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Abstract

Electroencephalography (EEG) is a useful diagnostic tool for many brain dis-
orders, including coma. EEG signals are non-stationary, but it is possible to
model EEG signal increments using stationary processes. In this thesis, EEG
increments are viewed as discrete time observations from a diffusion process with
marginal distributions which is independent of time. First, the basic theory
needed for modelling of the diffusion processes is presented. Then, based on
the histograms of EEG increments, the choice of a marginal distribution is the
generalized Gaussian distribution (GGD) with a parametrization that comprises
both light-tailed and heavy-tailed distributions. Some properties of the GGD are
presented, along with the method of estimation of the tail index using the so-
called empirical scaling function. The estimated parameters from models across
EEG channels obtained from both subfamilies are explored as potential predictors
of neurocognitive outcomes in children 6 months after recovering from cerebral
malaria. To include a wider range of marginal distributions observed in his-
tograms, a new strictly stationary strong mixing diffusion model with marginal
multimodal (three-peak) distribution and exponentially decaying autocorrelation
function is used for modelling of EEG increments. The marginal distribution
is viewed as a mixture of three non-central generalized Gaussian distributions.
Distribution parameters are estimated using the expectation-maximization (EM)
algorithm, where the added shape parameter is estimated using the higher or-
der statistics approach based on an analytical relationship between the shape
parameter and the kurtosis. Similarly to the unimodal case, obtained estimates
are then used for prediction of subsequent neurodevelopment and cognition of
cerebral malaria survivors using the elastic net regression. All predictive models
are compared to determine whether additional information obtained from mul-
timodality of the marginal distributions can be used to improve the prediction.
The results of analysis in this thesis show that stochastic modelling of EEG fea-
tures can improve the explanation of variation in neurodevelopmental outcomes
of children who were in coma due to cerebral malaria.
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Chapter I

Introduction

1 Cerebral malaria and electroencephalogram
(EEG)

Cerebral malaria is the most severe neurological complication of infection with
a parasite Plasmodium falciparum where children in sub-Saharan Africa are the
most affected with over half a million cases annually. Mortality rate is high and
even with treatment, 15 − 20% of children die while surviving patients sustain
brain injury which manifests as long-term neurocognitive impairments [Idro et al.,
2011]. Severe malaria can be caused by other species of Plasmodium, such as P.
vivax and P. knowlesi. In addition to the presence of P. falciparum on a blood
smear, main diagnostic difference between other complications of severe malaria
and cerebral malaria is the onset of a coma. Wilson and Nordal [2013] define
coma as “a pathological state of suspended consciousness and unresponsiveness
to external or internal stimuli” which can last from an hour to several weeks
and result in “regaining of consciousness with or without sequelae, death or [. . .]
chronic vegetative state”.

There are a number of novel neuroscience techniques for studying brain func-
tion such as functional magnetic resonance imaging (fMRI), positron emission to-
mography (PET), magnetoencephalography (MEG), transcranial magnetic stim-
ulation (TMS), (for comparison of these techniques see [Hecht and Stout, 2015])
but electroencephalography is still widely used as a non-invasive way to monitor
patients’ brain functions. Electroencephalogram (EEG) registers electrical neural
activity of the brain. EEG signal is used as a diagnostic tool for many brain dis-
orders based on the visual inspection by clinical experts in the field [Sanei, 2013].
Signals are captured by multiple electrodes called channels located over the scalp
and are usually presented in the time domain. Human brain is neither a fully
deterministic nor a fully stochastic system [Klonowski, 2009], but EEG signals
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Chapter I. Introduction

are often considered as realisations of a stochastic process. Body’s biological and
physiological changes cause the changes in brain metabolism which result in EEG
signals being non-linear. Also, the signals are generally non-stationary which
means that their statistics such as mean, variance and higher order statistics may
change over time. However, EEG signals can be considered quasi-stationary, i.e.
stationary only within short time intervals because their statistical properties are
steady within one short time segment. The duration and these quasi-stationary
segments in EEG vary. For example, in their research Kaplan et al. [2005] report
that the majority of these quasi-stationary segments had a duration of less than
1 second. Usually, under normal brain conditions and within such short intervals,
the multichannel EEG process is described by multivariate Gaussian distribution.
Statistical averages of the signals can be estimated by time averages since the sig-
nals are often considered ergodic. Although an accurate model for EEG signals,
i.e. a model that can link the chemical processes within corresponding neurons
generating the active potentials is hard to achieve, a number of such models has
been introduced since 1950s. An overview of these models is given in Sanei [2013].

Even though EEG is underused in coma, combined with neurological exam-
ination, it can be useful in determining the prognosis in some conditions when
the etiology of the coma is known [Young, 2000]. As mentioned, the sequelae of
a coma can be severe and their extent can impact subsequent neurodevelopment
and cognitive function. Thus, the evaluation of aforementioned functions while
the subject is still in an unconscious state is of great importance. For this purpose
EEG can be especially useful as it provides a language-independent clinical data
for such evaluation.

Identification of factors that can predict the extent of neurocogntive impair-
ment and other outcomes following cerebral malaria illness is an important prob-
lem [Birbeck et al., 2010; Patel et al., 2020]. While evidence-based rehabilitative
interventions for survivors are available, resources to administer them are limited
across sub-Saharan Africa. Therefore directing these interventions to those in
most need, as determined by predictors of subsequent impairment, is key to the
most efficient use of the available resources.

Statistical analyses of EEG data usually include classification and prediction
of seizures using arrays of EEG features (Duncan et al. [2013]; Kirch et al. [2015];
Temko et al. [2011]), but few models for the underlying stochastic processes have
been proposed [Piryatinska et al., 2009; Veretennikova et al., 2018]. However,
Veretennikova et al. [2018] performed an analysis of EEG signals from children
who were in coma due to cerebral malaria and noticed that the underlying stochas-
tic processes across channels could be described by the stochastic process with
stationary increments. Additionally, stochastic features from modelling of EEG
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2. Thesis aim and structure

increments were used as predictors of neurodevelopment and cognition. For a re-
view of other mathematical models for malaria epidemic see Mandal et al. [2011],
while more recent results can be found in Wanduku [2019].

2 Thesis aim and structure

The aim of this thesis is to investigate stochastic models of EEG increments for
the prediction of neurodevelopment and cognition of children who were in coma
due to cerebral malaria.

The first step in achieving this aim is constructing the corresponding stochas-
tic processes. EEG increments will be viewed as a time series (Xn, n ∈ N),
representing the model for discrete-time observations from a stationary diffusion
process {Xt}t≥0 with a specified probability density function. Once these dif-
fusion processes are constructed, the methods for estimating their parameters
need to be considered, and then the usefulness of the parameter estimates can be
tested, answering whether the overall prediction of subsequent neurodevelopment
or cognition can be improved with the addition of stochastic features.

The thesis is structured as follows:
Chapter II forms the theoretical part of the thesis. In Section II.1 the basic

theory relevant for the stochastic differential equations and diffusion construc-
tion is presented. Section II.2 presents the unimodal marginal distribution used
in modelling of EEG increments and includes the description of the general-
ized Gaussian distribution, its properties and the diffusion construction, with the
method of estimation of its parameters, both for the light-tailed and the heavy-
tailed subfamily. Section II.3 deals with the multimodal, marginal distribution
which is a mixture of non-central generalized Gaussian distributions, for which
again diffusion process was constructed and the algorithm for parameter estima-
tion is presented.

Chapter III presents the empirical results of modelling the EEG increments
using the stochastic models presented in Chapter II. Dataset description and anal-
ysis of the histograms of EEG increments are shown in Section III.1, a method
used for the prediction of neurodevelopment is given in Section III.2, while Sec-
tions III.3 and III.4 include the results of fitting marginal distributions of con-
structed diffusion to EEG increments and introduce different models of combined
non-EEG and stochastic features for the prediction of neurodevelopment.

Chapter IV discusses the results presented in the thesis and concludes with
proposing future applications of presented diffusion models.

3





Chapter II

Marginal distributions and
diffusion construction for
modelling of EEG increments

The idea of modelling the EEG data is based on finding a suitable continuos-time
model which would describe the underlying process that created the data. Hence,
a continuos-time model would be used to describe the discrete-time observations
which were obtained from EEG signals. The description of the system governing
this data (i.e. brain function) is simplified by using a stochastic differential equa-
tion, and the realizations are then transformed into a stationary process, resulting
in EEG increments. In order to characterize important probabilistic properties
of EEG increments, including their dependence structure, the EEG increments
are viewed as a time series (Xn, n ∈ N), representing the model for discrete-time
observations from the diffusion process {Xt}t≥0 with a given marginal density
f which would reflect the empirical data. First, in Section II.1 some basic def-
initions from probability and the theory of stochastic differential equations are
presented. Next, a model based on the unimodal shape of the marginal distri-
bution is given in Section II.2. In Section II.3 a more complex model covering a
wider range of possible histogram shapes of EEG increments is given.

1 Basic definitions, theorems and properties

In the first part of this section, some basic definitions from probability theory
are reviewed, without going into details. These definitions are used later on and
thus needed for the definitions and theory of stochastic differential equations
and its solutions. The second part of the section contains definitions related to
stochastic differential equations and its solutions (diffusions). The definitions are
mostly taken verbatim from Øksendal [2000], if not otherwise stated. The last
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Chapter II. Marginal distributions and diffusion construction for modelling of EEG
increments

part of the section contains the main result from Bibby et al. [2005] which shows
how to construct a diffusion process with a given marginal density.

1.1 Basic definitions

Definition 1.1 (σ-algebra).
If Ω is a given set, then σ-algebra F on Ω is a family F of subsets of Ω with the
following properties:

(i) ∅ ∈ F ,
(ii) if F ∈ F then FC ∈ F , where FC = Ω\F is the complement of F in Ω,

(iii) if A1, A2, · · · ∈ F , then A :=
∞⋃

i=1
Ai ∈ F .

Definition 1.2 (σ-algebra generated by U).
Given any family U of subsets Ω there is a smallest σ-algebra HU containing U ,
namely

HU =
⋂

{H : H σ-algebra of Ω, U ⊂ H}.

We call HU the σ-algebra generated by U .

Definition 1.3 (Borel σ-algebra, Borel sets and Borel measure).
If U is the collection of all open subsets of a topological space Ω, then B = HU

is called Borel σ-algebra on Ω. The elements B ∈ B are called Borel sets. Any
measure defined on Borel σ-algebra is called a Borel measure.

Definition 1.4 (Probability measure and probability space).
The pair (Ω, F) is called a measurable space. A probability measure IP on a
measurable space (Ω, F) is a function IP: F → [0, 1] such that

(i) IP(∅) = 0, IP(Ω) = 1,
(ii) if A1, A2, · · · ∈ F and {Ai}∞

i=1 is disjoint, then

IP
( ∞⋃

i=1
Ai

)
=

∞∑
i=1

IP(Ai).

The triple (Ω,F , IP) is called a probability space.

Definition 1.5 (F measurable sets and F measurable function).
The subsets F of Ω which belong to F are called F-measurable sets. If (Ω,F , IP)
is a given probability space, then a function Y : Ω → Rn is called F-measurable if

Y −1(U) := {ω ∈ Ω, Y (ω) ∈ U} ∈ F

for all Borel sets U ∈ Rn.
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1. Basic definitions, theorems and properties

Definition 1.6 (Random variable and its distribution).
A random variable (RV) X is an F-measurable function X : Ω → Rn. A proba-
bility measure mX on Rn defined by

mX(B) = IP(X−1(B)), B ∈ F

is called the distribution of X.

Definition 1.7 (Expectation of a random variable). Expectation of a ran-
dom variable X w.r.t. to the probability measure mX , if it exists, i.e. if X is
absolutely integrable w.r.t. mX , is defined by

E [X] =
∫
Rn

x dmX(x). (1.1)

Throughout this thesis the focus will be one-dimensional random variables
having the density function corresponding to the measure mX .

Definition 1.8 (Characteristic function and moment generating func-
tion). For a random variable X with probability density function f , the charac-
teristic function is defined by

ϕ(t) = E
[
eitX

]
=

∞∫
−∞

eitxf(x) dx, i =
√

−1. (1.2)

A moment generating function is defined by

ϕ(t) = E
[
etX

]
=

∞∫
−∞

etxf(x) dx. (1.3)

Since the relation between the distribution function and the characteristic
function is one-to-one, knowing the characteristic function is synonymous to
knowing the distribution function [Karlin and Taylor, 1975].

Definition 1.9 (Stochastic process and its state space).
A (stochastic) process X = {Xt}t∈T is a parametrized collection of random vari-
ables {Xt}t∈T defined on the probability space (Ω,F , IP) and assuming values in
Rn. The range (possible values) of the random variables in a stochastic process
is called the state space of the process.

The stochastic process may be regarded as a function of two variables
X(t, ω) : T × Ω → Rn but for convenience, the notations Xt(ω) (or even Xt,
omitting the variable ω completely), are used.
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Chapter II. Marginal distributions and diffusion construction for modelling of EEG
increments

Definition 1.10 (Path of a stochastic process).
A path of a stochastic process X = {Xt}t∈T is a function

t 7→ Xt(ω), t ∈ T

for every fixed ω ∈ Ω.

Definitions from Karlin and Taylor [1975] present important concepts of
(strictly) stationary and wide-sense stationary processes, which are the main
focus of the thesis.

Definition 1.11 ((Strictly) stationary process).
A stationary process is a stochastic process X = {Xt}t∈T with the property that
for any positive integer k and any t1, . . . , tk ∈ T and h ∈ T , the joint distribution
of

Xt1 , . . . , Xtk

is the same as the joint distribution of Xt1+h, . . . , Xtk+h.

Usually, the term “stationary process” refers to the strictly stationary pro-
cesses.

Definition 1.12 (Wide-sense (weakly or 2nd order) stationary process).

A wide-sense stationary process is a stochastic process X = {Xt}t∈T having the
following properties:

(i) E[Xt] exists and is constant for all t ∈ T ,
(ii) E[X2

t < ∞] for all t ∈ T and
(iii) Cov(Xt, Xs) = Cov(Xt+h, Xs+h), for all t, s ∈ T and h > 0
where Cov is the covariance function defined as E

[(
Xt − E[Xt]

)(
Xs − E[Xs]

)]
.

When a time-average of a wide-sense stationary process is the same as its
average over the probability space, the process is called (mean) ergodic. A formal
definition from Papoulis and Pillai [2002] is given below.

Definition 1.13 (Ergodic process). Let X = {Xt}t∈T be a wide-sense station-
ary process and E[Xt] = µ. A time average of a process on an arbitrary interval
[−L,L] is defined by

µL = 1
2L

L∫
−L

X(t) dt.

We say that a process X is mean-ergodic if

lim
L→∞

µL = µ.
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1. Basic definitions, theorems and properties

Definition 1.14 (Finite-dimensional distributions of a process).
The finite-dimensional distributions of the process X = {Xt}t∈T are the measures
mt1,...,tk

defined on Rnk, k = 1, 2, . . . by

mt1,...,tk
(F1 × F2 × · · · × Fk) = IP[Xt1 ∈ F1, · · · , Xtk

∈ Fk], ti ∈ T

where F1, . . . , Fk denote Borel sets in Rn.

An important example of a stochastic process which will be used throughout
the thesis is called a Brownian motion.

Definition 1.15 (Brownian motion (Wiener process)).
A stochastic process B = {Bt}t≥0 which satisfies the properties

(i) B0 = 0 a.s.,
(ii) t 7→ Bt is a.s. continuous,

(iii) B has independent increments, i.e.

Bt1 , Bt2−Bt1 , . . . , Btk
−Btk−1 are independent for all 0 ≤ t1 < t2 < · · · < tk,

(iv) increments are normally distributed i.e. Bt − Bs ∼ N (0, t − s) for all
0 ≤ s < t,

is called a Brownian motion or Wiener process B.

From the properties (i) and (iv) it follows

Bt −Bs ∼ N (0, t− s) =⇒ Bt −B0 ∼ N (0, t− 0) =⇒ Bt ∼ N (0, t).

Moreover, it could be shown that all finite dimensional marginal distributions are
Gaussian. The Gaussianity of the whole process follows from (iii) and (iv).

Definition 1.16 (Filtration).
A filtration is a family H = {Ht}t≥0 of σ-algebras Ht ⊂ F such that

0 ≤ s < t =⇒ Hs ⊂ Ht

i.e. H = {Ht}t≥0 is increasing.

Definition 1.17 (H-adapted process).
Let H = {Ht}t≥0 be a filtration. A process g(t, ω) : [0,∞⟩ × Ω → Rn is called
H-adapted process if for each t ≥ 0 the function ω → g(t, ω) is Ht-measurable.

Definition 1.18 (Martingale).
An n-dimensional stochastic process M = {Mt}t≥0 on (Ω,F , IP) is called a mar-
tingale with respect to filtration H = {Ht}t≥0 and with respect to IP if

(i) Mt is H-adapted process,
(ii) E[|Mt|] < ∞, ∀t,

(iii) E[Mt|Hs] = Ms, ∀t ≥ s.

9



Chapter II. Marginal distributions and diffusion construction for modelling of EEG
increments

1.2 Stochastic differential equations and its solutions

Stochastic differential equations (SDEs) are viewed as an extension of classical
differential equations where some randomness is allowed in some of the coefficients
[Øksendal, 2000]. A white noise term is added to the equation which introduces
an uncertainty in the description of the system and results in dependence between
observations [Bibby et al., 2005]. This inclusion of the uncertainty of the system
can be represented by the equation of the form

dXt = b(Xt) dt+ γ(Xt) dVt, t ≥ 0 (1.4)

where b, γ are real continuos functions and V = {Vt}t∈T is some stochastic pro-
cess. Functions b and γ are called the infinitesimal parameters of the process,
where b is called the drift parameter, infinitesimal mean or expected infinitesimal
displacement and γ is called the diffusion parameter, infinitesimal variance or
volatility [Karlin and Taylor, 1981].

Within this thesis, the driving process V shall be Browninan motion B =
{Bt}t≥0 from Definition 1.15, thus (1.4) can be rewritten as

dXt = b(Xt) dt+ γ(Xt) dBt, t ≥ 0. (1.5)

Stochastic differential equations can also be defined using an Itô integral which
is defined using a special class of functions.

Definition 1.19. Let S, T ⊂ [0,∞⟩×Ω and V := V(S, T ) be the class of functions

f(t, ω) : [0,∞⟩ × Ω → R

such that
(i) (t, ω) → f(t, ω) is B×F-measurable, where B is a Borel σ-algebra on [0,∞⟩;

(ii) f(t, ω) is F-adapted;

(iii) E

 T∫
S

f(t, ω)2dt

 < ∞.

The Itô integral can be defined for a larger class of integrands f than V by
relaxing the conditions (ii) and (iii) in the following way:
(ii)’ there exists a filtration H = {Ht}t≥0 such that B = {Bt}t≥0 is a martingale

with respect to filtration H and f is H-adapted;

(iii)’ IP
 T∫

S

f(t, ω)2dt < ∞

 = 1.

From Øksendal [2000], an important example where (ii)’ holds, but (ii) doesn’t
is described as follows: suppose (B1, . . . , Bn) is n-dimensional Brownian motion
and Bt(ω) = Bk(t) is its kth coordinate. If F (n)

t is the σ-algebra generated by
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1. Basic definitions, theorems and properties

(B1(s1), . . . Bn(sn)) where sk ≤ t, then Bk(t) is a martingale with respect to F (n)
t

since Bk(s) −Bk(t) is independent of F (n)
t for s > t. This defines integrals of the

form
t∫

0

f(s, ω)B. k(s)

for F (n)
t -adapted integrands f(t, ω).

Definition 1.20 (The Itô integral).
Let f ∈ V(S, T ) where S, T ⊂ [0,∞⟩ × Ω. Then the Itô integral of f from S to T
is defined by

T∫
S

f(t, ω) dBt = lim
n→∞

T∫
S

φn(t, ω) dBt(ω) (limit in L2(IP)), (1.6)

where {φn} is a sequence of simple functions† such that

E

 T∫
S

(f(t, ω) − φn(t, ω))2 dt
 → 0 as n → ∞,

where L2(IP) refers to the convergence in mean square.

Definition 1.21 (One-dimensional Itô processes).
Let B = {Bt}t≥0 be a one-dimensional Brownian motion on (Ω,F , IP). A (one-
dimensional) Itô process is a stochastic process X = {Xt}t≥0 on (Ω,F , IP) of the
form

X = X0 +
t∫

0

u(y, ω) dy +
t∫

0

v(y, ω) dBy, (1.7)

where v belongs to the class of processes satisfying the condition (i) from Defini-
tion 1.19 and conditions (ii)’ and (iii)’, so that

IP
 t∫

0

v(y, ω)2 dy < ∞, ∀t ≥ 0
 = 1.

Also, it is assumed that u is H-adapted, where H is from (ii)’, and

IP
 t∫

0

|u(y, ω)| dy < ∞, ∀t ≥ 0
 = 1.

†A function is called simple if it has only finitely many values [Cohn, 2013, p. 42]. A formal
definition of these functions in relation to the construction of Itô integrals can be found in
[Øksendal, 2000, p. 26] where they are called elementary functions.
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Theorem 1.1 (The one-dimensional Itô formula).
Let X = {Xt}t≥0 be an Itô process given by (1.7), written in the shorter differen-
tial form as

dXt = u(t,Xt) dt+ v(t,Xt) dBt,

where u and v are H-adapted processes, with H satisfying the conditions in (ii)’.
Let g be twice continuously differentiable on [0,∞⟩ ×R. Then Y = {Yt}t≥0 where

Yt = g(t,Xt)

is again an Itô process and

dYt = ∂

∂t
g(t,Xt) dt+ ∂

∂x
g(t,Xt) dXt + 1

2
∂2

∂x2 g(t,Xt)(dXt)2,

where (dXt)2 = (dXt) · (dXt) is computed according to the rules

dt · dt = dt · dBt = dBt · dt = 0, dBt · dBt = dt. (1.8)

Proof. See [Øksendal, 2000, Theorem 4.1.2].

The term (dXt)2 = (dXt) · (dXt) is in fact

(dXt)2 = (u(t,Xt) dt+ v(t,Xt) dBt)2.

In terms of size dt ≪ dBt ≪ 1 and dBt ≈
√

dt, which results in (dt)2 ≈ 0, dt ·
dBt ≈ 0 and (dBt)2 ≈ (

√
dt)2. This gives the explanation of the rules defined in

(1.8).
More about Itô calculus is given in [Øksendal, 2000, Chapters 3 and 4].

When discussing the solutions of the SDE (1.5), the question of existence and
uniqueness of the solution arises. Next, the theorem which gives the conditions
under which the solution(s) exist and is unique is presented below. The theorem
is stated in a more general form where b and γ are allowed to be n-dimensional.

Theorem 1.2 (Existence and uniqueness theorem for SDEs).
Let T > 0, t ∈ [0, T ] and g(t, x) := g(xt). Also, let b : Rn → Rn, γ : Rn → Rn×m

be measurable functions satisfying

|b(xt)| + |γ(xt)| ≤ C(1 + |xt|), xt ∈ Rn, (1.9)

for some constant C, where |γ|2 = ∑ |γij|2 such that

|b(xt) − b(yt)| + |γ(xt) − γ(yt)| ≤ D|xt − yt|, xt, yt ∈ Rn, (1.10)

12



1. Basic definitions, theorems and properties

for some constant D. Let Z be a random variable which is independent of the σ-
algebra F (m)

∞ generated by Bs, s ≥ 0, such that E[|Z|2] < ∞. Then the stochastic
differential equation

dXt = b(Xt) dt+ γ(Xt) dBt, 0 ≤ t ≤ T, X0 = Z. (1.11)

has a unique t-continuos solution X = {Xt}t≥0 with the property that X is adapted
to the filtration {FZ

t }t≥0
† generated by Z and Bs, s ≤ t and

E
[ ∫ T

0
|Xt|2 dt

]
< ∞. (1.12)

Proof. For proof see [Øksendal, 2000, Theorem 5.2.1, p. 66].

Linear growth condition (1.9) ensures that the solution X doesn’t explode,
i.e. that |X| doesn’t tend to infinity in finite time. The Lipschitz condition
(1.10) guarantees uniqueness of the solution, i.e. if X1 and X2 are two continuous
processes which satisfy the theorem conditions, then

X1(t, ω) = X2(t, ω), ∀t ≤ T a.s. (1.13)

Two possibilities for a solution exist. When the version of the Brownian
motion B is given in advance and the solution constructed from it is FZ adapted,
then the solution is called a strong solution. However, if a filtration H = {Ht}t≥0

such that processes X̃ and B̃ satisfy the SDE (1.11) (where X̃ is H-adapted and
B̃ is H-Brownian motion, i.e. B̃ is a Brownian motion and a martingale w.r.t.
H) and one needs to find a pair of process

(
(X̃, B̃),H

)
on a probability space

(Ω,H, IP) with only the functions b and γ given, then the solution is called a
weak solution. As expected, a strong solution is also a weak solution, but not
vice versa (in general).

Additionally, two forms of the uniqueness can be defined. A strong or pathwise
uniqueness is defined by (1.13). A weak uniqueness means that any two solutions
are unique in the probability law, i.e. they have the same finite-dimensional
distributions. As stated in [Øksendal, 2000, Lemma 5.3.1, p. 71], if b and γ

satisfy the conditions of Theorem 1.2 then a solution of (1.11) is weakly unique.
In summary, for the strong solution
• the initial value is given,
• the probability space is known and there is a Brownian motion B in that

space,
• one is looking for the pathwise unique solutions,

and for the weak solution
†FZ

t = {FZ
t }t≥0 is a notation for the filtration Ft = {Ft}t≥0 generated by Z = X0, to

distinguish it from the filtration Ft = {Ft}t≥0 generated by X.
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• the probability law is given,
• there exists a probability space where (1.11) holds and one is free to choose

the Brownian motion on that probability space,
• there is no point in looking for the pathwise uniqueness since they might

be defined on different probability spaces,
• the notion of uniqueness refers to the weak uniqueness where solutions have

the same finite-dimensional distribution.
From a modelling point and for mathematical reasons, it is convenient to look
for weak solutions since there are SDEs that have no strong solution, but still
have a (weakly) unique weak solution. Also, the weak solution concept is natural
because it doesn’t specify the explicit representation of a white noise [Øksendal,
2000].

Stochastic processes which are the solutions of a stochastic differential equa-
tion are called (Itô) diffusions (here just “diffusions”).

Definition 1.22 (Diffusion).
A (time-homogeneous) diffusion is a stochastic process X = {Xt}t≥0, where

Xt(ω) := X(t, ω) : [0,∞⟩ × Ω → Rn,

satisfying a stochastic differential equation of the form

dXt = b(Xt) dt+ γ(Xt) dBt, t ≥ s, Xs = x

where B is an m-dimensional Brownian motion and b : Rn → Rn, γ : Rn → Rn×m

satisfy the conditions of Theorem 1.2. The (unique) solution is denoted by

Xt = Xs,x
t , t ≥ s.

For {Xt}t≥0 to be time-homogenous means that

{Xs,x
s+h}h≥0 and {X0,x

h }h≥0

have the same IP0-distributions (where IP0 = IP is the probability law of Bt

starting at 0), i.e. a process is time-homogenous when it is insensitive in the dis-
tributional sense to the time-shifts. Thus, the definition implies that the process
{X0,x

h }h≥0 shifted by s ≥ 0 has the same probability properties as the process
{Xs,x

s+h}h≥0.

Definition 1.23 (Scale density, scale function and speed measure).
Let X be a diffusion which satisfies the SDE

dXt = b(Xt) dt+ γ(Xt) dBt.

14



1. Basic definitions, theorems and properties

Then the scale density of the process is defined as

s(x) = exp
 −

x∫
·

2b(y)
γ(y) dy

 ,
where the notation

x∫
·

refers to an integral with an arbitrary lower limit (with
respect to the domain of the integrand).
The scale function of the process is then defined by

S(x) =
x∫

·

s(η) dη =
x∫

·

exp
 −

η∫
·

2b(y)
γ(y) dy

 dη.

The speed measure of the process is defined by

m(x) = 1
γ(x)s(x) .

The property that the process is “memoryless”, i.e. the future behaviour of
the process after time t is the same as the behaviour obtained when the process
started at Xt, is called the Markov property. If by Ex we denote expectation
w.r.t. to the probability measure Qx and Ey[f(Xh)] (which means E[f(Xy

h)]) is
the function evaluated at y = Xt(ω), then the Markov property for diffusions is
given in the following theorem.

Theorem 1.3 (The Markov property for diffusion).
Let f : Rn → R be a bounded Borel function. Then for t, h ≥ 0

Ex [f(Xt+h)|H]ω = EXt(ω) [f(Xh)]

Proof. For proof see [Øksendal, 2000, Theorem 7.1.2, p. 111].

Definition 1.24 ((Strict) stopping time).
Let {Nt} be a filtration on (Ω,F). A function τ : Ω → [0,∞⟩ is called a (strict)
stopping time w.r.t {Nt} if

{ω, τ(ω) ≤ t} ∈ Nt, ∀t ≥ 0.

Theorem 1.4 (The strong Markov property for diffusion).
Let f : Rn → R be a bounded Borel function, τ be a stopping time w.r.t. {Ht}, τ <
∞ a.s. Then for t, h ≥ 0

Ex [f(Xτ+h)|Hτ ]ω = EXτ [f(Xh)] , ∀h ≥ 0.

Proof. For proof see [Øksendal, 2000, Theorem 7.4.4, p. 113].
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In other words, a diffusion can be defined as a continuos time stochastic process
which possesses the strong Markov property and for which the sample pathsXt(ω)
are almost always continuous functions of t [Karlin and Taylor, 1981].

In this section, the concept of stochastic differential equations was introduced
within the framework of Markov and regular processes. More general concepts are
outside of the scope of this thesis, but can be found in e.g. Heyde and Leonenko
[2005], Taufer and Leonenko [2009] and Fournier [2009].

1.3 Diffusion construction

Throughout the thesis, the main focus is the construction of a diffusion with a
given marginal density f which would be based on the data at hand, i.e. the
distribution should fit the histogram of the data. The construction of such a
diffusion with an exponentially decreasing autocorrelation function and a specified
marginal distribution is presented in [Bibby et al., 2005]. The main theorem from
the paper is given below.

Theorem 1.5 (Construction of diffusion with an exponential autocor-
relation function and a specified marginal distribution).
Let f be a probability density with expectation µ and F beits distribution function.
Suppose f is continuos, bounded and strictly positive on ⟨l, u⟩ and zero outside,
where −∞ ≤ l < u ≤ ∞, and suppose it has a finite variance. Then

(i) the stochastic differential equation

dXt = −θ(Xt − µ) dt+
√
v(Xt) dBt, t ≥ 0, (1.14)

where θ > 0, µ ∈ ⟨l, u⟩ and v is a non-negative function defined on ⟨l, u⟩

v(x) =

2θ

x∫
l

(µ − y)f(y) dy

f(x) =

2θµF (x) − 2θ

x∫
l

yf(y) dy

f(x) , x ∈ ⟨l, u⟩, (1.15)

has a unique Markovian weak solution. The diffusion coefficient is strictly
positive for all x ∈ ⟨l, u⟩;

(ii) the diffusion process X that solves (1.14) and (1.15) is ergodic with invariant
density f ;

(iii) the function fv satisfies
u∫

l

v(x)f(x) dx < ∞ (1.16)

and
E [Xs+t|Xs = x] = xe−θt + µ(1 − e−θt). (1.17)
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If X0 ∼ f , then X is stationary and the autocorrelation function of X is
given by

Corr(Xs+t, Xs) = e−θt, s, t ≥ 0; (1.18)

(iv) if −∞ < l or u < ∞, then the diffusion given by (1.14) and (1.15) is the
only ergodic diffusion with drift −θ(x − µ) and invariant density f . If the
state space is R, it is the only ergodic diffusion with drift −θ(x − µ) and
invariant density f for which the condition (1.16) is satisfied.

Lemma 1.6. Suppose that E[f(x)] ≤ µ and that v is given by (1.15). Then the
function

g(x) := f(x)v(x) = 2θ
x∫

l

(µ− y)f(y) dy (1.19)

is strictly positive for all x ∈ ⟨l, u⟩ and lim
x→l

g(x) = 0. If E[f(x)] = µ, then
lim
x→u

g(x) = 0

Proof. See [Bibby et al., 2005, Lemma 2.2.]

Proof of Theorem 1.5.
(i) From Lemma 1.6 and the fact that f is continuous follows that the diffusion

coefficient v is strictly positive for all x ∈ ⟨l, u⟩. Next for x ∈ ⟨l, u⟩ and
some interior point x∗ ∈ ⟨l, u⟩, the scale density is

s(x) = exp
2θ

x∗∫
x

y − µ

v(y) dy
 = g(x∗)

g(x) (1.20)

and the scale function

S(x) =
x∗∫

x

s(y) dy = g(x∗)
x∗∫

x

1
g(y) dy.

Then S is strictly increasing, twice continuously differentiable and maps
⟨l, u⟩ to R. The function s(S−1(·))

√
v(S−1(·)) is continuos on R, so the

stochastic differential equation

dYt = s(S−1(Yt))
√
v(S−1(Yt)) dBt (1.21)

satisfies the conditions of Theorem 2.2 of Engelbert and Schmidt [1985] so
the SDE has a unique Markovian weak solution with state space R. The
process S−1(Yt) solves the SDE (1.14) by Itô’s formula and is the only such
process. To show that it is the only solution, let X be a solution of the
SDE (1.14). Then, again by Itô’s formula, S(Xt) solves (1.21).
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(ii) To prove that X has invariant density f , it needs to be shown that the
scale measure diverges at both end-points and that the speed measure has
density proportional to f (see Skorokhod [1989]). If ⟨l, u⟩ = R, the scale
measure diverges based on Lemma 1.6. If u is finite, from present theorem
conditions, there exists K > 0 such that

g(x) = 2θ
u∫

x

(y − µ)f(y) dy ≤ K(u− x)

from which follows that lim
x→u

S(x) = ∞. Similarly, for l finite, lim
x→l

S(x) =
−∞. From Karlin and Taylor [1981], the invariant density is proportional
to the density of the speed measure, so using (1.19) and (1.20) the speed
measure has the density

1
v(x)s(x) = f(x)

g(x∗) .

(iii) For the proof of (1.17) and (1.18), it needs to be shown that (1.16) holds.
In the case of x ∈ ⟨l, u⟩, where −∞ < l < u < ∞, this follows from Lemma
1.6. For the infinite boundaries, vf needs to go sufficiently fast to zero,
which is ensured by the condition that f has a finite variance. Hence, for
u = ∞

∞∫
µ

g(x) dx = 2θ
∞∫

µ

∞∫
x

(y − µ)f(y) dy dx

(Tonelli’s theorem) = 2θ
∞∫

µ

y∫
µ

dx(y − µ)f(y) dy

= 2θ
∞∫

µ

(y − µ)2f(y) dy < ∞.

For l = −∞, this can be verified in a similar way. Since (1.16) holds, from
(1.14) follows (1.17), which then implies (1.18).

(iv) For an ergodic diffusion given by (1.14) with invariant density f and some
K > 0, by using the general expression for the speed measure, it holds

f(x) = K

v(x) exp
−2θ

x∫
x∗

y − µ

v(y)

 dy.

Function g = fv is differentiable so for some constant C follows

v(x) =
2θ

x∫
l
(µ− y)f(y) dy + C

f(x) . (1.22)

From Lemma 1.6 the integral goes to zero at l and u. Thus, it can be
concluded that C ≥ 0, since v needs to be positive for all x ∈ ⟨l, u⟩. If
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l = −∞ and u = ∞, the expression (1.22) defines an ergodic diffusion with
invariant density f for all C ≥ 0. However, for the scale measure 1

fv
to

diverge at a finite boundary, it is necessary that C = 0. Thus (1.22) holds
only when C = 0. This proves the statement in Theorem 1.5 (iv).

Next theorem from Bibby et al. [2005] states how to determine the squared
diffusion coefficient.

Theorem 1.7 (Squared diffusion coefficient).
Consider an invariant density for a diffusion process which belongs to an expo-
nential family of the form

f(x; ξ) = a(ξ)b(x)eξ1x+α(ξ)t(x), (1.23)

where ξ = (ξ1, . . . , ξp) and α, t may be vectors. Then the squared diffusion coef-
ficient is given by

v(x; ξ) = − 2θ
f(x; ξ)

∂

∂ξ1
F (x; ξ), l < x < u. (1.24)

Proof. For proof see [Bibby et al., 2005, Theorem 2.4].

This review of definitions and theorems concludes the theoretical part needed
for the understanding of the methods and results presented in the rest of the
thesis.

2 Unimodal case: Generalized Gaussian distri-
bution

As mentioned in Section 1.3, the choice of the marginal density of the diffusion
should be based on the empirical data. Analysis of the dataset at hand showed
that the histograms of EEG increments have a symmetric distribution and the
majority of the histograms displayed a one-peak distribution with a maximum at
zero, which resembled a standard normal distribution, but in some cases the tails
were either heavier or lighter than the tails of normal distribution. A detailed
analysis of the dataset will be presented in Section III.1. To reflect the diver-
sity of the empirically observed distribution candidates for the unimodal case,
probability density function of the distribution of the increments was chosen to
be the generalized Gaussian distribution (GGD)† with a specific parametrization

†Another name for the GGD is Generalized error distribution, which is mostly used in
economics.
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adapted from Lutwak et al. [2004] with mean zero. Hence, omitting the parame-
ter µ form the parametrization (i.e. using µ = 0) reflects the situation observed
on the EEG increments. The parametrization is then given as

fs,b(x) =



1
2(sσ2)1/sΓ

(
1 + 1

s

) exp
(

−|x|s

sσ2

)
, b = 0,

bs

2σ2

(
sσ2

b

)−1/s Γ
(
1 + 1

s + σ2

b

)
Γ
(

1
s

)
Γ
(

σ2

b

) (
1 + b

sσ2 |x|s
)− σ2

b
− 1

s
−1

, b > 0,

(2.1)

where the parameter b is used as an indicator for making the distinction between
the light-tailed and heavy-tailed distributions within the family. The subfamily
characterized by b = 0 resembles the usual GGD parametrization including, for
s = 2, the zero-mean normal distribution with variance σ2. For b > 0, distribu-
tions in the GGD subfamily admit heavy tails, e.g., for s = 2 this distribution is
of the Student type.

Since the majority of the analysis deals with the subfamily where b = 0, some
of the basic properties of this GGD subfamily are presented first for the general
case where µ ̸= 0, with some remarks related to the subfamily where b > 0.

2.1 Properties of the generalized Gaussian distribution

Basic properties of the generalized Gaussian distribution which are presented in
this section are derived from Dytso et al. [2018]. For completeness, all properties
are stated, but proofs here are given only for some of the properties which are
important for the analysis.

Dytso et al. [2018] use the following parametrization of GGD

fXp(x) = cp

α
e− |x−µ|p

2αp , cp = p

2
p+1

p Γ(1
p
)
, x ∈ R, p > 0. (2.2)

So Xp follows the Generalized Gaussian distribution, denoted as Xp ∼ Np(µ, αp)
where µ, p, α are the location, shape and scale parameters, respectively. Gamma
function, lower incomplete gamma function and upper incomplete gamma func-
tion are defined respectively as follows:

Γ(x) =
∞∫

0

tx−1e−tdt,

γ(a, x) =
x∫

0

ta−1e−tdt,

Γ(a, x) =
∞∫

x

ta−1e−tdt.
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In order to relate this parametrization to the previous notation in (2.1) for
b = 0, following relations for shape and scale parameters are used:

p := s, α :=
(
sσ2

2

) 1
s

,

thus the density function becomes

fXs(x) = cs,σ2

α
e− |x−µ|s

sσ2 , cs,σ2 = 1
2(sσ2) 1

s Γ
(
1 + 1

s

) , x ∈ R, s > 0. (2.3)

and Xs ∼ Ns

(
µ, sσ2

2

)
, which is the same parametrization as (2.1) (for b = 0 and

µ = 0). In this case, µ is again the location parameter, s is the shape parameter
and σ2 is a parameter related to the scale parameter α by the expression

(
sσ2

2

) 1
s .

The cumulative distribution function (CDF) is then given by

FXs(x) = 1
2 + sgn(x− µ)

γ
(

1
s
, |x−µ|s

sσ2
2

)
2Γ
(

1
s

) , x ∈ R (2.4)

As previously stated, for s = 2 this distribution is Gaussian with mean µ and
variance σ2. Other important examples from this family of distributions are the
Laplace distribution with location parameter µ and scale σ2 for s = 1 and the
uniform distribution on

[
µ−

(
sσ2

2

) 1
s , µ+

(
sσ2

2

) 1
s

]
for s = ∞.

Mellin transform, moments and the moment problem

The Mellin transform is used as a tool in characterizing products of independent
random variables.

Definition 2.1 (Mellin transform).
The Mellin transform of a positive random variable X is defined as

mX(r) = E[Xr−1], r ∈ C.

For independent random variables, it follows that

mX·Y (r) = mX(r) ·mY (r).

Proposition 2.1 (Mellin transform of |Xs|).
For any s > 0 and Xs ∼ Ns(0, sσ2

2 )

E
[∣∣∣Xs

∣∣∣r−1]
= 2 r−1

s

Γ
(

1
s

)(sσ2

2

) r−1
s

Γ
(
r

s

)
, Re(r) > 0.

For any s > 0 and k > −1, the absolute moments are given by

E[|X|k] = (sσ2) k
s

Γ
(

k+1
s

)
Γ
(

1
s

) . (2.5)
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Proof. See [Dytso et al., 2018, Proposition 1].

Hence, the s-th absolute moment of Xs is given by

E
[∣∣∣Xs

∣∣∣s] = sσ2

Γ
(

1
s

)Γ
(
s+ 1
s

)
= σ2,

which gives the interpretation of the shape parameter.
In particular, integer moments are given by

E[Xn] = 1 + (−1)n

2 (sσ2)n
s

Γ
(

1+n
s

)
Γ
(

1
s

) , n ∈ N, (2.6)

and therefore the first four moments are
E[X] = E[X3] = 0,

E[X2] =
(sσ2)

2
s Γ

(
3
s

)
Γ
(

1
s

) ,

E[X4] =
(sσ2)

4
s Γ

(
5
s

)
Γ
(

1
s

) .

The relation between k-th moments of two GGDs of a different order is given by
the following corollary.

Corollary 2.2. Let Xq ∼ Nq(0, 1) and Xs ∼ Ns(0, 1). Then for q ≥ s > 0

E
[∣∣∣Xq

∣∣∣k] ≤ E
[∣∣∣Xs

∣∣∣k] (2.7)

for any k ∈ R+. Moreover, for any q > s

lim
k→∞

E
[∣∣∣Xs

∣∣∣k]
E
[∣∣∣Xq

∣∣∣k]


1
k

= ∞.

Proof. See [Dytso et al., 2018, Appendix X].

Remark 2.1. For the heavy-tailed GGD subfamily (b > 0), the tail of the density

decreases like |x|
−1−s

(
σ2
b

+1
)
. The absolute moment of order k > 0 exists for

k < s
(

σ2

b
+ 1

)
and is given by the following expression:

E[|X|k] =
(

b

sσ2

) k
s Γ

(
1+k

s

)
Γ
(
1 − k

s
+ σ2

b

)
Γ
(

1
s

)
Γ
(
1 + σ2

b

) . (2.8)

The integer moments are given by

E[Xn] = s (1 + (−1)n)
2

(
b

sσ2

)1− n
s

·
Γ
(

1+n
s

)
Γ
(
1 − n

s
+ σ2

b

)
Γ
(

1
s

)
Γ
(

σ2

b

) , n < s

(
σ2

b
+ 1

)
. (2.9)
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The first six moments are of the following form:

E[X] = E[X3] = E[X5] = 0,

E[X2] =
Γ
(

3
s

) (
b

sσ2

)− 2
s Γ

(
σ2

b
− 2

s
+ 1

)
Γ
(

1
s

)
Γ
(

σ2+b
b

) ,

E[X4] =
Γ
(

5
s

) (
b

sσ2

)− 4
s Γ

(
σ2

b
− 4

s
+ 1

)
Γ
(

1
s

)
Γ
(

σ2+b
b

) ,

E[X6] =
Γ
(

7
s

) (
b

sσ2

)− 6
s Γ

(
σ2

b
− 6

s
+ 1

)
Γ
(

1
s

)
Γ
(

σ2+b
b

) .

Remark 2.2. As already stated, in the heavy-tailed part of (2.1) where b > 0 for
the case s = 2 Student-type distribution is obtained with the PDF

f2,b(x) =
Γ
(

σ2

b
+ 3

2

)
√

2πσ2

b
Γ
(

σ2

b
+ 1

) (1 + b

2σ2x
2
)− σ2

b
− 3

2

, b > 0. (2.10)

The absolute moment of order k > 0 exists for k < 2
(

σ2

b
+ 1

)
and is given by the

following expression:

E[|X|k] =
(

b

2σ2

)− n
2 Γ

(
1+k

2

)
Γ
(
1 − k

2 + σ2

b

)
√
π Γ

(
1 + σ2

b

) . (2.11)

The integer moments are given by

E[Xn] = (1 + (−1)n)
(

b

2σ2

)1− n
2

·
Γ
(

1+n
2

)
Γ
(
1 − n

2 + σ2

b

)
√

2πΓ
(

σ2

b

) , n < 2
(
σ2

b
+ 1

)
. (2.12)

and the first six moments are of the following form:

E[X] = E[X3] = E[X5] = 0,

E[X2] = 1,

E[X4] = 3σ2

σ2 − b
,

E[X6] = 15σ4

σ4 − 3bσ2 + 2b2 .

For example, the explicit expressions for the moments enable the direct calculation
of method of moments estimators of a strictly stationary diffusion with Student
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marginals. For more details on analysis of probabilistic properties, moment-based
parameter estimation and testing of statistical hypothesis regarding such diffusion
see Leonenko and Šuvak [2010].

The moment problem refers to the question whether a distribution can be
uniquely defined by its moments. If a random variable is defined on R, the
problem is referred to as the Hamburg moment problem. For variables defined on
R+, the problem is called the Stieltjes moment problem. For random variables
which are uniquely defined by their moments, the moment problem is called
determinate. If there exists another distribution which has the same moments,
the moment problem is indeterminate. Next theorem gives the conditions under
which the GGD distribution (for b = 0) is determinate and indeterminate.

Theorem 2.3 (Determinacy of GGD).
The GGD distribution is determinate for s ∈ [1,∞⟩ and indeterminate for s ∈
⟨0, 1⟩.

Proof. To show that the GGD is indeterminate for s ∈ ⟨0, 1⟩, it is enough to check
the classical Krein sufficient condition, which states that an absolutely continuos
distribution with PDF f is indeterminate when

∞∫
−∞

− ln(f(x))
1 + x2 dx < ∞.

Imputing (2.3) for f and calculating the integral gives
∞∫

−∞

− ln(f(x))
1 + x2 dx = −π log(cs,σ2) + 2

∞∫
0

(x− µ)s

1 + x2 dx.

Since the first term on the right-hand side of the equation is a constant, it is
enough to show that the integral on the right-hand side is finite for s ∈ ⟨0, 1⟩. If
s ∈ ⟨0, 1⟩

(x− µ)s < (x2 + 1),

thus the integral is finite. For s = 1, the integral is infinite and doesn’t satisfy
the condition. The part of the proof which shows that the GGD is determinate
for s ∈ [1,∞⟩ will be shown using the characteristic function later on.

Since the GGD is indeterminate for s ∈ ⟨0, 1⟩, one can conclude that the
method of moments performs poorly for this parameter range which was in fact
shown by Varanasi and Aazhang [1989].
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2. Unimodal case: Generalized Gaussian distribution

Stochastic ordering and positive definiteness

Based on the inequality (2.7), there might be some ordering in GGD family.

Definition 2.2 (Stochastic dominance).
A random variable X dominates another random variable Y in the sense of

• the first order-stochastic dominance if

FX(x) ≤ FY (x), ∀x ∈ R; (2.13)

• the second order-stochastic dominance if
x∫

−∞

(
FY (u) − FX(u)

)
du ≥ 0, ∀x. (2.14)

Proposition 2.4. Let Xs ∼ Ns(0, 1) and Xq ∼ Nq(0, 1). Then for s ≤ q, Xq

dominates Xs in the sense of the second-order stochastic dominance.

Proof. See [Dytso et al., 2018, Appendix B].

The first order-stochastic dominance doesn’t hold since, for s ≤ q

FXq(x) ≤ FXs(x), x ≤ 0,

FXq(x) ≥ FXs(x), x > 0.

Proposition 2.5. Let Xs ∼ Ns(0, 1) and Xq ∼ Nq(0, 1). Then for s ≤ q and for
any nondecreasing concave function g : R → R

E [g(Xq)] ≥ E [g(Xs)] . (2.15)

Proof. See [Dytso et al., 2018, Proposition 4].

Depending on the value range of parameter s, the GGD shows different prop-
erties. Next theorems gives the conditions under which the GGD is completely
monotone and positive definite. The definitions are given first.

Definition 2.3 (Completely monotone and Bernstein functions).
A function f : [0,∞⟩ → [0,∞⟩ is said to be completely monotone if

(−1)k dkf(x)
dxk

≥ 0, ∀x > 0 and k ∈ N+. (2.16)

A function f : [0,∞⟩ → [0,∞⟩ is said to be a Bernstein function if the derivative
of f is a completely monotone function.

Since a composition of a completely monotone and a Bernstein function is
completely monotone [Schilling et al., 2012], the following result is obtained.
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Corollary 2.6. For s ∈ ⟨0, 1] the function e− xs

2 is completely monotone.

Definition 2.4 (Positive definite functions).
A function f : R → C is called positive definite if for every positive integer n and
x1, x2, . . . , xn ∈ R the n× n matrix

A := (aij)n
i,j=1, aij = f(xi − xj)

is positive semi-definite.

Theorem 2.7. The function e− xs

2 is
• not positive definite for s ∈ ⟨2,∞⟩;
• positive definite for s ∈ ⟨0, 2]. Also, there exists a finite non-negative Borel

measure† ms on R+ such that for x > 0

e− xs

2 =
∞∫

0

e− u
2 x2 dms(u). (2.17)

Proof. See [Dytso et al., 2018, Appendix C].

Based on the results stated in the previous theorem, the property of the
positive-definiteness is reflected on the properties of the GGD in the parame-
ter s, depending whether s ≤ 2 or s > 2.

Another result which will be useful for analysing the properties of the charac-
teristic function of the GGD is given by the next corollary.

Corollary 2.8. For any 0 < q ≤ s ≤ 2 let r = 2q
s

. Then for x > 0

e− xq

2 =
∞∫

0

e− u
2 xr dms(u). (2.18)

Product decomposition of GGD random variables

There exists a decompositional representation of the GGD random variables
which is a consequence of Theorem 2.7 and is given by the following proposi-
tion.

Proposition 2.9. For any 0 < q ≤ s ≤ 2 let Xq ∼ Nq(0, 1) and X 2q
s

∼ N 2q
s

(0, 1).
Then

Xq
d= Vs,qX 2q

s
(2.19)

where Vs,q is a positive random variable independent of X 2q
s

and has the following
properties

†Such Borel measure can be constructed by assigning R+ numbers to Borel sets such that
the measure is countly additive for disjoint unions and that equation (2.17) holds.
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2. Unimodal case: Generalized Gaussian distribution

• Vs,q is an unbounded RV for s < 2 and Vs,q = 1 for s = 2;
• for s < 2 Vs,q is a continuos RV with PDF given by

fVs,q(y) = 1
2π

Γ
(

s
2q

)
Γ
(

1
q

) ∫
R

y−iu−1 2
iu
q Γ

(
iu+1

q

)
2

ius
2q Γ

(
s(iu+1)

2q

) du, y > 0. (2.20)

Proof. To show that Xq is decomposable, denote r = 2q
s

and let ms be a finite
non-negative Borel measure defined in Theorem 2.7. Since Xq ∼ Nq(0, 1), from

1 = IP(Xq ∈ R) =
∫
R

cqe− |x|q
2 dx

(using the representation of e− |x|q
2 from Cor. 2.8) =

∫
R

cq

∞∫
0

e− u
2 |x|r dms(u) dx

(Tonelli’s theorem) = cq

∞∫
0

∫
R

e− u
2 |x|r dx dms(u) = cq

∞∫
0

1
cru

1
r

dms(u)

(defining dy(u) := cq

cr

1
u

1
r

dms(u)) =
∞∫

0

dy(u)

it can be concluded that y is a probability measure on [0,∞⟩.
Now, for any measurable set S ⊂ R, it holds

IP(Xq ∈ S) =
∫
S

cqe− |x|q
2 dx

(using the representation of e− |x|q
2 from Cor. 2.8) =

∫
S

cq

∞∫
0

e− u
2 |x|r dms(u) dx

=
∞∫

0

∫
S

cq
cru

1
r

cru
1
r

e− u
2 |x|r dx dms(u)

(dy(u) = cq

cr

1
u

1
r

dms(u)) is a probability measure) =
∞∫

0

IP
( 1
T

1
r

Xr ∈ S | T = u
)
cq

cr

1
u

1
r

dms(u)

(Xr is independent of u) = E
[
IP
( 1
T

1
r

Xr ∈ S | T
)]

(renaming 1
T

1
r

:= Vs,q) = IP (Vs,q Xr ∈ S) = IP
(
Vs,q X 2q

s
∈ S

)
which proves (2.19). For the rest of the proof see [Dytso et al., 2018, Appendix
D].

Based on the previous result, the GGD is a Gaussian mixture.

Definition 2.5 (Gaussian mixture).
A random variable X is called a (centred) Gaussian mixture if there exists a posi-
tive random variable V and a standard Gaussian random variable Z independent
of V such that

X
d= V Z.

27



Chapter II. Marginal distributions and diffusion construction for modelling of EEG
increments

Corollary 2.10. For q ∈ ⟨0, 2], Xq ∼ Nq(0, 1) is a Gaussian mixture, i.e.

Xq
d= VG,qX2,

where VG,q := Vq,q is independent of X2 and its PDF is defined by (2.20).

Proof. By choosing s = q in (2.19), it follows that Xq
d= VG,qX2.

Additionally, when q ≤ 1 and X1 is a Laplace RV, it follows

Xq
d= Vq,2qX1.

Thus, Vq,2q will be denoted as VL,q.
A different representation of the PDF given in (2.20) which may be easier to

analyse is given by the next proposition.

Proposition 2.11. For 0 < q ≤ s ≤ 2 the PDF of a random variable Vs,q has
the following representations

• the power series representation

fVs,q(y) =
Γ
(

s
2q

)
Γ
(

1
q

) ∞∑
k=1

aky
kq, y > 0, (2.21)

where

ak = q

π

(−1)(k+1) 2(kq+1)( s
2q

− 1
q ) Γ

(
kq
2 + 1

)
sin

(
πkq

2

)
k! ;

• the integral representation

fVs,q(y) =
q2

s
2q − 1

q Γ
(

p
2q

)
πΓ

(
1
q

) ∞∫
0

sin
(
asy

qx
s
2
)

exp
(
−bsy

qx
s
2 − x

)
dx, (2.22)

where
as = 2 s

2 −1 sin
(
πs

2

)
, bs = 2 s

2 −1 cos
(
πs

2

)
.

Proof. See [Dytso et al., 2018, Appendix E].

For s = q = 1 the random variable VG,1 is distributed according to the Rayleigh
distribution, i.e.

fVG,1(y) = 2− 1
2

√
π

∞∫
0

sin
yx 1

2
√

2

 e−x dx = y

4e− y2
8 , y ≥ 0.

Similarly to Theorem 2.3, next proposition gives the conditions under which
the distribution of VG,q is determinate.

Proposition 2.12. The distribution of VG,q is determinate for q ≥ 2
5 .
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2. Unimodal case: Generalized Gaussian distribution

Proof. See [Dytso et al., 2018, Proposition 8].

Remark 2.3. The product of two independent RVs with determinate distributions
can have an indeterminate distribution. From Corollary 2.10 it is known that

Xq
d= VG,qX2.

Based on Theorem 2.3, Xq has an indeterminate distribution on q ∈
[

2
5 , 1

]
, but

from Proposition 2.12 it is known that VG,q is determinate on q ∈
[

2
5 , 1

]
.

Characteristic function

The characteristic function of the GGD can be presented in an integral form
which is given by the following theorem.

Theorem 2.13 (Characteristic function of GGD).
The characteristic function of Xs ∼ Ns(0, 1) is given by

(i) for any s > 0

ϕs(t) = 2cs,σ2

∞∫
0

cos(tx)e− xs

2 dx, t ∈ R; (2.23)

(ii) for any s ∈ ⟨0, 2]

ϕs(t) = E
[
e−

t2V 2
G,s
2

]
, t ∈ R, (2.24)

where the density of VG,s is defined in Proposition 2.9 and the PDF of V 2
G,s is

1
2√

y
fVG,s

(√y).

Proof. (i) Since e− |x|s
2 is an even function, its Fourier transform is equivalent

to the cosine transform.
(ii) Characteristic function of X2 is e− t2

2 . By the definition of characteristic
function given in Definition 1.8 and the decomposition property given in
Proposition 2.9, it follows

ϕs(t) = E
[
eitXs

]
= E

[
eitVG,sX2

]
= E

[
E
[
eitVG,sX2|VG,s

]]
where the last equality follows from the law of total expectation. Equality
(2.24) follows from the fact that VG,s is independent of X2.

Note that ϕs for s ∈ ⟨0, 2] is a decreasing function for t > 0.
A special class of distributions which are closed under convolution of indepen-

dent copies is called stable distribution (or stable random variable).
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Definition 2.6 (Stable distribution). Let X1 and X2 be independent copies of
a random variable X. Then X is said to be stable if for all constants a > 0, b > 0
there exist c > 0 and d ∈ R such that

aX1 + bX2
d= cX + d (2.25)

which is equivalent to

ϕX(at)ϕX(bt) = ϕX(ct)eitd, ∀t ∈ R, (2.26)

where ϕX is the characteristic function of X.

The characteristic function of a stable distribution has the following canonical
representation

ϕX(t) = e−itµ−|ct|α(1−iβ sgn(t)∆(t)), where ∆(t) =

tan
(

πα
2

)
, α ̸= 1,

− 2
π

ln |t|, α = 1.
(2.27)

Here µ ∈ R+ is the shift parameter, c ∈ R+ is the scaling parameter, β ∈ [−1, 1]
is the skewness parameter and α ∈ ⟨0, 2] is the order parameter. When β = 0 (i.e
symmetric stable distributions) the class is called α-stable distributions and the
characteristic function is given by

ϕX(t) = e−|t|α , t ∈ R. (2.28)

For s ∈ ⟨0, 2], the PDF of the GGD is equal to the characteristic function of an
α-stable distribution (up to a normalizing constant), and vice versa, the PDF of
an α-stable RV is equal to the characteristic function of the GGD, again up to a
normalizing constant. This gives another integral representation of the character-
istic function of the GGD. The representation is useful in numerical computations
of ϕs since the integral is performed over a finite interval.

Proposition 2.14. For s ∈ ⟨0, 2] \ {1}

ϕs(t) = 2πcs,σ2
s|t|

1
s−1

2|s− 1|

1∫
0

Us(x)e−|t|
s

s−1 Us(x) dx, (2.29)

where

Us(x) =
sin

(
πxs

2

)
cos

(
πx
2

)


s
1−s cos

(
πx(s−1)

2

)
cos

(
πx
2

) .

Also, let gs(x) := Us(x)e−|t|
s

s−1 Us(x), x ∈ [0, 1] define the integrand in (2.29).
• Us is a non-negative function;
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• for s ∈ ⟨0, 1⟩, Us is an increasing function with

lim
x→0+

Us(x) = 0, lim
x→1−

Us(x) = ∞;

• for s ∈ ⟨1, 2], Us is a decreasing function with

lim
x→0+

Us(x) = ∞, lim
x→1−

Us(x) = 0;

• for s ∈ ⟨0, 2] \ {1}

lim
x→0+

gs(x) = 0, lim
x→1−

gs(x) = 0;

• the function gs had a single maximum given by

max
x∈[0,1]

gs(x) = 1
e|t|

s
s−1

.

Proof. See [Dytso et al., 2018, Proposition 9].

Since the moments of the GGD are known for every k (see Proposition 2.1),
it would be useful if its characteristic function could be represented as a power
series of the form

∞∑
k=0

(it)k

k! E
[
Xk

]
.

Next proposition gives the conditions for the analyticity of the GGD’s character-
istic function.

Proposition 2.15. Characteristic function ϕs is
• a real analytic function† for t ∈ R for s > 1 and |t| < 1

2 for s = 1;
• not real analytic for s < 1.

Proof. See [Dytso et al., 2018, Appendix G].

Based on the previous proposition, it follows that for s > 1 the moment
generating function of Xs exists for all t ∈ R.

The distribution of zeros of the characteristic function is given by the following
theorem.

Theorem 2.16. The characteristic function ϕs has the following properties:
• for s > 2, ϕs has at least one zero (positive to negative crossing) and the

number of zeros is at most countable,
• for s ∈ ⟨0, 2], ϕs is a positive function,
• for s ∈ ⟨2,∞⟩ zeros of ϕs do not appear periodically,
• for s = ∞ zeros do appear periodically since ϕ∞(t) = sin(t)

t
.

†A real analytic function is infinitely differentiable and can be represented by a convergent
power series. For a formal definition, see Rudin [1976].
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Proof. See [Dytso et al., 2018, Appendix H].

The asymptotic behaviour of ϕs as t → ∞ can be extended to a more general
function

t 7→ E
[
V m

G,se−
V 2

G,s
t2

2

]
for some m > 0 which is shown in the following proposition. It also gives the
exact tail behaviour of ϕs.

Proposition 2.17. Let m ∈ R+. Then

lim
t→∞

tm+s+1 E
[
V m

G,se−
V 2

G,s
t2

2

]
= s

2Γ
(
m+ s+ 1

2 2
m+2s

2 − s+1
s

)
:= Am. (2.30)

For s ∈ ⟨0, 2⟩
lim
t→∞

ϕs(t)ts+1 = A0,

where A0 is defined by (2.30). Also, for q > 0, s < 2 and some a > 0

lim
t→∞

ϕs(at)
ϕs(t)

=


0, q>s

1
aq+1 , q=s

∞, q<s

.

Proof. See [Dytso et al., 2018, Appendix I].

Proposition 2.18. For n ∈ R, E
[
V n

G,s

]
is finite if and only if n+ s > −1.

Proof. See [Dytso et al., 2018, Proposition 13].

According to Propositions 2.1 and 2.9 for n > −1, it follows

E
[
V n

G,s

]
= E [|Xs|n]

E [|X2|n] < ∞.

This means that E
[
V n

G,s

]
is finite even if absolute moments of Xs and X2 are

infinite. For n ≤ −1 it is unclear if E
[
V n

G,s

]
is finite since both E [|Xs|n] and

E [|X2|n] are infinite.

Additive decomposition

To determine whether Xq ∼ Nq

(
0,
(

sσ2

2

) q
s

)
can be decomposed into a sum of

independent RVs, definitions and properties of divisibility and decomposability
are stated first.

Definition 2.7 (Infinite divisibility).
A characteristic function ϕ is said to be infinitely divisible if for every n ∈ R
there exists a characteristic function ϕn such that

ϕ(t) = (ϕn(t))n . (2.31)

32



2. Unimodal case: Generalized Gaussian distribution

Theorem 2.19 (Properties of infinitely divisible distributions).
An infinitely divisible distribution satisfies the following properties

(i) an infinitely divisible characteristic function has no real zeros;
(ii) a symmetric distribution which has a completely monotone PDF on ⟨0,∞⟩

is infinitely divisible;
(iii) (Lévy-Khinchine canonical representation) the function ϕ is an infinitely

divisible characteristic function if and only if it can be written as

ln (ϕ(t)) = ita+
∞∫

−∞

(
eitx − 1 − itx

1 + x2

) 1 + x2

x2 dL(x), (2.32)

where a ∈ R and L is a non-decreasing and bounded function such that

lim
x→−∞

L(x) = 0.

The function dL is called a Lévy measure. The integrand is defined for
x = 0 by continuity to be equal to − t2

2 and the representation is unique;
(iv) a non-degenerate infinitely divisible random variable X has a Gaussian dis-

tribution if and only if it satisfies

lim sup
x→∞

− ln IP [|X| ≥ x]
x ln x = ∞. (2.33)

The distribution L is not bounded by one since in general the Lévy measure
is not a probability measure.

Theorem 2.20. The characteristic function ϕs of the GGD is infinitely divisible
if and only if s ∈ ⟨0, 1] ∪ {2}.

Proof. From Corollary 2.6, the PDF is completely monotone on ⟨0,∞⟩. Since
the distribution is symmetric and completely monotone on ⟨0,∞⟩, from Theorem
2.19 (ii) it follows that ϕs is infinitely divisible for s ∈ ⟨0, 1].

To determine (2.33) from Theorem 2.19 (iv), by using the CDF in expression
(2.4), it follows

lim sup
x→∞

− ln IP [|X| ≥ x]
x ln x = lim sup

x→∞

− ln
(

Γ( 1
s

, xs

2 )
Γ( 1

s )

)
x ln x

(using the limit lim
x→∞

Γ(a,x)
xa−1e−x ) = lim sup

x→∞

− ln
(
x

1
s

−1e− xs

2
)

x ln x

= lim sup
x→∞

xs

2x ln x =

0, s ≤ 1

∞, s > 1
.

The GGD is Gaussian only for s = 2, hence from Theorem 2.19 (iv) ϕs for s ≥ 1
is infinitely divisible only if s = 2. Also, from Theorem 2.16 ϕs has at least one
zero for s > 1, which from 2.19 (i) means it is not infinitely divisible.
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A new representation of ϕs for s ∈ ⟨0, 1] can be obtained by showing that the
Lévy measure in (2.32) is an absolutely continuous measure which is stated in
the following proposition.

Proposition 2.21. For s ∈ ⟨0, 1], the Lévy measure is absolutely continuous with
density fL and ϕs can be expressed as follows

ϕs(t) = exp
−

∞∫
∞

(
1 − cos(tx)1 + x2

x2

)
fL(x) dx

 . (2.34)

For x ̸= 0

(1 + x2)fL(x) = −x

π

∞∫
0

(ln(ϕs(t))′ sin(tx) dt. (2.35)

Proof. See [Dytso et al., 2018, Appendix J].

If a RV can be decomposed into a sum of two independent RVs where one of
the RVs belongs to the same family of distributions, the RV (i.e. its distribution)
is called self-decomposable. A formal definition is given below.

Definition 2.8 (Self-decomposable characteristic function).
A characteristic function ϕ is said to be self-decomposable if for every α ≥ 1 there
exists a characteristic function ψα such that

ϕ(αt) = ϕ(t)ψα(t). (2.36)

In the case of the GGD random variable, Xq ∼ Nq

(
0,
(

sσ2

2

) q
s

)
is self-

decomposable if for every α ≥ 1 there exists a random variable X̃α such that

αXs
d= X̃α + Zs, (2.37)

where Zs ∼ Ns(0, 1) is independent of X̃α. The generalization of self-
decomposability is given as

αXq
d= X̃α + Zs,

where again for every α ≥ 1 there exists a RV X̃α independent of Zs ∼ Ns(0, 1)
and Xq ∼ Nq(0, 1). This existence of a RV X̃α which is independent of Zs and
Xq is equivalent to showing that

ϕ(q,s,α)(t) = ϕq(αt)
ϕs(t)

is a valid characteristic function, which requires checking if ϕ(q,s,α) is a positive
definite function, but the next theorem gives the conditions under which ϕ(q,s,α)

is a characteristic function.
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Theorem 2.22. For (s, q) ∈ R2
+ let

S = S1 ∪ S2,

S1 = {(s, q) : 2 < q < s} ,

S2 = {(s, q) : q = s ∈ ⟨0, 1] ∪ {2}} .

Then the function ϕ(q,s,α) has the following properties
• for (s, q) ∈ S2, ϕ(q,s,α) is a characteristic function (i.e. Xs is self-

decomposable);
• for (s, q) ∈ R2

+ \ S, ϕ(q,s,α) is not a characteristic function for any α ≥ 1;
• for (s, q) ∈ S1 and almost all α ≥ 1, ϕ(q,s,α) is not a characteristic function
• for 2 < q ≤ s < ∞, ϕ(q,s,α) is not a characteristic function for all α > 1.

Proof. See [Dytso et al., 2018, Appendix K].

From the previous theorem it can be concluded that both Gaussian (s = 2)
and Laplace (s = 1) RVs are self-decomposable.

Returning to Proposition 2.9, the question of decomposability for the case
s > 2 can be answered by using the characteristic function. Since |Xs|

d= V · |Xq|
for some positive random variable V independent of Xq ∼ Nq(0, 1) and using
Proposition 2.1, decomposability reduces to determining whether

ϕln V (t) = E
[
V it

]
= E [|Xs|it]

E [|Xq|it]
=

2 it
s Γ
(

it+1
s

)
Γ
(

1
q

)
2

it
q Γ
(

it+1
q

)
Γ
(

1
s

) , t ∈ R

is a proper characteristic function, the answer to which is given by the next
proposition.

Proposition 2.23. The function ϕln V

• is not a valid characteristic function for s > q, thus the decomposition
Xs

d= V ·Xq doesn’t exist;
• is an integrable function for s < q. Also, ϕln V is a valid characteristic

function when the PDF of V is given by

fV (y) = 1
2π

Γ
(

1
q

)
Γ
(

1
s

) ∫
R

y−it−1 2 it
s Γ
(

it+1
s

)
2

it
q Γ
(

it+1
q

) dt, y > 0.

Proof. See [Dytso et al., 2018, Appendix L].

35



Chapter II. Marginal distributions and diffusion construction for modelling of EEG
increments

Entropy

Entropy is a measure of the uncertainty of a random variable [Cover and Thomas,
2005]. Formally, for continuous variables, the definition is given as follows.

Definition 2.9 (Differential entropy).
The (differential) entropy of a continuous random variable X with density f de-
fined on S is given by

H(X) = −
∫
S

f(x) ln f(x) dx.

Generalization of the entropy is given by the Rényi entropy.

Definition 2.10 (Rényi and Shannon entropy).
The Rényi entropy Hr of order r is defined as

Hr(X) = 1
1 − r

ln
(∫

f r(x dx)
)

for 0 < r < ∞, r ̸= 1. For r → 1, the Shannon entropy function is obtained

H(X) = H1(X) = −
∫
f(x) ln f(x) dx.

The problem of finding the distribution which maximizes entropy the H(f)
over all probability densities is stated by the following theorem.

Theorem 2.24 (Maximum entropy distribution).
Let f satisfy the following conditions

(i) f > 0, with equality outside the support set S;
(ii)

∫
S

f(x) dx = 1;

(iii)
∫
S

f(x)ri(x) dx = βi for 1 ≤ i ≤ m (“moment constraints”).

Let
f ∗ = fλ(x) = exp

(
λ0 +

m∑
i=1

λiri(x)
)
, x ∈ S,

where λ0, . . . , λm are chosen such that f ∗ satisfies the mentioned conditions. Then
f ∗ uniquely maximizes H(f) over all probability densities f which satisfy the
mentioned conditions.

Proof. See [Cover and Thomas, 2005, Theorem 12.1.1]

In Lutwak et al. [2004], the GGD distribution was studied in the frame-
work of affine moments to prove some sharp moment-entropy inequalities using
a parametrization similar to (2.1). Namely, it is known that the GGD satisfies
the maximum entropy principle which is stated here in order to emphasize the
importance of this family of distributions to the entropy-based problems (see e.g.
Lutwak et al. [2007]).

36



2. Unimodal case: Generalized Gaussian distribution

Theorem 2.25. Let X be a real random variable with the PDF g such that for
some s > 0

E [|X|s] < ∞,

and let Hr be the corresponding Shannon (r = 1) or Rényi ( 1
1+s

< r < 1) entropy.
(i) If sup(y) = R and r = 1, then

H1(y) ≤ H1(fs,0) = 1
s

− ln
 1

2(sσ2) 1
s Γ
(
1 + 1

s

)
,

where fs,0 is the PDF of the GGD (2.1) for b = 0 and

H1(y) = −
∫
R

y(x) ln (y(x)) dx,

is the corresponding Shannon entropy. The equality holds if and only if
y = fs,0 a.s.

(ii) If sup(y) = R and 1
1+s

< r < 1, then

Hr(y) ≤ Hy(fs,b) = 1
1 − r

ln
(

1 + b

s

)

− ln
 bs

2σ2

(
sσ2

b

)− 1
s Γ

(
1 + 1

s
+ σ2

b

)
Γ
(

1
s

)
Γ
(

σ2

b

)
,

where fs,b is the PDF of the GGD (2.1) for b > 0 and

Hr(y) = 1
1 − r

ln
∫

R

yr(x) dx
,

is the corresponding Rényi entropy. The equality holds if and only if y = fs,b

a.s.

For more details on the Rényi and Shannon entropy and their relations to the
GGD (2.1) and its special cases see Lutwak et al. [2004], Heyde and Leonenko
[2005] and Johnson and Vignat [2007]. Also, more details on the light-tailed GGD
subfamily can be found in Nadarajah [2005].

2.2 Generalized Gaussian diffusion

As mentioned before, EEG increments are viewed as a time series (Xn, n ∈ N),
representing the model for discrete-time observations from the diffusion process
{Xt}t≥0 with a given marginal density f which would reflect the empirical data.
Recall from Theorem 1.5 that if the PDF (which ideally fits the histogram of the
data) is continuous, bounded, and strictly positive on the whole R, a diffusion
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can be constructed with that specified marginal density. Since the PDF (2.1)
satisfies the conditions of Theorem 1.5, the SDE

dXt = −θXt dt+
√
v(Xt) dBt, θ > 0, t ≥ 0, (2.38)

driven by the standard Brownian motion {Bt}t≥0, where the drift reflects the
mean reversion of the process to zero and the diffusion coefficient v is obtained
as

v(x) = 2θ
f(x)

x∫
−∞

(−y)f(y) dy

admits the unique weak ergodic solution and defines the diffusion with marginal
distribution (2.1) which will be called the Generalized Gaussian diffusion
(GGDiff).

The important properties of the GGDiff are here emphasized as follows:
• If X0 has the PDF fs,b, the GGDiff is a strictly stationary process;
• If E[X2

t ] < ∞, the autocorrelation function of the GGDiff is given by
Corr(Xs, Xt) = e−θ|t−s|;

• Mixing is a measure of dependence defined by

α(A,B) = sup|IP(A ∩B) − IP(A)IP(B)|,

where

A ∈ Fs = σ{Xu, u ≤ s}, B ∈ F s+t = σ{Xu, u ≥ s+ t}.

The dependence coefficient is given by α(s) = sup
s≥0

α(Fs,F s+t). A process

is called a strongly mixing process if α(s) → 0 as s → ∞. According to
Doukhan [1994][Proposition 3, p. 115], the GGDiff is then a strong mixing
process with exponentially decaying mixing coefficient.

The time series (Xn, n ∈ N) inherits the strong stationarity, autocorrelation
structure, and the strong mixing property of the GGDiff (2.38), making it a
reasonable model for EEG increments and enabling statistical analysis of the
EEG data.

The diffusion (2.38) has the linear drift governed by the autocorrelation pa-
rameter θ. The diffusion coefficient is defined as follows. For the light-tailed case
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(b = 0) in (2.1), the diffusion coefficient is given by

v(x) =



2θ exp
(

(−x)s

sσ2

)(
(sσ2)2/s

s
Γ
(2
s

)

−
0∫

x

ye− ys

sσ2 dy
)
, x < 0

2θ exp
(
xs

sσ2

)((sσ2)2/s

s
Γ
(2
s

)

+
x∫

0

ye− ys

sσ2 dy
)
, x ≥ 0

= 2θ exp
(

(x · sgn (x))s

sσ2

)(
(sσ2)2/s

s
Γ
(2
s

)

+ σ
4
s s

2
s

−1
(
γ
(2
s
,
xs

sσ2

)
− γ

(2
s
,

1
sσ2

)))
,

(2.39)

where γ is the lower incomplete gamma function. For b > 0 the diffusion coeffi-
cient takes the following form:

v(x) =



2θ
(

1 + b

sσ2 (−x)s

)σ2
b

+ 1
s

+1 (1
s

(
σ2s

b

)2/s

·B
(

2
s
, 1 − 1

s
+ σ2

b

)

−
0∫

x

y

(
1 + b

sσ2y
s

)− σ2
b

− 1
s

−1

dy
)
, x < 0

2θ
(

1 + b

sσ2x
s

)σ2
b

+ 1
s

+1 (1
s

(
σ2s

b

)2/s

·B
(

2
s
, 1 − 1

s
+ σ2

b

)

+
x∫

0

y

(
1 + b

sσ2y
s

)− σ2
b

− 1
s

−1

dy
)
, x ≥ 0

(2.40)

= 2θ
(

1 + b

sσ2 (x · sgn (x))s

)σ2
b

+ 1
s

+1

·
(

1
s

(
sσ2

b

) 2
s

B

(
2
s
, 1 − 1

s
+ σ2

b

)
+ s

2
s

−1
(
σ2

b

) 2
s

(
β

(
bxs

sσ2 ; 1
s
,−σ2

b
− 1
s

)
− β

(
b

sσ2 ; 1
s
,−σ2

b
− 1
s

)))
,

where B(·, ·) is the standard beta function and

β (x; b, s, σ) =

bxs

sσ2∫
b

sσ2

t
1
s

−1(1 + t)− σ2
b

− 1
s

−1 dt.
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The existence of the strong solution of the SDE (2.38) for b > 0 and s = 2 follows
from the analysis of generally parametrized Student diffusion in Leonenko and
Šuvak [2010]. However, due to the nature of the diffusion parameter for b = 0
and general b > 0, in this case existence of a unique strong solution of the GGDiff
(2.38) is verified just up to the explosion time T (X0). In practical application to
the EEG data, this explosion time may correspond to the end of coma.

Remark 2.4. There are many schemes for diffusion discretization, see, for ex-
ample, Iacus [2009] or Kloeden and Platen [1992] for a detailed exposition on
Euler and Milstein schemes for numerical solutions to SDEs. However, the main
problem with the time series obtained by these discretization schemes, comprising
some form of autoregressive structure, is the lack of the strict stationarity. The
detailed exposition on this matter is given in [Ozaki, 1985, p. 55-56], where it is
stated that the stationary time series can be obtained for diffusions with linear
drift and unit volatility. For general non-linear diffusions the transformation of
the diffusion to the diffusion with the unit volatility and the local linearization
of the drift is proposed. Furthermore, it is shown that the discretization of this
transformed diffusion under some technical assumptions [Ozaki, 1985, Theorems
3.1 and 3.2] yields the non-explosive and ergodic time-series that converges to
the unit-volatility diffusion. For example regarding the diffusion with marginal
Student distribution see [Ozaki, 1985, Example 6, p. 69 − 70].

Remark 2.5. According to [Heyde and Leonenko, 2005, Theorem 3.2] there exists
the strictly stationary Ornstein-Uhlenbeck type process {Xt}t∈R

Xt = e−λtX0 + e−λt

t∫
0

eλs dY (λs)

=
t∫

−∞

e−λ(t−s) dY (λs), λ > 0,

with the marginal Student T (ν, δ, µ) distribution with the PDF

f(x) =
Γ
(

ν+1
2

)
δ
√
π Γ

(
ν
2

) (1 +
(
x− µ

δ

)2)− ν+1
2

,

ν > 0, δ > 0, µ ∈ R, x ∈ R,

governed by the so-called background driving Lévy process† {Yt}t∈R. Due to the
self-decomposability of the Student distribution, there also exists the strictly sta-
tionary solution of the autoregressive equation

Xn = cXn−1 + εn, n ∈ N, (2.41)
†Stochastic process having stationary independent increments and continuos in probability

(i.e lim
s→t

IP {|X(t) − X(s)| > ε} = 0, t ≥ 0, ∀ε > 0).
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where c ∈ ⟨0, 1⟩ and {εn}n∈N is a sequence of IID random variables (the innova-
tion process) independent of the process {Xn}n∈N. Also,

X0
d= cX0 + ε1 ∼ T (ν, δ, µ),

and so, if the relation (2.41) holds for every c ∈ ⟨0, 1⟩, it follows that T (ν, δ, µ) can
be observed as a marginal distribution of the autoregressive time series (Xn, n ∈
N0). Furthermore, according to [Heyde and Leonenko, 2005, Remark 3.1] and
[Jurek, 2001, Proposition 2],

ε1
d=

− ln (c)∫
0

e−s dY (s) d= Y (1),

with the distribution having the cumulate transform†

κY (1)(0) = 0,

κY (1)(z) = lnE
[
eizY (1)

]
= izµ− δ|z|

Kν/2−1 (δ|z|)
Kν/2 (δ|z|) , z ∈ R \ {0},

where

Kλ(x) = 1
2

∞∫
0

uλ−1 exp
{1

2x
(
u+ 1

u

)}
du, x > 0,

is the modified Bessel function of the third kind with the index λ ∈ R. For fixed
λ > 0 this function is positive, decreasing and, as x → 0+,

Kλ(x) ∼ Γ(λ)2λ−1x−λ.

Furthermore, the autoregressive time series (Xn, n ∈ N0) has the following im-
portant properties:

• Xn ∼ T (ν, δ, µ), ∀n ∈ N0,
• E[Xn] = µ for ν > 1,
• Corr (Xn, Xn+τ ) = c|τ | for ν > 2, c ∈ ⟨0, 1⟩ and τ = 0,±1,±2, . . ..

Since the heavy-tailed subfamily of the GGD (2.1) for s = 2 comes down to the
Student-type distribution, in this case the AR(1) process constructed in such a
way could be used as a time-series model for EEG signals. This AR(1) time se-
ries is used for modelling the EEG signals in Veretennikova et al. [2018].
Furthermore, in the light-tailed (b = 0) case of the GGD (2.1) for s ∈ ⟨0, 1] ∪ {2}
the strictly-stationary AR(1) time series with the GGD (2.1) marginals could be
constructed since for these values of the parameter s this distribution is infinitely-
divisible and self-decomposable. However, due to lack of these properties for

†Cumulate-generating function is the natural logarithm of the characteristic function
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s ∈ ⟨1, 2) in b = 0 case, strictly stationary AR(1) time-series with the GGD
(2.1) marginals with arbitrary parameter values cannot be constructed. Therefore,
the model presented here, based on a completely different type of the underlying
stochastic process, is more general.

2.3 Estimation of the parameters of the GGDiff distribu-
tion

In order to estimate the parameters of the GGD, estimation was divided into
two parts, since the GGD distribution (2.1) is comprised of two subfamilies with
different sets of parameters.

2.3.1 GGD subfamily with b = 0: Quasi-likelihood estimation

For the light-tailed case (b = 0), the two-dimensional parameter ζ = (s, σ2)
of the marginal distribution of the GGDiff X = {Xt}t≥0 was estimated by the
quasi-likelihood method.

For ∆ > 0 and a Markovian diffusion X, let

pX (∆, x|x0; ζ) = d
dxP (Xt+∆ ∈ dx|Xt = x0)

be the conditional PDF of Xt+∆ given {Xt = x0}. Due to the Markovian structure
of the GGDiff X, the corresponding likelihood function based on the time series
of observations (X∆n, n ∈ N) is

Ln(ζ) =
n∏

i=1
pX

(
∆, Xi∆|X(i−1)∆; ζ

)
,

and the log-likelihood function is

ln(ζ) =
n∑

i=1
ln
(
pX

(
∆, Xi∆|X(i−1)∆; ζ

))
.

The transition density pX

(
∆, Xi∆|X(i−1)∆; ζ

)
is rarely known in the explicit form,

which is also the case here for the GGDiff. However, it is known that the transi-
tion density converges to the ergodic density (see [Levin, D., Peres, Y., Wilmer,
2017, Chapter 1]). Therefore, for the purpose of the estimation of parameter ζ,
the existing exponentially decaying autocorrelation structure of the diffusion was
disregarded and the quasi-likelihood function was simply defined as

Ln(ζ) =
n∏

i=1
fs,b(X∆i),
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where fs,b is the GGDiff density given by (2.1) for b = 0. Then the quasi log-
likelihood function is

ln(ζ) =
n∑

i=1
ln
 1

2(sσ2) 1
s Γ
(
1 + 1

s

)e− |Xi|s

sσ2

 , (2.42)

with the obvious simplification ∆ = 1 in the construction of the time-series of
observations. The estimate ζ̂ = (ŝ, σ̂2) of the parameter ζ = (s, σ2) is then
obtained by maximising (2.42), which can be performed using existing non-linear
optimization methods. For more details on maximum likelihood estimation for
diffusion processes see Bishwal [2007] and Chenxu [2013].

Even though the estimation was simplified by disregarding the autocorrelation
structure of the diffusion, the method worked well in practice. Examples of
the estimated values and their fit to the histograms of EEG increments will be
presented in Section 3.1.

2.3.2 GGD subfamily with b > 0: Tail index estimation

In the case of the GGD for b > 0, there is an additional parameter that needed to
be estimated. However, due to the more complicated form of the PDF of the GGD
subfamily and the fact that all three parameters that needed to be estimated are
arguments of the Γ function, usual estimation methods didn’t produce satisfactory
results. Still, some of the histograms of EEG increments displayed heavy-tailed
distributions which couldn’t be properly captured using the light-tailed subfamily
of the GGD. Despite the inability to obtain all parameter estimates in the heavy-
tailed case, it was possible to estimate just the tail index.

As mentioned in Section 2.1, the asymptotic behaviour of the tail index follows

the behaviour of the function |x|
−1−s

(
σ2
b

+1
)
, so the tail index is of the form

α = s
(

σ2

b
+ 1

)
. There are many methods for tail index estimation, see e.g.,

Embrechts et al. [1997] for a concise overview. The approach used here was
introduced by Grahovac et al. [2015] and is based on the so-called empirical
scaling function. The method relies on the graphical inspection since the shape
of the scaling function is strongly influenced by the tail index. The method is
summarized below.

Let X1, X2, . . . , Xn be a zero mean sample coming from a stationary heavy-
tailed sequence with strong mixing property with an exponentially decaying rate.
The partition function is a special kind of the sample moment statistic based on
consecutive blocks of data. The partition function of the sample is then defined
by the following expression:

Sq(n, t) = 1
⌊n/t⌋

⌊n/t⌋∑
i=1

∣∣∣∣∣∣
⌊t⌋∑
j=1

X(i−1)⌊t⌋+j

∣∣∣∣∣∣
q

,
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where q ∈ R and 1 ≤ t ≤ n. As the partition function Sq can be considered an
estimator of E [|X(t)|q], it is expected that ln(Sq) will be linear in ln t. In a simple
linear regression of ln(Sq) on ln t based on some points 1 ≤ ti ≤ n, i = 1, . . . , N ,
the slopes with varying q will be called the empirical scaling function. Thus, for a
fixed value of q and using ti = nsi , si ∈ ⟨0, 1⟩, i = 1, . . . , N , the empirical scaling
function is defined as

τ̂N,n(q) =
∑N

i=1 si
ln Sq(n,nsi )

ln n
− 1

N

∑N
i=1 si

∑N
j=1

ln Sq(n,nsj )
ln n∑N

i=1 (si)2 − 1
N

(∑N
i=1 si

)2 . (2.43)

By repeating this for different values of q, a plot of the empirical scaling function
τ̂N,n is obtained.

Then estimation of the tail index is based on the asymptotic behaviour of
the empirical scaling function τ̂N,n as n,N → ∞. For each q > 0, the limit in
probability is

τ∞
α (q) =



q
α
, if q ≤ α and α ≤ 2,

1, if q > α and α ≤ 2,
q
2 , if 0 < q ≤ α and α > 2,
q
2 + 2(α−q)2(2α+4q−3αq)

α3(2−q)2 , if q > α and α > 2,

(2.44)

where α is the tail index (see [Grahovac et al., 2015, Theorem 2]).
Clearly, the shape of the empirical scaling function strongly depends on the

value of the tail index, and the sample-based empirical counterpart τ̂N,n can be
used to estimate the index. The asymptotic shape of τ∞

α is shown in Figure II.2.1.
Heavy-tailed samples are characterized by the (approximately) broken line shape
of the empirical scaling function, with the break occurring at α. The limiting
case as α → ∞ corresponds to the light-tailed distributions with the straight line
scaling function q/2 (dashed in Figure II.2.1).
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Figure II.2.1 The asymptotic form of the scaling function.

Estimation of the tail index can be done by fitting the empirical scaling func-
tion to its asymptotic form. As τ∞

α is complex, the estimation is done separately
for α ≤ 2 and α > 2 and it is first necessary to graphically determine in which of
these two cases the break in the graph occurs. After determining whether α ≤ 2
or α > 2 , the tail index estimate is then given by

α̂ = arg min
α∈⟨0,∞⟩

M∑
i=1

(τ̂N,n(qi) − τ∞
α (qi))2. (2.45)

for arbitrary points qi ∈ ⟨0, qmax⟩), i = 1, . . . ,M , where τ∞
α takes the form given

in (2.44) based on the determined range for α. Examples of the obtained values
of the tail index parameter will be shown in Section 3.2.

The important thing to note is that this estimation method does not depend
on the particular form of the underlying distribution.

Remark 2.6. For the special Student case (s = 2) of the b > 0 GGD (2.1) intro-
duced in Remark 2.2, in order to estimate the tail index, using the parametrization
of the Student distribution (2.10), it is enough to estimate the parameter σ2/b.
By using the method of moments, the estimator of the parameter σ2/b is based
on the forth empirical moment of the set of discrete observations (X1, . . . , Xn):

m4 = 1
n

n∑
k=1

X4
k .

Then the estimator for σ2/b is given by
̂(σ2

b

)
= m4

m4 − 3 .

For the method of moments estimation of the parameters of the Student distribu-
tion see Leonenko and Šuvak [2010].
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3 Multimodal case: Mixture of generalized
Gaussian distributions

3.1 Mixture of non-central generalized Gaussian distribu-
tions

As will be obvious in Section III.1, not all of the histograms of EEG increments
were unimodal. Some of the histograms displayed multimodal distributions, with
two to six peaks. Hence, there was a need for a more flexible distribution which
could capture this behaviour. As a natural extension of the unimodal case where
the generalized Gaussian distribution was the best candidate, the distribution
which was chosen as a proper fit for a multimodal case was a mixture of three
non-central generalized Gaussian distributions which will be called mixed gen-
eralized Gaussian distribution (MixGGD). Although some histograms of EEG
increments displayed more than three peaks, the mixture distribution here used
was comprised of only three parameters for reasons which will be clear in Section
4.1.

The probability density function of the MixGGD is of the following form:

fζ(x) =
3∑

k=1
wipk(x|ζ) =

3∑
k=1

wk

2(skσ2
k)1/skΓ

(
1 + 1

sk

) e
− |x−µk|sk

skσ2
k (3.1)

where ζ = (ζ1, ζ2, ζ3), ζk = (µk, sk, σ
2
k, wk) are its parameters. Note that µk ∈ R,

sk > 0, σk > 0 and 0 ≤ wk ≤ 1 such that ∑3
k=1 wk = 1.

For the specific values of some parameters, the MixGGD family contains the
following well-known and widely applied distributions:

• for s1 = s2 = s3 = 1 the MixGGD becomes the mixture of three Laplace
distributions,

• for s1 = s2 = s3 = 2 the MixGGD becomes the mixture of three Gaussian
distributions,

• for s1 = 1 and s2 = s3 = 2 the MixGGD becomes the mixture of one
Laplace and two Gaussian distributions (similarly for other combinations
of values 1 and 2 of parameters s1, s2, s3),

• for s1 = 1 and s2 = s3 > 0 the MixGGD becomes the mixture of one Laplace
and two generalized Gaussian distributions (similarly for other combina-
tions of same values of parameters s1, s2, s3),

• for s1 = 2 and s2 = s3 > 0 the MixGGD becomes the mixture of one
Gaussian and two generalized Gaussian distributions (similarly for other
combinations of same values of parameters s1, s2, s3).
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3. Multimodal case: Mixture of generalized Gaussian distributions

Different combinations of sk and wk with fixed values of µk and σ2
k for a two- and

three-component MixGGD are shown in Figures II.3.2 and II.3.3. For the sake
of consistency, the leftmost peak is related to the first component in the mixture
(k = 1), the middle peak to the second component (k = 2) and the rightmost
peak to the third component (k = 3) of the MixGGD. Observe that a three-
component MixGGD becomes a two-component MixGGD when the weight of the
middle peak is set to 0, i.e. w2 = 0 and by setting w1 = w3 = 0 a three-component
MixGGD is reduced to a (unimodal) generalized Gaussian distribution. Hence,
by appropriately setting the weights, the MixGGD can cover cases of histograms
where both one, two and three peaks are observed.

s1=0.5, s2=1.5, w1=0.5, w2=0.5

s1=1.5, s2=2, w1=0.5, w2=0.5

s1=2, s2=2, w1=0.3, w2=0.7

s1=2.5, s2=3, w1=0.6, w2=0.4
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Figure II.3.2 The two-component MixGGD with different combinations of sk

and wk.
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s1=s3=2.5, s2=0.5, w1=0.3, w2=0.4, w3=0.3

s1=s3=1.5, s2=2, w1=0.2, w2=0.6, w3=0.2
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Figure II.3.3 The tree-component MixGGD with different combinations of sk

and wk.

According to the characteristic function form of the generalized Gaussian dis-
tribution given in Pogány and Nadarajah [2010], the characteristic function of
the MixGGD (3.1) is given by

φζ(t) =
3∑

k=1
wk

√
πeitµk

Γ
( 1
sk

) ∞∑
j=0

1
j!

Γ
( 1
sk

+ 2j
sk

)
Γ
(1

2 + j
)

− (skσ
2
k)−1/sk

4

j

. (3.2)

Further, some important properties related to moments of the MixGGD are
mentioned. All moments exist, without any restrictions on parameter values. The
integer moment of order n ∈ N is given by

E[Xn] =
3∑

k=1
wkµ

n
k


n∑

i=0

(
n

i

)(
(skσ

2
k)1/sk

µk

)i (1 + (−1)i) Γ
(
i+ 1
sk

)
2Γ
( 1
sk

)
 . (3.3)
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In particular, the first five moments are

E[X] =
3∑

k=1
wkµk =: µ,

E[X2] =
3∑

k=1
wk

µ2
k +

s
2/sk

k σ
4/sk

k Γ
( 3
sk

)
Γ
( 1
sk

)
 ,

E[X3] =
3∑

k=1
wk

µ3
k +

3µks
2/sk

k σ
4/sk

k Γ
( 3
sk

)
Γ
( 1
sk

)
 ,

E[X4] =
3∑

k=1
wk

µ4
k +

6µ2
ks

2/sk

k σ
4/sk

k Γ
( 3
sk

)
Γ
( 1
sk

) +
s

4/sk

k σ8/skΓ
( 5
sk

)
Γ
( 1
sk

)
 ,

E[X5] =
3∑

k=1
wk

µ5
k +

10µ3
ks

2/sk

k σ4/skΓ
( 3
sk

)
Γ
( 1
sk

) +
5µks

4/sk

k σ8/skΓ
( 5
sk

)
Γ
( 1
sk

)
 ,

while the central moments are given by

E[(X − E[X])n] =
3∑

k=1
wk

 n∑
i=0

(
n

i

)
(µk − µ)n−i

(
skσ

2
k

)i/sk

·
(
1 + (−1)i

) Γ
(

i+1
sk

)
2Γ
(

1
sk

)
.

(3.4)

The skewness and kurtosis are given by

s =

3∑
k=1

wk

(µk − µ)3 + 3 (µk − µ)
(skσ

2
k)2/sk Γ

( 3
sk

)
Γ
( 1
sk

)



3∑

k=1
wk

(µk − µ)2 +
(skσ

2
k)2/sk Γ

( 3
sk

)
Γ
( 1
sk

)



3/2 ,

κ =

3∑
k=1

wk

(µk − µ)3 + 6 (µk − µ)2

(
skσ2

k

)2/sk Γ
( 3

sk

)
Γ
( 1

sk

) +

(
skσ2

k

)4/sk Γ
( 5

sk

)
Γ
( 1
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)


 3∑
k=1

wk

(µk − µ)2 +

(
skσ2

k

)2/sk Γ
( 3

sk

)
Γ
( 1

sk

)



2 .

Some properties of a similar parametrization of MixGGD, where (skσ
2
k)1/sk is

treated as one parameter, and its relation to the multivariate generalized error
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distribution are studied in Wen et al. [2022]. In particular, Wen et al. [2022]
consider the MixGGD with two components and present the explicit expressions
for the distribution function, hazard rate function, characteristic function and
some numerical characteristics (moments, central moments, skewness and kurto-
sis) as well as the study of moment estimation, maximum likelihood estimation
and the Expectation/Conditional Maximization ECM algorithm for estimation
of parameters of this special case of MixGGD.

3.2 Mixed Generalized Gaussian diffusion

Similarly to the unimodal case, important probabilistic properties of EEG in-
crements will be described by fitting these discrete-time observations to the
continuous-time diffusion process X = {Xt}t≥0 with the marginal PDF fζ given
by (3.1).

Since the PDF (3.1) is continuous, bounded, strictly positive on R, has expec-
tation µ =

3∑
k=1

wkµk and finite variance, according to Theorem 1.5, the stochastic
differential equation

dXt = −θ (Xt − µ) dt+
√
v(Xt) dBt, t ≥ 0,

has a unique Markovian weak solution X = {Xt}t≥0 that is ergodic with the
invariant density (3.1), where

• {Bt}t≥0 is the driving Brownian motion independent of X0,
• θ > 0 is the parameter describing the speed of reversion of diffusion X

towards expectation µ,
• diffusion coefficient v is given by

v(x) = 2θ
fζ(x)

x∫
−∞

(µ− y)fζ(y) dy

= 2θ
( 3∑

k=1

wk

ck

e
− |x−µk|sk

skσ2
k

)−1 3∑
k=1

ck

x∫
−∞

(µ− y)e
− |y−µk|sk

skσ2
k dy

 (3.5)

and it is strictly positive, i.e. v(x) > 0 for all x ∈ R.
The diffusion X given by the SDE will be called the mixed generalized Gaussian
diffusion (MixGGDiff). According to Theorem 1.5, some important properties of
MixGGDiff are:

• The function g = fζv satisfies
∞∫

−∞

g(x) dx < ∞

and
E[Xs+t|Xs = x] = xe−θt + µ(1 − e−θt);
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3. Multimodal case: Mixture of generalized Gaussian distributions

• If X0 ∼ fζ , MixGGDiff is a strictly stationary process with E[Xt] = µ for
all t ≥ 0;

• The autocorrelation function of MixGGDiff is given by Corr(Xs+t, Xs) =
e−θt, s, t ≥ 0.

• Since the drift coefficient is linear, it satisfies both Lipschitz and the linear
growth conditions. However, non-differentiability of the diffusion coefficient
v implies that the existence of a unique strong solution could be verified
just up to the explosion time T (X0), similarly as in the unimodal case for
b = 0. In practical application to the EEG data, this explosion time T (X0)
can be interpreted as the end of coma.

Remark 3.1. Other mixture distributions are also used in neurology, e.g. Gaus-
sian mixture is used for estimating and comparing the shapes of distributions
of neuroimaging data related to aging effects in brain white matter Kim et al.
[2014]. Mixture diffusion processes are extensively used in finance, since due to
their multimodality and heavier tails they often better describe the properties of
financial data. For example, Alexander and Narayanan [2001] studies the op-
tion pricing under Gaussian mixture distributed returns. Furthermore, in Brigo
and Mercurio [2002b] and Brigo and Mercurio [2002a] diffusions with mixture of
log-normal densities are used for modeling of market smile phenomenon, while in
Brigo [2008] the overview of general properties of mixture diffusion SDEs under
assumption of existence of strong solution and constant starting value is given.

3.3 Estimation of the parameters of the MixGGDiff dis-
tribution

Due to the added shape parameter sk, GGD is more flexible and can approximate
a large class of statistical distributions. However, it also implies there is an
additional parameter to estimate, compared to a Gaussian distribution. Thus, a
K-component MixGGD requires the estimation of 4K parameters.

Method of estimation of ζk = (µk, sk, σ
2
k, wk) in MixGGD (3.1) was adopted

from Mohamed and Jaïdane-Saïdane [2009] and is based on the expectation maxi-
mization (EM) algorithm first proposed by Dempster et al. [1977]. EM algorithm
is comprised of two steps: the step to find the expectation (E-step) and the
maximization step (M-step). The M-step can be computationally complicated
because maximum likelihood estimation requires multidimensional numerical it-
eration. Thus, Meng and Rubin [1993] proposed a special class of generalized
EM algorithms, called Expectation/Conditional Maximization (ECM) algorithm
which replaces a complicated M-step with several computationally simpler condi-
tional maximization steps. The algorithm maximizes the complete log-likelihood
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function
l(ζ) =

K∑
k=1

N∑
i=1

hk,i ln
(
wkpk(xi|µk, sk, σ

2
k)
)
, (3.6)

where
hk,i = p(k|xi) = wkp(xi|ζk)∑K

j=1 wjp(xi|ζj)
represents the conditional expectation of pk given the observation xi, i.e. the
posterior probability that xi belongs to the kth component.

Steps of the algorithm are as follows:
• initialization of the model parameter ζ;
• expectation (E-step) where the conditional probability hk,i is calculated us-

ing

h
(n+1)
k,i = w

(n)
k p(xi|µ(n)

k , s
(n)
k , σ2

k
(n))∑K

j=1 w
(n)
j p(xi|µ(n)

j , s
(n)
j , σ2

j
(n))

(3.7)

and the computation of l(ζ) is calculated based on the estimate ζ(n);
• maximization (M-step) deals with the numerical maximization of the log-

likelihood function (3.6) and the parameter estimate at iteration (n+ 1) is
estimated as

ζ̂(n+1) = arg max
ζ

l(ζ(n))

Parameters wk, µk, σ
2
k are estimated using a set of iterative equations

ŵk
(n+1) = 1

N

N∑
i=1

h
(n)
k,i ,

µ̂k
(n+1) =

N∑
i=1

h
(n)
k,i xi

N∑
i=1

h
(n)
k,i

,

σ̂2
k

(n+1)
=

N∑
i=1

h
(n)
k,i

(
xi − µ

(n)
k

)2

N∑
i=1

h
(n)
k,i

.

For the added shape parameters sk, the approach based on the use of higher
order statistics from Mohamed and Jaïdane-Saïdane [2009] was used. Specifically,
values of the kurtosis for each mixture component can be used to derive an
approximation of shape parameters sk. Tesei and Regazzoni [1998] define an
analytical relationship between the shape parameter sk and the kurtosis κk as

κk =
Γ
(

5
sk

)
Γ
(

1
sk

)
(
Γ
(

3
sk

))2 . (3.8)

It is impossible to express sk in terms of κk due to the Γ function definition,
but an approximation can be found by applying the least squared method on a
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generic second-order monotonic analytical expression

κk = 1.865s2
k + α1sk + α2

s2
k + δ1sk + δ2

which gives
κk ≈ 5 + 1.865(sk + 0.12)2

(sk + 0.12)2 . (3.9)

Kurtosis in iteration (n+ 1) is estimated using the iterative equation

κ
(n+1)
k =

N∑
i=1

h
(n)
k,i

(
xi − µ

(n)
k

)2

(
σ

(n)
k

)4 N∑
i=1

h
(n)
k,i

with the same weights as for µ(n+1)
k and σ2

k
(n+1). Shape parameter sk in the

iteration (n + 1) is then approximated by inverting the monotonic expression
(3.9) resulting in

ŝk
(n+1) ≈

√√√√ 5
κ

(n)
k − 1.865

− 0.12 (3.10)

which is defined for κk > 1.865 and gives a good approximation of shape pa-
rameter sk as a function of κk when κk lies in the range of ⟨1.865, 30] [Tesei and
Regazzoni, 1996], which corresponds to sk range of [0.302,∞⟩. For s in range
⟨0.3, 10], comparison of the true value of the kurtosis and the approximated value
of the kurtosis as a function of the shape parameter s based on (3.9) is shown in
Figure II.3.4
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Figure II.3.4 True value of the kurtosis and the approximated value of the kur-
tosis as a function of the shape parameter s.
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Remark 3.2. Another approach in estimating the shape parameters sk based on
the numerical optimization of the log-likelihood function can be found in Mohamed
and Jaïdane-Saïdane [2009]. However, the approach is much more complex due
to the system of equations being strongly nonlinear, sensitivity of initial parameter
values and computational time.
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Chapter III

Prediction of neurodevelopment
using EEG increments

To illustrate an application of the constructed diffusion processes presented in
Chapter II to real data and test whether the information obtained from parame-
ters of their marginal distributions can contribute to the prediction of neurodevel-
opment in children who were in a coma due to cerebral malaria, analysis of EEG
data collected during an observational study was performed. Information about
the data collection and variables included in the study is described in Section
III.1. Additionally, Section III.1 also includes the summary of analysis of shapes
of histograms of EEG increments, showing examples of histograms with different
number of peaks. The method used in the identification of important predictors
for neurodevelopment is described in Section III.2. Section III.3 includes exam-
ples of estimating the parameters of the (unimodal) GGD and the tail-index and
their contribution to prediction of neurodevelopment, while Section III.4 presents
the same for the MixGGD.

1 Description and analysis of the dataset

Focus of the analysis were the increments of EEG signal, but in addition to EEG
signals, dataset also included non-EEG data which is known to be of predictive
value for neurodevelopment. Hence, the question was whether the use of pa-
rameters from stochastic models can improve the prediction, i.e. to determine
their usefulness over and above socio-demographic characteristics, clinical factors,
and child neurodevelopment or cognitive score at the time of hospitalization for
cerebral malaria after coma.
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1.1 Description of the dataset

Data used in the analysis were collected during the observational study of
the pathogenesis of severe malaria (cerebral malaria (CM) and severe malarial
anaemia) in surviving children. Data collection was performed between 2008 and
2015 at Mulago National Referral and Teaching Hospital which is a public ter-
tiary care facility in Kampala, Uganda. The observational study was approved by
the Institutional Review Boards of the Makerere University School of Medicine
and the University of Minnesota. The sample consisted of 78 children between
18 months and 12 years of age. The children were recruited for projects study-
ing CM pathogenesis and clinical epidemiology and were admitted with a clinical
diagnosis of CM with a Blantyre coma score ≤ 2, P. falciparum present on the pe-
ripheral blood smear and no other known cause of coma [Postels et al., 2018]. As
cerebral malaria results in a coma, EEG signals were recorded during coma for the
children who were diagnosed with cerebral malaria. Recording of the EEG was
performed within 12 hours of admission using the International 10 − 20 system,
meaning that the cap placed on the scalp for recording of the signal consisted of
19 electrodes called channels (see Figure III.1.1). Sampling rate of the recordings
was 500 Hz and the average record duration was 30 minutes. In the case of a pa-
tient becoming medically unstable, the recording of EEG was terminated before
this time mark. Since the Cz electrode is placed at the centre of midline sagittal
plane, it was chosen as the reference electrode. Data from some channels for some
children contained a substantial number of zero observations, potentially due to
a poor connection between the electrode and the scalp. This consideration was
included in the interpretation of the results. Paediatric neurologist performed
the research interpretations after the hospital discharge. Artefacts due to breath-
ing, muscle movement and heartbeat had already been removed from this dataset
prior to the statistical analysis. The study also included community control chil-
dren who were recruited from household compound area of children with cerebral
malaria or severe malarial anaemia to control for socioeconomic variables that
affect neurodevelopment and cognition [Bangirana et al., 2016].

In order to asses the effects of coma, age-appropriate assessments of neu-
rodevelopment and cognition were performed using the Mullen Scales of Early
Learning [Shank, 2011] for children 5 years of age or younger. For children over
the age of five, cognitive assessments was performed using Kaufman Assessment
Battery for Children, second edition [Kaufman, 2004]. In the absence of Ugandan
norms, all measures were standardized using the available United States norms.
A single measure of neurodevelopment and cognition regardless of age was then
obtained by computing the z-scores using the mean and standard deviation of
the community control children, as discussed in Veretennikova et al. [2018]. For
all children, assessment was performed at three points in time - after the dis-
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Figure III.1.1 The International 10 − 20 system for EEG signal recording.

charge from the hospital (for community control children, this was the point of
enrolment), 6 months after the discharge (or enrolment) and 12 months after the
discharge (or enrolment). In addition to performing the neurological exams, chil-
dren were also classified as either “alive with sequelae” or “normal” based on the
parents’ assessment of their child’s motor, cognitive or behavioural abnormalities.

Other non-EEG data that were collected in the study included demographic
and anthropometric characteristics (age, sex, height-for-age and weight-for-age-
z-score using The World Health Organization reference norms [WHO, 2009]).
Socioeconomic status was measured using a checklist of material possessions,
housing quality, cooking resources and water accessibility. Quality and quantity
of stimulation to which the child is exposed in the home environment was assessed
using Home Observation for the Measurement of the Environment (HOME) mea-
sure [Bradley and Caldwell, 1979], where higher HOME scores indicate higher
quality of home environment. Severity of coma caused by cerebral malaria was
assessed using the Blantyre coma scale [Taylor, 2009]. At the point of hospi-
talization of children with cerebral malaria, biomarker panels from plasma and
cerebrospinal fluid were collected. Preprocessing of the data included location
and scale transformation for all potential predictors included in feature matrices.

More details about the data collection can be found in Postels et al. [2018]
and Veretennikova et al. [2018].

1.2 Analysis of histograms of EEG increments

Data analysis was performed using R for Windows. The software was regularly
updated to reflect the changes in the packages and functions which happen with
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the release of a new version of the software. For the initial part of the analysis, R
3.6.3 version was used. Histograms of the increments of EEG signals were investi-
gated for every child and every channel separately, creating a child-channel pair,
resulting in a total of 1482 histograms (78 children times 19 channels). Visual
inspection of the histograms of EEG increments for each child-channel pair was
performed separately to try to classify the shape of the underlying distribution.
Classification of the child-channel pairs was performed based on the number of
peaks observed on the histograms of the increments of EEG signal and it showed
that the channels displayed from one to a maximum of 6 peaks. The frequency
of the observed number of peaks is shown in Table III.1.1. As it can be con-

Table III.1.1 Classification of EEG channels based on the shape of histograms
of increments.

Histogram shape Number of channels % of channels

1-peak 1100 74.22
2-peak 144 9.72
3-peak 169 11.40
4-peak 25 1.69
5-peak 40 2.70
6-peak 4 0.27

total 1482 100

cluded from the Table III.1.1, approximately 95% of the channels consisted of
a maximum of three peaks, with the majority of them displaying the unimodal
distribution on histograms. Examples of histograms classified as “1-peak” can
be seen in Figure III.1.2. Although some histogram look quite similar, tail index
estimation suggested that they can differ in their tail behaviour, some displaying
heavy tails, while others were light-tailed. Behaviour of the tail will be evident
in Section 3.2. Additionally, last figure in Figure III.1.2 shows an example of
an almost degenerate distribution, with a single narrow peak. The analysis of
the data on such peaks showed that this is due to a large number of zero ob-
servations in EEG signals, and not increments. As mentioned before, this can
happen when there is a poor connection between the electrode and the scalp.
However, these channels were also included in the analysis and prediction of neu-
rodevelopment since they model a situation that happens in practice when doing
electroencephalography.

Histograms of channels that displayed a 2-peak distribution comprised approx-
imately 10% of the channels. The examples of histograms displaying a 2-peak
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1. Description and analysis of the dataset

distribution are shown in Figure III.1.3.
Three-peak channels were the most frequent after unimodal channels and they

comprised approximately 11% of the channels. Some examples of histograms of
EEG increments displaying a 3-peak distribution can be seen in Figure III.1.4
Least represented were 4-, 5- and 6-peak channels comprising less than 5% of the
channels. As it will be seen in Section 4.1, this was the reason to use a mixture
of generalized Gaussian distributions consisting of only up to three components.
Examples of 4-, 5- and 6-peak histograms can be seen in Figures III.1.5 - III.1.7

This visual analysis of the histograms of EEG increments showed that the
suitable marginal distributions for the diffusion process which would model the
EEG increments were either unimodal distribution with a flexible shape param-
eter, including a possibility of heavy tails, or a multimodal distribution with
the flexibility of the shape of each components. Now it is clear why the chosen
marginal distributions of the diffusion process were the (unimodal) GGD pre-
sented in Section II.2 with the parametrization (2.1) and the MixGGD presented
in Section II.3.
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Figure III.1.2 Histograms of EEG increments displaying a 1-peak distribution
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Figure III.1.3 Histograms of EEG increments displaying a 2-peak distribution
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Figure III.1.4 Histograms of EEG increments displaying a 3-peak distribution
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Figure III.1.5 Histograms of EEG increments displaying a 4-peak distribution
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Figure III.1.6 Histograms of EEG increments displaying a 5-peak distribution
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Figure III.1.7 Histograms of EEG increments displaying a 6-peak distribution
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2 Prediction method: Elastic net regression

The purpose of the analysis of the EEG increments was whether these EEG fea-
tures should be retained as a potentially important information in considering
future cognition in children who suffered from cerebral malaria. There are sev-
eral possible prediction approaches such as random forests or neural networks
(NNs), both of which can deal with a vast amount of data and are highly flexible.
However, they are prone to overfitting or are difficult to interpret (NNs), which
presents an issue when it comes to justification of the procedures to the profes-
sionals who are not familiar with prediction methods. Thus, a method which is
suited to high-dimensional problems and balances the advantages and disadvan-
tages of L1 (LASSO) and L2 (ridge) regression was chosen. To identify important
predictors of neurodevelopment and cognition 6 months after coma from cerebral
malaria, elastic net regression was used. The method was introduced by Zou and
Hastie [2005] as a way of controlling for correlations among predictors and dealing
with the case where the number of predictors is much bigger than the number of
observations. Elastic net regression can be viewed as a penalized least squares
method which minimizes the loss function defined by

L(α, λ,β) = |y − Xβ|2 + λ
(1 − α

2 |β|2 + α|β|1
)
, (2.1)

where
|β|2 =

p∑
j=1

β2
j , |β|1 =

p∑
j=1

|βj|

y = (y1, . . . , yn)τ is the response, X = (x1| . . . |xp) is the model matrix and
xj = (x1j, . . . , xnj)τ , j = 1, . . . , p are the predictors [Zou and Hastie, 2005].

Hyperparameter α can be seen as a mixing parameter between ridge (α =
0) and LASSO (α = 1) regression. Tuning of hyperparameters α and λ was
performed using caret package [Kuhn, 2020] with leave-one-out cross validation.
The tuning grid was constructed from values of λ ∈ {10−5, 10−4, . . . , 103} and
7 equidistant points from the interval [0.0001, 1] for α. The pair which had the
lowest root mean squared error (RMSE) was chosen for the final model.

The response variable was the standardized neurodevelopment or cognitive
score taken 6 months after the discharge from the hospital, and the scores were
in the range of [−1.99, 1.5]. Predictor variables were taken from the non-EEG
features described in Section 1.1 and the EEG features obtained from analysis of
increments. The model including just the non-EEG features was chosen as the
baseline model to which all other models were compared (in terms of their RMSE).
In feature matrices, the neurodevelopmental or cognitive score immediately after
discharge from the hospital was included. In reporting of the results, this score
is referred to as the baseline neurodevelopmental score. The rationale for the
inclusion of this score was that it can be obtained relatively easily compared to
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3. Prediction using Generalized Gaussian distribution

the estimation of the EEG parameters for stochastic models. Fitting of stochastic
models would be warranted if the EEG parameters were shown to be important
over and above other measures that can be obtained easily or as part of routine
clinical care for cerebral malaria.

Some features contained missing values, especially in the non-EEG dataset.
Since the dataset comprised both continuous and categorical data, imputation
methods suitable to mixed-type data were used. Based on the comparison of dif-
ferent imputation methods presented in Robin et al. [2021], missForest package
for R was selected. The algorithm is based on an iterative imputation scheme
by training a random forest on observed values in a first step, followed by pre-
dicting the missing values and then proceeding iteratively. Main function of the
package is the function missForest which takes the argument in the form of a
matrix (dataframe) with missing values, where the columns correspond to the
variables and the rows to the observations. The function also takes optional ar-
guments, such as the maximum number of iterations to be performed, number of
trees to grow in each forest, complete data matrix which can be supplied to test
the performance etc., and the function can also be run parallel. The function
missForest internally calls function varClass which returns the variable types
of a provided dataframe. Imputation scheme is run iteratively - the difference
between the previous and the new imputed data matrix is assessed after each
iteration for the continuous and categorical parts and when both differences in-
crease for the first time, the algorithm stops. In addition, when a complete data
matrix is supplied, missForest can internally call the function mixError which
calculates the imputation error in the case of mixed-type data (a normalized
RMSE or proportion of falsely classified entries based on the type of the data)
([Stekhoven and Buhlmann, 2012]).

3 Prediction using Generalized Gaussian distri-
bution

Prediction of neurodevelopment for children who were in coma due to cerebral
malaria was first investigated for the estimates obtained by fitting the GGD to
EEG increments, which would represent the simplest model containing stochastic
features. In order to obtain the estimates of GGD parameters, all channels were
viewed as unimodal having the GGD distribution. For the heavy-tailed subfam-
ily of then GGD, parameter estimation didn’t prove to be successful, thus the
parameters that presented a suitable fit for heavy-tailed channels couldn’t be ob-
tained. Instead, tail-index estimation was performed on all the channels, with
estimates representing the second collection of features included in prediction.
Results from this section were published in Leonenko et al. [2023a].
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Chapter III. Prediction of neurodevelopment using EEG increments

3.1 Fitting of GGD to EEG increments

Histograms of the increments of EEG signals were investigated for every child and
every channel separately resulting in a total of 1482 histograms. Histograms were
approximately symmetrical with means close to zero but also displayed higher
peaks than the normal distribution, which as mentioned, further justifies the
choice of the GGD (2.1) as the marginal distribution for modelling. Estimation
of the parameter ζ = (s, σ2) of the light-tailed GGD(s, σ2) was obtained using
the quasi-likelihood approach presented in Section 2.3.1. Non-linear optimization
was performed using maxLik package [Henningsen and Toomet, 2011] in R version
4.0.4 for Windows. Due to the fact that the shape parameter s appears inside
the Γ function in (2.1), constrains for the minimum value of s were used in the
optimization to prevent computational problems. Optimization was performed
on the entire dataset of EEG increments values and no sampling was used.

Values of ŝ were in the range of [0.02, 8.23]. Extremely low values of ŝ (close to
0.02) and σ̂2 (close to 0.1) appeared on the channels containing very large number
of zero observations and manifested in histograms with high and narrow peaks
(Figure III.3.8a). Values of ŝ near 2 result in a GGD fit that resembles a zero-
mean normal distribution, which can be seen in Figure III.3.8b. Figure III.3.8c
and Figure III.3.8d show examples of histograms where obtained estimates for
the shape parameter were ŝ < 2 and ŝ > 2, respectively. Dashed line in the plots
represents the fitted GGD.
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(b) GGD(ŝ = 2.09, σ̂2 = 3.52)

73



Chapter III. Prediction of neurodevelopment using EEG increments

Increments

E
m

p
ir

ic
a

l 
d

e
n

s
it
y

−30 −24 −18 −12 −6 0 4 8 12 18 24 30

0
.0

0
0

0
.0

3
5

0
.0

7
0

0
.1

0
5

0
.1

4
0

0
.1

7
5
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Figure III.3.8 Fitting of the light-tailed GGD to EEG increments.
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3. Prediction using Generalized Gaussian distribution

3.2 Estimation of tail index on EEG increments

Tail index estimation of EEG increments was performed using the graphical
method presented in Section 2.3.2. The estimation was divided into two cases,
α ≤ 2 and α > 2, due to complexity of the expression τ∞

α in (2.44). This means
that the corresponding part of τ∞

α based on the true value of α was used as a
model function for the estimate α̂ in (2.45). Hence, before obtaining the value of
the estimate α̂, it was necessary to visually inspect the plot of empirical scaling
function and determine where the break point happens.

To obtain the numerical value of α̂, the empirical scaling function was fitted to
the asymptotic form τ∞

α using ordinary least squares method. For the calculation
of τ̂N,n values for si ∈ ⟨0, 1⟩ were chosen to be equidistant points (N = 23) in
the interval [0.1, 0.9], while for qj a total of 40 equidistant points were taken from
interval [0.11, 10]. A random sample of EEG increments of size 10000 was chosen
for every channel, and the sampling was repeated 10 times. The empirical scaling
function was plotted for each of these 10 samples (shown by dot-dashed lines in
Figure III.3.9), obtaining estimates α̂i, i = 1, . . . , 10. The final value of the tail
index estimate α̂ was chosen to be the median of values α̂i, represented by a
solid line in Figure III.3.9. The bilinear shape (i.e a broken line) is clearly visible
on both plots and identifies the breakpoint which determines whether the data
are from the distribution with infinite (Figure III.3.9a) or finite (FigureIII.3.9b)
variance. Analysis was performed using Mathematica version 11.3 for Windows.
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Figure III.3.9 The function τ and the tail index estimates of EEG increments.

3.3 Generalized Gaussian distribution models

Models with different combinations of features were investigated for the prediction
of neurodevelopment. As mentioned before, model containing only the non-EEG
features was selected as the baseline model.
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3.3.1 Non-EEG features model

The feature matrix for this model included a total of 54 non-EEG features with 78
observations. Maximum number of missing values per feature was 23, and most
of the empty entries occurred in biomarker panels from cerebrospinal fluid. Cate-
gorical variables such as sex (2 levels) and bcs (Blantyre coma score, 6 levels) were
coded into dummy variables for the inclusion in the elastic net regression. For the
variable bcs, a score of 0 (poor results) was chosen as the reference level. Only the
categorical variables were recoded into dummy variables (after the imputation of
the missing values), other variables were included as continuous predictors in the
feature matrix.

3.3.2 Combined non-EEG and GGD features model

The feature matrix for this model was a combination of aforementioned 54 non-
EEG features from Section 3.3.1 and additional 38 features (for 19 channels)
which were estimates of s and σ2 parameters obtained by fitting the light-tailed
GGD to EEG increments (see Section 3.1). Thus, for each channel, two predictors
were included in the feature matrix, one including the continuous values of (̂s)
and one including continuous values of (̂σ2). There were no missing values in the
GGD features subset.

3.3.3 Combined non-EEG and tail index features model

The feature matrix for this model was a combination of the same 54 non-EEG
features and additional 19 features (for 19 channels) which were median values of
estimates α̂ of the tail index from the estimation in Section 3.2). Missing values
occurred for two cases and were imputed using missForest package. Median
values of the tail index estimates in the feature matrix were in the range of
[0.01, 8.76]. To reduce the noise of this variable within the model, the tail index
for every channel was classified into 3 levels based on distributional tertiles. Thus,
values of 3.1 and 4.5 were chosen as cut-offs. Since this resulted in creating
categorical variables, they were recoded into dummy variables with values below
3.1 acting as reference level. Both versions of the model (with continuous values
of tail index and categorized tail index values) were examined in the analysis.

3.4 Results and comparison

After running over a grid of different combinations of tuning parameters, best
tuning parameters across all models were α = 0.833 and λ = 0.1. These values
produced the lowest RMSE. Comparison of models based on the leave-one-out
cross validation RMSE is given in Table III.4.5. Since the caret package doesn’t
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provide standard errors of the coefficients in the elastic net regression model,
standard errors of predictors’ coefficients were obtained by bootstrapping. For
this purpose R package boot[Canty and Ripley, 2021] was used with the number
of bootstrap replicates set to 1000. Ordinary bootstrapping procedure was used
due to the convenience of the function boot in package boot, but other options
for nonparametric resampling such as “parametric”, “balance”, “permutation” or
“antithetic” are also possible. The function takes the data, the statistic of interest
and number of replicates as mandatory arguments, with an extensive list of other
arbitrary arguments (for more details see Canty and Ripley [2021]).

Table III.3.2 Model comparison based on elastic net regression results.

Model features included
(number of features)

RMSE Number of non-
zero coefficients

Number of non-zero
coefficients from EEG
features subset

Non-EEG features (54) 0.5670 12 N/A
Non-EEG (54) and GGD (38) features 0.5655 13 1
Non-EEG (54) and continuous tail index fea-
tures (19)

0.5670 12 0

Non-EEG (54) and categorical tail index fea-
tures (38 dummy variables)

0.5499 10 1
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Table III.3.3 Predictors selected by elastic net models.

Model coefficient (SE)

Predictor Non-EEG features
model

Non-EEG and
GGD features

model

Non-EEG and
continuous tail
index features

model

Non-EEG and
categorical tail
index features

model

Baseline ND
4.9848 × 10−1 5.0301 × 10−1 4.9848 × 10−1 4.9860 × 10−1(
8.3221 × 10−2

) (
8.2076 × 10−2

) (
8.0763 × 10−2

) (
8.3407 × 10−2

)
Blantyre coma score

−1.1657 × 10−1 −1.0944 × 10−1 −1.1657 × 10−1 −1.2040 × 10−1(
8.3327 × 10−2

) (
8.4044 × 10−2

) (
8.1889 × 10−2

) (
8.1088 × 10−2

)
Hemoglobin level

2.1215 × 10−2 2.3149 × 10−2 2.1215 × 10−2 2.3891 × 10−2(
1.6438 × 10−2

) (
1.7477 × 10−2

) (
1.7165 × 10−2

) (
1.7051 × 10−2

)
White blood cell count

−7.2054 × 10−3 −7.1759 × 10−3 −7.2054 × 10−3 −8.2922 × 10−3(
6.3639 × 10−3

) (
5.7969 × 10−3

) (
6.1838 × 10−3

) (
6.2979 × 10−3

)
Interleukin
(IL)-10 csf1 level

6.9793 × 10−3 7.2020 × 10−3 6.9793 × 10−3 7.9912 × 10−3(
5.0404 × 10−3

) (
4.7077 × 10−3

) (
4.7335 × 10−3

) (
4.8946 × 10−3

)
Age

1.4945 × 10−3 7.2271 × 10−4 1.4945 × 10−3
–(

1.5223 × 10−2
) (

1.2848 × 10−2
) (

1.4590 × 10−2
)

IL-1α receptor
level in csf

8.9480 × 10−4 9.6438 × 10−4 8.9480 × 10−4 7.6489 × 10−4(
6.0332 × 10−4

) (
6.3683 × 10−4

) (
6.1714 × 10−4

) (
5.4993 × 10−4

)
HOME score

7.1907 × 10−4 1.5538 × 10−4 7.4088 × 10−3
–(

7.5640 × 10−3
) (

7.9678 × 10−3
) (

1.4590 × 10−2
)

IL-6 csf level
4.4212 × 10−4 5.0712 × 10−4 4.4212 × 10−4 5.8932 × 10−4(
8.5593 × 10−4

) (
8.4274 × 10−4

) (
8.2988 × 10−4

) (
7.4943 × 10−4

)
Von Willebrand
factor

3.9401 × 10−5 4.5009 × 10−5 3.9401 × 10−5
–(

3.1056 × 10−4
) (

3.1598 × 10−4
) (

3.0665 × 10−4
)

IL-8 csf level
3.0274 × 10−5 2.7567 × 10−5 3.0274 × 10−5 1.9938 × 10−5(
3.4552 × 10−5

) (
3.2663 × 10−5

) (
3.3118 × 10−5

) (
3.1701 × 10−5

)
IL-1α receptor
level in plasma

−6.1415 × 10−6 −5.5330 × 10−6 −6.1415 × 10−6 −6.9700 × 10−7(
6.6809 × 10−6

) (
6.1356 × 10−6

) (
6.1917 × 10−6

) (
4.9735 × 10−6

)
T3_CZ σ2

estimate
N/A

2.5271 × 10−8
N/A N/A

1.3371 × 10−8

T6_CZ2 N/A N/A N/A
−1.6478 × 10−1

1.0155 × 10−1

1 cerebrospinal fluid

Models displayed similar RMSE values but generally, the addition of EEG fea-
tures resulted in the RMSE reduction. The lowest RMSE of 0.5549 was obtained
for the model containing non EEG features and categorical tail index features.
This model also had the smallest number of non-zero coefficients. The list of
predictors selected by each model is shown in Table III.3.3. The table shows
the values of predictors’ coefficients along with their standard errors obtained by
bootstrapping. Predictors that weren’t included as features in models are marked
by N/A and those that weren’t selected by a certain model are marked by “–”.
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4. Prediction using mixed generalized Gaussian distribution

4 Prediction using mixed generalized Gaussian
distribution

After investigating the GGD as the marginal distribution of the diffusion pro-
cesses of EEG increments and using their estimates in prediction of neurodevel-
opment, the question arose whether a more complex model which would account
for the multimodality in histograms would improve the prediction of neurodevel-
opment. For this reason, estimation was performed to obtain the parameters of
the MixGGD and include them in feature matrices. Results from this section
were published in Leonenko et al. [2023b].

4.1 Fitting of MixGGD to EEG increments

Parameter estimation was performed without randomly sampling the values of
increments, however, due to the sensitivity of the estimating equations, outliers
had to be removed prior to the estimation. Outliers were defined as data points
more than 1.5 of the interquartile range below the first or above the third quartile.

Although some channels’ histograms displayed a distribution of up to six
peaks, a GGD mixture of maximum three components (K = 3) was used as
the model in the analysis because 95% of the child-channel pairs had 3 or fewer
peaks. Four- and six-peak channels were reclassified as having two peaks, and
five-peak channels as having three peaks which can be seen as merging peaks
which are in proximity of each other in the histograms. The reason for this is
that less than 5% of the total number of channels manifested in more than three
peaks, and fitting a six-component GGD mixture doubles the number of param-
eters needed to be estimated and further complicates the analysis. Additionally,
the parameter estimates were intended to be used as predictors in modelling of
neurodevelopment. If a six-component mixture were to be fitted to all channels,
most of the parameter estimates would be missing by default in the feature ma-
trices since the majority of channels’ histograms (approximately 95%) displayed
only up to three peaks.

Analysis was performed using R version 4.1.2 for Windows. The ECM algo-
rithm for estimation of parameters of the MixGGD wasn’t available in R from
any of the existing packages so the algorithm had to be implemented using the
ECM method described in Section 3.3. The algorithm was implemented for the
case of up to three peaks and additionally, improved with the possibility of forc-
ing a symmetrical mixture (in terms of location, scale and shape) where for the
case of two-component mixture the conditions µ̂1 = µ̂3 and µ̂2 = 0, σ̂2

1 = σ̂2
3 and

σ̂2
2 = 0, ŝ1 = ŝ3 and ŝ2 = 0 were applied. Similarly, for the three-component mix-

ture that condition corresponded to µ̂1 = µ̂3, σ̂2
1 = σ̂2

3, ŝ1 = ŝ3; only the weight
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parameters weren’t forced to be equal. The main function implemented in the
algorithm was the ECM_algorithm function which takes a vector of data and the
number of components as mandatory arguments. Recall that the number of com-
ponents was determined beforehand from the visual inspection of histograms of
the EEG increments. Other arbitrary arguments are the number of iterations and
tolerance which were used as stopping criteria for the algorithm. The function
ECM_algorithm internally calls functions e.step and m.step, which are respec-
tively the E- and M- step of the ECM algorithm. The function e.step takes
as arguments the vector of data and initial (or subsequent) values of parameters
estimates of the MixGGD and returns the log-likelihood value in (3.6) calculated
based on the current value of parameter estimates ζ̂, along with the conditional
probability defined in (3.7). This value is then passed to the function m.step
which performs the numerical maximization of the log-likelihood function (3.6)
using the previously obtained value of ζ̂ and returns the new value of parameter
estimate. This process runs iteratively until a stopping criterion is met. In addi-
tion to these functions, a plotting function for the histograms and their empirical
density functions was implemented utilizing the ggplot2 package from Wickham
[2016].

To initialize the algorithm, k-means clustering available from base R package
was performed, and then the initial values of parameters were calculated for each
of the derived clusters. Since the channels had been previously classified based
on their histogram shape, clustering was performed using the available informa-
tion about the number of peaks. Initial values of parameters µk, σ

2
k, wk, along

with the initial value of the kurtosis κk, for k = 1, 2, 3 were estimated on each
of the clusters. The initial value of the shape parameter sk was then calculated
using the expression (3.10). These values of µ̂k, σ̂2

k, ŝk and ŵk were then used
as the starting points of the algorithm. Stopping criterion for the algorithm
was a tolerance of 10−4 or 1000 iterations. In cases where the number of peaks
wasn’t conclusive, the ECM algorithm with all the possible number of peaks was
tested and the performance compared based on the value of AIC, BIC and/or
log-likelihood value. In some cases, the obtained estimates didn’t present a good
fit so an improvement was tried by forcing the ECM algorithm for a symmet-
rical mixture; this resulted with an improvement in 4 channels. This could be
explained by the fact that the disturbances on the individual channels during
EEG recording result in “pulling” the distribution to either side of the zero, thus
forcing the MixGGD to be symmetrical on such channels could be justified in
order to compensate for these effects. The algorithm converged (was considered
successful) in 1263 (85.3%) of the cases (channels) and estimates couldn’t be ob-
tained in a total of 219 (14.8%) cases. Of these 219 cases where the algorithm
was unsuccessful, 77 cases corresponded to unimodal channels with a “degener-
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4. Prediction using mixed generalized Gaussian distribution

ate” distribution, and the rest was on multimodal channels. The reason behind
the failure of the algorithm in these cases was determined to be the value of the
kurtosis, which was either lower than 1.865 or greater than 349.087 (these values
of the kurtosis result in negative values of the shape parameter sk) so the shape
parameter couldn’t be approximated using the expression (3.10).

Examples of the obtained fit for the two- and three-component MixGGD can
be seen in Figures III.4.10 and III.4.11, respectively. Examples of the fit where
a two- or three-component MixGGD was forced on histograms with more than
three peaks can be seen in Figure III.4.12. In each of the figures, (blue) dotted
lines represent the fit of the individual components of MixGGD, (red) dashed line
represents the mixture of these components, and the (gray) solid line represents
the empirical density. Values of parameter estimates are given in Table III.4.4.

Table III.4.4 The MixGGD parameter estimates.

MixGGD parameters

µ̂1 ŝ1 σ̂2
1 ŵ1 µ̂2 ŝ2 σ̂2

2 ŵ2 µ̂3 ŝ3 σ̂2
3 ŵ3

Fig. III.4.10a -33.86 1.34 166.18 0.47 30.16 1.74 283.97 0.53

Fig. III.4.10b -1.41 1.34 5.54 0.52 1.48 1.32 5.29 0.48

Fig. III.4.10c -7.26 2.05 14.30 0.50 7.33 2.00 14.18 0.50

Fig. III.4.10d -1.51 1.14 1.00 0.49 1.47 1.11 0.97 0.51

Fig. III.4.11a -36.89 3.77 112.89 0.23 0.02 0.65 50.48 0.54 37.13 3.88 112.00 0.23

Fig. III.4.11b -7.05 2.74 16.39 0.28 -0.05 1.67 11.55 0.44 6.99 2.70 16.41 0.28

Fig. III.4.11c -5.82 2.36 1.32 0.19 0.11 2.22 9.69 0.63 5.74 2.43 1.18 0.18

Fig. III.4.11d -3.66 1.80 5.88 0.34 -0.23 1.28 2.52 0.24 3.06 1.79 6.78 0.42

Fig. III.4.12a -1.81 2.51 1.23 0.49 1.74 2.24 1.15 0.51

Fig. III.4.12b -673.06 1.81 232133.93 0.48 613.24 1.98 260249.63 0.52

Fig. III.4.12c -44.84 3.76 227.45 0.26 -0.11 2.00 128.94 0.48 45.27 3.90 218.94 0.26

Fig. III.4.12d -40.14 1.07 502.34 0.40 -0.09 1.32 194.85 0.20 40.54 1.10 501.41 0.40
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Figure III.4.10 Fitting a two-component MixGGD to EEG increments.
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Figure III.4.11 Fitting a three-component MixGGD to EEG increments.
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Figure III.4.12 Fitting a MixGGD to EEG increments with more than three
peaks.
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4.2 Mixed generalized Gaussian distribution models

Similarly to Section 3.3, MixGGD parameters were investigated as potential pre-
dictors of age-appropriate scores of neurodevelopment and cognition at 6 months
after the discharge from the hospital for cerebral malaria survivors. The 54 non-
EEG features formed the same baseline model as in Section 3.3.1. To these
features, the EEG parameters reflecting multimodality were added. First, the
exact number of peaks (from 1 to 6) on each channel was added, treated as a cat-
egorical variable to reflect potentially non-linear relationship to the outcome. In
the second group of models, the MixGGD parameters were treated as continuos
or categorical variables.

As described in Section III.2, elastic net regression was used for the selection of
predictors. Again, the response variable was the standardized neurodevelopment
or cognitive score taken 6 months after the discharge from the hospital. Fitting of
stochastic models with multimodal distributions would be warranted if the EEG
parameters were shown to be important over and above other measures that can
be obtained easily or as part of routine clinical care for cerebral malaria.

Features containing missing values from the non-EEG dataset had already
been imputed for the analysis of unimodal estimate predictors. The same values
(hence, the same feature matrix) were used in this analysis. Missing values from
the EEG dataset (i.e. missing values of µ̂k, σ̂2

k, ŝk and ŵk) were imputed by hand
using a “random-by-peak” method. This consisted of imputing random values
from successful channels, i.e. for each missing case (channel), randomly choosing
one channel where the estimation was successful (with respect to the number of
peaks) and using those parameter estimates in place of missing values.

4.2.1 Combined non-EEG and number of peaks features models

The feature matrix for these models was a combination of aforementioned 54
non-EEG features and additional predictors containing the information about
the number of peaks on each channel. First model (Model A) contained predictor
variables with the exact number of peaks (from 1 to 6) on each channel. Second
model (Model B) contained a five-category predictor variable with the number of
peaks (0 for “degenerate” channels, 1, 2, 3 or more than 3 peaks). Third model
(Model C) included a three-category predictor variable (“degenerate”, unimodal
and multimodal) and the fourth model (Model D) included a two-category pre-
dictor variable (unimodal vs. multimodal). In case of the categorical predictor
variables, recoding into dummy variables was performed automatically within
caret package [Kuhn, 2020] with the first category acting as the reference level.
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4. Prediction using mixed generalized Gaussian distribution

4.2.2 Combined non-EEG and MixGGD features models

The feature matrix for these models consisted of aforementioned 54 non-EEG
features and parameter estimates µ̂k, σ̂2

k, ŝk and ŵk obtained by fitting a three-
component MixGGD to EEG increments. Out of these parameter estimates, the
first model (Model E) included predictors as a continuous variable of all parameter
estimates, hence for each channel a total of 12 features were included as a result of
fitting a three-component MixGGD. This meant that the channels displaying one
or two peaks didn’t have the values of parameter estimates of some components,
as these components weren’t naturally present in the channel. Those values were
imputed by using the value 0 both as an indicator and as a natural selection for a
parameter estimate of a missing component, as this value (with the exception of
location parameter µk) wouldn’t occur for any of the parameters in the MixGGD.
Other models that were tested in the analysis used categorical variables in some
form of cut off values, either for the shape parameters of the components or for
all the parameter estimates. Predictors for the feature matrices of these models
were formed as follows:

• Model F: three-category for ŝk, k = 1, 2, 3 where values of 0 and 2 for the
shape parameter sk of each component were chosen as cut-offs,

• Model G: two-category for ŝk, k = 1, 2, 3 where 0 was chosen as a cut-off
value for sk, defining a “peak not present/present in channel” category,

• Model H: two-category for ŝ1, ŝ3 and three-category for ŝ2 where “peak
not present/present in channel” category was used for the first and third
peak, and the cut-off values for the second peak were chosen to be 0, again
indicating that the middle peak wasn’t present in channel, and 2.5 which
was chosen as a natural cut-off value based on the frequency of values of ŝ2

in all channels,
• Model I: two-category for all estimates, except µ̂k, k = 1, 2, 3 where 0 was

selected as a cut-off value for σ̂2
k, ŝk and ŵk, k = 1, 2, 3 to indicate “peak

not present/present in channel”,
• Model J: two-category for all estimates, selecting 0 as a cut-off value for all
µ̂k, σ̂2

k, ŝk and ŵk, k = 1, 2, 3.

4.3 Results and comparison

Comparison of the best models based on the leave-one-out cross validation RMSE
is given in Table III.4.5

Models displayed similar RMSE values with the addition of categorizing the
number of peaks in channels showing only negligible reduction in the RMSE,
but with a higher number of non-zero coefficients compared to non-EEG features
model. Note that estimating the actual parameters related to multimodality

89



Chapter III. Prediction of neurodevelopment using EEG increments

Table III.4.5 Model characteristics.

Model features included
(number of features, including dummy)

RMSE Number of non-
zero coefficients

Number of non-zero
coefficients from EEG
features subset

non-EEG features model (58) 0.5670 12 N/A
Model A (77) 0.5659 12 1
Model B (134) 0.5530 17 2
Model C (96) 0.5642 13 3
Model D (77) 0.5641 13 3
Model I (286) 0.5716 10 1
Model F (305) 0.5812 14 6
Model G (286) 0.5695 14 6
Model H (286) 0.5707 15 7
Model I (286) 0.5693 21 13
Model J (286) 0.5654 34 24

did not improve upon the model where the number of peaks was accounted for
without the peak parameter estimates. It should be noted that models containing
the number of peaks as predictors performed better in terms of the RMSE than
the models containing MixGGD parameter estimates as predictors.
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Chapter IV

Discussion and conclusion

The EEG findings on admission to the hospital have been used to predict mor-
tality and morbidity following illness [Postels et al., 2018]. Separately, selected
plasma biomarkers have been shown to be associated with cognitive impairment in
paediatric severe malaria [Ouma et al., 2020]. Data on plasma and cerebrospinal
fluid biomarkers were combined together with parameters of stochastic models for
the EEG data to determine their usefulness for prediction of neurodevelopment
and cognition 6 months following cerebral malaria illness. Previous analysis of
these data showed that stochastic modelling of EEG features can better explain
the variation in neurodevelopmental and cognitive outcomes of children who were
affected by cerebral malaria [Veretennikova et al., 2018]. An overview of cerebral
malaria and the use of electroencephalography is presented in Chapter I.

In Chapter II basic theory needed for the modelling of EEG increments was
presented. Modelling was based on the construction of a stationary diffusion with
a given marginal density. Based on the analysis of the histograms of increments,
two distributions were chosen. The first approach in modelling of EEG increments
was based on a unimodal generalized Gaussian distribution consisting of a light-
tailed and a heavy-tailed subfamily. In Section 2.3.2 properties of the generalized
Gaussian distribution were presented, along with the method of estimating the
tail index for the heavy-tailed GGD subfamily. As some histograms displayed
multimodal distributions, the second choice of the distribution was a mixture of
non-central generalized Gaussian distributions, which is presented in Section II.3.

Chapter III focused on implementation of the presented theory to real world
data. Firstly in Section III.3, the light-tailed GGD subfamily was fitted to EEG
increments to create the features for prediction. The second stochastic model
was based on a heavy-tailed distribution with the tail index estimated using the
empirical scaling function. Additionally, the model containing non-EEG features
(such as socio-demographic and anthropometric data and biomarker panels) was
examined to see whether including the information from EEG signals can help in
explaining of variation in neurodevelopmental and cognitive scores 6 months post-
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coma. Results showed that the baseline neurodevelopmental score (taken right
after coma) was the most important predictor of neurodevelopment at point 6
months after coma, which was expected. The rationale behind this comes from
the fact that the baseline neurodevelopmental score is a direct measure of the
outcome variable, i.e., neurodevelopmental score 6 months after coma, and thus
measures the same attribute, but at a different time point. Other non-EEG fea-
tures retained in the model generally overlap with the non-EEG features found to
be important predictors in the analysis of Veretennikova et al. [2018] and mostly
contain biomarker panels from cerebrospinal fluid and/or plasma. Also, negative
values of the model coefficient for some features such as white blood cell count
and IL-1α receptor level in plasma are in accordance with the intuitive assump-
tion of increased inflammatory response negatively affecting child’s development.
However, this model was improved by the addition of EEG features.

The addition of EEG features from fitting of the GGD and estimation of the
tail index resulted in an improved RMSE for both light-tailed and heavy-tailed
stochastic models. Features from the non-EEG dataset which were retained in the
elastic net as the important predictors for the neurodevelopment and cognition
were also kept in the combined non-EEG and GGD features model. The addi-
tional feature that was selected in this case was the GGD parameter estimate σ2

for the channel T3 (temporal electrode placed on the left side of the head). The
model also had a slightly lower RMSE compared to the pure non-EEG model,
meaning that the addition of stochastic features can improve the prediction of
neurodevelopment and cognition.

Further improvement in the explanation of variation in neurodevelopment and
cognition was achieved by introducing tail index estimates as features into the
elastic net model. The tail index treated as a continuous feature failed to improve
the model, and none of the EEG features were chosen by the model to be signif-
icant. However, categorization of the tail index based on distributional tertiles
brought improvements and resulted in the model with the lowest RMSE. This
means there is a threshold for the effect of the tail index value on neurodevelop-
mental or cognitive score. EEG feature retained in the predictive model was the
tail index estimate on the channel T6 (temporal electrode placed on the right side
of the head) as the dummy variable with level 2. Since level 1 (values of the tail
index lower than 3.1) was chosen as the reference level, the interpretation behind
it is that the tail index value above 3.1 and below 4.5 on the channel T6 has an
increased negative influence on neurodevelopment and cognition compared to the
tail index values of less than 3.1 on the same channel. The feature manifested
in the 2nd highest ranked value of the coefficient in the final model which could
indicate it’s importance over majority of other non-EEG features.

Since the inclusion of parameter estimates from a unimodal distribution im-
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proved the prediction of neurodevelopment, in Section III.4 the multimodal distri-
bution was considered as a refinement for the previously used unimodal distribu-
tion. For this purpose, a multimodal diffusion model with the mixed generalized
Gaussian distribution (MixGGD) as a marginal probability density function was
constructed. The model was applied to the EEG data to determine the extent to
which modelling multimodality may improve the results obtained from stochastic
models with unimodal marginal distributions. As a compromise between preci-
sion in using the exact number of peaks and keeping the number of parameters
which need to be estimated within reason, the MixGGD was limited to a total
of three components, as there were less than 5% of channels which manifested in
more than three peaks. Parameter estimation was performed using the Expecta-
tion/Conditional Minimization (ECM) algorithm, and the added shape parameter
s was estimated using the approach of higher order statistics, where the value of
the kurtosis is used to derive an approximation of the shape parameter s.

Several models with different sets of predictors were investigated to deter-
mine significant predictors of neurodevelopment at point 6 months after coma.
Model containing non-EEG features (such as socio-demographic and anthropo-
metric data and biomarker panels) was used as a benchmark to see whether
including the information from EEG signals can help in explaining of variation
in neurodevelopmental and cognitive scores 6 months post-coma. To test this,
a total of ten combined (non-EEG and EEG features) models were investigated.
One model consisted of non-EEG features and predictors with observed number
of peaks in channels as a categorical variable with five levels. Another model con-
sisted of non-EEG features and MixGGD features as continuos variables. Last
two models consisted of non-EEG features and MixGGD features as categorical
variables with a cut-off value for parameter estimates (except the location pa-
rameter) or all parameter estimates. Categorization of predictors was used to
reduce the noise of the predictors and account for potential non-linearity in their
relation to the neurocognitive outcome score.

The addition of EEG features resulted in an improvement of the RMSE in
seven out of ten models, but the improvement was negligible. Also, none of
the models which showed an improvement had a smaller number of non-zero
coefficients, which means that an improvement in the RMSE is at the cost of
a more complicated model, i.e. a model with a larger number of predictors.
However, all of the models included at least one predictor from non-EEG dataset.
The model with the lowest RMSE had the addition of the number of peaks as a
categorical predictor with 5 levels (0 for “degenerate” channels, 1, 2, 3 or more
than 3 peaks), where two predictors from this set of predictors were chosen as
significant. Models that didn’t show an improvement in the RMSE were the model
with the MixGGD features as continuos predictors, thde model with MixGGD
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features where the estimate of the shape parameter sk was a categorical predictor
with 3 levels and the model with MixGGD features where estimates of s1 and s3

were categorical with 2 levels and estimate of s2 was categorical with 3 levels.
In general, the group of models which had the addition of features relating

to the number of peaks on each of the channels showed an improvement in the
RMSE compared both to the benchmark model and the combined non-EEG and
MixGGD features models. This could mean that the information gained only
from the visual investigation of EEG increments might bring an improvement in
prediction of neurodevelopment, without the need for a more detailed classifi-
cation of the underlying distribution and/or estimating the parameters of such
distributions. However, investigating other marginal distributions appropriate
for modelling of EEG signal increments should be performed to see whether an
improvement in prediction can be made using a more adequate distribution.

In summary, the addition of stochastic EEG modelling can improve the pre-
diction of children’s brain function 6 months following coma. Further improve-
ment can be made by investigating other marginal distributions appropriate for
modelling of EEG signal increments (e.g., the family of generalized Pearson dis-
tributions considered in Cobb et al. [1983]). One modelling approach could be
to use the convolutional neural networks (CNN). For an overview of the CNN
techniques in analysis of EEG signal see Rajwal and Aggarwal [2023]. Another
possible approach could be to incorporate spatial information in the form of
random fields (see for e.g. Chung [2020], Gonzalez-Castillo et al. [2023], Ovalle-
Muñoz and Ruiz-Medina [2022]). Additionally, time series models similar to the
one introduced here can be investigated in other diseases that affect the brain
and in electrical activity of other types of cells such as cells impacted by cancer
and its treatment.
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