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Abstract: This research presents a novel Customised Load Adaptive Framework (CLAF) for fault
classification in Induction Motors (IMs), utilising the Machinery Fault Prevention Technology (MFPT)
bearing dataset. CLAF represents a pioneering approach that extends traditional fault classification
methodologies by accounting for load variations and dataset customisation. Through a meticulous
two-phase process, it unveils load-dependent fault subclasses that have not been readily identified in
traditional approaches. Additionally, new classes are created to accommodate the dataset’s unique
characteristics. Phase 1 involves exploring load-dependent patterns in time and frequency domain
features using one-way Analysis of Variance (ANOVA) ranking and validation via bagged tree
classifiers. In Phase 2, CLAF is applied to identify mild, moderate, and severe load-dependent fault
subclasses through optimal Continuous Wavelet Transform (CWT) selection through Wavelet Singular
Entropy (WSE) and CWT energy analysis. The results are compelling, with a 96.3% classification
accuracy achieved when employing a Wide Neural Network to classify proposed load-dependent
fault subclasses. This underscores the practical value of CLAF in enhancing fault diagnosis in IMs
and its future potential in advancing IM condition monitoring.

Keywords: bearing fault classification; load variation; wavelet singular energy (WSE); machinery
fault prevention technology (MFPT) dataset; continuous wavelet transform (CWT); load dynamics;
customised load adaptive framework (CLAF)

1. Introduction

Bearings are fundamental components in diverse industrial applications, such as
Induction Motors (IMs), turbines, medical devices, and aerospace [1]. The IM is prevalent
in industrial processes due to its affordability, reliability, and robustness, representing
85% of global energy consumption. However, with the advent of Industry 4.0, there is a
growing emphasis on data utilisation, focusing on interpreting vast amounts of data for
early fault diagnosis to prevent critical downtimes. Current research efforts aim to enhance
fault classification accuracy through data-centric machine learning models, encompassing
multi-channel fault classification [2], parameter optimisation [3], and transfer learning for
signal feature extraction [4]. The monitoring and fault diagnosis of IM, which heavily rely
on bearings, are subjects of extensive research [1,5]. Various fault detection techniques,
including acoustic emission, motor current consumption, temperature, and vibration signal-
based methods, have demonstrated reliability and effectiveness [6]. Vibration signal-based
diagnostics represent a well-established method for the Condition-Based Maintenance
(CBM) of bearings, as defects generate vibration impulses on bearing surfaces [7]. However,
this diagnostic method requires sensors to be directly attached to machines, making them
susceptible to noise [8,9]. Strategically placing sensors on rolling bearings allows the direct
observation of these signals to determine the bearing’s condition [10].

In recent years, there has been a growing interest in detecting faults in induction
motors, given their crucial role in various industries such as the electric power sector,
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manufacturing, and services. The overall vibration-based machine condition monitoring
framework involves three key steps: signal collection using sensors, signal analysis through
processing techniques, and fault detection and health assessment using a classification
algorithm [11]. Consequently, efforts have been focused on developing reliable and cost-
effective methods for diagnosing faults in induction motors. Early detection of potential
failures is crucial to proactively prevent significant damage to machinery [12–17]. Despite
the recognised importance of feature extraction and selection in intelligent diagnosis
systems, there is a noticeable gap in the literature, particularly concerning evaluating load
impact [18–20]. This gap invites further exploration—a void in our understanding of how
varying loads influence the manifestation of faults. While previous research has explored
areas such as estimating remaining useful life from run-to-failure datasets [18], the impact
of loads on faults remains relatively unexplored. Radial impact was discussed in [21],
where the authors used traditional statistical indicators to study the effects of inner and
outer faults in bearings under different loads. They proposed a combination of indicators
such as Kurtosis × RMS, Kurtosis × Peak, and RMS × Peak for early fault detection in
bearings using the Society for Machinery Failure Prevention Technology (MFPT) bearings
dataset, which includes inner and outer race faults. A similar analysis was conducted on
the Case Western Reserve University (CWRU) dataset, involving a thorough investigation
and comparison of a wide range of traditional and new vibration indicators for detecting
bearing defects and monitoring their progression [22].

While extensive research has explored fault classification under varying loads, the
subtle repercussions of load variations on the intrinsic nature of faults have persistently
evaded attention. This research addresses two limitations of existing technology. It explores
how radial load characteristics influence fault behaviours, employing advanced methods
like time and frequency domain feature extraction, feature reduction, and Continuous
Wavelet Transform (CWT) for time-frequency analyses. The study introduces a paradigm
shift in induction motor fault classification through the proposed Customised Radial Load
Assessment Framework (CLAF), integrating time and frequency domain features, CWT,
Wavelet Singular Entropy (WSE), CWT energy and novel load-dependent fault subclasses.
CLAF will be customised and tested on the MFPT-bearing dataset to uncover intricate
load-dependent patterns, providing a profound understanding of the interplay between
load dynamics and bearing fault behaviour. The research yields impactful contributions:

1. Comprehensive time and frequency analysis: This study conducts a comprehensive
time and frequency domain analysis under six load conditions. This analysis high-
lights patterns and variations in fault severity, providing valuable insights into IM
behaviour.

2. Optimal Continuous Wavelet Transform (CWT) approach: The selection of an opti-
mal CWT approach using WSE contributes to improved signal processing for time–
frequency feature extraction, denoising, and pattern recognition.

3. Revealing load-dependent fault subclasses: This represents an innovative extension
of traditional fault classification methods. It effectively accommodates load variations
and customisation, making it adaptable to different IM datasets. This research iden-
tifies and classifies load-dependent fault subclasses, including mild, moderate, and
severe, which enhances the understanding of fault severity in different load scenarios.

4. Proposing a Customised Load Assessment Framework (CLAF): The research intro-
duces a novel CLAF, representing a pioneering approach in fault classification for
Induction Motors (IMs). CLAF extends traditional fault classification methodologies
by considering load variations and dataset customisation.

The paper’s structure is as follows: Section 2 covers the theoretical background and
state-of-the-art research. Section 3 details the dataset and research methodology. Section 4
discusses the experimental results and evaluation of both phases. Lastly, Section 5 concludes
the paper and suggests future research directions.
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2. Background and Related Work
2.1. Feature Extraction Domains

There are three primary domains for feature extraction: the time domain, frequency
domain, and time–frequency domain. These distinct domains are employed to capture
unique insights into signal behaviour:

2.1.1. Time Domain Analysis

Traditional Statistical Features (TSFs) are fundamental measures in the time domain
derived from vibration or time series data. These features collectively capture the temporal
characteristics of signals, enabling the examination of behaviour over time. Analysing
vibration signals in the time domain is crucial for understanding signal dynamics and
detecting anomalies or faults [9]. The formulas and descriptions of TSFs are presented in
Table 1 [9,21,23,24].

Table 1. Traditional statistical features.

Parameter Formula Description

Peak or Max Xmax
The highest amplitude value is observed within

a given signal or dataset.

Root Mean Square (RMS)
√

1
N

N
∑

i=1
(xi)

2 Gives a measure of the magnitude of the signal.

Skewness
1
n ∑n

i=1(xi−x)3

[ 1
n ∑n

i=1(xi−x)2]
3
2

Measures the asymmetry of the distribution
about the mean.

Standard deviation (std)
√

1
n

n
∑

i=1
(xi)

2
The square root of the variance represents the

average deviation from the mean.

Kurtosis
1
N ∑N

i=1(xi−x)4

[ 1
n ∑n

i=1(xi−x)2]
2

Indicates the “tailedness” of the distribution. A
high kurtosis might indicate the presence of

outliers or impulses in the signal.

Crest Factor Peak
RMS

The ratio of the peak amplitude to its RMS value
indicates the relative sharpness of peaks.

Peak to Peak Xmin − Xmax
Difference between the maximum and minimum

values of the signal.

Impulse Factor max|Xi |
1
n ∑n

i=1|Xi |
Highlights the impulsive behaviours indicative

of machinery faults.

In the table, N is the sample size, xi represents individual data points and x is the average data point.

2.1.2. Frequency Domain Analysis

Extracting features from the frequency domain offers insights into data’s periodic
components and harmonic structures, represented in Table 1 [25–27]. Frequency domain
analysis of vibration signals involves examining amplitude variations across different
frequencies, contributing to a better understanding of vibration behaviour [9,11]. Frequency
domain features such as Root-Mean-Square Frequency (RMSF), Centre Frequency (CF), and
Total Harmonic Distortion (THD) are vital in analysing a signal’s power distribution and
harmonics [9]. The Signal-to-Noise Ratio (SNR) and SINAD (Signal-to-Noise and Distortion
Ratio), expressed in decibels (dB), merge time and frequency domain aspects, aiding in
gearbox fault analysis [27].

On the other hand, spectral feature extraction transforms a signal from the time to the
frequency domain, revealing its frequency content [28]. In rotating machine fault diagnosis,
the autoregressive (AR) model, especially with the forward–backwards approach, improves
classification over traditional methods [29,30]. This model, effective in bearing diagnosis,
isolates noise and fault impulses dependent on the optimal AR order [31]. The resulting
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spectral features from the AR model, such as Peak amplitude, peak frequency, and Band
Power, and formulas and descriptions, are shown in Table 2.

Table 2. Frequency domain features.

Parameter Formula Description

H
ar

m
on

ic
Fe

at
ur

es THD
√

(∑N
i=2 A2

i )
AI

Frequency domain, measuring the distortion caused
by harmonics in the signal.

SNR 10log10

(
Psignal
Pnoise

) Compares the level of a desired signal to the level
of background noise.

SINAD 10log10

(
Psignal

Pnoise+Pdistortion

) A measure of signal quality compares the level of
desired signal to the level of background

noise and harmonics.

Sp
ec

tr
al

Fe
at

ur
es Peak amplitude

∣∣∣x f−peak

∣∣∣ Represents the highest point (or peak) of the signal’s
waveform when viewed in the frequency domain.

Peak frequency f − peak Corresponds to the frequency component that is most
prominent or dominant in the signal.

Band power ∑
f−end
f−start|x( f )|2

Quantifies the total energy within a specific frequency
range, providing insights into the distribution of

signal energy across the spectrum.

In the context of frequency domain analysis, AI is the amplitude of the fundamental frequency, and Ai is
the amplitude of the i-th harmonic. For SNR and SINAD calculations, Psignal is the signal power, Pnoise is
the noise power, and Pdistortion is the power of harmonic distortion. Peak amplitude x f−peak is the frequency
domain’s complex value at bin f − peak. x( f ) is the complex value at frequency bin ‘f’, and |x( f )|2 represents its
squared magnitude.

The AR model, denoted as AR(P), is formulated as [29]

x[n] =
p

∑
p=1

apx[n − p] + e[n] (1)

where x[n] is the signal’s current value, influenced by its past values x[n − p] and autore-
gressive coefficients ap, with e[n] as the random noise component [6,29].

2.1.3. Time–Frequency Domain Analysis

Time–frequency domain analysis, crucial for understanding non-stationary data,
merges time and frequency data to examine signal frequency over time intervals [32].
Techniques like the wavelet transform, using mother wavelets like Amor, Bump, and
Morse, are vital in localising frequency information in time [33]. The Continuous Wavelet
Transform (CWT) and Wavelet Singular Entropy (WSE) are especially effective in fault
diagnostics [6]. CWT offers a two-dimensional view of the signal across time and fre-
quency [34]. Meanwhile, WSE, derived from wavelet singular values, quantifies signal
complexity [26,32]. CWT is mathematically expressed as in Equation (2), with coefficients
indicating the wavelet’s scale and position represented in Equation (3) [35]:

WT f (a, τ) =

(
1√
a

)∫
f (t)φ

(
t − τ

a

)
dt, (2)

WT f (a, τ) f (t) = f (t) ∗ φ(a, τ)(t), (3)

where WT f (a, τ) denotes the wavelet coefficient at a specific scale, a, and position, τ. The
term a is the scaling factor that instead stretches or compresses the wavelet, while τ is
the translation factor that shifts the wavelet along the signal’s time axis. The function φ
reptresents the scaled and translated versions of the mother wavelet. Different mother
wavelets yield distinct wavelet coefficients, highlighting varied facets of the signal [35].
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On the other hand, WSE is calculated based on the singular values obtained from the
wavelet transform of the signal. It reflects the uncertainty of the energy distribution of the
characteristic mode of the analysed signal. A smaller WSE indicates a more straightforward
and concentrated energy distribution, while a higher WSE suggests a more complex and
dispersed energy distribution. The singular values are non-negative and arranged in
descending order. The WSE can be defined as [32]:

WSEk = −∑(λi/Σλi) log(λi/Σλi), (4)

where λi denotes the i-th singular value from the wavelet transform, representing the
magnitude of coefficients in the analysis. The sum Σλi is the total of all singular values,
providing a normalisation factor. The logarithmic component, log(λi/Σλi), calculates the
entropy, capturing the distribution complexity of the signal’s energy [33].

2.2. One-Way Analysis of Variance (ANOVA) Feature Selection

In real-world scenarios, the extracted feature set is not equally important. Certain
features hold more relevance for the final classification task than others. Conversely,
some features could adversely affect classification accuracy, hampering the algorithms’
abilities to generalise patterns. One-way Analysis of Variance (ANOVA) can be employed
to select the most robust subset of features from the entire set [36], a significant challenge
encountered in structural health monitoring when collecting data through sensor networks.
The challenge pertains to extracting crucial components and valuable features for detecting
damage. Structural dynamic measurements often exhibit complex time-varying behaviour,
making them susceptible to dynamic changes in their time-frequency characteristics [6].
In this paper, the changes in features caused by load variations will be examined, and
these changes will be related to the time-frequency domain. To streamline the analysis,
one-way ANOVA, a well-established and reliable methodology for feature reduction, will
be employed. This technique will be used to select a subset of the most significant features,
allowing a focus on the most relevant aspects of the data [36–38].

2.3. State-of-The-Art and Research Gaps

Bearing fault diagnosis is recognised as a pattern recognition challenge, underscoring
the importance of dominant eigenvectors for fault features. Accurate feature identification
is critical for enhancing diagnostic system reliability. Studies like [12] used wavelet scat-
tering transform-based features, and [13] employed statistical time and frequency domain
features to contribute to induction motor fault classification. Other techniques include
time-domain features from current signals [14], homogeneity and kurtosis from electrical
current during motor startup [15], and the use of CWT for fault diagnosis, as seen in [16].
This method, tested on CWRU and MFPT datasets, demonstrated superior diagnostic accu-
racy and stability. Another approach, proposed in [17], applied a multimodal image fusion
preprocessing approach for Induction Motor (IM) fault classification using thermal images,
which enhanced fault classification accuracy trained using ResNet-18 and SqueezeNet. The
field of induction motor fault classification remains an active area of research, focusing
on optimal feature extraction and selection techniques and leveraging various machine
learning methods.

The approach increasingly leans towards treating it as a pattern recognition challenge
in bearing fault diagnosis, relying on dominant eigenvectors to represent fault features,
enabling a more reliable detection and categorisation of bearing faults [3].

To determine the exact location and intensity of a bearing defect, various Vibration
Signal Analysis (VSA) techniques are available, broadly categorised into time domain,
frequency domain, and time–frequency domain analyses [22]. Feature extraction in machine
learning for bearing fault diagnosis is pivotal, particularly in analysing vibration signals,
resulting in a multi-domain feature set. The goal is often to derive features with strong
discriminatory capabilities [9]. Time–domain features assume a stationary signal, but
signals often exhibit changes in statistical properties over time [39]. However, obtaining
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suitable features may require a long period of recorded signals, making it expensive, time-
consuming, or even impossible for certain fault types or with complex equipment [5]. RMS
and kurtosis are commonly used in the time domain, especially kurtosis, which is highly
effective in early fault detection [24].

In contrast, frequency domain features demand higher computational effort than their
time domain counterparts and operate under the assumption of a wide-sense stochastic
signal [20]. Fast Fourier Transform (FFT), while powerful in stationary conditions, has
limitations when applied to non-stationary data. Non-stationary data refer to signals that
change over time or exhibit variations in their frequency content. In such cases, FFT’s
assumption of a constant frequency spectrum over the entire signal duration does not hold.
Alternative time–frequency signal processing techniques have been developed to address
this limitation [5]. Nevertheless, transitioning to the time–frequency domain analysis,
which combines time and frequency information to understand the signal’s frequency
band over a specific time interval [32], offers a localised signal analysis by considering
smaller time segments. This approach proves valuable for non-stationary signals, where
the frequency content changes over time [10]. The CWT is a powerful tool for analysing
non-linear and non-stationary data in the time–frequency domain. It outperforms other
techniques, such as the short-time Fourier transform (STFT), Gabor transforms, wavelet
transforms, and Wigner–Ville transforms, effectively addressing the limitations of the FFT
in dealing with such data [40,41]. The wavelet transform can analyse specific regions within
a larger signal without sacrificing spectral details, unveiling concealed facets undetected by
alternative methods [34]. This enables the distinctly different analysis of both frequency and
time domains, breaking down signals into various frequency components and analysing
each component with the time domain corresponding to its specific scale [42]. It is crucial,
however, to carefully consider or create the most suitable wavelet foundation [41]. A 2022
study explored the effectiveness of three prevalent mother wavelet functions in conjunction
with pre-trained CNNs on the automatic classification of an electrocardiogram (ECG)
dataset. Specifically, the study used AlexNet and SqueezeNet, which revealed that Amor
and Morse wavelet functions enhanced class recognition with AlexNet. In contrast, the
Bump wavelet function demonstrated superior classification accuracy with pre-trained
SqueezeNet [24].

Beyond CWT, techniques such as wavelet entropy, wavelet packet energy entropy,
and wavelet singular entropy were also utilized. Wavelet entropy, combining wavelet
transform and Shannon entropy, captures complexity and information content within
signals at different scales or frequencies. In the Continuous Wavelet Transform realm, this
approach is valuable for analysing time–frequency representations and revealing patterns
associated with structural damage [41,43]. Examined on IM bearings, optimal contentious
transform wavelet selection [41] and indicating the complexity of the analysed transient
signal in the time–frequency domain [32] allows distinguishing between transients with
different complexities intuitively and quantitatively. Wavelet energy, measuring the energy
distribution across different scales in the wavelet transform of a signal, was used to track
changes in energy over time for fault localisation and categorisation [44]. This information
is then employed to create a set of features for classification, followed by artificial neural
network training to categorise these features.

Researchers have increasingly focused on the diagnostics of various operational pa-
rameters of bearings, such as friction torque, radial internal clearance, and slippage. In
a notable 2023 study, researchers investigated the friction torque behaviours of thrust
ball bearings with self-driven textured guiding surfaces. This study aimed to facilitate
the starved lubrication conditions often encountered in rolling bearings by introducing
innovative textures on the guiding surfaces. Notably, the results indicated that implement-
ing a gradient groove texture could significantly reduce the friction torque of bearings.
This texture facilitates a one-way self-driving function for liquid droplets, highlighting its
potential for practical applications in bearing design [45]. Another 2023 piece of research
explored the impact of various surface textures, including dimples, grooves, and gradient
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grooves, on thrust ball bearings’ vibration and friction torque behaviours. The study found
that the gradient texture effectively reduces vibration acceleration and friction torque [46].
Furthermore, research on the slipping behaviour of H7006C angular contact ball bearings
under operational conditions demonstrated similar benefits from this texture design in
reducing vibration and friction torque, thus enhancing bearing performance [47].

On the other hand, a notable research gap exists in our understanding of the influence
of varying loads on the manifestation of faults [18]. Previous research has delved into
areas such as estimating the remaining useful life from run-to-failure datasets [18], but the
domain of load’s impact on faults remains relatively unexplored. The radial impact was
discussed in [21], where traditional statistical indicators were used to study the effects of
inner and outer faults in bearings under different loads. The Society for Machinery Failure
Prevention Technology (MFPT) bearings dataset was utilised for proposing combinations of
indicators like Kurtosis × RMS, Kurtosis × Peak, and RMS × Peak for early fault detection,
including inner and outer race faults. A similar analysis was conducted on the Case Western
Reserve University (CWRU) dataset, thoroughly investigating various traditional and new
vibration indicators for detecting bearing defects and monitoring their progression [22].

In recent years, detecting faults in Induction Motors has gained considerable attention,
given their crucial role in various industries. As a result, there has been a focused effort
to develop reliable and cost-effective methods for diagnosing faults in Induction Motors
(IM). The early detection of potential failures is paramount, as it can prevent significant
machinery damage [12–17]. Despite the recognised significance of feature extraction and
selection within intelligent diagnosis systems, assessing load impact has not received
proportional attention in the literature [18,19]. A noticeable gap emerges in intelligent
diagnosis systems where feature extraction and selection are crucial [20], especially in
evaluating load impact [11]. Extensive research has explored fault classification under
varying loads, but the nuanced effects of load variations on the intrinsic nature of faults
have not been thoroughly addressed. The following (Section 3) will introduce the proposed
novel Customised Load Adaptive Framework (CLAF).

3. Methodology

The Customised Load Adaptive Framework (CLAF) proposed in this research is a
two-phase approach designed to enhance our understanding of how radial loads influence
system behaviour, especially in the presence of faults and varying load conditions. The
term ‘Customised’ is used because this framework can be tailored to any dataset; in this
study, it is specifically customised for the MFPT-bearing dataset. Additionally, it is referred
to as ‘Load Adaptive’ because it emphasises and deepens our understanding of how load
changes impact induction motor (IM) defects, resulting in changes in time and frequency
domain patterns and the identification of load-dependent subclasses (mild, moderate,
and severe) through CWT energy analysis. This approach primarily focuses on a tailored
assessment of load effects and is implemented using MATLAB R2023a.

3.1. Phase 1: Time and Frequency Domain Load-Dependent Pattern Analysis

Phase 1 unveils load-dependent patterns in varying load conditions, as depicted in
Figure 1, shedding light on the intricate interplay between load dynamics and bearing fault
behaviour through the following steps:

1. Data preprocessing and general load-dependent feature extraction: the MFPT-bearing
dataset is segmented into smaller, manageable portions, involving the division of the
continuous signal into smaller segments stored as separate CSV files.

2. Data segmentation and load-dependent subfile creation: time and frequency do-
main features are extracted from the segmented data, focusing on assessing feature
variations during faults and their sensitivity to load changes.

3. Time and frequency domain feature extraction from data segmentation: generate
a load-dependent time and frequency feature set, where an initial load-dependent
feature set is created for use in the following step.
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4. Significant load-dependent feature selection and validation: select and validate the
most significant load-dependent features using an iterative one-way ANOVA ap-
proach. Then, validate this feature set by assessing the accuracy of different classifiers.
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Figure 1. Phase 1: Time-and-frequency-domain load-dependent pattern analysis.

3.2. Phase 2: Customised Load Adaptive Framework (CLAF) for IM Fault Classification

In Phase 2, this research customises explicitly the methodology for the MFPT-bearing
dataset, focusing on wavelet transform and load-dependent subclasses (Figure 2). The
research explored different Continuous Wavelet Transform approaches to find the optimal
CWT approach. The optimal approach was determined using Wavelet Singular Entropy
(WSE), followed by preprocessing and load effect assessment, resulting in the proposed
CLAF. This framework introduced a new dimension to traditional fault classification by
considering load variation dataset customisation, revealing load-dependent fault subclasses’
signatures absent in conventional approaches:

1. CWT signal encoding and optimal technique selection: various Continuous Wavelet
Transform methods are explored to represent signals concerning fault types, leading
to the selection of the most appropriate approach (Amor, Bump, or Morse).

2. CWT energy assessment for each load factor: this step involves preprocessing, health
condition classification, and categorisation into thirteen classes corresponding to
specific load levels. The research calculates Wavelet Singular Entropy and mean
energy, providing insights into fault severity and energy distribution.
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3. Customised Load Adaptive Framework (CLAF): the research proposes load-dependent
fault subclasses tailored to assess radial load impact under different conditions, incor-
porating insights gained from the analysis for a customised evaluation.

4. CLAF Validation: we train different classifiers on proposed load-dependent subclasses
to examine the classification accuracy of the proposed classes.
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Figure 2. Phase 2: Customised Load Adaptive Framework (CLAF) for IM fault classification.

3.3. Dataset

This research comprises two phases, each dedicated to investigating the radial effects
of loads under various operational conditions, encompassing both faulty and normal (non-
faulty) health conditions utilising the Machinery Fault Prevention Technology (MFPT)-
bearing dataset. The experimental setup for the MFPT-bearing dataset involved a test rig
equipped with a NICE bearing, including a roller diameter of 0.235 inches, a pitch diameter
of 1.245 inches, and eight rolling elements positioned at a contact angle of zero degrees. This
setup allowed vibration data to be collected under various loading conditions, accurately
replicating both bearings with faults and those without faults for comprehensive fault
analysis research. The Normal (formerly called ‘baseline’) data were collected under a 270 lb
load, with a sampling rate of 97,656 samples per second (SPS) over 6 s. Simultaneously,
fault signals originating from Inner Race Defect (IRD) or Inner Race Fault (IRF) and Outer
Race Defect (ORD) or Outer Race Fault (ORF) were acquired from the bearing test rig,
shown in Figure 3 under six different load conditions, 50, 100, 150, 200, 250, and 300 lbs, all
while maintaining a constant speed of 25 Hz [48,49].



Machines 2024, 12, 44 10 of 31

Machines 2024, 12, x FOR PEER REVIEW 10 of 31 
 

 

(MFPT)-bearing dataset. The experimental setup for the MFPT-bearing dataset involved 

a test rig equipped with a NICE bearing, including a roller diameter of 0.235 inches, a 

pitch diameter of 1.245 inches, and eight rolling elements positioned at a contact angle of 

zero degrees. This setup allowed vibration data to be collected under various loading con-

ditions, accurately replicating both bearings with faults and those without faults for com-

prehensive fault analysis research. The Normal (formerly called ‘baseline’) data were col-

lected under a 270 lb load, with a sampling rate of 97,656 samples per second (SPS) over 6 

s. Simultaneously, fault signals originating from Inner Race Defect (IRD) or Inner Race 

Fault (IRF) and Outer Race Defect (ORD) or Outer Race Fault (ORF) were acquired from 

the bearing test rig, shown in Figure 3 under six different load conditions, 50, 100, 150, 

200, 250, and 300 lbs, all while maintaining a constant speed of 25 Hz [48,49]. 

An essential aspect of this study involves categorising the severity of load-dependent 

fault subclasses within the MFPT-bearing dataset. This categorisation is based on changes 

in wavelet energy compared to the Normal health condition, with a 20% increase classified 

as mild severity, 20% to 50% as moderate severity, and anything exceeding 50% as severe. 

While acknowledged as an assumption, this categorisation is a fundamental component 

of the methodology, ensuring a structured and systematic approach to assessing fault se-

verity under varying load scenarios. The results obtained from this novel framework will 

be presented in Section 4, covering Phase 1 and Phase 2. 

 
(a) (b) 

Figure 3. Computer-aided drawings of defects made on (a) Outer Race; (b) Inner Race [22]. 

4. Results and Discussion 

4.1. Phase 1: Radial Load Features Assessment Framework 

This phase involves data preprocessing for data preprocessing, general feature ex-

traction, and segmentation and data segmentation for load factor subset creation. 

4.1.1. Step1: Data Preprocessing and General Load-Dependent Feature Extraction 

The dataset was categorised for separate analysis to assess the load-dependent im-

pact in fault scenarios, with a specific focus on IRF, as presented in Table 3, and ORF, as 

shown in Table 4. This study involved a comparison of six different load values (50, 100, 

150, 200, 250, and 300 lbs) against the Normal (fault-free) health condition at 270 lbs. The 

Normal dataset served as a baseline for comparative analysis, aiding in identifying dis-

tinctive features that indicate the presence of a fault in both IRF and ORF datasets. 

Table 3. IRF dataset splitting per load. 

Inner Fault Dataset Code Load (lbs/kg) Sampling Rate (Hz) Duration (s)  

baseline_2 data_normal 270/122.47 97,656 6 

InnerRaceFault_vload_2 IRF_50 50/22.68 48,828 3 

InnerRaceFault_vload_3 IRF_100 100/45.36 48,828 3 

InnerRaceFault_vload_4 IRF_150 150/68.04 48,828 3 

InnerRaceFault_vload_5 IRF_200 200/90.72 48,828 3 

InnerRaceFault_vload_6 IRF_250 250/113.40 48,828 3 

InnerRaceFault_vload_7 IRF_300 300/136.08 48,828 3 
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An essential aspect of this study involves categorising the severity of load-dependent
fault subclasses within the MFPT-bearing dataset. This categorisation is based on changes
in wavelet energy compared to the Normal health condition, with a 20% increase classified
as mild severity, 20% to 50% as moderate severity, and anything exceeding 50% as severe.
While acknowledged as an assumption, this categorisation is a fundamental component of
the methodology, ensuring a structured and systematic approach to assessing fault severity
under varying load scenarios. The results obtained from this novel framework will be
presented in Section 4, covering Phase 1 and Phase 2.

4. Results and Discussion
4.1. Phase 1: Radial Load Features Assessment Framework

This phase involves data preprocessing for data preprocessing, general feature extrac-
tion, and segmentation and data segmentation for load factor subset creation.

4.1.1. Step1: Data Preprocessing and General Load-Dependent Feature Extraction

The dataset was categorised for separate analysis to assess the load-dependent impact
in fault scenarios, with a specific focus on IRF, as presented in Table 3, and ORF, as shown in
Table 4. This study involved a comparison of six different load values (50, 100, 150, 200, 250,
and 300 lbs) against the Normal (fault-free) health condition at 270 lbs. The Normal dataset
served as a baseline for comparative analysis, aiding in identifying distinctive features that
indicate the presence of a fault in both IRF and ORF datasets.

Table 3. IRF dataset splitting per load.

Inner Fault Dataset Code Load (lbs/kg) Sampling Rate (Hz) Duration (s)

baseline_2 data_normal 270/122.47 97,656 6

InnerRaceFault_vload_2 IRF_50 50/22.68 48,828 3

InnerRaceFault_vload_3 IRF_100 100/45.36 48,828 3

InnerRaceFault_vload_4 IRF_150 150/68.04 48,828 3

InnerRaceFault_vload_5 IRF_200 200/90.72 48,828 3

InnerRaceFault_vload_6 IRF_250 250/113.40 48,828 3

InnerRaceFault_vload_7 IRF_300 300/136.08 48,828 3

Table 4. ORF dataset splitting per load.

Outer Fault Dataset Code Load (lbs/kg) Sampling Rate (Hz) Duration (s)

baseline_2 data_normal 270/122.47 97,656 6

OuterRaceFault_vload_2 ORF_50 50/22.68 48,828 3

OuterRaceFault_vload_3 ORF_100 100/45.36 48,828 3

OuterRaceFault_vload_4 ORF_150 150/68.04 48,828 3

OuterRaceFault_vload_5 ORF_200 200/90.72 48,828 3

OuterRaceFault_vload_6 ORF_250 250/113.40 48,828 3

OuterRaceFault_vload_7 ORF_300 300/136.08 48,828 3
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General Load-Dependent Behaviour Analysis

This study conducted general time and frequency domain feature extraction, resulting
in 13 features for IRF (Table 5) and ORF (Table 6). Additionally, spectral features were ex-
tracted using an Autoregressive (AR) model with an order of 15, focusing on two significant
resonant peaks in the frequency spectrum and providing five additional load-dependent
feature patterns, as detailed in Table 7. Key findings regarding the impact of changing
radial load on these extracted features are as follows: Firstly, the Clearance Factor exhibited
a noticeable decrease, with increasing radial loads for both IRF and ORF. Specifically, IRF
decreased by 12.1% (from 40.039 at load 50 to 35.238 at load 300), while ORF experienced
a decrease of about 68.0% (from 10.263 at load 50 to 27.176 at load 300). Secondly, the
Crest Factor consistently decreased with higher radial loads, showing a decrease of ap-
proximately 16.0% for IRF (from 15.462 at load 50 to 12.998 at load 300) and a comparable
reduction of roughly 50.6% for ORF (from 6.393 at load 50 to 12.918 at load 300). Lastly,
Mean and RMS values significantly increased, with higher radial loads for both IRF and
ORF. Specifically, IRF exhibited an increase of approximately 10.9% in its mean (from 23.059
at load 150 to 25.585 at load 300), while ORF showed a substantial increase of about 294.9%
in its mean (from 4.928 at load 100 to 19.433 at load 300).

Table 5. General time and frequency domain features (IRD).

LoadFactor
(lbs)

Clearance
Factor

Crest
Factor

Impulse
Factor Kurtosis Mean Peak

Value RMS Shape
Factor Skewness Std SINAD * SNR * THD *

50 40.04 15.462 28.69 27.97 −0.22 27.50 1.78 1.86 0.62 1.76 −21.32 −21.307 −5.36
100 37.30 14.488 26.96 30.53 −0.22 26.59 1.84 1.86 0.87 1.82 −21.05 −21.027 −0.53
150 33.30 13.249 24.31 33.13 −0.22 23.06 1.74 1.84 1.28 1.72 −19.05 −19.046 −10.06
200 38.15 13.537 26.92 37.28 −0.21 27.38 2.02 1.99 1.15 2.01 −18.22 −18.208 −6.31
250 37.52 13.022 26.18 37.49 −0.20 27.14 2.08 2.01 0.72 2.08 −17.70 −17.684 −5.46
300 35.24 12.998 25.17 35.30 −0.19 25.58 1.97 1.94 0.68 1.96 −17.35 −17.341 −8.41

270 ** 7.75 5.230 6.56 3.02 −0.14 4.65 0.89 1.25 0.00 0.88 −23.60 −23.598 −11.39

* Frequency domain features. ** Normal health condition.

Table 6. General time and frequency domain features (ORF).

LoadFactor
(lbs)

Clearance
Factor

Crest
Factor

Impulse
Factor Kurtosis Mean Peak

Value RMS Shape
Factor Skewness Std SINAD * SNR * THD *

50 10.26 6.39 8.48 5.09 −0.19 6.35 0.99 1.33 0.04 0.98 −14.41 −14.40 −11.97
100 9.15 5.84 7.62 4.40 −0.18 4.93 0.84 1.31 −0.01 0.82 −13.15 −13.12 −9.06
150 9.54 6.10 7.94 4.04 −0.18 5.21 0.85 1.30 −0.04 0.83 −12.59 −12.56 −9.934
200 21.81 12.46 17.67 11.90 −0.17 12.28 0.99 1.42 0.31 0.97 −17.54 −17.52 −5.54
250 15.03 9.07 12.30 6.59 −0.16 8.66 0.96 1.36 0.12 0.94 −16.09 −16.06 −4.92
300 27.18 12.92 20.80 17.69 −0.16 19.43 1.50 1.61 0.27 1.50 −15.10 −15.10 −14.69

270 ** 7.75 5.23 6.56 3.02 −0.14 4.65 0.89 1.25 0.01 0.88 −23.60 −23.60 −11.39

* Frequency domain features. ** Normal health condition.

Table 7. Spectral features by AR model (IRF and ORF).

LoadFactor PeakAmp1 PeakAmp2 PeakFreq1 PeakFreq2 BandPower

Inner Outer Inner Outer Inner Outer Inner Outer Inner Outer

50 0.00034 0.000109 0.00031 0.000093 4363.937 1413.267 13,991.090 14,179.042 1.474 0.454

100 0.00046 0.000075 0.00012 0.000028 4256.059 1379.739 13,968.668 14,258.280 1.476 0.322

150 0.00046 0.000080 0.00005 0.000036 4191.394 1377.111 14,127.206 14,462.995 1.330 0.327

200 0.00031 0.000063 0.00011 0.000058 4025.383 4947.698 10,622.786 1391.188 1.663 0.461

250 0.00061 0.000058 0.00009 0.000049 4124.988 1621.552 10,365.553 5212.034 1.807 0.430

300 0.00077 0.000302 0.00058 0.000296 4081.332 2915.517 748.668 11,675.566 1.618 1.101

Normal 270 0.00003 0.000028 0.00003 0.000028 5490.855 5490.855 14,478.764 14,478.764 0.279 0.302
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In Table 7, variations in peak amplitudes (PeakAmp1 and PeakAmp2), peak frequen-
cies (PeakFreq1 and PeakFreq2), and Band Power for both IRF and ORF across a range
of load factors (from 50 to 300 lbs) were observed. Notably, with increasing radial load,
Inner Faults exhibited higher peak amplitudes at 300 lbs compared to ORF, while their peak
frequencies tended to converge. Furthermore, Band Power showed a more pronounced rise
as load factors increased, especially for IRF, underscoring its sensitivity to load variations.
When compared to the reference condition at a load factor of 270, we observed significant
differences in peak amplitudes and frequencies, highlighting the discernible impact of
varying loads on fault characteristics.

Further exploration is needed to fully understand the nuanced impact of each load
factor through detailed feature extraction (as seen in Figure 4b for IRF and Figure 4c for
ORF loads). Analysing standard deviation (Std) and range across various features revealed
distinctions between IRF and ORF types:
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Figure 4. Std and range of time and frequency domain extracted features (a) for (b) IRF and (c) ORF.

In the frequency domain, PeakFreq1 and PeakFreq2 show notable variability, with
IRF having lower variability in PeakFreq1 (510.38 vs. 1788.4) compared to ORF. Regarding
impulse characteristics, IRF exhibits higher variability in ImpulseFactor (7.6174 vs. 5.5733),
indicating diverse impulse characteristics compared to ORF. ClearanceFactor exhibits
more significant variability for IRF (11.237 vs. 7.4289), indicating significant changes in
mechanical conditions. Vibration amplitudes also vary, with IRF showing higher variability
in PeakValue (8.2942 vs. 5.4215). Additionally, IRF features display more pronounced
changes in vibration characteristics compared to ORF, as seen in kurtosis (12.08 vs. 5.3444),
Skewness (0.41466 vs. 0.13983), Std (0.40479 vs. 0.23206), RMS (0.40468 vs. 0.22898), and
ShapeFactor (0.25877 vs. 0.11854). Signal quality parameters (SNR and SINAD) vary more
in ORF, indicating alterations in signal-to-noise characteristics. These insights contribute
to a comprehensive understanding of vibration signals’ dynamic response to IRF and
ORF conditions, aiding condition monitoring and load-dependent behaviour analysis for
fault detection.

4.1.2. Step2: Data Segmentation and Load-Dependent Subfile Creation

First, the dataset was categorised by normal and fault types, each corresponding to
load conditions of 50, 100, 150, 200, 250, and 300 lbs. Then, based on different sampling rates,
the Normal baseline signals were differentiated from fault signals IRF and ORF. The Normal
baseline signals were captured at 97,656 samples per second (SPS) for 6 s, while fault signals
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were sampled at 48,828 SPS for 3 s. Subfiles were created to enhance statistical robustness,
each containing 2500 vibration data points. This led to 117 subfiles for the Normal baseline
and 58 subfiles for each fault category (IRF and ORF), strengthening both the sample size
and signal integrity; see Table 8. Such meticulous preparation establishes a solid foundation
for the subsequent one-way ANOVA analysis, enabling the identification of significant
variations in vibration signals linked to different load levels and fault occurrences.

Table 8. Dataset segmentation and subfiles creation demonstration.

Dataset Segmentation CSV Files Code Load Factor Subfiles Count

Example on baseline (Normal) with Matlab code. The
segment is based on ratio, i.e., each segment in inner and

outer fault contains 2500 samples, and each sample in
Normal condition contains 5000 data points.
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This strategic approach aimed to unravel how the complexity of modelling influences the 
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IRF_250 {‘IRF−250’} 58

IRF_300 {‘IRF−300’} 58

ORF_50 {‘ORF−50’ } 58

ORF_100 {‘ORF−100’ } 58

ORF_150 {‘ORF−150’} 58

ORF_200 {‘ORF−200’} 58

ORF_250 {‘ORF−250’} 58

ORF_300 {‘ORF−300’} 58

Normal {‘Normal’} 117

4.1.3. Step3: Time and Frequency Domain Feature Extraction from Data Segmentation

Section 4.1.1 discussed the impact of load variations on features. In this stage, we
generate load-dependent time and frequency features from Table 8 subfiles for IRF, ORF,
and Normal conditions. This allows for detailed analysis and subsequent one-way ANOVA
feature ranking.

First, ten time domain features, Shape Factor, Peak Value, Clearance Factor, Impulse
Factor, Mean, Crest Factor, Kurtosis, RMS, Std, and Skewness, were extracted. Second, there
were three general frequency domain features: SINAD (Signal-to-Noise-and-Distortion
Ratio), SNR (Signal-to-Noise Ratio), and THD (Total Harmonic Distortion). Third, Autore-
gressive (AR) model estimation was applied to transform the time domain signal into the
frequency domain to extract specific spectral features: peak amplitude, peak frequency and
Band Power.

This research explored two AR models for spectral feature extraction: one of order
two with a single peak (Figure 5a) and another of order fifteen with five peaks (Figure 5b).
This strategic approach aimed to unravel how the complexity of modelling influences
the representation of frequency components in the signal. The order-two model, being
simpler, offers a foundational perspective, capturing fundamental frequency components.
These features are extracted within a smaller frequency band of 600–18,000 Hz, excluding
peaks beyond 18,000 Hz. On the other hand, the order-fifteen model, with its higher
complexity, aspires to provide a more detailed and nuanced representation of intricate
frequency variations. Here, feature extraction focuses on a smaller band of frequencies
between 10,000–25,000 Hz, excluding peaks after 25,000 Hz. Five spectral peaks were
extracted for each signal, generating five frequency features for each peak.



Machines 2024, 12, 44 14 of 31

Machines 2024, 12, x FOR PEER REVIEW 15 of 32 
 

 

representation of frequency components in the signal. The order-two model, being 
simpler, offers a foundational perspective, capturing fundamental frequency components. 
These features are extracted within a smaller frequency band of 600–18,000 Hz, excluding 
peaks beyond 18,000 Hz. On the other hand, the order-fifteen model, with its higher 
complexity, aspires to provide a more detailed and nuanced representation of intricate 
frequency variations. Here, feature extraction focuses on a smaller band of frequencies 
between 10,000–25,000 Hz, excluding peaks after 25,000 Hz. Five spectral peaks were 
extracted for each signal, generating five frequency features for each peak. 

The first AR model added three extra features to the 13 time and frequency domain 
features. Conversely, the second autoregressive model generated a more extensive set of 
24 features, including general time and frequency domain features and 11 features derived 
explicitly from the autoregressive model. The disparity in feature count primarily resulted 
from variations in the extracted frequency domain features. When testing different AR 
models, the decision to calculate peak amplitude and peak frequency for each peak aimed 
to achieve a more detailed and adaptable analysis of the signal’s spectral characteristics. 
This approach acknowledges variations in frequency modes captured by different models, 
facilitating the identification and individual analysis of each peak. 

This exploration is conducted to assess the trade-off between model simplicity and 
accuracy, a crucial consideration for diagnostic applications like fault detection. 
Furthermore, testing different peak configurations allows for a nuanced understanding of 
how the chosen models identify and distinguish peaks in the frequency spectrum. In 
essence, this approach yields valuable insights into the suitability of various model 
configurations for capturing the diverse characteristics of the signal under investigation. 

(a) (b) 

Figure 5. AR model: (a) order two and peak = 1; (b) order fifteen and peak = 5. 

4.1.4. Step 4: Significant Load-Dependent Feature Selection and Validation 
Diverse classifier algorithms were systematically examined, focusing on optimal 

accuracy and minimal confusion. AR models with different peak counts were explored, 
with the first model (order two, peak one) and the second model (order fifteen, peak five) 
achieving the highest performance. Subsequently, the dataset was split into testing (20%), 
validation (20%), and training (60%) subsets, with five-fold cross-validation for testing 
accuracy comparison. Feature richness varied with peak counts, where the first model 
showcased robust performance with a single peak, emphasising the power of a 
strategically selected minimal feature. The second model, with five peaks, offered a more 
detailed representation of spectral characteristics. Features scoring below 20 ANOVA 

Figure 5. AR model: (a) order two and peak = 1; (b) order fifteen and peak = 5.

The first AR model added three extra features to the 13 time and frequency domain
features. Conversely, the second autoregressive model generated a more extensive set of
24 features, including general time and frequency domain features and 11 features derived
explicitly from the autoregressive model. The disparity in feature count primarily resulted
from variations in the extracted frequency domain features. When testing different AR
models, the decision to calculate peak amplitude and peak frequency for each peak aimed
to achieve a more detailed and adaptable analysis of the signal’s spectral characteristics.
This approach acknowledges variations in frequency modes captured by different models,
facilitating the identification and individual analysis of each peak.

This exploration is conducted to assess the trade-off between model simplicity and
accuracy, a crucial consideration for diagnostic applications like fault detection. Further-
more, testing different peak configurations allows for a nuanced understanding of how the
chosen models identify and distinguish peaks in the frequency spectrum. In essence, this
approach yields valuable insights into the suitability of various model configurations for
capturing the diverse characteristics of the signal under investigation.

4.1.4. Step 4: Significant Load-Dependent Feature Selection and Validation

Diverse classifier algorithms were systematically examined, focusing on optimal
accuracy and minimal confusion. AR models with different peak counts were explored,
with the first model (order two, peak one) and the second model (order fifteen, peak
five) achieving the highest performance. Subsequently, the dataset was split into testing
(20%), validation (20%), and training (60%) subsets, with five-fold cross-validation for
testing accuracy comparison. Feature richness varied with peak counts, where the first
model showcased robust performance with a single peak, emphasising the power of a
strategically selected minimal feature. The second model, with five peaks, offered a more
detailed representation of spectral characteristics. Features scoring below 20 ANOVA scores
were excluded, refining the selection based on substantial impact. This step highlighted
load-changing trends on extracted features, providing valuable insights into load impact
during faults. Key steps include feature subset selection, classifier training, and selecting the
highest-performing classifier with the optimal feature set. One-way ANOVA was employed
to determine statistically significant variations in feature values across load conditions,
aligning with the project’s aim to analyse load condition influences comprehensively.
ANOVA ranking was used to systematically rank features based on their significance in
distinguishing fault types. The values associated with ANOVA ranking represent the
effectiveness of each feature in differentiating between groups in vibration signal data.
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(a) Autoregressive (AR) Model: Order Two, Peak = 1

Features in the first AR model were reduced based on their ANOVA scores, with
lower-scoring features removed first, as shown in Figure 6: features with ANOVA scores
below 20 were excluded, while those exceeding thresholds of 350, 370, and 600 were consid-
ered. Accordingly, 13, 8, 7, and 2 features were retained for subsequent experiments. These
were designed to investigate the impact of various feature combinations on classification
accuracy, thereby improving our insight into the link between feature selection and model
performance.However, Table 9 comprehensively explores classifier performance across
various feature selection thresholds, revealing notable insights. With the top 13 features,
Boosted Trees exhibited superior adaptability, achieving the highest accuracy at 74.1%,
emphasising the discriminative power of the selected features. The reduction to the top
8 and 7 features demonstrated a trade-off between feature reduction and accuracy, with
Boosted Trees maintaining a competitive edge. However, the drastic reduction to only two
features significantly impacted accuracy across all classifiers, particularly affecting Fine
Gaussian SVM. Notably, the increase to 629 features did not proportionally enhance perfor-
mance, suggesting a saturation point beyond which additional features may introduce noise.
These findings underscore the nuanced relationship between feature selection and classifier
performance, with Boosted Trees showcasing robustness across diverse feature sets.
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Figure 6. One-way ANOVA ranking including spectral features extracted by AR model (a) order two,
peak = 1.

Table 9. Classifier performance across feature selection thresholds for AR model (a) and peak = 1.

No. of Features Used in
Classifier Training Classifier Name Accuracy Score on the

Testing Dataset

Top 13
>20 Boosted Trees 74.1%

Top 8
>345 Narrow Neural Network 72.8%

Top 7
>373 Bilayered Neural Network 73.5%

Top 2
>629 Fine Gaussian SVM 59.9%
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(b) Autoregressive (AR) Model: Order Fifteen, Peak = 5

In the context of the second AR model, applying the one-way ANOVA Rank generated
24 spectral features, a notable increase from the initial 16; see Figure 7. These spectral
features, which include time domain features like SINAD and SNR, alongside the fre-
quency domain feature peakfrequency2, contribute to a comprehensive feature set. The
top 19 features chosen for classifier training were exported to the classification learner,
reserving 20% of the data for testing.
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The second AR model (Order 15) and peak five features exhibit compelling insights
into classifier performance across distinct feature selection thresholds; see Figure 7. Utilising
the top 19 features, Bagged Trees and Cubic SVM achieved remarkable accuracy scores of
86.4%, underlining the efficacy of these classifiers in leveraging a relatively more extensive
set of features (Table 10). The reduction to the top 14 features maintained high accuracy
across all classifiers, emphasising their robustness. Notably, even with a more stringent
selection of 14 features, all classifiers sustained accuracy levels above 80%, indicating
resilience to feature reduction. The decrease to the top 13, 11, and 8 features demonstrated a
nuanced trade-off between feature reduction and accuracy, with Bagged Trees consistently
leading in performance. The findings reinforce the adaptability of the classifiers to varying
feature sets, providing valuable insights for future considerations in feature selection
strategies for this AR model and peak feature combination.
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Table 10. Classifier performance across feature selection thresholds for AR model (b) order fifteen,
peak = 5.

Number of Selected Features
from ANOVA Ranking Classifier Accuracy Score on the

Testing Dataset

Top 19
>20 Bagged trees 86.4%

Top 14
>72 Cubic SVM 86.4%

Top 13
>129 Quadratic SVM 83.3%

Top 11
>171 Quadratic Discriminant 84.6%

Top 8
>345 Quadratic SVM 76.5%

The effectiveness of a classifier heavily depends on the chosen features, showing a
delicate balance between feature quantity and classification accuracy. Simply adding more
features can sometimes reduce performance because of overfitting. Therefore, features with
high ANOVA scores are preferable for training a machine learning model, as they are more
likely to enhance its accuracy. Moreover, different classifiers exhibit varied sensitivities to
feature selection, with some performing well with a concise set of informative features while
others benefit from a more extensive feature set. In the context of the AR model, considering
the number of peaks proves crucial. Utilising multiple peaks enhances sensitivity to
changes in spectral composition, accommodates the potential introduction of new peaks,
and furnishes a fine-grained feature set that adeptly captures the distinct contribution of
each frequency component.

Summary of Selected Features

The 86.4% accuracy of the testing dataset is credited to 14 key features derived from
an AR model (order 15, peak = 5), covering time-domain, frequency domain, and spectral
categories. These features, such as shape factor, peak value, clearance factor, impulse
factor, mean, crest factor, kurtosis, RMS, standard deviation, band power, and various
peak amplitudes and frequencies, are distinctly represented through a color scheme in
histograms (Table 11). The ‘Load Factor Color Code Legend’ aids in differentiating load
factors associated with inner race fault, outer race fault, and normal operations. Out of a
total of 24 features, these 14 were selected for their superior class discrimination ability.

The color coding in the histograms is crucial for demonstrating the distribution of these
features and their impact on the Bagged Trees classifier’s accuracy. Specific colors indicate
strong feature discrimination for certain load conditions. For example, the shape factor
histogram clearly separates the IR_300 load factor (purple color), the peak value excels
in distinguishing the IRF_250 class (light green), the clearance factor is more effective for
the normal class, and the impulse factor better identifies the ORF_150 class. This indicates
the necessity of a collection of features with varied segregation capabilities for effective
classification.

Figure 7’s one-way ANOVA ranking is essential in this context, pinpointing features
that accurately differentiate between load conditions and assisting in selecting an optimal
feature subset for classifier training. This methodical approach is validated by the classifi-
cation accuracy, confirming the chosen features’ ability to precisely identify specific load
factors under various conditions.
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Table 11. Top 14 selected features distinguishing load-dependent fault types: a histogram visualization.

Load Factor Color Code Legend for the Top 14 Features Ranked by One-Way ANOVA
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Wavelet Singular Entropy, aiding in the development of the Customised Load Adaptive 

Framework (CLAF) for the MFPT-bearing dataset. 

4.2.1. Step1: CWT Signal Encoding and Optimal Technique Selection 

This step involved determining the optimal CWT mother wavelet approach for the 

MFPT-bearing dataset using CWT Time–Frequency Diagrams and Wavelet Singular En-

tropy (WSE), enabling effective feature extraction, denoising, and pattern recognition.  

CWT Vibration Signal Time–Frequency Analysis 

The analysis was initiated with the original MFPT-bearing dataset, categorised into 

IRF, ORF, and Normal health conditions. The objective was to evaluate the capability of 

Continuous Wavelet Transform (CWT) in fault recognition, given its suitability for time-

frequency analysis. CWT generates wavelet scalograms, 2D representations illustrating 

the local energy density across time and frequency, offering insights into system behav-

iour over time. Scalograms present time on the x-axis and scale on the y-axis, providing a 

comprehensive view of time-frequency domain characteristics compared to one-dimen-

sional signals. The CWT effectively filters transient and non-smooth signal segments, 

shown in Table 12. In Figure 8a, 12 impulses in the inner vibration signal, corresponding 

to the bearing’s IRF frequency, are observed. This results in 12 distinct peaks in the 2D 

time-frequency diagram in Table 12, with more apparent patterns produced by the Amor 

and Morse wavelets. Similarly, in Figure 8b, eight peaks for ORF faults are observed, with 

the most distinct pattern generated by Amor wavelets in Table 12. In contrast, in Figure 

8c, a lack of clear patterns or features is observed in the Normal health condition signal, 

regardless of the wavelet used; refer to Table 12. The count of distinct peaks is valuable 

for distinguishing between IRF, ORF, and Normal health conditions. To quantitatively 

validate the selection of the optimal mother wavelet, Wavelet Singular Entropy (WSE) will 

be employed in the next section. 
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4.2. Phase 2: Customised Load Adaptive Framework (CLAF) for IM Fault Classification

This section This section delves into time–frequency feature analysis for different fault
types, focusing on the Continuous Wavelet Transform (CWT) applied to vibration signals
with various mother wavelets. The best wavelet function was identified using Wavelet
Singular Entropy, aiding in the development of the Customised Load Adaptive Framework
(CLAF) for the MFPT-bearing dataset.

4.2.1. Step1: CWT Signal Encoding and Optimal Technique Selection

This step involved determining the optimal CWT mother wavelet approach for the
MFPT-bearing dataset using CWT Time–Frequency Diagrams and Wavelet Singular En-
tropy (WSE), enabling effective feature extraction, denoising, and pattern recognition.

CWT Vibration Signal Time–Frequency Analysis

The analysis was initiated with the original MFPT-bearing dataset, categorised into
IRF, ORF, and Normal health conditions. The objective was to evaluate the capability of
Continuous Wavelet Transform (CWT) in fault recognition, given its suitability for time-
frequency analysis. CWT generates wavelet scalograms, 2D representations illustrating the
local energy density across time and frequency, offering insights into system behaviour over
time. Scalograms present time on the x-axis and scale on the y-axis, providing a comprehen-
sive view of time-frequency domain characteristics compared to one-dimensional signals.
The CWT effectively filters transient and non-smooth signal segments, shown in Table 12.
In Figure 8a, 12 impulses in the inner vibration signal, corresponding to the bearing’s IRF
frequency, are observed. This results in 12 distinct peaks in the 2D time-frequency diagram
in Table 12, with more apparent patterns produced by the Amor and Morse wavelets.
Similarly, in Figure 8b, eight peaks for ORF faults are observed, with the most distinct
pattern generated by Amor wavelets in Table 12. In contrast, in Figure 8c, a lack of clear
patterns or features is observed in the Normal health condition signal, regardless of the
wavelet used; refer to Table 12. The count of distinct peaks is valuable for distinguishing
between IRF, ORF, and Normal health conditions. To quantitatively validate the selection
of the optimal mother wavelet, Wavelet Singular Entropy (WSE) will be employed in the
next section.
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Table 12. Comparative Visualisation of Health Condition Signals: 2D Time–Frequency Diagrams
Using Three Types of Mother Wavelet Functions.

Health State Inner Outter Normal

Dataset InnerRaceFault_vload_1 ‘OuterRaceFault_3.mat’ ‘baseline_1.mat’

2D time-frequency diagrams

Bump
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Wavelet Singular Entropy Analysis for Appropriate CWT Selection

A meticulous comparison of Wavelet Singular Entropy (WSE) scores identified the
most suitable mother wavelet function for fault scenarios. The largest WSE score indicates
a more scattered signal with a less noticeable pattern, likely representing the Normal health
condition; see Figure 8c. WSE is a crucial quantitative measure for CWT, guiding the
selection of effective wavelet foundations in wavelet analysis. The chosen mother wavelet
significantly influences denoising, signal preservation, and feature extraction, enhancing
the frequency spectrum of the denoised signal [6,41]. Average WSE was subsequently
calculated in the process of selecting the optimal mother wavelet function by comparing
WSE scores across different wavelet types [33]. The selection process involves evaluating
(WSEj) scores across various mother wavelet functions:

WSEj = ∑n
t=1

∣∣∣C f s(t, j)
∣∣∣2·log

(∣∣∣C f s(t, j)
∣∣∣2), (5)

where C f s is the wavelet transform coefficient obtained from W, and fs (Hz) is the sam-
pling frequency that determines the number of samples taken per second. The range of
summation depends on the number of wavelet coefficients obtained from the transform
and the chosen wavelet scale. Each coefficient corresponds to a specific scale, j, and time, t,
capturing information about the signal’s frequency content and time location [32,33].

Afterwards, MeanWSE(W) is calculated in Equation (6), where D represents the
dataset (e.g., Normal, IRF, or ORF), W represents the wavelet type (e.g., ‘Bump’, ‘Morse’,
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‘Amor’), and N is the total number of datasets. Subsequently, the average mean WSE score
(AvgMeanWSE(W)) across all datasets for specific wavelets is determined in Equation (7):

Mean WSE(W, D) =
1
n

n

∑
j=1

WSEj, (6)

AvgMean WSE(W) =
1
N ∑D Mean WSE(W, D), (7)

Table 13 scores provide valuable insights into energy distribution patterns in signals
under different fault conditions, with two randomly chosen datasets assessed using WSE:

1. Bump:

The Wavelet Singular Entropy (WSE) scores for the inner fault are low (0.017424
and 0.039571), indicating a more concentrated energy distribution and simpler signals.
In contrast, the outer fault exhibits higher scores (2.0282 and 1.7431), suggesting a more
complex energy distribution. In the Normal health condition, the scores are relatively low
(1.4832 and 1.5995), indicating a simpler energy distribution.

Table 13. WSE scores comparison with three types mother of wavelet functions.

Health State Training Set Code Morse Bump Amor

Normal
baseline_1 data_normal 2.236 1.483 5.381

baseline_2 data_normal2 2.836 1.600 15.830

WSE Avg. for 0.1 s 2.536 1.541 10.603

Inner
InnerRaceFault_vload_1 datat_inner 0.011 0.017 0.009

InnerRaceFault_vload_2 datat_inner2 0.023 0.040 0.019

WSE Avg. for 0.1 s 0.017 0.028 0.014

Outer
OuterRaceFault_3 data_outer 2.311 2.028 0.611

OuterRaceFault_1 data_outer_2 2.225 1.743 2.653

WSE Avg. for 0.1 s 2.268 1.886 1.632

2. Morse:

In the case of the inner fault, low scores (0.011188 and 0.022887) suggest simpler
signals. Conversely, the outer fault displays higher scores (2.311 and 2.2253), indicating a
more complex energy distribution. In the Normal condition, the scores are relatively low
(2.2357 and 2.836), suggesting a simpler energy distribution.

3. Amor:

Low scores (0.0090466 and 0.019031) indicate simpler signals for the inner fault. The
outer fault, however, shows a positive score (0.61065), suggesting a more dispersed energy
distribution. In the Normal condition, higher scores (2.6529, 5.3807, and 15.826) indicate
more complex energy distributions.

The mother of wavelet analysis can be summarised in Figure 9, where it shows
the visual comparison; the “Amor” wavelet type shows relatively better discrimination
between the Normal and faulty conditions, as it exhibits lower WSE scores for the faulty
conditions compared to the Normal health condition. However, based on the analysis
of the WSE scores, three wavelet coefficients were evaluated: Morse, Bump, and Amor.
For the Normal health condition dataset, the Morse coefficient had an average WSE score
of 2.53585, the Bump coefficient had a score of 1.54135, and the Amor coefficient had
the highest score of 10.60335, indicating a more dispersed energy distribution. When
considering the inner fault dataset, the Morse, Bump, and Amor coefficients had average
WSE scores of 0.0170375, 0.0284975, and 0.0140388, respectively. For the outer fault dataset,
the average WSE scores were 2.26815, 1.88565, and 1.631775 for the Morse, Bump, and
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Amor coefficients, respectively. The results show that the Amor coefficient exhibited the
highest average WSE score for the Normal health condition dataset, suggesting a distinct
energy distribution. This makes the Amor coefficient a potential candidate for identifying
Normal health conditions compared to faulty ones.
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4.2.2. Step 2: CWT Energy Assessment for Each Load Factor

In this section, we use the data segmentation subfiles described in Table 8 in Section 4.1.2.
for further mean energy analysis per load factor for inner and outer race fault types per
load factor i, and calculate the wavelet energy values using the CWT technique. Let xi(t)
represent the vibration signal for load factor i at time t. The CWT coefficients are denoted
as Ci,j(t), where j represents the selected wavelet scale [6,44]. Following these steps

• Extract the vibration signal for load factor i: xi(t).
• Perform the CWT on the vibration signal: Ci,j(t); see Equation (8). The scale used in

this study was 5.
• Calculate the wavelet energy Ej

wavelet,i for each scale j, Ej
wavelet,i, in Equation (9):

Ci,j(t) = CWT
(
xi(t), wavelettype, j

)
, (8)

Ej
wavelet, i = ∑t

∣∣Ci,j(t)
∣∣2 (9)

Hence, the concept of “scale” j is crucial in understanding the CWT technique in
wavelet analysis. The CWT is a method used to examine signals at various scales, al-
lowing the detection of different frequency components in a signal with varying levels
of detail. Each scale j corresponds to a specific width of the analysing wavelet, a mathe-
matical function used in the transformation process. Smaller scales represent narrower
wavelets sensitive to high-frequency details, enabling the capture of rapid signal variations.
Conversely, larger scales correspond to wider wavelets, capturing lower-frequency signal
components with broader coverage but less fine detail. In equations involving wavelet
analysis, such as

∣∣Ci,j(t)
∣∣2, the squared absolute value of wavelet coefficients at a particular

scale j and for a specific load factor i is calculated. This squared magnitude is summed
across time t, resulting in the computation of the wavelet energy at that scale j. This energy
measure provides valuable insights into the contribution of different frequency components
to the overall energy content of the signal [44].

Subsequently, the mean energy tables for each load factor i, covering inner and outer
faults and normal conditions, were created by aggregating the calculated wavelet energy



Machines 2024, 12, 44 23 of 31

values. Let Ewavelet,i =
[

E1
wavelet,i, E2

wavelet,i, . . . , ENscales
wavelet,i

]
be the vector of wavelet energy

values for load factor i. Then, calculate the mean wavelet energy wavelet, Ewavelet,i for each
load factor i by taking the average of the wavelet energy values across all scales:

Ewavelet, i =
1

Nscales

Nscales

∑
j=1

Ej
wavelet, i (10)

Here, building upon the foundation of wavelet energy, the mean wavelet energy Ewavelet,i
is computed by averaging energy values over all scales. This metric provides a concise yet
powerful representation of the energy behaviour post-fault for each load factor.

CWT Energy Assessment for Each Load Factor Using Optimal CWT Technique

In the assessment of mean energy values for IRF and ORF with load factor 270 as
the Normal condition shown in Table 14, the following observations were made: For
inner bearings, load factor 270 (Normal condition) exhibited a mean energy value of
5.7012, indicating a lower energy content. Load factors 50, 100, and 150 had mean energy
values ranging from 24.915 to 27.547, indicating a relatively lower energy content, while
load factors 200, 250, and 300 showed mean energy values ranging from 32.199 to 36.147,
suggesting a higher energy content and a more pronounced presence of inner faults.
Similarly, load factors 50, 100, 150, 200, and 250 for outer bearings had mean energy
values ranging from 5.4309 to 7.6992, indicating a relatively lower energy content than
load factor 270. Load factor 270 (Normal condition) had a mean energy value of 5.7012,
representing the Normal (fault-free) health conditions with a lower energy content. Load
factor 300 exhibited a mean energy value of 18.612, indicating a substantial 226.88% increase
compared to Normal conditions.

Table 14. IRF and ORF CWT mean energy.

Inner Race Fault Type Outer Race Fault Type

Load Factor (lbs) MeanEnergy Mean Energy Increase % MeanEnergy Mean Energy Increase %

50 25.549 347.70% 7.699 35.16%
100 27.547 383.65% 5.431 4.76%
150 24.915 337.68% 5.573 2.08%
200 33.742 491.88% 7.604 33.35%
250 36.147 533.49% 7.178 25.90%
270 5.7012 0% (baseline) 5.701 0% (baseline)
300 32.199 464.25% 18.612 226.88%

In summary, ORF and IRF showed notable increases in mean energy with distinct
patterns. ORF exhibited the highest increase at load factor 300 (226.88%), while inner faults
showed higher increases, with the highest at load factor 250 (533.49%). The variability in
increases ranged from 2.08% to 226.88% for outer faults and 337.68% to 533.49% for IRF.
IRF generally displayed higher percentage increases than outer faults, providing insights
for effective fault detection and system management.

Two-Sample t-Test for Significance Testing

In this study, a two-sample t-test was conducted using MATLAB R2023a to assess
differences in mean CWT energy between the Normal load condition (LoadFactor 270 lbs)
and other loads (50, 100, 150, 200, 250, 300 lbs) for IRF in Figure 10 and ORF in Figure 11.
Individual t-tests for each load factor determined whether the mean energy of the Normal
load significantly differed from other loads, with a significance level of 0.05. Results
consistently demonstrated a clear and significant distinction in mean CWT energy between
the Normal condition and various loads. The null hypothesis (H0), suggesting no significant
difference in CWT mean energy between LoadFactor 270 and other load factors, was
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rejected in favour of the alternative hypothesis (H1), indicating a substantial distinction.
This finding held true for IRF and ORF load factors, with low p-values, large sample sizes,
substantial t-values, and confidence intervals, all supporting the robustness and reliability
of these results.
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       200        33.742    109.49    0.28607      28.04     -28.601      -27.48     -97.997    2.923 x105          0           true     

       250        36.147    113.29    0.29599     30.445     -31.026     -29.865     -102.84    2.923 x105          0           true     

       300        32.199     94.74    0.24753     26.498     -26.983     -26.013     -107.01    2.923 x105          0           true     

    LoadFactor     Mean     StdDev     SEMean     MeanDiff    CI_Lower    CI_Upper    tValue         DF          pValue       Significant 

        50        7.6992    7.3528    0.019211      1.9981    -2.0376     -1.9585     -99.051    2.923 x105          0         true     

       100        5.4309    4.0811    0.010663    -0.27028    0.24616     0.29441      21.955    2.923 x105          9.364 x10107     true     

       150        5.5728    4.0481    0.010577    -0.12837    0.10439     0.15235      10.491    2.923 x105          9.573 x1026      true     

       200        7.6036    14.487    0.037852      1.9024    -1.9776     -1.8273     -49.609    2.923 x105          0               true     

       250        7.1779    9.5466    0.024943      1.4767    -1.5271     -1.4264      -57.48    2.923 x105          0               true     

       300        18.612    51.481     0.13451      12.911    -13.175     -12.647     -95.882    2.923 x105          0               true     

Figure 10. Two samples’ t-test results compare IRF load factors (50, 100, 150, 200, 250, 300) with
normal load conditions (LoadFactor 270).
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Figure 11. Two samples’ t-test results compare ORF load factors (50, 100, 150, 200, 250, 300) with
normal load conditions (LoadFactor 270).

4.2.3. Step 3: Customised Load Adaptive Framework

The Load Index, developed based on optimal CWT energy to capture the influence of
load variations during fault occurrences, serves as a qualitative representation of the effects
of varying loads on bearing behaviour. Subsequently, bearing faults were categorised into
load-dependent subclasses, displaying distinct severity levels: mild, moderate, and severe,
using CLAF. This comprehensive classification allows for understanding how varying loads
contribute to the manifestation and progression of bearing faults, by following these steps:

1. Calculate normalised energy values

For each load factor i, the normalised CWT energy values Ej
normalized, i were calculated

using min–max scaling. This process ensures that the wavelet energy values Ej
wavelet, i range

between 0 and 1.The normalization is expressed by Equation (11):

Ej
normalized, i =

Ej
wavelet, i − min

(
Ej

wavelet

)
max

(
Ej

wavelet, i

)
− min

(
Ej

wavelet, i

) , (11)

In this normalised range, 0 represents the minimum energy value in the dataset,
and 1 represents the maximum energy value in the dataset. All other energy values are
linearly scaled within this range. Here, min

(
Ej

wavelet

)
represents the minimum wavelet

energy value across all load factors and scales, and max
(

Ej
wavelet,i

)
represents the maximum

wavelet energy value across all load factors and scales.

2. Identify Normal Condition Indices

Inormal represents the indices corresponding to the Normal condition. In the context of
the analysis, it refers to the indices where the load factor is 270, which is considered the
Normal condition or baseline. These indices are used to calculate the deviation from the
Normal condition for each load factor and wavelet energy value.

In the mathematical notation, Inormal is a set of indices i for which the load factor is
equal to 270:

Inormal = {i|load f actor = 270}
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3. Quantify deviation: calculate deviation from Normal condition:

Dj
i =

{
Ej

normalized,i, i f i /∈ Inormal
0, otherwise

where deviations Dj
i fro*m the Normal condition are calculated, highlighting differ-

ences between the normalised energy values and the baseline. When a load factor is
not within Inormal , the corresponding normalised energy value Ej

normalized, i is consid-
ered. Otherwise, the deviation is set to zero.

4. Severity of Changing Load: Threshold Setting

4.1 Define adjustable severity thresholds

4.2 Categorise the severity Sj
i based on the deviation magnitude Dj

i and threshold:

Sj
i =


‘Mild′, i f Dj

i ≤ mild_threshold
‘Moderate′, i f mild_threshold < Dj

i ≤ moderate_threshold
‘Severe′, i f otherwise

Hence, the severity of deviations Dj
i is categorised to assess the impact post-fault.

Adjustable severity thresholds differentiate between ‘Mild’, ‘Moderate’ and ‘Severe’
conditions and then store severity as a cell array value. This step is vital in determining
the gravity of the machinery’s response to various fault scenarios, enabling efficient
resource allocation, timely interventions, and preventing potential escalations. In this
paper, the authors chose the following thresholds, which can be adjusted according to
the application: mild_threshold = 0.2; moderate_threshold = 0.5.

5. Categorise Severity Sj
i Based on the Deviation Magnitude Dj

i

The normalised energy values allow us to effectively compare the energy levels of
different load factors, as they are all scaled within the same range. However, it is essential to
note that the normalised energy values are not directly related to the severity categorisation
(‘Mild’, ‘Moderate’, or ‘Severe’). The severity categorisation is based on the ‘Deviation’
column, which represents the deviation of each load factor’s mean energy from the mean
energy of the Normal condition. Following are the inner and outer fault types after the
assessment, shown in Table 15 for both IRF and ORF:

Table 15. IRF and ORF load-dependent subclasses through CLAF.

LoadFactor (lb) Mean Energy NormalizedEnergy Deviation Load-Dependent Subclasses

Fault Type Inner Outer Inner Outer Inner Outer Inner Outer

50 25.549 7.6992 0.14035 0.05758 0.1403 0.05758 {‘Mild’} {‘Mild’}
100 27.547 5.4309 0.15053 0.023062 0.15053 0.023062 {‘Mild’} {‘Mild’}
150 24.915 5.5728 0.14063 0.031372 0.14063 0.031372 {‘Mild’} {‘Mild’}
200 33.742 7.6036 0.28444 0.092816 0.28444 0.092816 {‘Moderate’} {‘Mild’}
250 36.147 7.1779 0.29911 0.061822 0.29911 0.061822 {‘Moderate’} {‘Mild’}
270 5.7012 5.7012 0.00930 0.027659 0 0 {‘Normal’} {‘Normal’}
300 32.199 18.612 0.23412 0.89814 0.23412 0.89814 {‘Moderate’} {‘Severe’}

1. IRF Customised Load Factor Assessment:

Min–max scaling was employed to normalise the energy values, transforming the
original energy values into a range of [0, 1]. In this normalised range, 0 signifies the
minimum energy value in the dataset, while 1 represents the maximum energy value.
All other energy values are linearly scaled within this range. The ‘Normalised Energy’
column in the provided table reflects the energy values post min–max scaling, where one
corresponds to the maximum energy value. For instance, the energy value of ‘LoadFactor’



Machines 2024, 12, 44 26 of 31

250 is relatively the highest compared to other load factors in the dataset, evidenced by its
proximity to 1 in the normalised range.

Conversely, ‘LoadFactor’ 50, ‘LoadFactor’ 100, and ‘LoadFactor’ 150 had normalised
energy values around 0.14, indicating their energy values were closer to the lower end of
the normalised range (0). These load factors exhibited lower energy values compared to
others in the dataset. Notably, the normalised energy values did not directly correspond to
severity categorisation (‘Mild’, ‘Moderate’, or ‘Severe’). The severity categorisation was
based on the ‘Deviation’ column, which represents the deviation of each load factor’s mean
energy from the mean energy of the Normal condition.

2. ORF-Type Customised Load Factor Assessment:

Long-duration operation at higher load factors for the ORF significantly influences
degradation. Across load factors 50, 100, 150, 200, and 250, the mean energy values ranged
from 5.4309 to 7.6992, indicating relatively lower energy content in the vibration signals
compared to load factor 270, which represents the Normal condition with a mean energy
value of 6.0981. The Normal condition exhibited relatively lower energy levels, as expected.
However, load factor 300 stood out with a higher mean energy value of 18.612, suggesting
that the associated outer fault condition had a notably higher energy content in the vibration
signals than the other load factors. This detailed energy analysis provides valuable insights
into the variations associated with different load factors and fault conditions, enhancing
the understanding of the degradation process.

4.2.4. Step 4: CLAF Validation

The proposed CLAF is an early warning system that identifies potential issues based
on the customised load-dependent fault subclasses. This approach enhances the efficiency
of the CLAF, displaying time domain data grouped by the four framework classes.

Time and frequency domain features were then extracted by creating a feature subset,
training classifiers, and selecting optimal features based on accuracy. This dataset is detailed
in Section 4.1.4(b), “Classification and Features Selection using Second: Autoregressive (AR)
Model (Order 15) and Peak Five”, where 24 features from both time and frequency domains
were generated within the 2500–25,000 Hz frequency band. Each signal contributes five
spectral peaks, resulting in five frequency features for each peak.Following this, a one-way
ANOVA test was conducted, see Figure 12:
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Features below an ANOVA score of 26, referring to Figure 12, were excluded from
further study. This step aimed to enhance the selection process by concentrating on
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features with a more significant impact. Observing the initial trial’s high accuracy, the
author systematically reduced the number of features, utilising accuracy as a metric for
efficient feature reduction. This reduction process was carried out gradually, guided by
accuracy measures. Subsequently, several classifiers were evaluated in the study, with their
performance meticulously documented across various feature subsets. The training dataset,
comprising 813 subfolders, was divided into 60% for training, 20% for validation, and 20%
for testing. A five-fold cross-validation was implemented to ensure robust performance
assessment. The feature selection process, guided by one-way ANOVA scores, began with
the top 20 features (score > 26) and systematically narrowed down to the top 5 features
(score > 240), allowing for refined classifier selection based on accuracy and efficiency.

Table 16 shows that the RUSBoostedTrees model, tested with the top 20 features,
achieved a notable accuracy of 93.8% and required a training time of 11.539 s. The Fine
Tree model, utilising 17 features, matched this accuracy but with a reduced training time
of 4.393 s. However, the Wide Neural Network, which employed only the top 10 features
(with a score > 161), achieved the highest accuracy of 96.3% in 18.155 s. This exceptional
performance can be attributed to the Wide Neural Network’s efficient single-layer ar-
chitecture, comprising 100 neurons and utilising the ReLU activation function without
regularisation (Lambda set to 0). This configuration and a validation accuracy of 91%
achieved over 57 iterations underscores its effectiveness. The careful selection of these top
10 features was crucial for maintaining the network’s interpretability and ensuring superior
testing performance.

Table 16. CLAF load-dependent subclasses classifiers training on various feature subsets.

Classifier
ANOVA
Ranking

TTime 1 Validation
Dataset Testing Dataset

(s) VA 2 NA 3 MA 4 MoA 5 SA 6 Overall Accuracy

RUSBoostedTrees Top 20
>26 11.539 92.6% 100% 92.4% 91.2% 100% 93.8%

Fine Tree Top 17
>58.6 4.393 92.6% 100% 95.7% 82.4% 100% 93.8%

Wide neural
network

Top 10
>161 18.155 91.2% 100% 97.8% 88.2% 100% 96.3%

Cubic SVM Top7 (a)
>215 8.1055 93.1% 100% 96.7% 82.4% 100% 94.4%

Medium
Gaussian SVM Top 7 (b) 5.8059 91.6% 100% 96.7% 82.4% 100% 94.4%

Fine Gaussian
SVM

Top 5
>240 12.711 92.9% 100% 97.8% 82.4% 100% 95.1%

1 TTime is the training time, 2 VA is the validation accuracy, 3 NA is the normal (fault-free) condition accuracy,
4 MA is the mild state accuracy, 5 MoA is the moderate state accuracy, and 6 SA is the severe state accuracy.

Such a high level of accuracy demonstrates the nuanced understanding of fault pat-
terns by the Customized Load Adaptive Framework (CLAF) and its capability to effectively
distinguish between mild, moderate, and severe fault categories under different load
scenarios.

5. Conclusions

This research proposes a new approach known as the Customised Load Adaptive
Framework (CLAF) for classifying faults in Induction Motors (IM) into load-dependent
fault subclasses, namely ‘Mild’, ‘Moderate’, and ‘Severe’ fault categories. This framework
provided a comprehensive understanding of fault severity under varying load conditions,
offering a profound and insightful method for fault analysis. Specifically tailored to the
MFPT-bearing dataset, this research highlighted patterns in time and frequency domain
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features under six different loads and has demonstrated how fault severity varies across
various load conditions through the utilisation of an optimal Continuous Wavelet Transform
(CWT) energy approach selected by Wavelet Singular Entropy (WSE).

In this research, CLAF has undergone two phases: In Phase 1, load-dependent patterns
in time and frequency domain features were explored using one-way Analysis of Variance
(ANOVA) ranking, and validation was carried out via bagged tree classifiers. Significant
findings from Phase 1 have revealed consistent deviations in key features for both fault
types, with Inner Race Fault (IRF) displaying more pronounced alterations. The one-way
ANOVA test has ranked the shape factor feature as the most significant, followed by peak
value, while Total Harmonic Distortion (THD) has shown no significance. Two different
autoregressive models were employed in frequency domain feature extraction. Subclassi-
fication based on these extracted features for each load revealed distinct patterns, aiding
in identifying load-induced patterns and improving understanding of the relationship
between loads and feature expression in bearing health assessment. The approach that
used bagged tree classifiers with the top 19 features, as determined by one-way ANOVA
scores, was identified as the highest-performing classifier, achieving an accuracy of 86.4%.

In Phase 2, WSE determined ‘Amor’ as the optimal CWT method, surpassing al-
ternatives like ‘Bump’ and ‘Morse’ in the Normal health condition dataset. This phase
underscored a significant correlation between fault severity and load factors, remarkably
when loads exceeded 300 lb. Severe outer faults demonstrated a notable 226.88% increase
in CWT energy compared to the Normal conditions. Similarly, inner faults exhibited signif-
icant energy increases at different load levels, with a rise of 491%, 533.49%, and 464.25% at
200 lb, 250 lb, and 300 lb, respectively. A two-sample t-test confirmed the significance of
these results. Consequently, the study successfully defined load-dependent fault subclasses
within the MFPT-bearing dataset, establishing specific thresholds for mild, moderate, and
severe fault levels based on the energy deviation from normal conditions, as indicated by
the optimal CWT method. The CLAF framework was validated for its load-dependent
subclass creation using time and frequency domain features, achieving a 96.3% classifi-
cation accuracy with a Wide Neural Network (WNN) and the top 10 features ranked by
one-way ANOVA. It has been particularly effective in classifying severe faults with 100%
accuracy, moderate faults at 88.3%, and mild faults at 97.8%, demonstrating its capability
to detect nuanced fault variations under different load conditions in IMs. These results
underscore the significant practical benefits of CLAF in enhancing fault diagnosis for IMs
and its potential in advancing condition monitoring.

Future work will explore multimodal aspects and integrate decision fusion within
the CLAF framework. This innovative approach extends beyond traditional fault classi-
fication methods by accommodating load variations and enabling dataset customisation.
Consequently, the versatility of CLAF is not confined to the MFPT-bearing dataset alone; it
can also be tailored to other IM datasets. Such advancements hold significant potential for
enhancing condition monitoring in IMs in the future.
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