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Introduction: Early diagnosis of sepsis and discrimination from SIRS is crucial for

clinicians to provide appropriate care, management and treatment to critically ill

patients. We describe identification of mRNA biomarkers from peripheral blood

leukocytes, able to identify severe, systemic inflammation (irrespective of origin)

and differentiate Sepsis from SIRS, in adult patients within a multi-center

clinical study.

Methods: Participants were recruited in Intensive Care Units (ICUs) frommultiple

UK hospitals, including fifty-nine patients with abdominal sepsis, eighty-four

patients with pulmonary sepsis, forty-two SIRS patients with Out-of-Hospital

Cardiac Arrest (OOHCA), sampled at four time points, in addition to thirty healthy

control donors. Multiple clinical parameters were measured, including SOFA

score, with many differences observed between SIRS and sepsis groups.

Differential gene expression analyses were performed using microarray

hybridization and data analyzed using a combination of parametric and non-

parametric statistical tools.

Results: Nineteen high-performance, differentially expressed mRNA biomarkers

were identified between control and combined SIRS/Sepsis groups (FC>20.0,

p<0.05), termed ‘indicators of inflammation’ (I°I), including CD177, FAM20A and

OLAH. Best-performing minimal signatures e.g. FAM20A/OLAH showed good
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accuracy for determination of severe, systemic inflammation (AUC>0.99).

Twenty entities, termed ‘SIRS or Sepsis’ (S°S) biomarkers, were differentially

expressed between sepsis and SIRS (FC>2·0, p-value<0.05).

Discussion: The best performing signature for discriminating sepsis from SIRS

was CMTM5/CETP/PLA2G7/MIA/MPP3 (AUC=0.9758). The I°I and S°S signatures

performed variably in other independent gene expression datasets, this may be

due to technical variation in the study/assay platform.
KEYWORDS
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1 Introduction

Sepsis is a major contributor to avoidable deaths worldwide and

is considered one of the most common causes of hospital admission

and inpatient deterioration (1). In 2017, eleven million sepsis related

deaths were estimated globally, equivalent to one in every five deaths

being sepsis associated (2). In the UK, at least 200,000 episodes of

sepsis are now predicted annually with around 48,000 associated

deaths at an estimated cost of £1·5-2 billion each year to the NHS

and £11 billion to the wider economy (1). A key challenge in

diagnosis and management of sepsis is early recognition (3).

Additional complications of diagnosing sepsis are distinguishing

between this and patients with Systemic Inflammatory Response

Syndrome of non-infectious origin (SIRS) e.g., trauma, surgery,

thrombosis, ‘out of hospital cardiac arrest’ (OOHCA) etc.,

as many of its clinical signs and symptoms are highly similar

(3–5). Current diagnostic methods struggle to differentiate

between sepsis and other conditions, exacerbated by the difficulties

of obtaining microbiological culture results from localized acute

infections (6).

The current definition of sepsis describes the condition as a

‘dysregulated host response to infection leading to organ

dysfunction; where an inappropriate inflammatory response causes

significant damage to itself in an attempt to resolve infection’, with the

addition of organ dysfunction being the latest update to clinical

definition (4). Since the trajectory of the systemic immuno-

inflammatory response in sepsis can alternate between hyper-activity

and immunosuppression, any uncorrected, escalating deviation from

homeostasis in either direction can result in a high risk of secondary

infections, multi-organ failure and death (7–9). Hyper-activation and

suppressionof the immune systemarebothanticipated tobeoccurring

at the same time, therefore, understanding the underlying pathology

and providing effective diagnosis and treatment regimens remains a

significant challenge (10).

Whole blood transcriptomics have been used to facilitate

understanding of this diverse sepsis immune response and to

identify potential targets for diagnosis and treatment (11–13).
02
Many of these studies used total RNA isolated from PBLs, and

high throughput quantification of gene expression levels. These

methods have been successfully used in other diseases e.g., cancer,

trauma, infections etc. to identify clinically relevant subgroups with

potentially distinct treatment responses (12–14). These studies

show promise, as panels of biologically relevant biomarkers which

can reliably, accurately, and quickly distinguish sepsis from other

conditions have been identified, particularly non-infection induced

SIRS and further categorize sepsis based on the source of the

infection, abdominal (ABDM), pulmonary (PLMN) etc.

Numerous sepsis diagnostic signatures have now been published

including Septicyte Lab, Sepsis Meta Score/InSep (Inflammatix) (13,

15–23). The performance of these signatures has been evaluated and

shown to be reasonable but inconsistent between studies (17, 24).

Researchers are still seeking a combination of biomarkers which

must be highly specific and sensitive and detectable using minimally

invasive sampling procedures.

We have developed a bioinformatics framework for meta-analysis

of previously published datasets and identified key hub and/or

associated biomarkers, which show potential for diagnostic use in

identification of severe inflammation and discrimination of SIRS from

Sepsis (25). Here we describe a prospective clinical validation study to

further characterize these biomarker signatures for (i) severe

inflammation termed ‘Indicators of Inflammation’ ((I°I) upregulated

in both SIRS and sepsis compared to controls) and (ii) ‘SIRS or Sepsis’

((S°S) differentially upregulated in either SIRS or sepsis), in a cohort of

newly recruited patients with ABDM or PLMN sepsis and a SIRS

group consisting of patients admitted following OOHCA, in

comparison to healthy controls.
2 Materials and methods

2.1 Study design

We performed a prospective, observational study, where eligible

patients were consecutively recruited. Given the observational
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nature of our study, patients were treated according to local best

practice guidelines in the respective ICUs.
2.2 Ethical approval

The Analysis of geNe Expression and bioMarkers fOr poiNt-of-

care dEcision support in Sepsis (ANEMONES) study was approved

by the South Wales Research Ethics Committee Panel D; Ref: 12/

WA/0303 and retrospectively registered at ISRCTN99754654.

Participants, or if incapacitated, their relatives or their professional

legal representatives provided written informed consent.
2.3 Patient recruitment, blood sampling
and processing

Consecutive patientsmeeting specified criteria of severe sepsis due

to infection in the pulmonary (PLMN)or abdominal (ABDM) systems

- together termed as sepsis, or severe inflammation causing organ

dysfunction with no clinical suspicion of infection following OOHCA

– termed as SIRS, were recruited from four UK hospitals (Royal

Glamorgan Hospital, Prince Charles Hospital, Bristol Royal

Infirmary and University Hospitals Birmingham) between 2013 and

2015. Healthy control blood samples were collected from volunteers

once at the Day1 timepoint only, at The UK Health Security Agency

(UKHSA), Porton Down (n=30). Detailed inclusion and exclusion

criteria for all groups isprovided in theSupplementaryMaterial File S1.

We intended to recruit 160 patients with severe sepsis and septic shock

as defined by the 2001 Sepsis 2.0 definition and 40 patients with SIRS

and organ failure not related to infection. Detailed inclusion and

exclusion criteria are provided in the Supplement. No published data

existed at the time of study inception to justify a formal power

calculation; the sample size was based on a compromise between

desirability and achievability. Due to our strict inclusion criteria, all

sepsis patients met the updated Sepsis 3.0 criteria, published following

the completion of our recruitment in 2016 (3).

Blood samples were collected from sepsis and SIRS patients at Day1,

Day2 and Day5 of admittance to an intensive care unit (ICU) and on

discharge. Some timepoints were not collected due to patient death,

patients leaving ICU or events beyond our control. Healthy control

blood samples were collected from volunteers once at the Day1

timepoint only. On collection, 5ml of whole heparinized blood was

mixed with Erythrocyte Lysis (EL) Buffer (QIAGEN) followed by

incubation for 10-15 minutes at room temperature. Peripheral blood

leukocytes (PBLs) were recovered from erythrocyte lysed blood by

centrifugation at 400 x g for 10 minutes at 4˚C and resuspended in a

further 2ml of EL buffer. PBLs were recovered again by centrifugation at

400xg for10minutes at 4˚Candstoredat -80°Cprior toongoinganalysis.
2.4 Statistical analysis of
clinical parameters

Clinical parameters including laboratory values etc. were

assessed for normality across the sample groups prior to ongoing
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statistical analyses using GraphPad Prism 9·0 (GPP9).

(Supplementary Information file (SIf) S1, Supplementary Table

S1·4). As variables showed a predominantly non-normal

distribution, all statistical analyses were conducted using Mann-

Whitney U tests using GPP9 (Supplementary Information file (SIf)

S1, Supplementary Tables S1·5 to S1·8; Supplementary Table S1·5

(SIRS vs sepsis (PLMN and ABDM combined)), Supplementary

Table S1·6 (SIRS vs ABDM) Supplementary Table S1·7 (SIRS vs

PLMN), Supplementary Table S1·8 (PLMN vs ABDM) and

summarized in Supplementary Table S1·9). Graphical outputs

were depicted using median boxplot, correlation coefficient maps

and other functions in GPP9 and Sigmaplot 12·0 (SP12·0).
2.5 mRNA purification and
microarray hybridisation

RNA was prepared from patient PBLs using a semi-automated

process using the Maxwell® 16 platform and the Maxwell® 16 LEV

simplyRNA Blood Kit. Concentration and purity (A280/260 ratio ≥

1·8) were assessed by spectrophotometry using a Nanodrop ND-

1000 Spectrophotometer (Thermo Scientific). mRNA purified from

PBLs was labeled with Cy3 using the Agilent QuickAmp one color

labeling kit and then hybridized to Human SurePrint G3 Human

Gene Expression v2 8x60K Microarrays according to the

manufacturer’s instructions. After hybridization and wash steps,

the slides were scanned using an Agilent Surescan Dx G5761AA

Microarray Scanner using default settings. All annotations,

normalized and raw data are deposited in GEO under accession

number GSE236713 at the National Center for Biotechnology

Information (NCBI), National Library of Medicine, National

Institutes of Health (NIH), United States of America.
2.6 Preparation of microarray data

Raw numeric values were exported from the Agilent Surescan

Dx G5761AA Microarray Scanner and uploaded into GeneSpring

14·9 (GX14.9) bioinformatics software for processing. All imported,

raw data were normalized to the 75th percentile and baseline

transformed using the global median prior to further analysis.

These were sorted into disease relevant groups i.e., healthy

controls (CNTRL), SIRS, ABDM and PLMN sepsis and further

stratified by day of sample i.e., Day1 2, 5 and discharge, clinical

outcome i.e., did not survive (DNS)/survived (S). Normalized data

were further analyzed using combinations of these group

categorizations using GX14·9, receiver operating characteristics

(ROC) curve analysis and random forest (RF) modeling scripts

run in either in ‘R’, SigmaPlot 14·9 or GraphPad Prism 9·0 and

artificial neural networks (ANN).
2.7 Statistical analyses: GeneSpring™ 14·9

Normalized data were further analyzed using various statistical

packages and other functions in GX14·9. Data were assessed for
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quality (50739 total entities) and were then filtered by expression

(between values -7·0 to 7·0) to remove outliers (50728 remaining

entities, six predominantly X and Y-chromosome linked genes were

removed DDX3Y, PSPHP1, XIST, RPS4Y1, RPS4Y2 and BTNL8).

Statistically significant features were identified using either one-way

ANOVA, Principal Component Analysis (PCA) or T-test analyses,

using the Benjamin-Hochberg False Discovery Rate (BH-FDR)

multiple testing correction at a cut-off of p <0.05. Fold change

cut-off analyses were conducted using a default cut-off setting of

>2.0. Data were further processed and depicted graphically using

Euclidian hierarchical cluster analysis, heatmaps and other GX14.9

functions using default settings.
2.8 Statistical analyses: artificial
neural networks

Normalized data were also analyzed using a stepwise Artificial

Neural Network (ANN) approach incorporating Monte Carlo cross

validation and a supervised learning approach, applied to a three-

layer multilayer perception architecture. This was used to identify

an optimized gene signature panel comprising orthogonal genes

from a previously established gene biomarker set for sepsis. The

stepwise ANN model comprised of 3-layer architecture and

backpropagation learning with embedded exhaustive search

strategy and cross-validation procedure. The approach was

repeated five to ten times in stepwise additions, to assess the

stability of the identified gene set given the number of cases

provided. This was achieved using a stochastics data selection

approach incorporating Monte Carlo cross-validation. The ANN

modeling undertaken used a supervised learning approach applied

to three-layered multi-layer perception architecture. The initial

weight matrix was randomized with a standard deviation of 0.1 to

reduce the risk of over-fitting the data. The ANN architecture was

initially constrained to two hidden nodes in the hidden layer also for

this reason. Hidden nodes and the output node incorporated a

sigmoidal transfer function. During training weights were updated

by a feedforward backpropagation algorithm (26). Learning rate

and momentum were set at 0.1 and 0.5, respectively. The output

node was coded as 0 if the patient showed no evidence of sepsis and

1.0 if sepsis was evident. Similar assessments were performed for

patients with SIRS.

Prior to ANN training, the data was randomly divided into three

subsets; 60% for training, 20% for testing (to assess model

performance during the training process) and 20% for Monte Carlo

cross-validation (to independently test the model on data completely

blind to the model). This process of random sample cross-validation

also contributed to the reduction of over-fitting to the data and assess

how well the model would perform on a blind data set. The

normalized intensity of each gene was used an individual input in

the ANN model, creating n individual models, where n was the

number of genes in the provided panel. These n models were then

split into three subsets (as described above) and trained. This random

resampling and training process was repeated 50 times to generate

predictions and associated error values for each sample with respect

to the validation (blind) data. Imputes were ranked in ascending
Frontiers in Immunology 04
order based on predictive error and the gene that performed with the

lowest error was selected for further training. Next, each of the

remaining genes were sequentially added to the previous best gene,

and were used in combination in a model, creating n-1 models each

containing two gene inputs. Training was repeated and performance

evaluated. The model with the highest modeling performance was

again selected and the process repeated creating n-2 models each

containing three inputs. This resulted in a final model containing the

expression signature that most accurately classified the patients

according to severe inflammation, SIRS or sepsis or other

investigative interrogations.
2.9 Random forest modeling and
biomarker selection

Random forest (RF) modeling (27) was performed using the

‘RandomForest’ package in 'R' programming to identify biomarkers

of most importance from both I°I and S°S biomarker panels and

identify best candidates for use in diagnostic signatures.

Classification models were performed on each of the I°I

biomarkers and S°S biomarkers panels using normalized Day1

data randomly split (75% training cohort and 25% testing

cohort). For biomarker selection, variables were ranked on

decrease in accuracy and Gini scores. The Gini score indicated

how often a random sample from the test set would be incorrectly

categorized as having good or poor prognosis if the samples were

randomly distributed (27–29).
2.10 Receiver operating characteristic
curve analyses

Receiver operating characteristic curve (ROC) analyses were

performed on biomarkers identified as most important individually

using the ‘ROCR’ package in 'R', the ROC analysis tools in

SigmaPlot 12.0 or GraphPad Prism 9.0. Selected biomarkers were

then combined additively into diagnostic signatures to produce a

composite panel score on which ROC analysis was performed to

identify best performing combinations. Best performing signatures

were identified based not only on their Area under the ROC (AUC)

value and 90% CI as a measure of accuracy but on their Positive and

Negative predictive values (PPV/NPV) at various cut-offs. Best cut-

off values were predicted by measuring the optimal accuracy of the

curve, from which sensitivity and specificity values were calculated.
2.11 Evaluation of biomarker signatures
using other previously published datasets

Four candidate S°S signatures and two candidate I°I signatures

were evaluated on previously published (microarray, PCR, RNAseq)

Sepsis datasets from Herwanto et al. (30) (GSE154918), Martinez-

Paz et al. (31) (GSE131761), Tang et al. (32)(GSE9960), Sutherland

et al. (33) (GSE28750), Scicluna et al. (22), (GSE65682). These

datasets were selected under the following criteria: i) adult patients
frontiersin.org
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(as opposed to pediatric), ii) data availability for all biomarkers of

interest, iii) must contain appropriate groups e.g., control, SIRS,

Sepsis. A COVID-19 dataset containing a bacterial infection sample

group from McClain et al (34) GSE161731 was also included for

evaluation of I°I biomarkers to determine if these biomarkers were

specific to severe systemic inflammation and/or sepsis. Processed

data was extracted for all biomarkers of interest and ROC analysis

performed on composite panel scores generated from these data as

previously described.
3 Results

3.1 Clinical study overview

Fifty-nine patients with ABDM, eighty-four patients with

PLMN and forty-two patients with SIRS (OOHCA) were

recruited over the study period. Thirty healthy volunteers were

also enrolled as controls (CNTRL) (Figure 1 - study overview).

Patients were excluded from the analysis if insufficient patient

information was available at the time of laboratory arrival, or if

no samples were collected across timepoints. Demographic, clinical-

scoring assessment, and immune cellular information are

summarized in Table 1 with detailed information including

inclusion and exclusion criteria, cellular, microbiological and

short-term prognosis information in Supplementary Information

file (SIf) S1, Supplementary Table 1.1 to Supplementary Table 1.3;

Supplementary Table 1.1 (SIRS), Supplementary Table 1.2 (Sepsis;

PLMN and ABDM), Supplementary Table 1.3 (CNTRL). No

clinical, cellular or microbiological information was collected for

the CNTRL group, with samples collected for the Day1 timepoint
Frontiers in Immunology 05
only. The ABDM, PLMN and SIRS groups were well matched for

age, however the CNTRL group was almost 20 years younger

(Table 1). There was a sex bias in the CNTRL and SIRS groups;

70% female in the CNTRL group and 81% male in the SIRS group.
3.2 Clinical and hematological parameter
statistical analyses

Temporal differences were observed between disease groups i.e.

SIRS and ABDM or PLMN sepsis (Table 1) and also when stratified

further for patients who survived (S), or did not survive (DNS)) for

several clinical parameters (Figure 2 and Supplementary

Information 1, Supplementary Table 1.11 and Supplementary

Table 1.12). APACHE II scores were calculated on Day1 only and

did not show significant variation between the groups. SOFA scores

were elevated across all SIRS and sepsis groups on Day 1 indicating

multiorgan failure but did not vary significantly between them.

SOFA scores and CRP values fell over the trajectory time course of

the study in all groups but remained well above normal levels (CRP;

> 1.0-2.0 mg/ml (35, 36)), even at the discharge timepoints. White

blood cell (WBC) and neutrophil counts were similar across the

SIRS and sepsis disease groups at Day1, but significantly higher in

the sepsis groups than the SIRS group at Day2. Lymphocyte counts

were significantly lower in both the sepsis groups compared with

the SIRS group at Day1 only and with the ABDM sepsis group only

at Day5. Basophil counts were significantly different between the

SIRS and ABDM groups at Day1 only, although generally the

counts were low across all groups and timepoints. Free platelet

counts showed no significant differences between any disease

groups at any timepoint. CRP concentrations were in the
FIGURE 1

Schematic overview of clinical study, recruitment, sample collection and processing, microarray hybridization and data analysis.
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TABLE 1 Demographic and group information for clinical study samples for Sex (Male/Female), age, sex unknown and survival (%) APACHE score
(Day1 only) and SOFA score Days 1,2, 5 and discharge.

Healthy
Donor

Controls
(CNTRL)

Severe
inflammatory
Response
Syndrome

(SIRS (OOHCA))

Abdominal
Sepsis
(ABDM)

Pulmonary
Sepsis
(PLMN)

Combined
Sepsis
(ABDM
+PLMN)

Statistical Significance

SIRS
vs

ABDM

SIRS
vs

PULM

SIRS vs
Combined
Sepsis

Male (n) 9 34 27 45 72

Female (n) 21 8 30 39 69

Age 41 (33-47.75) 62 (50.25-70.75) 72 (63.25-77) 67 (52.5-77) 68 (59-76)

Sex
unknown (n)

0 0 2 0 2

Survival (%) 100 61.11 74.51 78.38 76.44

Apache II
score D1

– 30 (27-34) 31 (24-37) 31 (23-40) 31 (22-38)

SOFA
score D1

– 16 (14-20) 17 (14-19) 17 (15-19) 17 (14-19)

SOFA
score D2

– 17 (15-18) 17 (14-19) 16 (14-18) 17 (14-18)

SOFA
Score D5

– 14 (11-15) 14 (11-18) 14 (12-16) 14 (11-17)

SOFA
score
Discharge

– 9 (9-11) 8 (7-9) 9 (7-10) 8 (7-10)

CRP D1 - 26 (5-51) 216 (104-336) 197 (117-280) 202 (108-300) <0.0001 <0.0001 <0.0001

WBC D1 – 14.9 (9.3-21.2) 15.8 (11.7-19.4) 15.8 (10.2-22.4) 16.0 (10.7-21.3)

Neutrophils
D1

– 12.4 (7.3-18.8) 12.8 (9.6-17.3) 13.4 (8.6-20.2) 13.4 (8.7-18.3)

Lymphocytes
D1

- 1.0 (0.6-1.5) 0.7 (0.5-1.1) 0.6 (0.4-1.0) 0.7 (0.4-1.0) 0.0045 0.0002 0.0002

Basophils D1 - 0.01 (0.00-0.02) 0.01 (0.00-0.01) 0.01 (0.00-0.02) 0.01 (0.00-0.10) 0.0436

Platelets D1 – 191 (158-234) 205 (133-301) 206 (143-284) 206 (135-296)

CRP D2 - 131 (68-170) 251 (113-339) 201 (116-273) 208 (115-295) <0.0001 0.0010 <0.0001

WBC D2 - 10.4 (7.7-15.5) 14.8 (9.8-18.7) 15.1 (10.2-19.6) 14.9 (10.0-19.5) 0.005 0.0030

Neutrophils
D2

- 8.5 (6.0-12.5) 12.6 (8.5-18.1) 12.5 (8.7-18.1) 12.5 (8.7-17.7) 0.0072 0.0032 0.0016

Lymphocytes
D2

– 0.9 (0.5-1.3) 0.7 (0.5-1.1) 0.8 (0.5-1.2) 0.8 (0.5-1.2)

Basophils D2 – 0.01 (0-0.20) 0.01 (0.00-0.01) 0.01 (0.00-0.10) 0.01 (0.00-0.20)

Platelets D2 – 143 (119-209) 185 (106-247) 159 (103-245) 172 (105-248)

CRP D5 – 138 (89-175) 110 (56-175) 94 (497-163) 105 (53-170)

WBC D5 – 9.8 (7.2-12.4) 13.1 (11-18.1) 11.8 (9.3-16.4)
12.7 (9.6
– 17.2)

Neutrophils
D5

- 7.6 (5.7-10.8) 10.7 (8.1-15.1) 9.8 (6.8-14.4) 10.2 (6.9-14.9) 0.0275 0.0475

Lymphocytes
D5

- 0.8 (0.7-1.2) 1.2 (0.9-1.7) 1.1 (0.7-1.4) 1.1 (0.7 -1.5) 0.0147 0.0383

Basophils D5 – 0.01 (0.00-0.01) 0.01 (0.00-0.1) 0.01 (0.00-0.3) 0.01 (0.00-0.10)

Platelets D5 – 173 (157-209) 192 (131-278) 167 (99-253) 178 (114-262)

(Continued)
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pathological range in all groups, but significantly higher in the

sepsis groups compared with the SIRS group on Day1. CRP

appeared to be a good classifier for Sepsis (compared with SIRS)

at this and the Day2 time points. However, at the Day5 and

discharge time points, CRP levels were higher in SIRS compared

with Sepsis patients and highest at the Discharge timepoint,

although these were not statistically significant. When patient

groups were stratified for survival i.e. S vs DNS (Figure 2) small

differences were seen for the SIRS and sepsis S and DNS groups,

some of which approached significance/were significant

(highlighted in bold); SIRS Day1 [lymphocytes (p = 0.0931), CRP

(p = 0.1286)], Day2 (white blood cells (p = 0.0885), neutrophils (p =

0.1206) and basophils (p = 0.033) and Day5 (white blood cells (p =

0.0599), neutrophils (p = 0.0879) and lymphocytes (p = 0.1803).

There was an observed 2.76-fold difference in CRP in the SIRS DNS

group at the discharge time-point, but this was not statistically

significant (due to low group replicates). Differences were seen for

the ABDM sepsis group at Day1 [lymphocytes (p = 0.034),

basophils (p = 0.1373) and platelets (p = 0.1297)], Day2

[lymphocytes (p = 0.0113), basophils (p = 0.1492)] and discharge

timepoints [lymphocytes (p = 0.0323). Small differences were seen

for the PLMN sepsis group at the Day5 [CRP (p = 0.0926)] and

Discharge timepoints [basophils (p = 0.1516)] only. This reflected

slight difference in basophil counts in the PLMN survivors’ group at

this latter timepoint.
3.3 Microarray data analysis

3.3.1 ANOVA analysis
Analysis of variance (ANOVA) was performed to identify

statistically significant, differentially regulated features across

disease states with respect to baseline controls on filtered data,
Frontiers in Immunology 07
applying the Benjamini Hochberg (BH-FDR) multiple testing

correction and selecting a cut-off of p ≤ 0.05) across the CNTRL,

SIRS, ABDM and PLMN sepsis groups (all time points data

included). A large number of statistically-significant biomarkers

were identified, 46227 entities remaining after ANOVA,

representing 91.13% of all filtered features on the array [data

ranked from lowest to highest p-value (Supplementary

Information 2, Supplementary Table 2.1)]. Top and bottom

ranked 100 hits for each disease group are given in

Supplementary Information 2, Supplementary Table 2.2. Further

fold-change analyses were conducted across all entities and days

using default settings (FC > 2.0 (Supplementary Information 2,

Supplementary Table 2.3) on all identified features remaining

from ANOVA.

Differential expression of many entities was observed between

groups and temporally across timepoints. Top ranked hits included

FAM20A, PPARG, ADM and ARG1, many of which are commonly

expressed in both SIRS and sepsis disease groups relative to controls

and are non-specific. Although there are many common entities

shared between the SIRS and sepsis groups, there are also other clear

relative expression differences. Gene entities exhibiting stronger

expression in the SIRS-ranked dataset included CFC1, CT62, lnc-

DAAM2-1 and lnc-LTBP3-2 and in the sepsis-ranked dataset

included TDRD9, DAAM2, OLFM4 and OLAH. Previously

identified hub markers TDRD9, CD177 and SLC16A3 (25) were

represented in the top twenty-five ranked hits and KLRK1, GPR84,

PCOLCE2 in the top three hundred. The remaining hub markers

MYL9 and FGF13 ranked somewhat lower in the top four thousand

and may be components of other, more distinct, disease-specific

responses. Other previously identified genes, which also featured

highly significantly in this dataset, included ARG1, METTL7B, and

RETN. These may represent components of a non-specific severe

inflammatory response from commonly represented cell types,
TABLE 1 Continued

Healthy
Donor

Controls
(CNTRL)

Severe
inflammatory
Response
Syndrome

(SIRS (OOHCA))

Abdominal
Sepsis
(ABDM)

Pulmonary
Sepsis
(PLMN)

Combined
Sepsis
(ABDM
+PLMN)

Statistical Significance

SIRS
vs

ABDM

SIRS
vs

PULM

SIRS vs
Combined
Sepsis

CRP
Discharge

– 80 (55-179) 54 (25-128) 48 (28-124) 51 (26-127)

WBC
Discharge

– 10.7 (8.6-12.5) 10.4 (8.1-16.4) 10.1 (8.1-13.0) 10.1 (8.0-14.0)

Neutrophils
Discharge

– 8.6 (6.3-10.4) 8.3 (6.5 -12.2) 7.4 (5.8-8.8) 7.6 (5.9-10.6)

Lymphocytes
Discharge

– 1.3 (0.8-1.8) 1.4 (1.1-1.7) 1.2 (0.9-2.1) 1.3 (0.9-2.1)

Basophils
Discharge

– 0.01 (0.00-0.02) 0.01 (0.00-0.07) 0.02 (0.00-0.10) 0.01 (0.00-0.10)

Platelets
Discharge

– 212 (149-284) 269 (166-340) 282 (144-417) 275 (162-355)
Cell counts for total white blood cells (WBC), neutrophils, lymphocytes, basophils, free platelets and for c-reactive protein (CRP) at days 1, 2, 5 and discharge, plus significance levels between
SIRS and individual and combined sepsis groups. CNTRL, Healthy donor controls; SIRS, Out-of-hospital cardiac arrest; SIRS, systemic inflammatory response syndrome; ABDM, abdominal
sepsis; PLMN, pulmonary sepsis; ABDM+PLMN, combined sepsis; APACHE II, Acute Physiological and Chronic Health Evaluation score II; SOFA, Sequential Organ Failure Assessment; CRP,
C-reactive protein; WBC, White Blood Cell count.
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probably a generalized ‘emergency-response’ module. Data were

stratified according to disease group, timepoint and survival [(S)/

(DNS)] and cluster analysis conducted for these select biomarkers

(Supplementary Information 3, Supplementary Figure 3.1). Many of

the inflammatory biomarkers highlighted above were found to be

temporally expressed over the time course of the study.
3.3.2 Principal component analysis (PCA) and
identification of biomarkers of severe
inflammation for primary admission assessment

To identify significantly differentially expressed, entities at an

early ICU admission timepoint, PCA was performed comparing

CNTRL vs SIRS and Sepsis combined [(Combined) Figure 3A and

Supplementary Information 2, Supplementary Table 2.4]. Fold-

change expression values (>2.0 and adjusted p-value p < 0.001)

were then conducted across combined timepoints (Supplementary

Information 2, Supplementary Table 2.5) and the Day1 timepoint

only (Supplementary Information 2, Supplementary Table 2.6) to

identify those with the most likely discriminatory power for use in a

diagnostic and primary contact setting. CD177, ARG1, FAM20A,

PCOLCE2, SLC51A, MMP9, were identified as most significantly

upregulated in both SIRS and Sepsis on Day1, compared with

healthy controls, with CD177 and ARG1 consistently higher for

both SIRS and Sepsis at this and across all timepoints to discharge.

DAAM2 and OLAH were significantly upregulated in both SIRS

(FC>8) and sepsis (FC>20) compared to controls, but

approximately 3-fold higher in sepsis, than SIRS. This suggests

that although the majority of these biomarkers are differentially

regulated in both conditions, there are subtle differences.

Biomarkers were selected for further progression using a

combination of factors including P-cov, p-value and positive fold-
Frontiers in Immunology 08
change compared with healthy controls (Figure 3B) and empirical

quality assessment (Table 2) These were named Indicators of

Inflammation (I°I) which in combination show clear, improved

resolution of healthy controls and combined SIRS/sepsis disease

groups (Figure 3C and depicted in heatmap format in Figure 3D).

3.3.3 T-Test analysis; delineation of biomarkers of
clinical outcome/prognosis

Patients who died or survived (sepsis and SIRS combined) were

compared with T-tests. This confirmed prominence of ARG1 and

another immunosuppressive cytokine IL10 with a poor prognosis/

outcome (Supplementary Information 2, Supplementary Table 2.7 –

upregulated in patients who died), among others. Biomarkers

associated with a good prognosis were also identified

(Supplementary Information 2, Supplementary Table 2.8 –

upregulated in patients who survived) e.g., CCR9, CD27, LTK

and LTB (TNFb), among others. This suggests correlation of

certain biomarkers associated with a more immunosuppressive

phenotype (i.e., IL10) with poor outcomes and other more pro-

inflammatory immune response biomarkers (i.e., TNFb) with good

outcomes. Other biomarkers also correlate with outcome/prognosis

e.g., CD177, FGF13, GRB10 and PPARG (Supplementary

Information 3, Figure S3.2) in both SIRS and sepsis.

3.3.4 Primary identification of disease-specific
response genes

To identify genes which may discriminate between SIRS and

sepsis, normalized data stratified on disease group were compared

using T-tests (T-test volcano plot depicted in Figure 4A). Many

entities were found which discriminated between SIRS

(Supplementary Information 2, Supplementary Table 2.9
FIGURE 2

Radar plot of white blood cell, neutrophil, lymphocyte, basophil, free platelet and CRP counts at Days1, 2, 5 and discharge. PLMN DNS ,
PLMN S , SIRS DNS , SIRS S , ABDM DNS , ABDM S .
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(upregulated in SIRS)) and sepsis (Supplementary Information 2,

Supplementary Table 2.10 (upregulated in Sepsis)). SIRS and sepsis-

specific biomarkers were found to distinguish between SIRS and

both ABDM and PLMN sepsis sub-types. Biomarkers were also

selected for further progression using a combination of factors

including Pcov, p-value, fold change and empirical quality

assessment (Table 3). These were termed SIRS or Sepsis

indicators (S°S), showed varying patterns of expression between

SIRS and sepsis groups (Figure 4B) and dysregulated, temporal

patterns of expression across the time-course of the study.

Expression of the SIRS-associated biomarkers appeared

broadly unchanging in the SIRS group and did not correlate with

time or prognosis (sub-cluster (a)). However, these markers
Frontiers in Immunology 09
correlated well with a prognosis/recovery in the sepsis groups,

particularly ARHGEF10L and PLA2G7. Expression of sepsis-

associated biomarkers in subclusters (b) and (c) were relatively

high across the sepsis group timepoints, with some variation, but

again did not correlate with prognosis. These sepsis-associated

biomarker gene lists are particularly enriched for platelet and

megakaryocyte-associated entities e.g., ITGA2B, ITGB3, GP6,

MPIG6B, MYL9, PF4, PPBP and SELP etc. Increased expression

of some of these was observed in the SIRS group at Day5 e.g.,

ITGA2B, which may indicate development of sepsis-like

characteristics, perhaps indicative of emerging infection.

Expression was reduced at the discharge time-point in the SIRS

survivor group.
A

B D

C

FIGURE 3

(A) PCA analysis of CNTRL versus combined SIRS&Sepsis biomarker groups (each symbol depicting an individual within each group) (B)

volcano plot of log10 p-value vs log fold-change of all gene entities, using a 2-fold change cutoff and with select I°I genes highlighted (C) PCA

analysis of CNTRL versus combined SIRS&Sepsis biomarker groups (each symbol depicting an individual within each group) using select I°I

genes only (from Table 2) (D) heat map of select I°I biomarkers from Table 2 across all control, SIRS, ABDM and PLMN sepsis groups stratified by day
and prognosis (died/survived).
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TABLE 2 IoI single biomarker gene analyses, ranked by AUC value derived ROC analysis at the Day1 timepoint with p-value <0.0001 and cut-offs
selected to obtain optimal sensitivity and specificity and positive and negative predictive values (PPV/NPVs).

Gene Regulation Probe
FC

(Day1)
AUC

Cutoff
>

Sensitivity
%

Specificity
%

LR
+

LR
-

PPV NPV

ADM up A_23_P127948 12.95 0.9988 -1.928 98.80
(96.28-99.79)

96.67
(85.14-99.83)

29.67 0.01 99.40 93.55

FAM20A up A_32_P108254 55.35 0.9982 -2.339 97.60
(94.60-99.18)

96.67
(85.14-99.83)

29.31 0.02 98.76 77.78

ITGA7 up A_23_P128084 15.67 0.9968 -2.314 95.81
(92.27-98.02)

96.67
(85.14-99.83)

28.77 0.04 99.38 80.56

FAM20A up A_24_P352952 26.69 0.9950 -1.842 94.01
(90.05-96.72)

96.67
(85.14-99.83)

28.23 0.06 100.00 78.95

TDRD9 up A_32_P208350 14.53 0.9914 -1.756 93.41
(89.33-96.26)

96.67
(85.14-99.83)

28.05 0.07 99.36 75.00

IL10 up A_23_P126735 7.06 0.9912 -0.674 89.22
(84.44-92.92)

96.67
(85.14-99.83)

26.79 0.11 99.33 61.70

MMP9 up A_23_P40174 45.49 0.9906 -3.073 95.81
(92.27-98.02)

96.67
(85.14-99.83)

28.77 0.04 99.38 80.56

CD177 up A_23_P259863 110.31 0.9876 -1.891 88.02
(83.07-91.92)

96.67
(85.14-99.83)

26.43 0.12 99.31 53.85

BMX up A_23_P253602 28.57 0.9816 -2.417 94.61
(90.78-97.16)

96.67
(85.14-99.83)

28.41 0.06 99.37 76.32

CD177 up A_21_P0011751 100.99 0.9804 -1.839 85.63
(80.39-89.89)

96.67
(85.14-99.83)

25.71 0.15 100.00 56.60

HPR up A_23_P206760 18.26 0.9766 -2.407 93.41
(89.33-96.26)

96.67
(85.14-99.83)

28.05 0.07 99.36 72.50

DACH1 up A_33_P3316786 4.58 0.9756 -1.209 94.61
(90.78-97.16)

96.67
(85.14-99.83)

28.41 0.06 99.37 78.95

CYP19A1 up A_23_P37410 9.68 0.9729 -1.069 86.83
(81.73-90.91)

96.67
(85.14-99.83)

26.08 0.14 99.32 56.86

DACH1 up A_23_P32577 5.73 0.9729 -1.649 95.81
(92.27-98.02)

90.00
(76.14-97.22)

9.58 0.05 98.16 79.41

IGFBP2 up A_23_P119943 12.73 0.9695 -1.533 85.63
(80.39-89.89)

96.67
(85.14-99.83)

25.71 0.15 99.30 54.72

ALPL up A_24_P353619 9.86 0.9685 -1.383 86.23
(81.06-90.40)

96.67
(85.14-99.83)

25.89 0.14 99.31 55.77

OLAH up A_23_P161458 26.15 0.9633 -2.885 90.42
(85.81-93.90)

96.67
(85.14-99.83)

27.15 0.10 99.34 64.44

CYP19A1 up A_33_P3351371 7.34 0.9627 -0.888 85.03
(79.72-89.37)

96.67
(85.14-99.83)

25.53 0.15 100.00 54.55

ILR1 up A_33_P3396389 8.06 0.9495 -1.821 90.42
(85.81-93.90)

90.00
(76.14-97.22)

9.04 0.11 100.00 54.55

OLAH up A_33_P3317109 9.98 0.9441 -1.493 85.63
(85.81-93.90)

96.67
(85.14-99.83)

25.71 0.15 99.31 56.60

ILR1 up A_24_P200023 8.25 0.9421 -1.525 86.83
(85.81-93.90)

96.67
(85.14-99.83)

26.08 0.14 99.32 56.86

MMP8 up A_23_P24493 6.77 0.9329 -1.608 85.63
(85.81-93.90)

86.67
(72.04-95.31)

6.42 0.17 97.96 52.00

TGFa up A_23_P377291 3.93 0.9327 -0.945 85.03
(79.72-89.37)

83.33
(68.00-93.19)

5.10 0.18 42.65 42.65

IL1R2 up A_24_P63019 17.29 0.9323 -1.928 85.63
(85.81-93.90)

93.33
(80.47-98.80)

12.84 0.15 88.62 53.85

(Continued)
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A

B

FIGURE 4

(A) Volcano plot of T-Test results from analysis of SIRS versus Sepsis biomarker groups (B) heat map of select S°S biomarkers from Table 3 across all
control, SIRS, ABDM and PLMN sepsis groups stratified by day and prognosis (died/survived).
TABLE 2 Continued

Gene Regulation Probe
FC

(Day1)
AUC

Cutoff
>

Sensitivity
%

Specificity
%

LR
+

LR
-

PPV NPV

CD177 up A_33_P3232080 6.23 0.9104 -1.303 85.03
(79.72-89.37)

90.00
(76.14-97.22)

8.50 0.17 98.62 46.15

CYP19A1 up A_24_P920646 2.36 0.8467 -0.538 85.03
(79.72-89.37)

46.67
(30.85-63.01)

1.59 0.32 89.81 35.00

CYP19A1 up A_32_P86289 2.03 0.8178 -0.552 85.63
(85.81-93.90)

43.33
(27.87-59.84)

1.51 0.33 90.63 35.14

VSTM1 up A_33_P3514487 2.83 0.7721 -1.483 85.63
(85.81-93.90)

40.00
(24.95-56.61)

1.43 0.36 88.82 33.33

CD177 up A_33_P3232086 2.24 0.7621 -0.544 85.63
(85.81-93.90)

43.33
(27.87-59.84)

1.51 0.33 89.94 34.21
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3.3.5 Validation of disease-specific response
genes using ANN analysis

A stepwise artificial neural network modeling analysis (ANN)

was used to predict the best discriminatory genes between the SIRS

and sepsis groups using select candidate biomarker genes from the
Frontiers in Immunology 12
ANOVA analysis. ANN confirmed importance of the SIRS/sepsis

discriminatory biomarkers, including ARHGEF10L, PLA2G7,

PLXNB3, MPP3 and CETP for discriminating SIRS from ABDM

(Supplementary Information 2-Supplementary Table 2.11) and

PLMN sepsis (Supplementary Information 2-Supplementary
TABLE 3 SIRS or sepsis (SoS) single biomarker gene analyses, ranked by AUC value derived ROC analysis at the Day1 timepoint with p-value <0.0001
and cut-offs selected to obtain optimal sensitivity and specificity and positive and negative predictive values (PPV/NPVs).

Genes
Regulation

Sepsis
vs SIRS

Probe
FC

(Day1)
AUC

Cutoff
>

Sensitivity
%

Specificity
%

LR
+

LR
-

PPV NPV

CETP Up A_23_P49376 4.95 0.91 -0.64
83.87

(77.43-89.05)
71.79

(57.66-83.31)
2.97 0.22 90.35 57.14

ITGB3 Up A_24_P318656 7.47 0.87 -0.94
85.48

(79.24-90.40)
71.79

(57.66-83.31)
3.03 0.20 90.60 63.04

NEXN Up A_33_P3341429 4.24 0.86 -0.51
83.87

(77.43-89.05)
76.92

(63.18-87.40)
3.63 0.21 92.04 60.00

PLXNB3 Up A_33_P3413038 5.10 0.85 -0.59
83.06

(76.54-88.36)
81.58

(68.17-91.02)
4.51 0.21 92.45 57.63

CMTM5 Up A_23_P106042 4.93 0.85 -0.81
85.48

(79.24-90.40)
64.10

(46.69-76.83)
2.38 0.23 88.33 58.14

MMRN1 Up A_33_P3212257 4.66 0.85 -0.59
83.06

(76.54-88.36)
82.05

(68.92-91.26)
4.63 0.21 93.64 83.78

ITGA2B Up A_24_P65373 4.89 0.84 -1.37
85.48

(79.24-90.40)
64.10

(46.69-76.83)
2.38 0.23 88.33 58.14

PF4 Up A_24_P79403 3.59 0.84 -0.66
85.48

(79.24-90.40)
61.54

(47.11-74.59)
2.22 0.24 87.60 57.14

MYL9 Up A_23_P210425 5.55 0.83 -1.53
85.48

(79.24-90.40)
61.54

(47.11-74.59)
2.22 0.24 87.60 59.52

PPBP Up A_23_P121596 4.36 0.83 -0.94
85.48

(79.24-90.40)
58.97

(44.57-72.31)
2.08 0.25 87.50 55.81

TREML1 Up A_33_P3381777 4.10 0.82 -1.35
85.48

(79.24-90.40)
48.72

(34.72-62.86)
1.67 0.30 84.13 56.76

LCN2 Up A_23_P169437 3.60 0.82 -1.24
85.48

(79.24-90.40)
61.54

(47.11-74.59)
2.22 0.24 88.33 57.14

NEXN Up A_23_P200001 2.37 0.82 -0.24
82.26

(75.64-87.67)
66.67

(52.31-79.03)
2.47 0.27 88.70 54.17

LCN15 Up A_33_P3263938 2.02 0.68 -2.52
85.48

(79.24-90.40)
20.51

(10.64-33.98)
1.08 0.71 77.37 30.77

PLA2G7 Down A_23_P145096 -7.09 0.90 1.00
85.48

(79.24-90.40)
82.05

(68.92-91.26)
4.76 0.18 64.00 93.81

MPP3 Down A_23_P141345 -3.28 0.89 0.67
82.05

(68.92-91.26)
83.87

(77.43-89.05)
5.09 0.21 61.54 93.69

ARHGEF10L Down A_33_P3799936 -3.86 0.88 0.64
85.48

(79.24-90.40)
66.67

(52.31-79.03)
2.56 0.22 59.09 86.55

ADGRA2/
GPR124

Down A_23_P43276 -3.34 0.86 0.93
85.48

(79.24-90.40)
64.10

(46.69-76.83)
2.38 0.23 58.14 88.33

APCDD1 Down A_23_P337262 -3.66 0.84 0.33
87.18

(74.91-94.81)
66.13

(58.50-73.17)
2.57 0.19 44.74 94.25

ARHGEF10L Down A_33_P3215575 -2.81 0.81 -0.20
87.18

(74.91-94.81)
64.06

(56.50-71.13)
2.43 0.20 51.25 94.25

MYCL Down A_33_P3306068 -2.95 0.81 0.51
85.94

(79.86-90.71)
66.67

(52.31-79.03)
2.58 0.21 36.95 93.33
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Table 2.12). Similar analyses using Day1 samples only confirmed

ARHGEF10L, PLA2G7, PLXNB3 and CETP but not MPP3 to be

discriminatory at this crucial early/first contact timepoint for

ABDM (Supplementary Information 2-Table S2.13) and PLMN

sepsis (Supplementary Information 2-Supplementary Table 2.14).

CD38 and NID2 were the primary markers found to discriminate

PLMN from ABDM (Supplementary Information 2-Supplementary

Table 2.15). Other secondary discriminatory biomarkers included

those previously noted e.g., ITGA2B and also GPR124, SPOCD1,

MMRN1, SAMD14, GPR124, and SELP, where expression is

somewhat higher in the ABDM with regard to the PLMN group,

particularly in the non-survivor group, at Day1 (Supplementary

Information 4, Supplementary Figure 4.1).

3.3.6 Selection of biomarker signatures using
random forest modeling

Nineteen I°I biomarkers upregulated in both SIRS and Sepsis

and twenty S°S biomarkers differentially regulated between SIRS

and Sepsis were selected for further study. Performance of

individual I°I and S°S biomarkers at the Day1 admission

timepoint were assessed by ROC analysis (Tables 2, 3). The I°I

biomarkers showed outstanding performance, with many achieving

excellent AUC values: >0.99 90% CI 0.9104-0.9988 Table 2 and

Figure 5A. Using Day1 admission timepoints only, Random Forest

modeling generated an out of bag (OOB) estimate of error rate of

0% for the I°I biomarkers, (Figure 5B), predicting 100% accuracy in

classification of samples and ranking ADM, FAM20A, ITGA7,

MMP9 and CD177 as most important, by both Mean Decrease

Accuracy and Gini scores (Figure 5C). To identify the most

significant inflammatory biomarkers upregulated throughout the

duration of ICU stay, Random Forest modeling was performed on

all timepoints with an OOB estimate of error rate of 0.88%

predicted on the training set. ITGA7, ADM, FAM20A, TDRD9,

MMP9, CD177, IL10 were all consistently ranked of highest

importance. Classification of data split into three separate groups:

Controls, SIRS and Sepsis achieved an OOB estimate of error rate of

17.99% across all days, revealing three biomarkers of most

importance by feature selection i.e., FAM20A, OLAH and DAAM2.

Candidate S°S biomarkers also performed well with good AUC

values (>0.84 90% CI 0.6756-0.9069) Table 3 and Figure 6A).

Reflecting the likely clinical diagnostic requirement for

differentiation of Sepsis from SIRS, biomarker signatures were

sought that could identify both ABDM and PLMN sepsis and

which could discriminate those from the SIRS group with a high

degree of accuracy at Day1 of ICU admission. Random Forest

modeling was again performed using Day1 timepoint data only,

initially using a large selection of entities and repeatedly run with

the least important entities removed iteratively from each model

run. A final model with a filtered selection of 10 entities (PLA2G7,

ARHGEF10L, CMTM5, ITGB3, CETP, MIA, PLXNB3, MPP3,

GPR124, PF4) achieved an OOB error rate of 7.38% (Figures 6B,

C) and ranked CETP, MIA, PLA2G7, CMTM5 and MPP3 of

greatest importance by Mean decrease Accuracy and Gini score.

Biomarkers of most importance varied with each repeated model
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and between SIRS and ABDM or PLMN sepsis, suggesting subtle

differences between groups.
3.4 Selection of I°I biomarker panels using
simple algorithms and performance
assessment via ROC analysis

Various combinations of I°I biomarkerswere assessedmanually as

simple additive algorithms, calculated using composite panel scores to

determine which combination best discriminated disease and control

groups. Using ROC analysis, many I°I biomarker combinations were

able to achieve anAUCvalue of 1.0 atDay1 of admission e.g. (a) ADM

+CD177+FAM20A+ITGA7+MMP9+OLAH (b) ADM+FAM20A

+OLAH+ITGA7+MPP9 (c) ADM+ OLAH+FAM20A (d) OLAH

+FAM20A. These results were also obtained using data stratified

into S or DNS SIRS and Sepsis groups (Figures 5D-G). Further

analysis and alternate combinations are available in Supplementary

Information 5, Supplementary Table 5.1). Significant differences

between S and DNS were observed between SIRS and ABDM but

not PLMN sepsis for small signatures: FAM20A+OLAH, ADM

+FAM20A+OLAH (p <0.05). No significant differences were seen

when using the large I°I panel ADM+CD177+FAM20A+ITGA7

+MPP9+OLAH. Although, all signatures depicted achieved an AUC

of 1.0, variation in separation between controls and SIRS/sepsis groups

and cut-offs is visible within the panels with the largest combination of

biomarkers i.e. (D)ADM+CD177+FAM20A+ITGA7+MPP9+OLAH

showing smallest differences between control anddisease groups.With

CD177 removed (E), the panel appears to showbest performance with

greatest separation between groups, although the smaller panels of

FAM20A+OLAH perform almost as well. Both combinations

distinguished inflammation from controls with an AUC >0.99 across

all days, including discharge (Figures 5H-J) and showed good

separation between controls and all Sepsis and SIRS groups. A cut-

off value of -14.0 was selected for panel ADM+FAM20A+ITGA7

+MPP9+OLAH for discrimination of SIRS and sepsis groups from

controls (Figure 5H), which provides a positive predictive value (PPV)

and negative predictive value (NPV) each of 100%. This cut-off could

be placed anywhere between -12.0 and -15.5 for this data and show

100% accuracy in classification of the disease from control

groups (Figure 7A).
3.5 Selection of S°S biomarker panels using
simple algorithms and performance
assessment via ROC analysis

Simple additive algorithms were also composed manually for

the S°S signature biomarker combinations (added or subtracted

dependent on upregulation or downregulation in sepsis), to

calculate a composite panel score from which diagnostic accuracy

of the combined biomarker signatures could be assessed using ROC

analysis. Best performing signatures were selected based on their

PPVs and NPVs, with the aim of selecting combinations and
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FIGURE 5

Selection of I°I signatures (A) Dot plot depiction of individual inflammatory biomarker candidates, including data from multiple biomarker probes
where present. CNTRLs , SIRS , Sepsis (B) Random forest classification of validation data into controls and inflammation groups with ‘mtry’ of
31, ‘ntree’ of 2001 (C) Visualization of random forest models features of importance ranked by mean decrease accuracy and mean decrease Gini
score (D) I°I candidate panel: ADM+CD177+FAM20A+ITGA7+MMP9+OLAH (E) I°I candidate panel: ADM+FAM20A+ OLAH+ITGA7+MPP9 (F) I°I
candidate panel: ADM+OLAH+ FAM20A (G) I°I candidate panel: OLAH+FAM20A (H) I°I candidate panel: ADM+FAM20A+ OLAH+ITGA7+MMP9
across all time-points (I) ROC curves of ADM+FAM20A+OLAH ITGA7+MMP9 and OLAH+FAM20A comparing CNTRL vs SIRS/sepsis across day 1, day
2, day 5 and discharge time points (J) I°I candidate panel: OLAH+FAM20A across all timepoints.
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A B

FIGURE 7

Summary of best performing signatures and cut-off values to maximize discriminatory performance of (A) the I°I signature; CNTRL , SIRS , SEPSIS
(B) the S°S Signature; SIRS , PLMN SEPSIS , ABDM SEPSIS .
A
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FIGURE 6

Selection of S°S signatures (A) Dot pot depiction of individual SIRS/sepsis discriminatory biomarker candidates, with multiple versions of probes for
some biomarkers. SIRS , ABDM , PLMN . (B) Random forest classification of validation data into SIRS and Sepsis ‘mtry’ of 11, ‘ntree’ of 2001 (C)
Visualization of random forest models features of importance ranked by mean decrease accuracy and mean decrease Gini score (D) S°S candidate
panel: CETP+CMTM5+MIA-MPP3-PLA2G7 (E) ROC curves of CETP+CMTM5+MIA-MPP3-PLA2G7 for SIRS vs Sepsis, SIRS vs Abdominal sepsis and
SIRS vs Pulmonary sepsis comparisons.
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corresponding cut-off values todetect sepsiswithhighperformance i.e.

PPV of >95% or to rule out Sepsis with a NPV >98% (35), based on

those described for disease with similar prevalence (36). Many

combinations of biomarkers showed excellent discrimination of

Sepsis from SIRS (Supplementary Information 5, Supplementary

Table 5.2). A 5-biomarker signature of the top-ranking Random

Forest predicted biomarkers: CETP+CMTM5+MIA-MPP3-PLA2G7

showed the best discriminatory performance for SIRS and Sepsis

combined with an AUC of 0.9758 (90% CI: 0.9582-0.9933) and

individually for ABDM and PLMN with AUCs of 0.9842 (90% CI:

0.9864-1.00) and 0.9698 (90% CI: 0.9468-0.9928), as shown in Table 4

and Figures 6D, E. Two cut-offs were selected to optimize diagnosis

with a ‘ruling-out’ sepsis cut-off of -4.3770, which provided a PPV of

96.95%and aNPVof 89.74%, equivalent to three false positive patients

and five false negatives, out of 164 total Day1 samples (Figure 7B). A

second cut-off was selected at -6.980 which generated a PPV of 90.27%

andNPVof 96.15%whichpredict patients at high riskofhaving sepsis.

Expression of sepsis-specific biomarkers PLXNB3, ITGB3,

CETP, CMTM5 and PF4 correlated positively with each other at

the Day1 time point (Figure 8) and to a slightly lesser degree with

MIA and CRP. SIRS-specific biomarkers MPP3, PLA2G7, GPR124

and ARHGEF10L correlated positively with each other and

negatively with the sepsis-specific biomarkers and CRP.
3.6 Evaluation of I°I signatures on
independent previously published datasets

The performance of I°I candidate signatures: ADM+CD177

+FAM20A+ITGA7+MPP9+OLAH, ADM+FAM20A+OLAH and

FAM20A+OLAH were compared on a wider cohort of samples, five

independent, previously published, adult datasets were selected (four

Sepsis datasets: GSE154918, GSE131761, GSE28750, GSE65682 and a

COVID-19 study which contained a bacterial infection group:

GSE16173. Not all candidate signatures could be evaluated on all

identified datasets due to inconsistencies e.g., missing entities,

discordance with patient group, small sample size or lack of data.

ROC curve analyses were performed, comparing control and

disease groups in the available datasets. Good performance was

shown for most sepsis vs control comparisons and for identifying a

bacterial infection group from healthy control, COVID-19, other

coronavirus (CoV) and Influenza viral infection groups

(Supplementary Information 5-Supplementary Table 5.3).

Accuracy was reduced for all signatures between 0.80-0.8184

when comparing ABDM sepsis to a gastro-intestinal control

group using the GSE65682 dataset. Both I°I signatures performed

poorly in recognizing viral infections from healthy controls

(GSE161731), suggesting these are not useful for recognizing

severe inflammation in viral diseases.
3.7 Evaluation of S°S signatures on
independent previously published datasets

Similarly, the S°S Signature CETP+CMTM5+MIA-MPP3-PLA2G7

was evaluated using five Sepsis datasets: GSE154918, GSE131761,
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TABLE 4 ROC analysis results SoS signature: CETP+CMTM5+MIA-MPP3-
PLA2G7 comparing SIRS and Sepsis, then SIRS and abdominal and
pulmonary sepsis and corresponding cut-off values selected to exemplify
95% PPV and 98% NPV.

Comparison
SIRS

vs Sepsis

SIRS vs
Abdominal

sepsis

SIRS vs
Pulmonary

sepsis

Panel
CMTM5+CETP-

PLA2G7-
MIA-MPP3

CMTM5+CETP-
PLA2G7-
MIA-MPP3

CMTM5+CETP-
PLA2G7-
MIA-MPP3

AUC 0.9758 0.9842 0.9698

Standard Error 0.01067 0.009643 0.01398

90% CI 0.9582 - 0.9933 0.9684 - 1.000 0.9468 - 0.9928

p-value < 0.0001 < 0.0001 < 0.0001

95% PPV Cut-
off >

-4.3770 -2.5610 -4.1520

Sensitivity (CI%) 96.8000 90.3800 94.5200

Specificity (CI%) 89.7400 97.4400 92.3100

LR + 9.4347 35.3047 12.2913

LR - 0.0357 0.0987 0.0594

PPV 97.60 97.92 96.00

NPV 89.74 88.37 92.11

98% NPV Cut-
off >

-6.9830 -4.1670 -6.9570

Sensitivity (CI%) 99.2000 98.0800 98.6300

Specificity (CI%) 64.1000 92.3100 64.1000

LR + 2.7632 12.7542 2.7474

LR - 0.0125 0.0208 0.0214

PPV 89.85 94.44 84.88

NPV 96.15 97.30 96.15
FIGURE 8

Correlation plot of diagnostic performance of SIRS and sepsis-
specific biomarkers to each other and to CRP.
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GSE9960, GSE28750 and GSE65682 alongside other biomarker

combinations performing well for ABDM sepsis (CMTM5+ITGB3-

ARHGEF10L-GPR124-PLA2G7); PLMN sepsis (CETP+MIA

+PLXNB3-MPP3) and two larger panels combining 8 of the best

performing biomarkers (CMTM5+ITGB3-PLA2G7-ARHGEF10L-

GPR124+CETP+MIA-MPP3) and (CMTM5+ITGB3-PLA2G7-

ARHGEF10L+CETP+MIA+PLXNB3-MPP3) , g iven in

Supplementary Information 5-Supplementary Table 5.4. Performance

of the S°S signature in discriminating Sepsis from non-sepsis groups

across these datasets was highly variable, perhaps impacted by differing

study design, patient recruitment, sample collection and technological

platform. In GSE28750 our candidate signature of CETP+CMTM5

+MIA-MPP3-PLA2G7 performed best in identifying sepsis from post-

surgical patients with an AUC of 0.8182 but did not rank highest when

analyzed on any other datasets. In GSE154918 significant differences in

performance were observed between different biomarker combinations

with CMTM5+ITGB3+PLA2G7-GPR124-ARHGEF10L achieving

AUC values of 0.9524-0·9928 when comparing Septic Shock to non-

sepsis infection and healthy controls respectively. For GSE65682, only

candidate signature CMTM5+ITGB3-PLA2G7-GPR124-ARHGEF10L

could be evaluated due to missing entities. An AUC of 0.9855 was

achieved when comparing ABDM sepsis to healthy controls, reduced to

an AUC of 0.7035 when comparing ABDM sepsis to hospital acquired
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pneumonia. For GSE154918, an AUC of 0.9619 was achieved when

comparing septic shock to uncomplicated infection which again

reduced to an AUC of 0.7488 on comparison to sepsis only. Of all

candidate S°S biomarker combinations trialed on other data sets, ITGB3

+CMTM5-PLA2G7-ARHGEG10L-GPR124 showed best performance

with AUC values ranging from 0.9928-0.7026 across datasets and group

comparisons as summarized in Figure 9 with highest AUC values

obtained when comparing healthy controls to septic shock. When

evaluated on GSE131761, this candidate signature achieved an AUC of

>0.94 for discriminating septic shock from healthy controls and an

AUC of >0.72 for discriminating non-septic shock and septic shock

(Figure 9A. In GSE9960, CMTM5+ITGB3+PLA2G7-GPR124-

ARHGEF10L performed best when comparing healthy controls and

sepsis caused by mixed infection or gram-positive infection (Figure 9B)

with reduced performance for sepsis caused by gram-negative

infections. In GSE154918, the candidate S°S signature combination

showed good performance in distinguishing sepsis and septic shock

from healthy controls (Figure 9C with reduced performance observed

for uncomplicated infections (Figure 9D. It is anticipated that S°S

biomarkers could be substituted in and out of S°S signatures to

maximize performance and enable effective patient diagnosis

according to end user needs. Other biomarker combinations

identified could also be suitable for diagnostic progression.
A B

DC

FIGURE 9

Evaluation of IOI Signature (CMTM5+ITGB3-PLA2G7-GPR124-ARHGEF10L) performance on published datasets (A) GSE131761 comparing healthy
controls and septic shock , healthy controls and non-septic shock , non septic shock and septic shock (B) GSE9960 comparing
healthy controls and sepsis (mixed infection) , healthy controls and sepsis (gram positive) , healthy controls and sepsis (gram negative) healthy
controls and sepsis (C) GSE154918 comparing healthy controls and sepsis , healthy controls and follow up of sepsis , healthy controls and
septic shock healthy controls and follow up of septic shock (D) GSE154918 comparing uncomplicated infection and sepsis , uncomplicated
infection and follow up of sepsis , uncomplicated infection and septic shock , uncomplicated infection and follow up of septic shock .
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3.8 Evaluation of published competitor
signatures on the ANEMONES dataset

Five published competitor signatures used for discrimination of

Sepsis from SIRS from other groups were evaluated on our dataset:

Septicyte Lab (16), FAIM3/PLAC8 ratio (22), sNIP score (23),

Bauer gene expression score (37) and Sepsis Metascore (12, 21,

24). (Supplementary Information 5, Supplementary Table 5.5).

Only 2 of 5 of the signatures trialed showed significant

discrimination of Sepsis from SIRS within our clinical cohort.

Septicyte lab (PLAC8-PLA2G7+LAMP1-CEACAM4) performed

best with an AUC value of 0·8377. The Bauer Gene expression

score (TLR5, CD59, CLU, FGL2, IL7R, HLA-DPA1, CPVL)

achieved an AUC value of 0.7877.
4 Discussion

Distinguishing sepsis from other severe inflammatory

conditions with significant organ dysfunction is major challenge

on the ICUs. Bedside clinicians continue to utilize biomarkers such

as CRP and procalcitonin, in addition to more traditional clinical

and laboratory parameters. Although an active field, the overall role

of biomarkers in sepsis diagnosis remains undefined (4, 38, 39).

With improvements in RNA extraction methodologies, there has

been a renewed focus toward cellular transcriptomic analysis in

sepsis. Several groups have published similar studies (16, 17, 20–24,

29, 30, 33, 37, 40–44) with various biomarker configurations in

clinical validation or development (12, 15–18, 21, 24, 45–49).

Despite considerable advances, the field is still considered to be

evolving and ‘significant work is needed to identify the optimal

combinations of biomarkers that can augment diagnosis, treatment,

and influence good patient outcomes’ (50).

We used a bioinformatics approach to identify candidate gene

expression signatures across multiple cohorts of adult and pediatric

patients and identified biomarker signatures centered around hub

gene targets (25). Using this list of plausible biomarkers, we

analyzed PBL mRNA in a new differential gene expression study

and found high-functioning transcriptional signatures able to (i)

identify severe systemic inflammation and (ii) differentiate SIRS

from sepsis, in adult patients within the first 24 hours of ICU

admission in a prospective, multi-center clinical study. Our work

comprises an unparalleled, well-annotated clinical dataset, with a

range of clinically relevant samples/measurements taken across the

time course of the study. To our knowledge this is the first study to

combine clearly defined and stratified disease groups based on

clinical characteristics. We present temporal clinical and immune

parameter alongside mRNA biomarker data, enabling identification

of biomarkers useful for primary diagnosis, for prognosis and

patient monitoring, which could be used in conjunction with

other clinical measurements. We offer insights into the

correlation between classical clinical measurements and

biomarker expression and their possible relation to cellular/

disease pathology, patient trajectory over the course of ICU stay

and their relation to clinical outcomes.
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We identified thirty-three high-performance, differentially

expressed mRNA biomarkers between control and combined

SIRS/Sepsis groups for severe inflammation and termed these

‘indicators of inflammation’ (I°I). We selected 19 entities for

further detailed investigation, including CD177, FAM20A and

OLAH. These exhibit highly similar expression patterns and most

likely arise from a granulocyte population e.g. neutrophils.

Providing external validation to our findings, several genes, such

as CD177, ARG1 (arginase), MMP9, OLAH and ADM have been

described previously as having important inflammatory roles in

sepsis (16, 29, 41, 42, 44, 51–71). ARG1 in particular has been

identified by other groups as a good biomarker for sepsis diagnosis

(64), specifically associated with neutrophil activity (72) a

component of which may be from a myeloid-derived suppressor

cell (MDSC) phenotype (60). These have been postulated to

promote immune-suppression during sepsis and may also serve

the same function in SIRS due to surgery or trauma (73, 74),

perhaps due to arginase suppression of T-cell function (55, 56, 63,

75). These may be molecular signatures referencing a neutrophil-to-

lymphocyte ratio imbalance (NLR). NLR is a well-documented

feature of many severe inflammatory conditions including sepsis

(76), heart failure and other conditions (77), trauma (78, 79) and

cardiac arrest (80–83) and is indicative of a poor outcome. Elevated

neutrophil and reduced lymphocyte counts have been associated

with poor outcomes in emergency medicine in general (84). The

NLR response in sepsis is irrespective of age as it is also observed in

neonatal sepsis (85, 86). We believe that our I°I biomarker profiles

may be a reflection of this response, as some of the elevated

biomarkers are cell-type specific for neutrophils e.g. CD177,

MMP9 and ADM and appear inversely correlated with others

which may be lymphocyte associated e.g. CD8b, LY9 and TCRa
constant. The data presented here supports the premise that

neutrophil recruitment/activation is a common feature of severe

systemic inflammation and is not specific to sepsis. Schaack et al.

reported OLAH, CD177, MMP8, RETN and HP as among the most

upregulated genes in sepsis and separated them into two clusters of

immune suppression and activation where some showed overlap in

function (58). They concluded that in addition to a loss of monocyte

and T-cell function and an increase in neutrophils and granulocyte

numbers, many cells showed contradictory activation states.

Both infection-driven and sterile inflammation can lead to

organ dysfunction through activation of similar innate immune

pathways. A variety of Toll-like receptors may be activated via

damage-associated molecular products. This may lead to

development of neutrophil extracellular traps (75, 87). To date,

protein-based approaches to distinguish between the infection-

driven and sterile processes has been largely unsuccessful (87).

Similarly, gene expression studies revealed significant congruence of

signaling between these conditions, with up to 92% of genes

showing change in the same direction (88). We used a novel

ANN driven methodology in addition to parametric statistical

methods, to counter the issues of a standard hypothesis-driven

approach to find discriminative molecular biomarker patterns

between sepsis and non-infective SIRS. Both Random Forest and

ANN-based modeling are common tools used in biomarker

discovery, due to their ability to classify nonlinear information
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with random sampling, while providing accurate predictions using

a decision tree or mathematical function algorithm (28). Utilizing

this approach enabled us to look beyond standard inflammasome

markers, which have been shown to be similarly regulated in both

infection and non-infection driven inflammation (88, 89). Our

results pave the way for these delineated I°I signatures to be used

to accurately identify severe inflammation at early stages of

presentation. Arguably, clinical evaluation can differentiate

between healthily controls and patients with SIRS or sepsis in our

cohort of critically ill patients, however the clear difference in the

clinical variables enabled us to find sensitive and specific biomarker

panels. These will need to be further tested at earlier timepoints in

apparently less tangible disease presentations.

Combinations of these I°I biomarkers were assessed for

performance in delineating disease groups from healthy controls.

A number of candidate I°I signature panels showed exceptional

performance on our dataset, with a minimal configuration of

FAM20A+OLAH showing good performance across all

timepoints with an AUC of 0.9906-1.0. This test combination

would clearly discriminate between healthy individuals and SIRS

or sepsis and could be used to rapidly triage patients with suspected

severe inflammation, either as a rule-in or rule-out tool. This

performed equally well when analyzed on other datasets, both in

adult and pediatric populations (16, 30, 31, 33, 34, 42, 43). This

smaller set may be more clinically useful than a larger panel, from a

test development rationale, as it may be cheaper and simpler to

configure as multiplex qPCR or other assays. A larger 5-biomarker

combination e.g. OLAH+FAM20A+ITGA7+MMP9+ADM may

provide more resilience on broader, diverse, sample populations

and provide better resolution through higher fold-change between

groups in a composite panel score, but may be more challenging

to configure.

Twenty select entities were differentially expressed between

sepsis and SIRS, termed ‘SIRS or Sepsis’ (S°S) biomarkers. The

best performing panel to differentiate sepsis from SIRS was

CMTM5/CETP/PLA2G7/MIA/MPP3 using our dataset

(AUC=0.9758). This 5-panel S°S signature achieved excellent

diagnostic accuracy for abdominal and pulmonary sepsis versus

SIRS in our cohort. Many of the individual candidate S°S

biomarkers have been previously associated with sepsis.

Cholesterol ester transfer protein (CETP), a lipid transfer

glycoprotein, has been widely discussed as key target in the sepsis

inflammatory response, particularly in sepsis caused by gram-

negative infection (90–92). Upregulation of CETP has been

associated with survival in sepsis (93, 94) and linked to

modulation of HDL in resolving bacterial infections (90) and

macrophage polarization (95). We have previously identified

CMTM5 and ITGB3 as associates of the hub entity MYL9; key

differentiators of Sepsis and SIRS with platelet activation function

(25). PLA2G7 features in the Septicyte Lab Signature (16) as a

downregulated entity. Additionally, down-regulation of the

monocyte-associated ARHGEF10L has been previously associated

with disease severity and ICU patient mortality (96, 97). MPP3 to

our knowledge has not been previously associated with SIRS

or sepsis.
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We selected three cut-off values to delineate ranges over which

the S°S biomarker assays could distinguish between individuals with

SIRS and sepsis. The first, which provides excellent PPV (90-95%)

for sepsis detection which could be used as a ‘rule in’ test to identify

sepsis and begin antibiotic treatment. A second cut-off was selected

which provides excellent (>98%) NPV for ruling out sepsis which

could be used for ruling out bacterial infection and would prevent

unnecessary antibiotic treatment to these patients. The third cut-off

value lies in the middle where the groups overlap significantly and

where sepsis may or may not be present. A test based on the use of

ranges based on all three cut-off classifiers would be beneficial for

patient care and could replace our current best guess protein

biomarkers with improved accuracy.

One of the confounding differences between this study and

other published biomarker discovery studies is the RNA extraction

method used. We extracted mRNA from isolated PBLs using the

erythrocyte cell lysis method, as opposed to use of PAXgene Blood

RNA tubes, which are used in many other studies such as for

discovery of the Septicyte Lab signature (16). Although there may

be disadvantages with increased labor for processing of samples

immediately at time of collection, mRNA extraction time is shorter

and may produce differences in mRNA profiles. Differences in the

two extraction methods and consequential changes in the gene

expression profiles identified requires further investigation. It is

hypothesized that our PBL extraction method may be useful in

pulling down blood clots and extracellular traps excreted from

neutrophils, revealing more sepsis-specific biomarkers associated

with platelets and granulocytes, which may not appear as

significantly differentially regulated in other studies.

The other significant difference between our study and of others

is the timing of clinical and laboratory evaluation. Timing of sample

collection in relation to the insult leading to organ dysfunction has

been shown to be important when interpreting gene expression

datasets (13). Our patients had a short prodrome and arrived at the

ICU with predominantly community acquired infections or in the

case of the SIRS group organ dysfunctions developed over a short

time period. This important clinical characteristic, coupled with the

significant, but comparable acute organ dysfunction in both groups

may have helped to amplify the results observed in our cohorts. As

approximately half of sepsis and overwhelming majority of post-

cardiac arrest admissions to the ICU have a short lead-in time, our

results could be clinically relevant for a large group of ICU patients

(98). Furthermore, our observation that gene expression profiles

changed from a SIRS-like pattern toward a sepsis-like pattern in the

SIRS group around Day5, when clinical details indicated the

presence of new, ICU-acquired infection, provides internal

validation of the findings.

When validated in a prospective manner, these tools have the

potential to significantly enhance the clinical diagnostic capabilities

of the ICU and other lower dependency wards in sepsis. Despite the

methodological differences between previous studies and ours, we

successfully validated our biomarker signatures on multiple

comparable gene expression datasets. We found that different

combinations of the individual mRNA biomarkers can achieve

good discriminatory power in these datasets. The reduced
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performance observed maybe in part due to study/platform

technical variation. We also attempted to check if the previously

published mRNA signature panels would perform as well as, or

better than ours in the ANEMONES dataset. Interestingly, only two

of the five previously published mRNA signatures were able to

distinguish the sepsis and SIRS groups (12, 16, 22, 23, 37). This

observation may be compounded by heterogeneity introduced

through study protocol and/or technical differences and temporal

endotype variation (99, 100). Both signatures were identified from

studies comparing patients with sepsis to surgical patients with

post-surgical systemic inflammation and patients with SIRS

respectively, however these studies did not include a set of

healthy controls which is a major difference to our study and may

have a significant impact on the results (16, 37). Other more recent

comparable studies have similarly lacked either one or other of SIRS

or control groups (101, 102).

Our study has limitations. The patients in the SIRS group had a

common unique clinical presentation ‘out-of-hospital cardiac

arrest’, which may limit the generalizability of the findings of the

SIRS features. However, in the temporal samples we have clearly

observed a change in biomarker expression from the SIRS pattern to

the sepsis pattern in patients who then developed ICU acquired

infections. Similarly, in selected cases, patients presenting with

sepsis started to exhibit SIRS pattern, where the clinical course

involved cardiovascular events following the infectious episode. In

addition, our S°S signature panels showed good performance in

external datasets, where the SIRS groups had more varied clinical

etiology. Our study was designed and completed before the Sepsis

3.0 definition was published in 2016, hence we continued to adhere

to the terminology used in our protocol (4). Singer et al. described

sepsis as dysregulated host response causing organ dysfunction

secondary to infection (4). Their clinical criteria was presence of

presumed or confirmed infection and a SOFA score of 2 or above, or

an increase of the SOFA score of 2 or more, if it was not 0 before (4).

Notably, all patients in the sepsis group would have been classified

as sepsis using the Sepsis 3.0 definition as well, given that the lowest

observed SOFA score was 7 in the sepsis groups. Given our gene

expression data also demonstrating a dysregulated host response,

secondary to infection, we are certain that our results remain

current using the new sepsis definition. Although our sample size

was relatively small, our study is readily comparable to other

published datasets. In addition, unlike many other studies

focusing solely on gene expression, we have cultivated a very rich

clinical database and were able to track the clinical decision making

throughout the patients ICU stay. While our results need

independent validation in prospective new clinical cohorts, we

have shown that our biomarker panels perform at least as well as

previously published and patented biomarker signatures in

historical datasets.

Overall, we revealed a unique two-tier strategy using two separate

biomarker signatures to identify systemic inflammation and

discriminate sepsis from non-infectious SIRS using the I°I and S°S

signatures, respectively. We have discovered parsimonious sets of

genes which in a two-tier model can differentiate between healthy

controls and individuals with systemic inflammation with very high

accuracy and are then able to discriminate between sepsis and SIRS.
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Firstly, the I°I signature can be utilized to identify Systemic

Inflammation (patients with either sepsis or SIRS) followed by

stratification of Sepsis (SIRS from infection) from SIRS (without

infection) using the S°S Signature. Both signatures consist of 5

differentially expressed biomarkers, some of which many have been

previously identified as sepsis-associated. We anticipate the I°I

signature may be a useful triage test in multiple clinical settings,

including ICU, lower dependency ward or community settings, to

recognize ‘at risk’ patients. The S°S signature would be useful

clinically for sepsis differential diagnosis, prediction of severity and

patient outcome.
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