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Plasmon modes of a two-dimensional lattice of long conducting circular wires are investigated by using an
embedding technique to solve Maxwell’s equations rigorously. The frequency-dependent density of states is
calculated for various values of the wave vector and the filling fraction. At low filling fractions, collective
modes are all found to accumulate at the surface-plasmon frequency �p /�2, �p being the bulk plasmon
frequency. As the filling fraction increases, the interference between the electromagnetic fields generated by
localized surface-plasmon polaritons leads to the presence of new resonances, whose frequency strongly
depends on the interparticle separation. For touching wires, a number of multipole resonances fill the spectral
range between dipole resonances, as occurs in the case of a three-dimensional packing of metal spheres.
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I. INTRODUCTION

Over the last few years, a great deal of attention has been
devoted to the investigation of metallodielectric photonic
crystals, partially stimulated by the appearance of remarkable
optical properties associated with the excitation of surface-
plasmon polaritons.1–6 These are self-sustained collective ex-
citations corresponding to fluctuations of the surface electron
density.7,8

To understand the properties of surface-plasmon polari-
tons, and their possible role in the optical properties of arti-
ficially structured metallodielectric metamaterials, we need
the photonic band structure of lattices of metallic inclusions
with frequency-dependent dielectric functions. Lattices of
metallic rods,9 cylinders,10–13 and spheres14–17 have all been
studied up to now. Three-dimensional �3D� face-centered cu-
bic lattices composed of metal spheres, their plasmon modes,
and interaction with light were studied by Yannopapas et
al.,16 in the low filling fraction regime, and wide bands of
multipole resonances were later found to occur as the filling
fraction increases.17 Flat bands of localized surface plasmons
were also found to occur in a two-dimensional periodic ar-
rangement of long metallic cylinders.12 The impact of local-
ized multipole plasmons on the optical absorption and the
energy loss of 2D and 3D metallodielectric crystals was ad-
dressed in Refs. 18–20, by looking at the imaginary part of
the so-called effective dielectric function of the composite.

In this paper, we consider the evolution of plasmon bands
in a 2D square lattice made up of long metallic cylinders
embedded in a homogeneous medium, as the cylinder size
increases from the noninteracting limit �small radius com-
pared to the lattice constant� to touching cylinders where
interactions play a key role. We shall consider electromag-
netic modes with the wave vector perpendicular to the cyl-
inders, in which case the modes fall into two categories: E
�or s� polarization, in which the electric field is parallel to the
cylinder axis, and H �or p� polarization, in which the electric
field lies in the 2D plane. We shall focus our attention on the

plasmonic regime, where the radius of the cylinders is much
smaller than the wavelength of the interacting electromag-
netic radiation.

At long wavelengths, the behavior for E polarization is
the same as that of a homogeneous metal with a reduced
plasmon frequency given by �f�p,10,18 where f is the filling
fraction and �p the bulk plasmon frequency of the metal
cylinders. Conversely, for H polarization surface plasmons
can be excited, and due to the interference between their
electromagnetic fields their frequencies vary strongly with
the cylinder separation, which suggests that their frequency
can be tuned by changing the separation. Here we shall show
that for this polarization and in the limit of touching spheres
multipole resonances fill the spectral range between dipole
resonances, as occurs in the case of 3D lattices of metal
spheres.

II. THEORY

We consider a square array of infinitely long metal cylin-
ders embedded in a homogeneous medium of dielectric con-
stant �0; the metal of the cylinders is described by the free-
electron Drude dielectric function21

���� = 1 −
�p

2

��� + i/��
, �1�

where � represents the inelastic scattering time of bulk plas-
mons. In this section, we describe our theory, starting off
with general considerations and going on to discuss the em-
bedding method which we use to calculate the dispersion of
the electromagnetic modes.

A. General considerations

In the long-wavelength limit, in which the radius of the
cylinders is much smaller than the wavelength of the inter-
acting electromagnetic radiation, we should be able to re-
place our composite material by an effective homogeneous
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medium of dielectric function �eff���, such that electromag-
netic modes propagate with frequency � given as a function
of wave vector k by

� = kc/��eff��� , �2�

where c is the speed of light. Due to the anisotropy of the
material, the effective dielectric function �eff��� depends on
the polarization of the propagating electromagnetic waves.

1. E polarization

In the case of electromagnetic waves with the electric
field polarized along the cylinders �s polarization�, we know
from elementary electromagnetism22 that the electric field is
continuous across the interface. This suggests that in the
long-wavelength limit the composite will behave as a homo-
geneous medium with the dielectric function of this effective
medium given by the weighted average of the dielectric
functions of the constituents23,24

�eff��� = f���� + �1 − f��0. �3�

Here, f is the volume fraction of the cylindrical inclusions.
Taking the Drude dielectric function �1� and cylinders in
vacuum ��0=1�, Eq. �3� yields

�eff��� = 1 − f
�p

2

��� + i/��
. �4�

This shows that for this polarization the optical response of
the composite material is expected to be that of free electrons
in a homogeneous electron gas, but with the reduced plasma
frequency �f�p.

2. H polarization

For electromagnetic waves with the electric field polar-
ized normal to the cylinders, the electric field is strongly
modified by the presence of the interfaces. In the case of a
two-component isotropic system composed of identical in-
clusions of dielectric function ���� in a host medium of di-
electric constant �0, the polarization P can be easily obtained
as follows:

P = f
� − 1

4�
Ein + �1 − f�

�0 − 1

4�
Eout, �5�

where Ein and Eout represent the average electric field inside
and outside the inclusions, respectively. Assuming that our
composite material can be replaced by an effective homoge-
neous medium of dielectric function �eff���, one can also
write

P =
�eff − 1

4�
E , �6�

where E is the macroscopic electric field averaged over the
composite:

E = fEin + �1 − f�Eout. �7�

Equations �5�–�7� yield the following relation:

��eff − �0�E = f�� − �0�Ein. �8�

In the case of a single 2D circular inclusion embedded in
an otherwise homogeneous medium, an elementary
analysis22 shows that the electric field Ein in the interior of
the inclusion is

Ein =
u

u − 1/2
E , �9�

where

u = �1 − �/�0�−1. �10�

Introducing Eqs. �9� and �10� into Eq. �8� yields

�eff��� = �0�1 − f
1

u − 1/2
� . �11�

This equation, which coincides with Eq. �27� of Ref. 13,
describes for a Drude metal the surface-plasmon mode �s

=�p /�1+�0 of a single cylinder.
The interaction among circular inclusions in a host me-

dium can be introduced approximately in the framework of
the Maxwell-Garnett �MG� approximation.25 The basic as-
sumption of this approach is that the average electric field
Ein within an inclusion located in a system of identical in-
clusions is related to the average field Eout in the medium
outside as in the case of a single isolated �noninteracting�
inclusion, thereby only dipole interactions being taken into
account. Hence, in this approach the electric field Ein is taken
to be of the form of Eq. �9� but with the macroscopic electric
field E replaced by the electric field Eout outside, which to-
gether with Eqs. �7� and �8� yields24

�eff��� = �0�1 − f
1

u − m
� , �12�

with m= �1− f� /2. In the dilute �f →0� limit, m=1/2 and the
Maxwell-Garnett Eq. �12� yields Eq. �11�.

As optical absorption by a composite is dictated by the
poles of �eff, an inspection of Eq. �12� shows that for Drude
cylinders in vacuum the MG approximation predicts optical
absorption to occur at ��1− f� /2�p, which in the dilute
�f →0� limit yields the surface-plasmon frequency �p /�2.
Conversely, the energy loss of swift charged particles is dic-
tated by the poles of the effective inverse dielectric function
�eff

−1���. From Eq. �12�, one finds

�eff
−1��� = �0

−1�1 + f
1

u − n
� , �13�

with n= �1+ f� /2. Equation �13� shows that for Drude cylin-
ders in vacuum the MG approximation predicts the excita-
tion of surface plasmons at ��1+ f� /2�p, which in the dilute
�f →0� limit yields, as in the case of optical absorption, the
surface-plasmon frequency �p /�2.

B. Embedding technique

In the absence of free charges or currents, Maxwell’s
equations reduce to the eigenvalue equation
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� � � � E = ��r�
�2

c2 E , �14�

where ��r� is the spatially varying dielectric function, and we
assume a magnetic permeability �=1 everywhere. To solve
this equation, we use the embedding technique described in
Ref. 26 and employed in Ref. 17 to investigate plasmon
bands in 3D periodic arrangements of metal spheres. In this
approach, the metallic cylinders are replaced by an embed-
ding potential over their surfaces, and the electromagnetic
field in between is expanded in a given basis set. With the
embedding method one has, of course, complete freedom in
the choice of this basis set; we use a plane-wave basis set,
which represents a natural choice for periodic systems. Be-
cause the plane-wave basis is used only in the vacuum be-
tween the cylinders, convergence is very rapid.

We consider an electromagnetic wave normally incident
on the structure, i.e., with the wave vector taken in the plane
perpendicular to the axes of the cylinders, which we take to
be the z direction. With this choice, the cylinder problem
simplifies considerably compared with the spheres, because
the vector wave equation can be written in scalar form. In the
case of E polarization, the problem reduces to solving the
wave equation for Ez. The other case is H polarization, with
the electric field perpendicular to the cylinders, in which case
we have a scalar wave equation for Hz. As usual when solv-
ing Maxwell’s equations, the boundary conditions on the
fields are that the surface-parallel components of E and H
are continuous across the surfaces of the cylinders. This is
taken care of by the embedding potential.

1. E polarization

For E polarization, Eq. �14� becomes the scalar wave
equation

− �2Ez = ��r�
�2

c2 Ez. �15�

In the embedding method, we derive a variational expression
for the eigenvalue �2 /c2 in terms of a trial electric field Ez
defined only in the region between the cylinders, region I,

�2

c2 =

�
I

dr � Ez
* · �Ez − �

S

drS�
S

drS�Ez
*	� − �0

2 ��

��0
2
Ez

�0�
I

drEz
* · Ez + c2�

S

drS�
S

drS�Ez
* ��

��0
2Ez

.

�16�

The contribution from each cylinder is replaced by the
double integral over its surface, containing the frequency-
dependent embedding potential ��rS ,rS� ;�0

2 /c2�, evaluated at
a trial frequency �0. The terms involving the derivatives of
the embedding potential originally arise from volume inte-
grals through the cylinders, but provide a first-order correc-
tion so that � is evaluated at the estimated frequency �
rather than the trial frequency �0.

The embedding potential is defined in terms of the exact
solution Ez of the wave equation inside the cylinder, at fre-
quency �0, which matches on to the trial solution Ez over the
surface of the cylinder

�Ez�rS�
�nS

= �
S

drS���rS,rS��Ez�rS�� �17�

—it gives the exact normal derivative corresponding to the
trial surface amplitude.

To solve Eq. �16�, the trial function is expanded in terms
of basis functions Fi,

Ez�r� = �
i

eiFi�r�, Fi�r� = exp�iki · r� . �18�

For a 2D periodic lattice of cylinders, suitable basis func-
tions are plane waves, where the wave vector ki is given by
ki=k+gi, with k the Bloch wave vector �two dimensional in
the plane perpendicular to the cylinders� and gi is a 2D re-
ciprocal lattice vector. Substituting into Eq. �16� and finding
the stationary values with respect to the coefficients ei gives
the matrix eigenvalue equation

Ae =
�2

c2 Be , �19�

where the A and B matrices are given by

Aij = �
I

dr � Fi
* · �Fj − �

S

drS�
S

drS�Fi
*	� − �0

2 ��

��0
2
Fj

�20�

and

Bij = �0�
I

drFi
* · Fj + c2�

S

drS�
S

drS�Fi
* ��

��0
2Fj . �21�

The integrals in region I, over the 2D unit cell excluding the
cylinder, are easy to evaluate,

�
I

dr � Fi
* · �Fj = � ki

2�A − �r2� , i = j ,

− 2�rki · k j

J1�rki − k j�
ki − k j

, i � j �
�22�

and

�
I

drFi
* · Fj = � �A − �r2� , i = j ,

− 2�r
J1�rki − k j�

ki − k j
, i � j � �23�

—A is the area of the unit cell and r is the cylinder radius.
From a multipole expansion of the solution of the scalar

wave equation in cylindrical harmonics and matching onto
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the trial wave function on the surface of the cylinder �17�
yields the following expression for the matrix element of the
embedding potential:

�
S

drS�
S

drS�Fi
*�Fj = − 2�r� �

m

mmax

exp im�	i − 	 j�

�
Jm�kir�Jm�kjr�

Jm��r�
Jm� ��r� . �24�

Here, Jm�x� represent Bessel functions of the first kind,27 	i

is the angle of basis wave vector ki, and � represents the
magnitude of the �complex� wave vector of the solution of
Maxwell’s equations inside the cylinder at trial frequency �0,
�=���0 /c. For this polarization, convergence is rapid with
respect to the maximum harmonic mmax in the expansion.

The complex dielectric function of the lossy metal cylin-
ders, Eq. �1�, means that the frequencies of solutions of Max-
well’s equations are broadened, and rather than solving the
eigenvalue equation �19�, we find the corresponding Green
function 
�r ,r� ;�� given in region I by


�r,r�;�� = �
ij


ij���Fi
*�r�Fj�r�� �25�

with

�
k

�Aik − �Bik�
kj��� = �ij . �26�

As we know the frequency at which the Green function is
evaluated, the embedding potential is evaluated at this fre-
quency, and the frequency-derivative terms in A and B cancel
out in Eq. �26�.

The Green function is related to the spectral density of the
electric field

n�r,�� = �
i

��r�Ez,i
* �r�Ez,i�r���� − �i� , �27�

which multiplied by �� gives the electric-field intensity at
point r in this frequency range. As the Green function can be
expressed in terms of the eigenmodes and eigenfrequencies
satisfying Eq. �15�,


�r,r�;�� = �
i

Ez,i
* �r�Ez,i�r��
�i

2/c2 − �
, �28�

we see that the spectral density is given by

n�r,�� =
2�

�c2��r�Im 
�r,r;�2/c2 + i�� . �29�

Integrating n through region I gives

nI��� =
2��0

�c2 �
ij

Im 
ij�
I

drFi
* · Fj �30�

—nI is the quantity we calculate and plot.

2. H polarization

For H polarization, we solve the scalar equation for the z
component of the magnetic field

− �2Hz = ��r�
�2

c2 Hz, �31�

and then the requirement that the surface-parallel compo-
nents of H and E are continuous reduces to the continuity of
Hz and 1

� �Hz /�ns across the surface of the cylinders. The
magnetic variational principle, analogous to Eq. �16�, is
given by

�2

c2 =

1

�0
�

I

dr � Hz
* · �Hz − �

S

drS�
S

drS�Hz
*	�m − �0

2��m

��0
2 
Hz

�
I

drHz
* · Hz + c2�

S

drS�
S

drS�Hz
*��m

��0
2 Hz

, �32�

where the magnetic embedding potential now satisfies

1

�0

�Hz�rS�
�nS

= �
S

drS��
m�rS,rS��Hz�rS�� . �33�

The matrix elements for determining the eigenmodes and
Green function are the same as in the case of E polarization,
apart from the matrix element of the embedding potential
which with the definition appropriate to the magnetic case,
Eq. �33�, has an extra factor of 1 /�,

�
S

drS�
S

drS�Fi
*�mFj = −

2�r�

���0� �
m

mmax

exp im�	i − 	 j�

�
Jm�kir�Jm�kjr�

Jm��r�
Jm� ��r� . �34�

Surface-plasmon polaritons occur with H polarization,
and the maximum harmonic mmax imposes a limit to the plas-
mon modes over each cylinder, without which the density of
states increases without limit at the planar surface-plasmon
frequency �p /�2. Controlling mmax enables us to study the
evolution of the plasmon bands in detail. Of course there is a
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physical cutoff for the plasmons due to Landau damping,
though this is much larger than the mmax which we use. Un-
like in scattering theory, where a maximum multipole mo-
ment is also imposed, all higher values of m are included in
our embedding, but with a different boundary condition. In
the case of H polarization, the boundary condition for m
mmax is that the surface-normal derivative of Hz vanishes
on the surface of the cylinders, corresponding to the surface-
parallel component of E vanishing.

Once again we evaluate the electric spectral density, as
the plasmons are essentially electrostatic in nature. Using
Maxwell’s equations, the integrated spectral density is given
by

nI��� =
2

���0c2�
ij

Im 
ij�
I

dr � Fi
* · �Fj , �35�

where the Fi’s are the basis functions used to expand the
magnetic field between the cylinders.

III. RESULTS AND DISCUSSION

We have applied the embedding formalism described
above to study a square array of infinitely long Drude cylin-
ders in vacuum. We use the dimensionless reduced frequency

�̃=�a /2�c and reduced wave vector k̃=ka /2�, where a is
the lattice constant. The reduced cylinder radius is defined as
r̃=2�r /a.

First we provide a comparison of embedding with finite-
difference time-domain �FDTD� calculations by Ito and
Sakoda,12 in which both space and time are discretized. They
calculated the band structure for H polarization for Drude
cylinders in vacuum with reduced plasmon frequency �̃p
=1, and reduced radius r̃=1.885. Results for this system cal-
culated using embedding, with 121 and 241 plane wave basis
functions and mmax=6 are shown in Table I, compared with
the FDTD results, taken from Fig. 5 of Ito and Sakoda.12 We
see first of all that there is excellent agreement, except for

band 2, where FDTD gives an energy slightly higher than
our �converged� results. We also note that with only 121
plane waves the embedding method gives essentially con-
verged results, though the individual plasmon bands within
the band limits given in the tables do change slightly.

For studying the evolution of the plasmon bands, in the
rest of this paper we choose the reduced plasmon frequency
�̃p=0.1, which for Al ��p�15 eV� corresponds to a lattice
constant of a�83 Å. This value of �̃p gives results which
are universally applicable in the plasmonic regime, where the
radius of the cylinders is smaller than the wavelength of the
electromagnetic radiation. The reduced lifetime �=2�c� /a is
taken as 1000, broadening peaks and enabling us to plot
densities of states easily as a function of frequency.

A. E polarization

For E-polarized electromagnetic waves �with the electric
field parallel to the cylinder axis�, our numerical results for
the integrated density of states nI��� and the band structure
��k� accurately reproduce the results expected from Eqs.
�1�–�3� and, therefore, the results reported in Ref. 13 for this
polarization. Figure 1 gives nI��� for various values of kx at
a filling fraction f =0.02.28 The corresponding electromag-
netic band structure ��k�, determined from the peak frequen-
cies, is shown in Fig. 2 �solid circles� for three values of the
filling fraction f . This figure shows that in the plasmonic
regime under consideration the optical response of the com-
posite material is indeed that of free electrons in a homoge-
neous electron gas, but with the reduced plasma frequency
�f�p �solid lines in Fig. 2� expected from Eqs. �1�–�3�.

The 2D periodicity of the composite material introduces
frequency gaps in the band structure, but these are remark-
ably small. For cylinders with a reduced radius r̃=2, corre-
sponding to f =0.32, the first band gap at the center of the
side of the 2D Brillouin zone is 0.0035 in reduced units, and
for touching cylinders with f =0.79 it is 0.0028.

B. H polarization

For H-polarized electromagnetic waves �with the electric
field normal to the axes of the cylinders�, our results are

TABLE I. Convergence test for H-polarized electromagnetic
waves in a square array or Drude cylinders in vacuum with �̄p=1,

r̃=1.885. Upper table: frequencies of bands at k̃x=0.05, k̃y =0 with
121 and 241 basis functions, compared with FDTD results of Ito

and Sakoda �Ref. 12�. Lower table: the same for k̃x=0.5, k̃y =0.

Band 121 241 FDTD

1 0.039 0.039 0.036

2 0.566 0.566 0.596

Plasmons 0.638–0.711 0.638–0.706 0.642–0.718

3 1.088 1.086 1.082

4 1.161 1.161 1.164

5 1.184 1.184 1.182

1 0.301 0.301 0.300

2 0.474 0.474 0.515

Plasmons 0.632–0.720 0.632–0.720 0.637–0.728

3 0.921 0.921 0.927

FIG. 1. Density of states nI��� for E-polarized electromagnetic
waves in a square array of Drude cylinders in vacuum, with r̃
=0.5 �f =0.02�. Different curves correspond to increasing values of

k̃x, from 0.001 to 0.1 �with k̃y =0�.
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rather similar to those found for a 3D lattice of metal
spheres,17 with almost dispersionless surface plasmons on
the cylinders and the light line interacting with one of the
two dipole plasmons. A significant difference is that in the
case of an isolated Drude metallic sphere, the dispersionless
Mie plasmons have frequencies given by

�l = �p� l

2l + 1
, �36�

where l is the multipole quantum number, whereas for an
isolated Drude cylinder all the surface plasmons have the
frequency �p /�2, irrespective of quantum number m. This
holds for lattices with low filling fraction �f →0�, and con-
sequently low interaction between the plasmon modes, re-
sulting in a narrower range of plasmon bands in the case of
cylinders. For larger filling fractions, the interactions be-
tween the cylinders dominate, and produce a wider range of
bands, similar to the spherical case.

1. Density of states

We start off by considering the integrated density of
states. Figure 3 shows nI��� at three wave vectors, for cyl-
inders with r̃=1 corresponding to f =0.08. The cylindrical
surface plasmons constitute the dispersionless peaks near
�̃p /�2=0.071, with the light line dispersing through the plas-
mons and interacting with a dipole mode.

In order to study the plasmons in more detail, we plot in
Fig. 4 the plasmon peaks for cylinders with r̃=1 �as in Fig.

3� but now at a small wave vector �k̃x=0.001� and various
values of mmax: 1, 2, 3, and 4. We see that at this rather small
filling fraction �f =0.08�, the plasmon structure is very
narrow—much narrower than in the spherical case.17 The

effect of increasing mmax is simply to increase the height of
the peak at �̃=0.071, or �̃p /�2. In this sense, the results do
not converge as mmax increases. But this is physically
correct—the plasmon peak at �̃p /�2 must increase without
limit as the number of allowed modes increases. However,
the rest of the structure clearly converges, as we see from
Fig. 4.

This behavior is confirmed for larger cylinder radii, when
the electrostatic interaction between the cylinders broadens
the plasmon structure. Figure 5 shows the density of states at
a wave vector close to zero �k=0.001, as in Fig. 4�, for a
cylinder of radius r̃=2.62 corresponding to a packing frac-
tion of f =0.55. We see that the wings of the plasmon struc-
ture still converge with mmax, and once again increasing mmax
increases the height of the central peak. For touching cylin-
ders �Fig. 6�, the density of states broadens to give plasmon
structure between a rather low frequency and the bulk plas-

FIG. 2. E-polarization band structure as a function of k̃x �with

k̃y =0�, for cylinders of radius r̃=0.5, 2.0, and � �touching cylin-
ders�; the corresponding filling fractions f are 0.02, 0.32, and 0.79,
respectively. The solid circles represent the band structure that we
have obtained from the peaks in our calculated density of states
nI���. The solid lines correspond to a homogeneous electron gas
with the reduced plasma frequency �f�p. The dashed line is the
light line, �=ck.

FIG. 3. Density of states nI��� for H-polarized electromagnetic
waves in a square array of Drude cylinders in vacuum, with r̃

=1.0 �f =0.08�, mmax=4, k̃y =0, and varying k̃x: 0.001 �thick solid
line�, 0.05 �thin solid line�, and 0.1 �dotted line�.

FIG. 4. Density of states nI��� for H-polarized electromagnetic
waves in a square array of Drude cylinders in vacuum, with r̃

=1.0 �f =0.08�, wave vector k̃= �0.001,0�, and varying mmax: 1 �thin
solid line�, 2 �stippled line�, 3 �dotted line�, and 4 �thick solid line�.
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mon frequency �̃p=0.1. In this case, we cannot distinguish a
central peak at the surface plasmon frequency, and increasing
mmax alters the structure within the entire plasmon range—
though the plasmon limits converge. This is similar to the
behavior we found earlier for touching spheres.17

The size of basis set we need for the convergence of these
calculations is rather small, about 350 basis functions for the
highest mmax under consideration: mmax=4 in Figs. 3 and 4
and mmax=12 in Figs. 5 and 6.

2. Photonic band structure

The peaks in the integrated density of states nI��� corre-
spond to normal modes of the system, and plotting the fre-
quencies as a function of wave vector we obtain the photonic
band structures shown in Figs. 7–9. Also plotted in these

figures �dotted lines� are the ��k� curves derived from Eq.
�2� with the MG effective dielectric function �eff��� of Eq.
�12�. The limit of the lower branch occurs at ��1− f� /2�p,
where the MG �eff��� has a pole, and the starting frequency
of the upper branch occurs at ��1+ f� /2�p, where the MG
�eff

−1��� has a pole.29 In the dilute �f →0� limit, both the limit
of the lower branch and the starting frequency of the upper
branch occur at the planar surface-plasmon frequency
�p /�2.

The band structure in Fig. 7 is for a small cylinder radius
r̃=1 �corresponding to a filling fraction of f =0.08�, and ex-
hibits an infinite number of dispersionless plasmon modes at
the planar surface-plasmon frequency �̃p /�2. Light �singly
degenerate, as we are only dealing with H polarization� in-
teracts with one of the dipole plasmons to give the light line

FIG. 5. Density of states nI��� for H-polarized electromagnetic
waves in a square array of Drude cylinders in vacuum, with r̃

=2.62 �f =0.55�, wave vector k̃= �0.001,0�, and varying mmax: 1
�thin solid line�, 6 �stippled line�, 10 �dotted line�, and 12 �thick
solid line�.

FIG. 6. Density of states nI��� for H-polarized electromagnetic
waves in a square array of touching Drude cylinders in vacuum,

with r̃=� �f =0.79�, wave vector k̃= �0.001,0�, and varying mmax: 1
�thin solid line�, 6 �stippled line�, 10 �dotted line�, and 12 �thick
solid line�.

FIG. 7. H-polarization band structure as a function of k̃x �with

k̃y =0, i.e., along the 
̄M̄ direction�, for cylinders of radius r̃=1.0
�f =0.08�. The solid lines and circles represent the band structure
�converged in mmax� that we have obtained from the peaks in our
calculated density of states nI���. The dotted lines represent the
��k� curves derived from Eq. �2� with the MG effective dielectric
function �eff��� of Eq. �12�.

FIG. 8. As in Fig. 7, but now for cylinders of radius r̃=2.0 �f
=0.32�. This is converged in mmax.
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�represented by solid circles�, which is reproduced almost
exactly by MG theory30 �dashed lines�. The second dipole
plasmon gives the almost dispersionless band joining the up-
per branch of the light line at zero wave vector. The dipole-
active light line branches span the multipole plasmon
branches here, all at �̃p /�2, quite different from the case of a
lattice of metal spheres, where it is only for larger filling
fractions that the light branches enclose the multipole plas-
mons.

At the larger filling fraction f =0.32 considered in Fig. 8,
the dipole modes and the light branches move further away
from the planar surface-plasmon frequency, again closely
following the MG curves. The multipole plasmon modes of
lowest order are slightly broadened around �̃p /�2, but again
there is remarkably little dispersion. There is a considerable
difference between these results and those for the lattice of
spheres with the same radius, which shows a much wider

spread of multipole frequencies, and much more dispersion.
With touching cylinders �Fig. 9�, all multipole bands

spread out and MG breaks down badly. The frequency range
of the multipole plasmon bands is not quite as wide as in the
case of touching spheres, and the lower band edge seems to
converge at �̃�0.026 with mmax=12. �In the case of spheres,
the lower band edge at �̃�0.02 was still dropping at a maxi-
mum multipole value of 12.�

IV. CONCLUSIONS

We have shown that as in the case of a lattice of metallic
spheres17,26 the embedding method provides a very economi-
cal method of calculating electromagnetic waves in a lattice
of metallic cylinders,31 which unlike other methods allows to
describe accurately plasmon modes in the whole range of
filling fractions from the dilute limit to the case of touching
wires. For the case of H polarization, where surface plas-
mons dominate the normal modes, the results are quite simi-
lar to those obtained for a lattice of metallic spheres, except
that the frequency range of the multipole modes is narrower.
For E polarization, the system behaves almost exactly like a
dilute electron gas, with a reduced plasmon frequency and
only minute band gaps at the Brillouin zone boundaries.

The method and results presented here are for the case of
the wave vector lying in the plane perpendicular to the cyl-
inders. We are also considering the general case of arbitrary
wave vector, and this will be the subject of a subsequent
paper.
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