasp poses to enable reliable manipulation due to the dependence on simplified
assumptions for the motion policies. Grasps generated by these methods tend to drop objects or cause
undesired movements of non-grasped objects. To improve such object-disentangling tasks, we propose to extend
the concept of reinforcement learning (RL)-based affordance to include arbitrary action consequences and
implement a general affordance-based manipulation (GAM) framework.

In the GAM, we train an RL agent that uses more fine-grained actions and outperforms previous methods
with a smaller chance of dropping objects and making contact with non-grasped hooks. Then, a manipulation
affordance prediction (MAP) model is trained to estimate the performances of the RL agent. Finally, the
manipulation affordance-based grasp filter (MAGF) selects grasp poses that afford the desired manipulation
performances, showing substantial improvements in five challenging hook disentangling tasks in simulation.
The experiments show (1) the limitation of TAG generators, (2) the effectiveness of filtering TAGs with
predicted manipulation performances based on the general affordance theory, and (3) the importance of
avoiding contact with non-grasped objects in contact-rich manipulation.
1. Introduction

Robot manipulation is one of the key research problems behind the
automation of manufacturing, agriculture, construction, etc. [1]. This
paper studies one of the challenging manipulation tasks of separating
tangled objects, as shown in Fig. 1. Object entanglement can occur
to U/C/S-shaped or similar objects in various scenarios, such as the
mass manufacturing processes of such objects, assembly/disassembly
processes of components of various shapes, daily uses of objects in
irregular shapes, etc.

Automating such disentangling manipulation is challenging because
of the intractably complex contact dynamics among objects during the
manipulation process. It is unintuitive how to minimise the influences
on surrounding objects and the chances of dropping the grasped ob-
ject. A successful and failed example of separating a C-shape hook in
simulation is shown in Fig. 2.

Existing solutions to such tasks [1–6] are commonly comprised of
a task-agnostic grasp (TAG) pose estimator and a manipulation trajec-
tory generator. They works rely on TAG poses and simple straight-up
lifting motions that cannot guarantee separation in all situations. They
(1) fail in cases where a straight-up lifting motion is insufficient, (2)
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E-mail address: jiz1@cardiff.ac.uk (Z. Ji).

fail to reduce disturbance to other objects, and (3) do not consider
the link between grasp pose generation and the following manipulation
task. In addition, TAG poses are not always suitable for manipulating
tangled objects, as the choice of grasping poses highly depends on the
downstream manipulation tasks [7,8].

To address these difficulties, this paper proposes a new manipula-
tion framework based on a novel theory of general affordance, which
provides a mathematical model for learning arbitrary action conse-
quences and whether actions are affordable in terms of a particular
metric or a combination of metrics. According to Gibson [9], The
affordance of an object contains the knowledge of what can be done
with the object by an agent [10]. In regard to the disentangling task, we
seek to select TAGs based on the prediction of whether a TAG (action)
can afford certain manipulation performances (consequences), such as
specific values of success rate, object dropping rate and/or averaged
movements of other objects.

Theoretically, we adopt the RL-based affordance definition [11] as
the basis of our manipulation framework. Khetarpal et al. [11] define
affordance as the set of state–action pairs in an MDP where the intents
of the agent can be achieved. Here, the intent is the desired action
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Fig. 1. Example objects that could become tangled.
Fig. 2. Succeeded and failed examples of disentangling a hook in one of the simulated tasks in this paper. In the first row, the robot manages to rotate and lift up only the white
hook.
consequence, and in [11] it is limited to the desired future state distri-
bution. This paper extends it to include arbitrary action consequences,
resulting in the concept of general intent and general affordance. The new
definition allows the agent to select actions based on a broader range
of action consequences. With the new theory, we propose the general
affordance-based manipulation (GAM) framework that is able to select
TAGs that afford the desired manipulation outcomes.

In addition, this paper applies reinforcement learning (RL) to gen-
erate more complex manipulation behaviours that separate a grasped
object with minimised non-grasped object movements. This is because
classic motion planners perform poorly in such contact-rich manipu-
lation tasks, due to the difficulty of obtaining an accurate model of
the object interaction processes [12], while RL policies can produce
complex motions for manipulators without such dynamic models [4,
13].

A four-step approach is designed to implement GAM. First, we
collect a set of 6 degree-of-freedom TAG poses and the latent features
of the scene’s point clouds associated with them using an off-the-shelf
deep learning-based grasp estimator (GraspNet [7]). Secondly, we train
a manipulation policy (deep double Q learning [14]) to separate the
grasped hook with these TAGs. Thirdly, we train a manipulation affor-
dance prediction (MAP) model to map the TAG poses and their latent
point-cloud features to the performances achieved by the RL policy.
Finally, we use the MAP model to select TAG poses with three grasp
filtering strategies. Experiments demonstrate substantial improvements
over baselines in five object disentangling tasks in simulation.1

This paper is organised as follows. Section 2 discusses related works.
Section 3 proposes the general affordance theory. Section 4 introduces
our implementation of GAM in detail. Section 5 gives experiment and
training details, followed by experimental results and discussions in
Section 6. Finally, Section 7 concludes the work.

1 Codes are available at https://github.com/IanYangChina/GAM-paper-
codes/.
2

2. Related work

Object manipulation has been a very interesting and important,
but also challenging area of robotic research [1]. Recently, more re-
searchers have started to study the link between grasping and manipu-
lation, because deep learning-based task-agnostic grasp generators have
achieved advanced performance [15] and manipulation is inevitably
dependent on grasping [1].

Our work studies one of the difficult manipulation problems, disen-
tangling objects, which, despite its value in daily life and industries, is
a rather underdeveloped research area. Previously, Matsumura et al.
[2] developed the first solution to picking up an object from a pile
of potentially tangled objects. They proposed a Convolutional Neural
Network (CNN) to predict whether or not a top-down grasp pose will
result in picking up several tangled objects and used it as a filter to
avoid picking from such grasp poses [2]. Similarly, Moosmann et al.
[3] trained a CNN to predict whether an object is free from entangle-
ment during a straight lifting-up motion and avoid grasping entangled
objects [3]. The same team further developed supervised [16] and
reinforcement learning [4] approaches to manipulating and separating
entangled objects given task-agnostic grasp poses. Another recent work
proposed a topological solution to compute an entanglement score
from a depth image and thus find top-down grasp poses that are
free from entanglement [6]. Another work proposed a sophisticated
set of designed rules to recognise and model entangled tubes, detect
entanglement and find a disentangling solution [5].

Compared to these previous works, our work also requires a 6 DoF
manipulation policy that disentangles a grasped tangled object, which
has only been studied in [4]. On top of the manipulation policy, our
main contribution is a manipulation affordance-based grasp filter that
selects grasp poses that are more likely to result in higher success rates,
less object dropping and fewer contacts with non-grasped objects.

We leverage the recent development of deep reinforcement learning

(DRL) [17], specifically the deep double Q-learning method [14], to

https://github.com/IanYangChina/GAM-paper-codes
https://github.com/IanYangChina/GAM-paper-codes


Neurocomputing 578 (2024) 127386X. Yang et al.

b
r
a
f
a
o
e
R
a
b

d

t
f

w
d
t


R
m

o
b
𝐼

i
i
t
f
b
o

D
w
b
a
s

𝑑

D
f
d
f
∀
s

w
l
p
b
i
W
a
c

𝜖
i
T
a

s
a
o

4

4

g
t
i
(
m

(
f
o
c
t
W
t
t

train the manipulation policy that separates a grasped hook. We refer
the readers to [13] for a recent review of DRL for robot manipulation.

Another relevant topic is affordance learning in robotics [10,18].
Most works in this area focus on learning whether a grasp is stable
(the graspability) [19,20]. Very few have studied whether a grasp
pose can afford certain manipulations in terms of detailed performance
metrics [21,22]. Our work fits into the last category, studying how to
learn and use manipulation performances as affordance. Recent work
proposes to define affordance over the RL framework such that the con-
cept of affordance can be integrated into various RL algorithms more
easily [11]. Another paper then suggests extending such a definition
over temporally extended actions and thus allowing the fast learning
and planning of temporally extended partial dynamic models [23].
They limit the action consequences within the sense of dynamic pre-
diction, and our work will extend the definition over arbitrary action
consequences which enables more flexible action selection.

3. General affordance theory

This section describes a novel concept named general affordance,
ased on which a manipulation framework is developed for contact-
ich object disentangling tasks in Section 4. Since the concept of
ffordance was introduced [9], there have been various computational
rameworks developed to integrate this concept in computer science
nd robotics [18]. However, there has not been a consensus on which
ne is more generalisable and interpretable [10]. In this paper, we
mbrace a new mathematical definition of affordance based on the
L paradigm [11]. The following content will review this definition
nd then propose the new general affordance concept that generalises
eyond system dynamic predictions.

The RL task is defined on the Markov decision processes (MDPs),
escribed formally by a tuple { ,, 𝑝, 𝑝0, 𝑟, 𝛾}, where  is the state

space,  the action space, 𝑝 the dynamic transition distribution, 𝑝0
he initial state distribution, 𝑟 the reward function, and 𝛾 the discount
actor [17].

Khetarpal et al. [11] define affordance using the concept of intent,
hich is the desired next state distribution of an action taken at a state,
enoted by 𝐼𝑎 ∶  → +

𝑎 . Given a threshold 𝜖𝐼 , an intent is said
o be satisfied iif. 𝑑(𝐼𝑎(𝑠), 𝑝(⋅|𝑠, 𝑎)) ≤ 𝜖𝐼 , where 𝑑(⋅) is a distribution

distance metric. Hence, given a set of intents for every action and state,
 = ∪𝑎∈𝐼𝑎, a distance metric and a threshold value, the affordance of
an agent is defined as a subset of state–action pairs:  ⊆  × ,
such that ∀(𝑠, 𝑎) ∈  , the intents are satisfied. Interesting problems
arise with such a definition such as learning a partial dynamic model,
learning the set of affordances, using the set of affordances for planning,
constraining action space, etc.

The affordance definitions in [11,23] are based on the prediction
of the atomic or temporally extended next state. In other words, the
affordances of actions only capture the action consequences in terms of
the state distributions. While in the real world, affordances should be
able to describe non-dynamical action consequences that are likely to
be long-term and delayed. For example, the cost of driving, the success
or failure of a game, the amount of water spilt or poured into a cup,
etc. Defining affordances over a broader range of action consequences
will allow more useful and practical real-world applications (which
this paper demonstrates with a complicated robotic manipulation task).
Notice that a policy 𝜋 now needs to be included as the long-term action
consequence is always induced by some policy. Following this thought,
the general intent can be defined with respect to a given measurement
𝑦. The following gives the new definition of general intent and general
affordance for arbitrary action consequences.

Definition 1 (General Intent 𝐼𝑦𝑎,𝜋). Given a measurement 𝑦 ∶  ×  →
∈ R𝑛, where  is the space of all possible measurement values and

𝑛 is the 𝑛-dimensional real number space, the general intent w.r.t.
easurement 𝑦 for a policy 𝜋 is defined as a mapping to a subset
3

f measurement values that are desired (or intended) to be achieved
y taking action 𝑎 and following the policy 𝜋 thereafter, denoted as
𝑦
𝑎,𝜋 (𝑠) = 𝑦𝜋+(𝑠, 𝑎) ∶  → +

𝑎,𝜋 ∈  .

Note that, let 𝑦 be the system transition function and  = , general
ntent becomes dynamical intent. For dynamical action consequences,
ntent satisfaction can be done by comparing some distance between
he intent and true system state. However, for general intent, its satis-
action check requires a target measurement value distribution induced
y some baseline policy �̂�, which could but not necessarily be the
ptimal policy.

efinition 2 (Intent Satisfaction). Denote 𝑦�̂� as the action consequences
.r.t. the measurement 𝑦 of taking an action 𝑎 and following the
aseline policy �̂� thereafter, given a distribution distance metric 𝑑(⋅)
nd a threshold 𝜖𝐼 , the general intent 𝐼𝑦𝑎,𝜋 is satisfied according to the
tandard of �̂� iif.:

(𝐼𝑦𝑎,𝜋 (𝑠), 𝑦
�̂� (𝑠, 𝑎)) ≤ 𝜖𝐼 (1)

Then, for a policy 𝜋, the general affordance is defined as follow:

efinition 3 (General Affordances𝑦
,𝜋). Given a set of general intents

or a policy 𝜋 for all actions and states in an MDP, 𝑦
𝜋 = ∪𝑎∈𝐼

𝑦
𝑎,𝜋 , a

istribution distance metric and a threshold, the general affordances
or an agent is a subset of state–action pairs, 𝑦

,𝜋 ⊆  ×, such that
(𝑠, 𝑎) ∈ 𝑦

,𝜋 , its general intent (Eq. (1)) is satisfied according to the
tandard of a baseline policy �̂�.

One can notice that general intents include dynamical intents,
hether it is for one-step or temporally extended dynamics. Simi-

arly, general affordance includes the dynamical affordance definition
roposed in [11,23]. Knowing the general affordances of an agent
enefits a number of decision-making aspects, including action filter-
ng, exploration region selection, planning action space reduction, etc.

ith this new definition, existing RL tools can use affordances to take
ctions based on not only dynamic transitions but also arbitrary action
onsequences and task performance metrics.

Lastly, it is worth noting that, by changing the desired precision,
𝐼 , the space of satisfied intents can be changed [11]. For instance,
f 𝜖𝐼 = +∞ then any intent can be satisfied, which is unrealistic.
his paper assumes 𝜖𝐼 = 0, such that all intents are satisfied strictly
ccording to the baseline performance.

In the next section, we implement this idea into a manipulation
ystem where the manipulation performances of TAG actions are learnt
nd then used to select affordable TAGs to improve manipulation
utcomes.

. General affordance-aware manipulation

.1. Overview

We consider a disentangling task in which a robot arm needs to
rasp a hook stably and separate the grasped hook while keeping
he movement of other hooks minimal. The problem is decomposed
nto three sub-problems: (1) task-agnostic grasp (TAG) pose estimation;
2) manipulation affordance-based grasp filtering; and (3) RL-based
anipulation.

As shown in Fig. 3, our general affordance-based manipulation
GAM) framework relies on existing methods to generate TAG poses
rom a point cloud. Then, a grasping pose and the latent representation
f the scene are used to predict the disentangling manipulation out-
omes by the manipulation affordance prediction (MAP) model. Lastly,
hree grasp filtering strategies (i.e., intents) are defined for the TAGs.

hen a strategy (an intent) is satisfied, the robot proceeds to separate
he grasped hook using the RL policy. The following subsections explain
he three steps in detail.
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Fig. 3. General affordance-based manipulation (GAM) framework. Our approach is comprised of three sub-modules: (1) a task-agnostic grasp (TAG) generator (see Section 4.2)
that proposes stable TAG poses; (2) the proposed manipulation affordance-based grasp filter (MAGF) that uses predicted manipulation performances to filter the TAG poses; (3) a
reinforcement learning manipulation policy that controls the gripper to separate the grasped hook.
4.2. Task-agnostic grasp generation

The GraspNet-1Billion baseline [7] is adopted in our experiments
to general TAGs, though other generators could also be used. We
assume that the TAG poses provided by the generator (without any
fine-tuning) are all reachable and stable. Unfortunately, this is not true
in practice due to the difference between training and deployment
environments. This means that in practice, most of the generated grasps
are not reachable. In order to reduce the burden of computation and
time spent on finding a reachable grasping pose in the training of the
following manipulation policy, we pre-record a set of reachable and
stable TAG poses along with their simulation system states and point
cloud latent features. During the training and evaluation of the RL
agent and the MAP model, we do not need to run the GraspNet model
anymore, but simply load the stable grasps and reset the simulation to
the corresponding recorded state.

To determine whether a grasp pose is reachable and stable, we
conduct a basic manipulation stability test. The test starts with the
gripper being moved to the grasp pose and closing its fingers. Then the
gripper is moved by the RL agent by executing all the RL actions once
(see action definition in Section 4.4). If the object remains within the
finger at the end of the action sequence, then the grasp pose is stable
and recorded (along with the latent representation of the scene and the
simulation system state).

Although the recorded grasp poses are reachable by the robot and
stable according to the basic stability test, not all of them afford the
separation of the grasped object (some may be easier to drop the
object), and each one would lead to a different amount of movements
of the non-grasped objects. To address the above issue, we introduce
the manipulation affordance prediction model and grasp filter.

4.3. Manipulation affordance-based grasp filter

As humans, we are able to choose grasping poses most suitable for
different manipulation tasks, because we can predict whether a grasp
pose (an action at a state) would lead to the preferred manipulation
outcome (satisfied intent). Here, the proposed manipulation affordance-
based grasp filter (MAGF) is inspired by the same underlying logic. The
following will introduce the manipulation affordance prediction (MAP)
network and the three example filtering strategies (action selection
rules based on intent satisfaction).

MAP: Recall that, to learn general affordances, the action conse-
quences need to be defined and a baseline distribution is required. Here,
we define the consequences of grasp actions using three performance
measurements:

• 𝑦1: the probability of separating the grasped object.
• 𝑦2: the probability of dropping the object.
• 𝑦3: the average movements of non-grasped objects.

Note that it is possible to learn to predict whether a grasp is
stable and release our method from the assumption of having a TAG
4

generator. In other words, include the stability score of the grasp as an-
other performance measurement. However, assuming access to a TAG
generator significantly narrows down the solution space of grasps for
the downstream manipulation. This also enables faster implementation
as the RL policy will take unrealistically too long to learn both stable
grasping and manipulation given the difficulty of the manipulation
tasks.

Here, we adopt the RL policy that learns to disentangle the grasped
hook as the baseline policy. Therefore, the MAP model learns to predict
the manipulation performances that can be achieved by the RL policy,
denoted as 𝑦�̂�1 , 𝑦�̂�2 , and 𝑦�̂�3 . This means that given a set of intents
(with desired manipulation performances 𝑦+1 , 𝑦+2 , and 𝑦+3 ), one can
perform action filtering by comparing the predicted performances and
the desired performances. In effect, this induces the grasps that afford
the desired manipulation outcomes.

Filtering strategy: One can design different filtering conditions
with the predicted manipulation performances to decide whether the
manipulation policy should start disentangling the grasped object for
a specific TAG at the current observation. This grounds down to the
design of the distance metric 𝑑 and corresponds to different intents and
different sets of affordances. Formally, given a state 𝑠, a grasp pose
is affordable iif. 𝑑(𝑦+𝑖 , 𝑦

�̂�
𝑖 (𝑠, 𝑎)) ≤ 𝜖𝑖 according to the 𝑖th manipulation

performance metric and an intent. Given different intents (desired value
of measurement), with 𝜖𝐼 = 0, we experiment with the following grasp
filtering strategies and discuss their results.

I Filter away grasp actions that cannot achieve the desired separa-
tion success rate, i.e.: accept a grasp if 𝑦+1 ≤ 𝑦�̂�1 .

II Filter away grasp actions that cannot achieve the desired object
dropping probability, i.e.: accept a grasp if 𝑦+2 ≥ 𝑦�̂�2 .

III Filter away grasp actions that cannot achieve the averaged move-
ments of the non-grasped hooks, i.e.: accept a grasp if 𝑦+3 ≥
𝑦�̂�3 .

IV Combine strategies I and III.

4.4. Reinforcement learning-based manipulation

We take an episodic RL approach to solving the hook separation
task. A deep double Q-learning agent [14] is trained. The RL problem
is formulated as follows.

In each episode, the robot starts at a state where the gripper is in a
grasping pose and a hook is gripped in hand. Then at each timestep, the
RL agent selects an action to move the grasped hook and observe a new
state of the environment and a reward. The episode is terminated when:
(1) the object is no longer grasped; (2) the object is moved out of the
workspace; or (3) when the episode length 𝑁 is reached (in our experi-
ments 𝑁 = 3 timesteps). After the robot has performed 𝑁 actions, it will
perform a manually defined motion to move straight up for 0.1 m. If the
grasped object is lifted up alone, then the episode succeeds. Otherwise,
it is considered a failure (e.g., the object dropped during lifting up
or other objects being hooked up together). In practice, we examine
the finger width to determine whether the grasped object has been
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Fig. 4. Left: hook sizes and their keypoint (red) representations. Right: translation actions along the world frame directions (dash lines) and rotation actions about the gripper tip
frame directions (solid lines).
dropped. The object is dropped when the finger width becomes too
small. Then, to determine whether the hook is separated successfully,
we examine the contacts between the hooks and the gripper fingers.
If after the final lifting up motion, there exist and only exist contacts
between the fingers and the grasped hook, then it is a success. The
following will introduce the definitions of the state, action and reward.

State: The system state consists of the states of the hooks and the
gripper. For each hook, its state consists of the Cartesian coordinates
of the keypoints (see Fig. 4 left) and the quaternion of the hook centre
in the world frame. For the gripper, its state consists of the Cartesian
coordinates and the quaternion of the gripper tip, the width between
the two fingers and the index of the hook being grasped.

Action: At each timestep, the RL agent selects one action from 12
discrete actions to move the gripper tip frame. The actions are small
translations along the axes of the world frame (i.e. the robot base
frame), and small rotations about the axes of the gripper tip frame
(see Fig. 4 right). The first 6 actions translate the gripper tip frame
in the axes’ positive and negative directions for a fixed distance 𝑑𝑎,
while the last 6 actions rotate the gripper tip frame about the axes
in clockwise and counter-clockwise directions for a fixed angle 𝛿𝑎. In
our experiments, 𝑑𝑎 = 0.05𝑚 and 𝛿𝑎 = 30◦. This action space is named
Cartesian movement (CM) action space for clearer comparison with the
hemisphere movement (HM) action space proposed in [4].

Reward: At each timestep, the agent is given a reward, defined as
a weighted negative value of the average movement of all non-grasped
objects. This is because we believe that minimising such movement is
an important constraint in object disentangling tasks. There are three
termination conditions that will bring different terminal rewards. The
first two conditions are when the grasped hook hand is dropped or
moved out of the workspace, which gives the agent a punishment. The
third condition is when an episode naturally ends at the last timestep,
and a straight lifting-up motion is performed. A successful lifting up of
the grasped hook will result in a positive reward, and a failed attempt
will result in zero rewards. Only lifting up the grasped hook will be
considered a success, and lifting up others will be considered a failure.
This reward definition can be summarised by the following equation.

𝑹𝑡 = 𝜎 × 𝑑𝑜𝑏𝑗𝑡 + 𝑟𝑠𝑡𝑒𝑝𝑡 ,

where, 𝜎 is the weight of the averaged non-grasped object movement,
𝑑𝑜𝑏𝑗𝑡 ; and 𝑟𝑠𝑡𝑒𝑝𝑡 is defined as

𝑟𝑠𝑡𝑒𝑝𝑡 =

⎧

⎪

⎨

⎪

0, non-terminal or fail to lift up object
𝑎, successfully lift up object at the end
5

⎩

𝑏, grasped object dropped or out of workspace
In our experiments, 𝜎 = −1.0, 𝑎 = 10 and 𝑏 = −10.

Network: The Q network is a three-layer MLP with size 256-256-
256. Each layer is activated by ReLU and the output layer has no
activation.

End-to-end baselines: We also design experiments to demonstrate
that it is highly inefficient to learn both grasping and separation manip-
ulation simultaneously through end-to-end RL. In the end-to-end setup,
we extend the CM and HM action spaces with two extra actions to open
and close the fingers. The robot no longer starts with a state where a
hook is grasped, but instead always starts with a configuration where
the gripper is facing towards the table (as shown by Fig. 5 left). To give
sufficient exploration time, as the robot also needs to learn grasping,
each episode is extended to a length of 𝑁 = 30. The index of the
grasped hook is removed from the state representation. The termination
conditions remain the same, except dropping a grasped hook no longer
terminates an episode. The reward function remains the same except
that a positive reward 𝑐 is given at each timestep when the robot has a
hook grasped in hand. The non-grasped object movement is set to zero
when there is no hook grasped in hand. Similarly, a straight lifting-up
motion is performed when an episode reaches its maximum timestep,
and then the finger width and contacts are used to determine whether
a hook is successfully separated.

5. Task and training details

We use the Mujoco physic engine [24] to design five simulation
tasks, in which a Kuka robot, equipped with a Rethink parallel-jaw
gripper, is given a number of entangled rigid C/C+/S-shaped hooks
(Fig. 5) and tasked to pick and lift only one of them. The sizes of the
hooks are displayed in Fig. 4 left. Each hook has a square intersecting
surface of size 0.014 × 0.014 m2. The workspace is a square of size
0.3 × 0.3 m2 (the orange square Fig. 5 left).

Data collection: As mentioned in Section 4.2, we collect a set of
stable TAG poses for each of the five tasks, along with their point cloud
latent representations and simulation states (250000 data points for
each). Specifically, the hooks are randomised in a tangled configuration
when a scene resets. They are then dropped together from a location
0.1𝑚 higher than the centre of the table. The GraspNet model then
takes the partial point cloud from the top view camera and outputs
10 TAG poses with the best scores, along with their latent features. The
simulator moves the robot to the grasping pose and closes the fingers.
Then, each of the RL actions is performed once to confirm the stability
of the grasp. If the object remains grasped, then the grasp pose, the
latent feature, and the simulation state of the object being grasped are
recorded as a data point. The scene resets again when the 10 TAGs are
all tested.
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Fig. 5. Simulation environment and task visualisation.

In order to train the manipulation affordance prediction (MAP)
model, we need to collect training labels for these collected data
points. As affordance is about what can be done with the object by
an agent, such labels are most natural to come from the manipulation
policy itself. In other words, what manipulation performances a grasp
pose allows to happen can only be known after the robot actually
manipulates the grasped object using that grasp pose. Thus, we first
train the RL agent to separate the grasped hook with every collected
TAG pose, and then evaluate the trained agent on all the TAG poses to
collect training labels for the MAP model. The performances of the RL
agent are presented in Section 6.2. After the MAP model is trained, we
then apply it with the filtering strategies to select grasp poses before
executing manipulation. The results are summarised in Section 6.3.

RL: The RL agent is updated exactly once on each interaction
step for a total of 2𝑒6 timesteps (Assuming each episode terminates
after 3 steps, there are more than 6𝑒6 episodes in total). We used
a replay buffer of size 1𝑒6. Each agent performs 2𝑒3 random actions
and optimisation steps at the beginning of the training. Mini-batch
optimisation is performed with Adam [25] with a 1𝑒 − 4 learning rate,
a batch size of 128 and a discount factor of 0.99. During the update,
the value target is clipped to be within [−50, 50]. The target network
is updated by copying all the main Q network’s parameters every 1𝑒3
steps. We use 𝜖-greedy as the exploration strategy, which decays the
random action probability linearly from 1.0 to 0.05 in 5𝑒4 timesteps.
The agent is evaluated for 30 episodes (without exploration) every 1𝑒4
timesteps to generate the performance figures.

MAP: To align with the GraspNet model, the input of the MAP
network is a 1D vector comprised of a grasp pose and its associated
scene representation. In our experiments, the grasp pose is flattened
from the position (3D) and the rotation matrix (3 × 3) in the camera
frame, while the latent feature (256-dim) is provided by the point auto-
encoder of the GraspNet model (see Fig. 5-a of [7]). Note that this input
could be changed to suit other TAG generators. The input first goes
through a BatchNorm layer and then a three-layer (512-512-256) Multi-
Layer Perceptron (MLP). The network output is a 3D vector, which
is the predicted manipulation affordances. The three MLP layers are
activated by ReLU. The probability outputs are activated by Sigmoid
functions and trained with the Binary Cross Entropy loss. The average
movement output has no activation function and is trained with smooth
L1 loss. The MAP is trained by Adam [25] with a learning rate of 1𝑒−3
and a batch size of 1024 for 1𝑒4 optimisation steps.

6. Results

6.1. End2end reinforcement learning experiment

This subsection provides experimental results that demonstrate the
ineffectiveness of training an RL agent to learn grasping and separation
6

manipulation altogether. Fig. 6 displays the average (three seeds) eval-
uation results of the CM (blue curves) and HM (orange curves) agents
trained end-to-end for the task with two C-shape hooks. Unsurprisingly,
both agents perform very poorly in this training setting. Though the
agent with our action space managed to grasp an object a few times,
they both struggled to learn grasping as the number of grasped hooks
remained very low. In short, these results confirm the inefficiency of
learning to grasp and separate entangled hooks in an end-to-end fashion
and the benefits of adopting an off-the-shell grasp generator, such as the
GraspNet model adopted by this paper.

6.2. Reinforcement learning experiment

In this subsection, we discuss the training results of both RL agents
(each averaged over 3 random seeds) with the CM and HM [4] actions,
compared with the SLM baseline performances for all five tasks in
Fig. 7. The straight-up lifting motion (SLM) baseline simply carries the
grasped object up for 0.15𝑚, and its performance is evaluated with 5𝑒4
TAGs per task. The grasp filter is not applied in the experiments in this
section.

First of all, the SLM baseline (green lines) achieves the lowest
success rates, but near-zero object dropping rates and non-grasped
object movements in all tasks. This is expected as the SLM motion only
carries the grasped object up straightly, and all the TAG configurations
have already passed the basic manipulation test (see Section 4.2).

Secondly, the RL policies both outperform the SLM baseline in terms
of success rates in all task variations. However, they both perform
worse than SLM in terms of object-dropping rates and non-grasped
object movements. This indicates that there is a trade-off between
motion flexibility and the risks of dropping objects and influencing
other objects. However, the agent with our action space achieves
smaller dropping rates and non-grasped object movements than [4],
whose hemisphere actions move the grasped hook more drastically.
This indicates that RL algorithms are able to learn to manipulate more
carefully if the action space is more fine-grained.

Overall, the three manipulation policies achieve low separation
success rates in all tasks, especially for the difficult ones (C+ and S
hooks). The RL policies perform slightly better than the SLM baseline
in terms of success rates. However, they achieve higher object-dropping
rates and non-grasped object movements and become less advantageous
as the tasks become more difficult. This reveals that a large proportion
of the TAGs do not afford good manipulation performances. This could
be potentially improved by learning a more complex RL policy, but
we argue and demonstrate that this can also be largely resolved by
selecting TAGs using the proposed MAGF module in the next section.

6.3. Grasp filter results

By evaluating our RL agent on all the recorded grasping poses, we
obtain the manipulation performance labels to train the MAP model.
To evaluate the manipulation performances with a grasp filter (GF),
we use the trained MAP model to predict the manipulation outcomes
of the CM policy given each recorded TAG. The algorithm discards
the unsatisfactory TAGs and executes the CM policy when the selected
filtering strategy is satisfied.

Baselines: The comparison includes the SLM baseline (on 50000
TAGs), both RL agents without a GF, and the CM policy with the pro-
posed filtering strategies. Each strategy is evaluated with different de-
sired measurement values, inducing different sets of intents. Four sets of
intents are examined for the strategy I: 𝑦+1 ∈ {0.8, 0.9, 0.95, 0.98}. Three
sets of intents are examined for strategy II: 𝑦+2 ∈ {0.1, 0.2, 0.3}. Three
sets of intents are examined for strategy II: 𝑦+3 ∈ {0.1, 0.2, 0.3}. Four sets
of intents are examined for strategy IV (𝑦+1 , 𝑦

+
3 ) ∈ {(0.8, 0.2), (0.8, 0.1),

(0.9, 0.2), (0.9, 0.1)}. For each comparative case, the RL agent is evalu-

ated with the three random seeds. Each seed run stops when a total
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Fig. 6. Means and standard deviations of the testing results on the task with 2 C hooks for both RL agents without access to a TAG generator. The results prove that it is much
more inefficient to learn grasping and separation simultaneously for such hook separation tasks From left to right: separation success rate, number of grasped objects, rate
of the gripper moving out of the workspace, non-grasped object movements (when an object is grasped), and return.
Fig. 7. Means and standard deviations of the testing results of both RL agents (blue and orange) and the performance of the straight-up lifting motion (green). The performances,
in general, reveal that a large proportion of the task-agnostic grasps is not suitable for the downstream manipulation. The situation is exacerbated as the task becomes
more difficult. Rows (top to bottom): success rates, object dropping rates, average non-grasped object movements (in meters). Columns (left to right): the tasks with 2, 3, 4 C
hooks, 3 C+ hooks and 3 S hooks.
of 15000 TAGs are passed (that is, for each evaluation case, a total
of 45000 different TAG poses are verified). Fig. 8 reports the success
rates, object dropping rates, non-grasped object movements (NGOM)
and proportions of discarded TAGs for each comparative case per task.

Performances without MAGF: Across all tasks, the three black
colour bars in Fig. 8 show that the evaluation performances of the
SLM baseline and both RL agents without GF are consistent with that
reported in the last subsection. It indicates that a large proportion of
TAGs do not afford satisfactory manipulation performances for such
contact-rich tasks.

Performances with MAGF: The green, blue and pink colour sets
show that the CM policy with strategies I, III and IV achieves sub-
stantially better manipulation performances, while the orange colour
set shows that strategy II can improve the performance slightly over
the baselines. Overall, these results firstly indicate that the MAP model
successfully learns to predict the general action consequences in terms
of manipulation performances, as the actual results match the threshold
values. Secondly, the improved results, in general, demonstrate the
effectiveness of applying the MAGF module before executing a manip-
ulation policy. Thirdly, it showcases the successes of selecting TAGs
according to certain individual (I, II, and III) or combined (IV) detailed
manipulation performances. Lastly, the fourth histogram shows that, as
the manipulation constraints become stricter, more TAGs will become
invalid and need to be discarded.

The results also reveal an interesting correlation between the non-
grasped object movements and success rates. In all the tasks with
7

strategy I (green bars), a higher success rate is always accompanied
by a smaller chance of dropping the hook and a smaller amount of
averaged movements of the non-grasped objects. Those with strategy II
(orange bars) show that a smaller chance of dropping the grasped object
does not necessarily lead to a high separation success rate or smaller
non-grasped object movements. On the other hand, those with strategy
III (blue bars) show that restricting the non-grasped object movements
actually does lead to higher success rates and lower object-dropping
rates.

We hypothesise an explanation as follows. As non-grasped object
movements are caused by contacts and forces among objects, the results
indicate that reducing contact with other objects leads to better perfor-
mances. This might be attributed to the logic that when the gripper and
the grasped object have fewer contacts with other parts, the grasped
object encounters less interference, making it easier to separate. On the
contrary, it is more likely to be dropped when it has many contacts
with other objects. In addition, merely preventing the dropped grasped
object and disregarding minimising contact with other objects could
lead the robot to overly prioritise not dropping the object, neglecting
the more important objectives of separation and minimising contact.

6.4. Summary

In general, with these results, we can obtain the following observa-
tions:
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Fig. 8. Comparison of different filtering strategies. From left to right: success rates, object dropping rates, non-grasped object movements (NGOM) and proportion of discarded
grasps. Each histogram shows the performances of the five tasks from top to bottom, with 3 S, 3 C+ and 4, 3, and 2 C hooks. SLM: straight-up lifting motion. HM: hemisphere
movement. CM: Cartesian movement. Black colour set: baselines without MAGF. Green, orange, blue and pink colour sets: CM policy with strategy I to IV. In general, the figure
shows a clear advantage of selecting TAGs according to estimated manipulation performances.
• A large portion of TAG poses are unsatisfactory for such contact-
rich manipulation tasks, given the proportion of discarded TAGs
reported in each strategy result (the rightmost histogram in
Fig. 8).

• Learning to predict manipulation performances for TAGs provides
an effective tool for a manipulation system to select grasps that
can achieve substantially better results.

• Task-wise, more contacts made between the grasped object and
others will result in higher object-dropping rates and more fail-
ures, and it leads to better separation performances by avoiding
contacts than by simply avoiding dropping the grasped objects.

These results provide the following insights about robotic manipu-
lation. First, TAG generators are insufficient for complex manipulation
tasks, and more effort is required to develop task-relevant grasp gen-
eration and selection in a detailed manner. Secondly, albeit RL has
achieved great success in many tasks, it clearly demands more effort to
be improved and implemented for contact-rich manipulation, especially
its interplay with grasp generation and selection. Lastly, for a robot to
master contact-rich manipulations such as the example hook separation
tasks, more effort and domain knowledge are needed to investigate and
identify the key factors of the object interaction dynamics that impact
manipulation performances for individual tasks, such as predicting the
average non-grasped object movement and using it as an indicator for
grasp filtering.
8

6.5. Remarks on scalability

As shown by the empirical results, the proposed framework is
capable of handling tasks with up to four hooks with C and three hooks
with C+ and S shapes. However, it is necessary to discuss further the
scalability of the proposed method in terms of the number of objects
and the shapes of objects.

First of all, as the number of objects within the scene increases, it
would bring down the separation performance of the RL agent slightly,
because more objects may lead to more entanglement. However, it is
not as severe as influenced by the shapes of the objects. This can be
observed from Fig. 7 as the performances of the tasks with 3 C+ and
3 S hooks are much worse than the tasks with 4 C hooks. Secondly,
the shape of the object is the main cause of severe entanglement and,
thus, low separation success rates. This is physically natural as complex-
shaped objects are more difficult to separate from an entangled state.
In addition, there are fewer grasping poses that afford good sepa-
ration outcomes. Thus, the specific implementation of the proposed
manipulation framework would have lower success rates if one keeps
increasing the number of objects and the complexity of the shapes
of the objects. Nonetheless, the decreased performance is expected to
depend more heavily on the manipulation capability of the RL policy,
which controls the gripper, while the proposed MAP module will still
be able to identify those grasps that afford the desired manipulation
outcomes. This is demonstrated by the pink colour bars in Fig. 8, which
displays high performances in all situations even when the RL policy
struggles to separate the grasped hook with most grasping poses, which
are indicated by the blue colour bars.
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Overall, the affordance prediction model would be much less in-
fluenced by the number of hooks and the shapes of hooks, because
it concerns about predicting the performances of a particular manipu-
lation policy. However, the performance of the RL policy can indeed
be influenced severely by the number and shape of objects, mainly
because, in this research, the RL policy uses state-based observations.
The state representation designed for this research is not very scalable
as it contains the keypoint poses of all objects in the scene, which can
easily suffer from the curse of dimensionality as the number of objects
increases or the insufficient information provided by the representation
as the shape of the objects become too complex for keypoint represen-
tation. This suggests that, in the future, more complex representations
for the RL policy and/or the MAP model could be employed to handle
tasks with more objects of more complex shapes.

6.6. Remarks on real-world applications

Finally, this research does not provide experiments on a real-world
robot platform. Therefore, a discussion of its possibility of being im-
plemented in the real world is necessary. In particular, the proposed
framework is not limited to simulation at all. However, the actual
implementation of the framework in this paper is considerably difficult
to directly deploy on a real robot.

Firstly, the theoretic idea of general affordance is applicable to all
decision-making systems that are important in the real world, including
the robotic manipulation system that this research is working on and
many others, such as autonomous driving, unmanned aerial vehicles,
games, etc. Therefore, similar to many other decision-making systems,
the performance of real-world deployment of the proposed framework
depends heavily on the perception ability of the system. In other
words, it depends heavily on how accurately the system can capture
task-relevant information from the real world.

Secondly, regarding the specific implementation of the GAM frame-
work, the difficulty of being directly deployed on a real robot platform
stems mainly from the design of the state representation of the objects
for the RL manipulation policy. It is possible, but very difficult, to
obtain the accurate keypoint poses for the hooks in the real world due
to occlusions of entangled objects. However, the MAP model would
be more likely to work in the real world because it takes point cloud
features produced by a deep neural network as the input, which is
not difficult to obtain. This highlights the significance of research in
state estimation or representation learning for manipulation using deep
neural networks.

7. Conclusion

This work studied a challenging contact-rich manipulation prob-
lem of separating an entangled hook following the classic two-stage
approach: finding a grasp pose and then a manipulation trajectory.
To improve over previous works, this paper proposed the concept of
general affordances, which mathematically describes whether an action
an afford an arbitrary consequence at a state. Based on this theory, this
aper introduced the general affordance-based manipulation (GAM)
ramework, which enables a robot to learn any user-defined manipu-
ation metric for task-agnostic grasps (TAGs) and then select TAGs that
ead to better predicted manipulation results.

Briefly, the implementation of GAM consists of: (1) an RL policy that
anipulates a grasped object, (2) a manipulation affordance predic-

ion model that predicts manipulation performances given TAGs, and
3) a grasp filter that selects TAGs with different filtering strategies.
omprehensive experiments of five challenging hook separation tasks

n simulation have shown that:

• TAGs are not sufficient for contact-rich manipulation tasks;
• It is possible to learn to predict manipulation performances given
9

a TAG and a latent representation of the scene;
• Selecting TAGs with high predicted manipulation performances
leads to significant manipulation improvement;

• It is possible to use the theory of general affordance to improve
robotic manipulation.

For future research, more efforts are required to test the GAM
with manipulation policies that take image/point-cloud inputs, which
have a better potential to be deployed in the real world. Secondly,
our experiments show that controlling how many contacts can be
made is important for such contact-rich manipulation tasks. It would
be valuable to invest in techniques for contact/tactile sensing and
control. It is also promising to explore and implement other general
affordance-based frameworks for robotics.
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