
Citation: Suliman, F.; Anayi, F.;

Packianather, M. Electrical Faults

Analysis and Detection in

Photovoltaic Arrays Based on

Machine Learning Classifiers.

Sustainability 2024, 16, 1102. https://

doi.org/10.3390/su16031102

Academic Editor: Pablo García

Triviño

Received: 26 October 2023

Revised: 10 January 2024

Accepted: 19 January 2024

Published: 27 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Electrical Faults Analysis and Detection in Photovoltaic Arrays
Based on Machine Learning Classifiers
Fouad Suliman *, Fatih Anayi and Michael Packianather

School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
* Correspondence: sulimanf@cardiff.ac.uk

Abstract: Solar photovoltaic energy generation has garnered substantial interest owing to its inherent
advantages, such as zero pollution, flexibility, sustainability, and high reliability. Ensuring the
efficient functioning of PV power facilities hinges on precise fault detection. This not only bolsters
their reliability and safety but also optimizes profits and avoids costly maintenance. However, the
detection and classification of faults on the Direct Current (DC) side of the PV system using common
protection devices present significant challenges. This research delves into the exploration and
analysis of complex faults within photovoltaic (PV) arrays, particularly those exhibiting similar
I-V curves, a significant challenge in PV fault diagnosis not adequately addressed in previous
research. This paper explores the design and implementation of Support Vector Machines (SVMs)
and Extreme Gradient Boosting (XGBoost), focusing on their capacity to effectively discern various
fault states in small PV arrays. The research broadens its focus to incorporate the use of optimization
algorithms, specifically the Bees Algorithm (BA) and Particle Swarm Optimization (PSO), with the
goal of improving the performance of basic SVM and XGBoost classifiers. The optimization process
involves refining the hyperparameters of the Machine Learning models to achieve superior accuracy
in fault classification. The findings put forth a persuasive case for the Bees Algorithm’s resilience and
efficiency. When employed to optimize SVM and XGBoost classifiers for the detection of complex
faults in PV arrays, the Bees Algorithm showcased remarkable accuracy. In contrast, classifiers fine-
tuned with the PSO algorithm exhibited comparatively lower performances. The findings underscore
the Bees Algorithm’s potential to enhance the accuracy of classifiers in the context of fault detection
in photovoltaic systems.

Keywords: photovoltaic systems; PV string; I-V curve analysis; Support Vector Machine (SVM);
Extreme Grading Boosting (XGBoost); Bees Algorithm (BA); Particle Swarm Optimization (PSO);
fault classification

1. Introduction

Solar PV generation has risen as a significant player in the renewable energy sector due
to its numerous advantages, which include no emissions, sustainability, adaptability, and
dependable performance [1]. As the installed capacity of PV systems continues to expand
globally, the urgency to ensure their smooth operation also increases. Among the utmost
operational concerns is the effective detection and management of faults in these systems.
Fault detection is a vital measure that not only protects the reliability and safety of PV power
plants but also aids in maximizing profitability and circumventing costly maintenance.
Despite the obvious need for efficient fault detection, the process is fraught with challenges,
especially on the Direct Current (DC) side of PV systems. Conventional protection devices
often fail when it comes to accurately detecting and classifying faults, creating a significant
gap in the overall management and protection of PV systems [2,3]. Nevertheless, it is
important to note that the current guidelines for protecting PV systems only cover the AC
side and are unable to detect and identify faults on the DC side. Fault analysis in solar
PV arrays is crucial to averting any adverse or hazardous conditions resulting from faults

Sustainability 2024, 16, 1102. https://doi.org/10.3390/su16031102 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16031102
https://doi.org/10.3390/su16031102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su16031102
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16031102?type=check_update&version=4

Sustainability 2024, 16, 1102 2 of 29

within the array. Quick fault detection and timely resolution in solar PV arrays are essential.
Inefficient fault detection can result in power loss, heightened fire risks, and other safety
concerns [4,5]. Different types of failures can arise in photovoltaic systems. Therefore,
understanding the failures observed in practical settings is crucial before establishing
monitoring and fault identification methods. This task mainly involves classifying each
kind of electrical fault that might occur in PV arrays. Therefore, researchers have been
working on developing Machine Learning (ML) methods that can detect faults accurately
and reliably. ML algorithms can learn the relationships between the input and output
parameters of a PV system without relying on a pre-defined equation. The most common
approach to detecting faults in a PV system is to analyze its electrical output, including
the current, voltage, and power, if this information is available through monitoring [6].
The obtained data are then compared to that of a reference system. Trained models can be
employed for fault detection by utilizing previous data from when the system was known
to be functioning properly. If a fault occurs, the system’s behavior will deviate from that
described by the trained model, indicating the presence of a fault.

ML methods offer several advantages over other artificial intelligence (AI) and threshold-
based techniques, including being data-driven, scalable, automated, capable of continuous
learning, and having high predictive accuracy. In the field of PV systems, various ML
algorithms have been employed. For instance, researchers have developed probabilistic
neural network schemes (PNN) based on manufacturers’ datasheets for health monitoring
of the DC side of photovoltaic array [7]. In another study [8], Random Forest (RF) learning
was employed as an ensemble method for fault diagnosis in PV arrays. The methodology
utilized array voltage and string currents for the diagnostic process. Conventional neural
networks (CNNs) and electrical time series graphs were used to develop a fault detection
model for PV systems [9]. In [10], a kernel-based extreme learning machine (KELM) was
proposed for detecting a wide range of faults in PV systems, which demonstrated promising
results using seven inputs and five outputs. In [11], a cloud-based monitoring system was
introduced, leveraging the Support Vector Machine (SVM) for fault detection. A binary
SVM classifier was presented in [12], which was able to identify abnormalities in the
output DC and power using a PSIM simulation of a grid-connected PVS. In [13], a SVM
was utilized along with four years of practical data to identify and categorize faults in
strings and inverters. In reference [14], Random Under-Sampling Boosting (RUSBoost) was
employed to identify different types of faults occurring on the DC side of the photovoltaic
system. Traveling-Wave (TW) and Machine Learning (ML) based on RF classification,
serving as a faster alternative to over-current protection, were employed, as detailed in
reference [15]. The author of [16] proposed the use of XGBoost for fault detection and
diagnosis in photovoltaic arrays. The algorithm is based on feature parameters such
as irradiance, temperature, current, and power. The experimental results demonstrate
that this method outperforms other Machine Learning techniques in achieving accurate
fault diagnosis for photovoltaic arrays. Nevertheless, these fault detection models come
with their own set of challenges. They often require a large dataset for training, tend to
show reduced accuracy when detecting faults with low-percentage mismatches or high
impedance, and can be somewhat unreliable since they often rely on a single classifier.
Additionally, many of these methods do not offer a comparative approach to selecting
the best classifier, and most cannot identify the specific type of fault or determine its
severity [17].

For fault detection in PV arrays, hybrid methods combine multiple algorithms, balanc-
ing their strengths and weaknesses for improved results. These methods provide flexibility
for addressing diverse data patterns in PV arrays, even when faced with anomalies or
non-uniform PV systems. Additionally, hybrid methods counteract issues such as noise
and overfitting, ensuring the models remain effective in real-world scenarios, rather than
just on training data. Numerous studies and applications have showcased the effective-
ness of hybrid methods in PV fault detection. For example, in [18], CART, KNN, and
RF are introduced, incorporating Data Dimensionality Reduction Strategy (DDRS) and

Sustainability 2024, 16, 1102 3 of 29

Principal Component Analysis (PCA) for feature extraction and dimensionality reduction.
The aim is to identify various fault scenarios in photovoltaic systems, including PV array
faults, arc faults, line-to-line faults, open-circuit faults, shading issues, and MPPT unit
failures. In [19], the model utilizes I-V characteristics to concentrate on line-to-line (LL)
faults at varying mismatch and impedance levels. The research employed a probabilistic
ensemble learning model, integrating a Support Vector Machine (SVM), Naive Bayes (NB),
and k-Nearest Neighbors (KNN). In [20], the researchers introduced a Shifted Windows
(Swin) Transformer optimized by Particle Swarm Optimization (PSO), which is utilized for
the detection of various types of photovoltaic (PV) faults, including the line-to-line fault
and open-circuit fault, as well as partial shading. Combining PSO with Artificial Neural
Networks (ANNs) creates a system that combines the global search capability of PSO with
the precision and adaptability of neural networks [21]. While the PSO algorithm has the
advantage of requiring fewer input parameters and being easily adjustable, it is prone to
becoming trapped in local optima, potentially missing the global optimal approximate
solution or not thoroughly addressing certain intricate fault scenarios. Similarly, integrating
the Genetic Algorithm (GA) with ANNs offers a powerful and flexible solution for fault
detection in photovoltaic arrays, as discussed in [22]. While this approach has shown
promise in enhancing fault detection accuracy, it may bring about complexity, potentially
resulting in prolonged training durations and increased computational demands, especially
when not optimized efficiently. Ref. [23] proposed three potent Machine Learning (ML)
algorithms for diagnosing various faults in photovoltaic (PV) arrays, which are Categorical
Boosting (CatBoost), Light Gradient Boosting Method (LGBM), and Extreme Gradient
Boosting (XGBoost). Ref. [24] employed both threshold methods and Machine Learning
(ML) techniques to detect and categorize various faults, including SC, OC, shadow ef-
fects, and bypass diode faults, by analyzing attributes such as the current, voltage, and
peaks from the I-V characteristics. They contrasted Multi-Layer Perceptron (MLP) with
Radial Basis Function (RBF) and executed the strategy on a Field Programmable Gate
Array (FPGA). Nonetheless, their approach was based on simulated data and the threshold
method, potentially making it highly dependent on system parameters and the precision of
threshold limits. In response to the previously discussed challenges, this study presents a
reliable line-to-line (LL) and open-circuit (OC) fault detection technique for PV arrays. The
primary findings and contributions of the research study presented in this paper can be
outlined as:

1. The exploration and analysis of complex faults within PV arrays. A small-scale PV
system was built to enhance the accuracy of Machine Learning classifiers for PV
systems. This system, designed to replicate real-world solar complexities, simulated
actual challenges by introducing specific faults. The goal was to produce a high-quality,
realistic dataset for training Machine Learning algorithms, ensuring they are well
prepared for genuine applications.

2. The application of Machine Learning methods, notably Support Vector Machines
(SVMs) and Extreme Gradient Boosting (XGBoost), has been employed. These method-
ologies have exhibited considerable efficacy in detecting various fault conditions in
PV arrays.

3. Optimization algorithms, specifically the Bees Algorithm (BA) and Particle Swarm
Optimization (PSO), have been employed to enhance the performance of SVM and
XGBoost classifiers. The optimization process primarily focuses on tuning the hyper-
parameters of these models to maximize the accuracy in fault classification, providing
a holistic approach to PV fault detection and management.

A novel fault detection FD-SVM and XGBoost setups have been proposed and tested
to discriminate LL and OC faults by optimizing their parameters using optimization
algorithms. Notably, these setups require only three samples to effectively determine the
nature and behavior of the faults.

Sustainability 2024, 16, 1102 4 of 29

2. A Small-Scale PV Array

A small-scale PV array typically consists of a limited number of PV panels arranged to
convert sunlight into electricity. This setup is ideal for laboratory testing due to its compact
size and manageability. Their small-scale nature allows for easy fault introduction and
monitoring, ensuring accurate results without the complexities of large-scale systems.

2.1. Experimental Setup

A small-scale PV array was constructed using Polycrystalline Mini Solar Cell Panel
Module DIY to validate the performance of the proposed approach on PV systems. The
array consisted of five parallel-connected strings, with each string comprising twenty mod-
ules in series. Detailed specifications of the PV modules can be found in Table 1. To
determine the I-V curve for a PV array, the current supplied between zero current and the
short-circuit current must be gauged. The voltage and current outputs from the PV array
were captured using the Pasan solar sun simulator, in collaboration with the Loughborough
University laboratory, as illustrated in Figure 1.

Figure 1. Experimental setup of PV array with measuring devices.

Table 1. Parameters of main components in Polycrystalline Mini Solar Panel Module DIY PV system
under standard test conditions (STCs).

Parameters
Equipment

Detailed Parameters Type

PV module
At STC: Voc = 51.2553 V, Isc = 0.15795 A,

Pmax = 0.30248 W Polycrystalline Silicon
Module DIY

Entire PV array
At STC: Voc = 51.2553 V, Isc = 0.8417 A,

Pmax = 32.1245 W

The Pasan sun simulator, developed by the Pasan Engineering Company, is a dedicated
device designed to mimic solar irradiance, testing photovoltaic (PV) cells and modules [25].
It facilitates the capture of current–voltage (I-V) characteristic curves of PV devices in

Sustainability 2024, 16, 1102 5 of 29

controlled and repeatable conditions. This allows researchers and manufacturers to evaluate
the efficacy of their devices and refine their designs. Commonly, the Pasan sun simulator
consists of a light source, a collimating lens, and a filter system to create a spectrum
that closely matches natural sunlight. The device also includes an adjustable holder to
accommodate the PV device being tested, as well as a measurement system for capturing the
I-V curves. By replicating controlled solar irradiance conditions, the Pasan sun simulator
facilitates precise measurements for research and manufacturing objectives.

2.2. Validating the Model for PV Modules

In this experimental study, a dataset encompassing both normal and faulty scenarios
was recorded. The faulty cases included: F1 and F2 (intra-string line-to-line faulst) with
large and small voltage differences, respectively; F3 (cross-string line-to-line fault); and F4
(open-circuit fault) affected by the line-to-line (LL) and open-circuit (OC) faults. Therefore,
a total of 2.1× 103 data samples were recorded for each case, representing both faulty and
healthy conditions, under standard test conditions (STCs) with a temperature level of 25 ◦C
and an irradiance level of 1000 W/m2. The I-V curve for the entire PV array was tested five
times for each case. The goal was to produce a high-quality, realistic dataset for training
Machine Learning algorithms, ensuring they are well prepared for real applications.

2.3. Typical Faults Curves and Interpretation

Photovoltaic (PV) power production systems have different types of faults, similar
to other types of power plants in terms of fault sensitivity. Nonetheless, there are several
potential benefits to using PV systems. Firstly, PV modules are constrained by voltage
and current, and their performance is notably influenced by temperature and insulation.
Moreover, PV panels operate at a Voc and Isc closely approaching 80%, at which point
Maximum Power Point Tracking (MPPT) is utilized [26]. Any DC-side fault that arises
poses particular issues, as low fault currents make these faults difficult to detect and
diagnose. The ability to accurately evaluate faults requires an understanding of the causes
and types of faults to support dealing with these problems and reduction in harms.

2.3.1. Line-to-Line Fault in a PV Array under STC

Line-to-line faults (LLFs) occur when a low-resistance connection unintentionally links
two points within an electrical network system that have different potentials. In the context
of PV systems, LLFs typically encompass short-circuit faults either between PV modules or
among cables of arrays that have differing potentials. Within an array, LLFs can occur due
to cable insulation failures, accidental current-carrying conductor short circuits, and poor
insulation separating string connectors. The current study makes the assumption that there
is no ground point involvement in the LLFs. This is because where LLFs have a ground
point, they can be classified as ground faults. This study investigates three classes of LLF
at varying locations:

(a) Intra-string LL fault with large voltage difference

The intra-string short-circuit fault illustrated in Figure 2 is characterized as a line-to-
line fault (LLF) with a significant voltage difference and variation across 18 modules. The
results obtained from actual experimental measurements, as detailed in Table 2, provide
a clear understanding of the consequences of a line-to-line fault featuring a substantial
voltage discrepancy. In an optimally functioning or ‘healthy’ state, the system displays
an efficiency rate of 20.07%. This healthy state records a Voc of 51.25 V and an Isc of
approximately 0.8414 A. However, upon the introduction of a fault, the system’s efficiency
drops dramatically to 4.13%. This drastic drop in efficiency is reflected by the sharp drop
in voltage, as the Voc contracts sharply from the initial 51.25 V (Voc) down to a mere
13.88 V (Voc). Nonetheless, the current appears to be fairly stable, experiencing only a slight
deviation around 0.8448A as a result of the low-resistance path. The cumulative efficiency
loss ratio due to this fault is 15.94%, which confirms the seriousness of the impact that such
a fault can have on the overall operational efficiency of the PV system. However, the impact

Sustainability 2024, 16, 1102 6 of 29

of this fault on string 3 is illustrated by the blue and green curve in Figure 2. This decrease
is evident in the sharp decline in the voltage, dropping from the initial 51.2879 V (Voc) to
a mere 11.5332 V (Voc). This underscores the crucial nature of timely fault detection and
rectification to maintain optimal performance levels in photovoltaic systems.

Figure 2. I-V curves of the PV array in a line-to-line fault with a large voltage difference.

Table 2. Simulation outcomes of a line-to-line fault with large voltage difference.

Line-to-Line Fault
with Large Voltage

Difference

Array Operation Point Top String #3 Current (I3&V3) at Fault
System

EfficiencyIsc
(A)

Voc
(V)

Impp
(A)

Vmpp
(V)

Pmax
(W)

Isc
(A)

Voc
(V)

Impp
(A)

Vmpp
(V)

Pmax
(W)

Healthy
condition 0.8414 51.2551 0.7886 40.7481 32.1242 0.1676 51.2879 0.1582 41.4358 6.5564 20.07%

Fault
condition 0.8448 13.8865 0.7639 8.6574 6.6086 0.1661 11.5332 0.1546 8.2819 1.2765 4.13%

Loss
ratio ∼ 72.9088% 3.1321% 78.7538% 79.4279% ∼ 77.5128% ∼ 80.0126% 80.5304% 15.94%

(b) Intra-string LL fault with small voltage difference

In the graphical representation shown in Figure 3, a short-circuit fault is observed
within the third string. This particular fault is defined as an LLF with a small difference in
voltage and variation spanning four modules. Referring to the data summarized in Table 3,
the most striking feature of this fault is the stability of the current value (Isc), despite the
noticeable drop in voltage. When the fault appears, the current (I) remains constant at
0.84 A (Isc), whereas the voltage notably drops from 51.25 V (Voc) to 47.30 V (Voc). In its
optimal state, the system operates at 20.07% efficiency. However, in the presence of the
fault, the efficiency drops slightly to 16.46%. This change indicates a loss rate of 3.61%,
highlighting the profound impact that these faults have on the overall system performance.
However, the impact of this fault on string 3 is illustrated by the blue and green curve
in Figure 3. The reduction is evident in the slight decline in the voltage, dropping from
the initial 51.2879 V (Voc) to just 47.6768 V (Voc), resulting in a power loss of 18.5997% in
string 3.

Sustainability 2024, 16, 1102 7 of 29

Figure 3. I-V curves of the PV array in a line-to-line fault with small voltage difference.

Table 3. Simulation outcomes of a line-to-line fault with small voltage difference at STC.

Line-to-Line Fault with
Small Voltage

Difference

Array Operation Point Top String #3 Current (I3&V3) at Fault
System

EfficiencyIsc
(A)

Voc
(V)

Impp
(A)

Vmpp
(V)

Pmax
(W)

Isc
(A)

Voc
(V)

Impp
(A)

Vmpp
(V)

Pmax
(W)

Healthy
condition 0.8417 51.2551 0.7883 40.7481 32.1242 0.1677 51.2879 0.1582 41.4358 6.5560 20.07%

Fault
condition 0.8410 47.3010 0.7769 33.9024 26.3398 0.16732 47.6768 0.1583 33.7063 5.3366 16.46%

Loss
ratio ∼ 7.7145% 1.4461% 16.8000% 18.0063% ∼ 7.0402% ∼ 18.6541% 18.5997% 3.61%

(c) Cross-string LL fault

As depicted in Figure 4, the simulation reveals the fourth short-circuit fault, which
occurs between the third and fourth strings. This LLF has a 10-module level difference
between the two strings. The findings of the simulation results are given in Table 4. In the
case of a health system, the efficiency reaches 20.07%. However, after the fault occurs, there
is a slight decrease in efficiency to 19.80%. This difference, although small at 0.27%, can
be significant in a real-world context. Nevertheless, the effect of this fault on string 3 is
depicted by the blue and green curve shown in Figure 4. This decline is observable in the
slight reduction in power, falling from the initial 13.0882 w (Pmax) to just 12.8421 w (Pmax),
leading to a power loss of 01.8803% in string 3. Since this fault does not induce a dramatic
shift in the system’s operational metrics, it underscores the challenge of identifying such
faults. This subtlety can jeopardize the system’s reliability and efficiency, as faults of this
nature can persist undetected, causing latent damage or degradation over time.

Sustainability 2024, 16, 1102 8 of 29

Figure 4. I-V curves of the PV array in cross-string line-to-line fault.

Table 4. Simulation outcomes of a cross-string line-to-line fault at STCs.

Cross-String
Line-to-Line Fault

Array Operation Point Top String #3 Current (I3&V3) at Fault
System

EfficiencyIsc
(A)

Voc
(V

Impp
(A)

Vmpp
(V)

Pmax
(W)

Isc
(A)

Voc
(V)

Impp
(A)

Vmpp
(V)

Pmax
(W)

Healthy
condition 0.8414 51.2551 0.7886 40.7481 32.1242 0.3365 51.2715 0.3146 41.6479 13.0882 20.07%

Fault
condition 0.8425 51.2062 0.7824 40.5037 31.6933 0.3364 51.1899 0.3165 40.5690 12.8421 19.80%

Loss
ratio ∼ ∼ 0.7862% 0.5997% 1.3413% ∼ ∼ −0.6039% 2.5905% 1.8803% 0.27%

2.3.2. Open-Circuit Fault under STC

Figure 5 illustrates the open-circuit fault that took place in the fourth string of the
PV array. The I-V characteristics of this faulty array are compared with those of a non-
faulty array under normal operating conditions. The results of this simulation are detailed
in Table 5 and visualized in Figure 5. It becomes clear that the open-circuit fault does
not generate a substantial fault current. In the event of this fault, due to one out of five
strings being disconnected, significant power losses occur, amounting to approximately
20% of the rated power. While the open voltage remains largely consistent, there is a linear
decline in the maximum power and short-circuit current proportional to the number of
disconnected strings.

When a system’s performance is evaluated in various scenarios, insights are gained
into its efficiency. In the F1 scenario, the difference between the healthy and fault condition
is clear based on the loss ratio. The efficiency undergoes a significant drooping, resulting in
a 63.74% drop when a fault occurs. Conversely, in scenario F2, the overall system efficiency
diminishes from 80.31% under healthy conditions to 65.81% during a fault, resulting in an
efficiency loss of 14.50%. For scenario F3, the efficiency decreases slightly, moving from
80.31%, in its optimal state, to 79.22%. This suggests challenges in detecting this specific
fault, translating to an efficiency loss of 1.09%. Scenario F4 witnesses a notable reduction in

Sustainability 2024, 16, 1102 9 of 29

system efficiency. From an initial efficiency of 80.31% under healthy conditions, it drops to
63.45% when the fault occurs, resulting in a 16.86% loss. Figure 6 provides further clarity:
there is a pronounced drop in the power output during F1, while F3 shows only a marginal
reduction in PV power compared to regular functioning.

Figure 5. I-V curves of the PV array during open-circuit fault.

Figure 6. IV and PV curve under the normal and faulty conditions.

Sustainability 2024, 16, 1102 10 of 29

Table 5. Simulation outcomes of an open-circuit fault at STCs.

Open-Circuit Fault

Array Operation Point Top String #4 Current (I4&V4) at Fault
System

EfficiencyIsc
(A)

Voc
(V)

Impp
(A)

Vmpp
(V)

Pmax
(W)

Isc
(A)

Voc
(V)

Impp
(A)

Vmpp
(V)

Pmax
(W)

Healthy
condition 0.8417 51.2553 0.7883 40.7488 32.1245 0.1677 51.2879 0.1582 41.4350 06.5560 20.07%

Fault
condition 0.6719 51.2389 0.6294 40.9612 25.7810 0 0 0 0 0 3.96%

Loss
ratio 20.1734% ∼ 20.1570% ∼ 19.7466% 0 0 0 0 0 16.86%

3. Proposed Fault Diagnosis Method

Within this section, the authors present a comprehensive examination of two detection
methods proposed for fault detection and classification in PV systems. These methods are
built upon Support Vector Machines (SVMs) and Extreme Gradient Boosting (XGBoost).
Additionally, an optimization algorithm is applied to fine-tune the classifier’s parameters
for enhanced performance in fault detection and classification.

3.1. Particle Swarm Optimization (PSO)

The Particle Swarm Optimization (PSO) algorithm, conceived by Eberhart and Kennedy [27],
is a resilient metaheuristic approach rooted in the behavior of particles and social creatures,
such as birds, within a swarm. Each particle (candidate solution) adjusts its position based
on its own experience and that of its neighbors. This mimics the social behavior of birds
or fish adjusting their paths based on their own experience and the experience of their
fellow creatures. PSO effectively addresses a plethora of optimization challenges, with each
particle embodying a potential solution. The methodology to pinpoint the ideal solution is
delineated in the following steps [28]:

(a) Initialization: Begin with the initial population of particles and set their corresponding
velocities. Subsequently, evaluate the fitness of each particle and determine the optimal
positions, designating them as the global best and local best.

(b) Update Velocity: During each iteration, each particle navigates through the search
space with a designated velocity. In each cycle, this velocity is influenced by two pri-
mary factors: the global best and the local best. While the global best represents the
particle’s finest position achieved thus far, the local best signifies the optimal solution
within the current iteration.

(c) Update Particle Position: Once the new velocity is calculated, the particle’s movement
through the search space is adjusted accordingly. This involves the particle moving
with its updated velocity. The adjustment in the velocity of each particle is governed
by Equation (1).

vi+1
j = wv(i)j +

(
c1 × r1 ×

(
local best j − x(i)j

))
+

(
c2 × r2 ×

(
global best j − x(i)j

))
,

vmin ≤ v(i)j ≤ vmax

(1)

where x(i)j and v(i)j denote the position and velocity of the (jth) particle at the (ith)
iteration, respectively; (w) stands for the inertial weight coefficient; (i) is the iteration
number; and (r1) and (r2) stand for numbers in the interval [0, 1].

(d) Update the global best and local best: If the newly modified particle shows the best
values, both the global and local best values will be updated accordingly. The method
for updating the local best for each particle is governed by Equation (2).

xi+1
j = x(i)j + v(i+1)

j ; j = 1, 2, . . . , n (2)

Sustainability 2024, 16, 1102 11 of 29

(e) Evaluate Termination Criteria: When the specified stopping criteria are fulfilled, the
global best solution is returned as the optimal resolution for the specific problem.
In case the termination criteria are not met, the process returns to the Update Veloc-
ity step.

3.2. The Bees Algorithm

The Bees Algorithm is a recent technique proposed by a research team within the
Center for Manufacturing Engineering at Cardiff University, and it works by evaluating the
effectiveness of a population search algorithm [29]. The BA copies the foraging behaviors
of a swarm of honeybees and can be described as belonging to the “intelligent optimization
tool” group. In other words, BA replicates the behavior of honey bees by specifying some
conditional parameters to start the simulation. BA encompasses six parameters that need to
be tuned to ensure a proficient and congruent search for the best primary variables, namely:

1. Scout bee numbers (ns);
2. Selected bee numbers (m);
3. Elite bee numbers (e);
4. Numbers recruited for elite (e) locations (nep);
5. Numbers recruited from the best differing (m− e) locations (nsp);
6. Patch size for neighborhood localized search (ngh).

The exploration begins by spreading a set number of scout bees (ns) randomly through-
out the search space. Sites visited by these scouts are evaluated based on an objective
function and ranked in an ascending or descending sequence, contingent upon the opti-
mization function to minimize or maximize the process. From this ranking, the highest
fitness value locations are chosen as the selected sites (m), and the bees visiting these sites
are chosen to perform neighborhood searches. For this neighborhood search, the selected
sites (m) are further divided into two categories: elite sites (e) and non-elite sites (m− e).
Subsequently, the algorithm performs a neighborhood search around the selected (m) sites
by assigning more forager bees (nep) to search near to the elite sites (e) and fewer bees
(nsp) to investigate the vicinity of the non-elite sites (m− e). These parameters can be
calculated as follows [30–32]:

ns ≥ m ≤ e (3)

p = ns + e(nep) + (m− e)nsp (4)

Equation (3) is the first condition that must be satisfied. The size of the bees’ population, p,
can be calculated using Equation (4). The equation for finding the random scouting bees
during the initialization phase, as well as the unselected bees, can be written as:

xrand = xmin + rand · (xmax − xmin) (5)

In the given context, “rand” represents a random vector element between 0 and 1, and
xmin and xmax denote the lower and upper bounds of the solution vector, respectively. For
recruiting bees during the neighborhood search:

xi+1 = (xi − ngh) + 2 · ngh · randi ·
(

xi
max − xi

min

)
(6)

Lastly, the BA optimization can be defined as a process of searching to identify the most
optimal solution to a given challenge. This can be described mathematically as:

min(or max) f (x), x = (x1, x2 . . . , xn), x ∈ RN∗ (7)

where f is the objective function(s); x is the parameter (decision variable (s)) that needs
to be optimized, and it can be continuous, discrete, or a mixture of both. By using the BA

Sustainability 2024, 16, 1102 12 of 29

optimization technique, it is possible to quantitatively measure a system’s performance,
subject to some constraints on the ranges of the variables.

3.3. Support Vector Machines (SVMs)

The original support vector classifier was introduced by [33] as a two-class system.
Nowadays, Support Vector Machines (SVMs) are viewed as an optimal solution for su-
pervised learning, as they focus on identifying a hyperplane that maximizes the distance
between two adjacent classes. This maximization aids in limiting the generalization error
of the classification model. In Figure 7, classes are linearly separated, and the distance
between the decision boundary and the nearest training patterns is the margin. This margin
is defined by support vectors that determine the classification functions. If the data points
cluster and cannot be separated linearly, they can be remapped to a higher dimension
where they are linearly separable using a hyperplane, as discussed in [34]. The Support
Vector Machine classifier is derived as shown below:

N-dimensional inputs xi(i = 1, 2, 3, . . . , m), where m represents the number of samples
in either class one or two, are labeled yi = 1 for the first class and yi = −1 for the second
class. When the data are linearly separable, a hyperplane f (x) = 0 is identified to separate
the data.

f (x) = ωTx + b = 0 (8)

in which ω represents an n-dimensional vector, with b representing an intercept term.
The hyperplane which separates the two vectors is positioned based on those vectors and
meets the constraint f (x) =≥ 0 where yi = 1 and f (x) =≤ −1 if yi = −1, thus forming a
functional margin:

yi f (xi) = yi

(
ωTxi + b

)
≥ 1, for i = 1, 2, , m (9)

The optimal separating hyperplane is defined as the hyperplane that leaves the greatest
distance separating the plane from the closest data point, and this is illustrated in Figure 7.
Calculation of the geometric margin gives 1/∥ω∥2. Accounting for noise through ξi as the
variable for slack, and, with Ci, as an error penalty, the optimal hyperplane is determined
through applying a convex quadratic optimization problem, as follows:

min
ω,b

1
2
∥ω∥2 + C

m

∑
i=1

ξi (10)

s.t. yi

(
ωTxi + b

)
≥ 1− ξi, i = 1, 2, 3, , m (11)

ξi ≤ 0, i = 1, 2, 3, . . . , m (12)

In Equation (10), the minimization of ∥ω∥ is synonymous with minimizing 1
2∥ω∥2.

Furthermore, Equation (11) describes a quadratic programming problem, which is formal-
ized into the Lagrange formula by incorporating both the objective function (min 1

2∥ω∥2)
and the constraints ((ωTxi + b)− 1 ≥ 0).

It is now possible to form the Lagrangian:

max
α

ω(α) =
m

∑
i=1

αi −
1
2 ∑ yiyjαiαj

〈
xi, xj

〉
(13)

Subject to 0 ≤ αi ≤ C, i = 1, 2, 3, . . . , m (14)

m

∑
i=1

αiyi = 0 (15)

Sustainability 2024, 16, 1102 13 of 29

Figure 7. Maximum margin classification with Support Vector Machines.

To find αis, the Lagrangian problem of duality must be solved. Considering an
SVM-derived two-class problem, a decision boundary is given in the following, which
uses the kernel function K

(
x⃗(i), x⃗

)
of a new pattern x⃗ (for classification) and x⃗(i) as the

training pattern:

D(x) =
m

∑
i=1

αiy(i)K
(

x⃗(i), x⃗
)
+ b (16)

in which αi, s each equal 0, with the exception of support vectors. The Radial Basis Function
(RBF) is chosen as the kernel function of the SVM in this research, which can be described:

K
(
xi, xj

)
= exp

(
−
∥∥xi − xj

∥∥2/σ2
)

(17)

3.4. Extreme Gradient Boosting (XGBoost)

XGBoost, short for Extreme Gradient Boosting, provides an efficient and adaptable
rendition of the gradient boosting methodology framework by [35,36]. XGBoost, a highly
efficient variant of the gradient tree boosting algorithm, has recently garnered significant
attention largely due to its outstanding results in Kaggle competitions. Central to XGBoost’s
success is its adaptability across diverse scenarios and its swift computational capabilities,
as outlined by [37]. The algorithm leverages bagging (bootstrap aggregation) and random
feature selection, which not only combats the risk of overfitting but also aptly balances
the bias–variance trade-off. Owing to these unique benefits, XGBoost has emerged as a
preferred choice in studies focusing on fault diagnostics in solar power systems [38,39]. The
predicted output of XGBoost is the sum of all the results, as shown in Figure 8. It can be
used for both regression and classification problems. The working principle of the XGBoost
is as follows:

Given a training dataset, D, consisting of i samples and j features, where x represents
the input variables and y denotes the output variables, the dataset can be represented as
shown in Equation (18). The culmination of the XGBoost training process results in a model
composed of the summation of the K CART (Classification and Regression Tree) decision
tree functions, as described by [40].

D =
{(

x1j, y1j
)
,
(
x2j, y2j

)
, . . . ,

(
xij, yij

)}
(18)

Sustainability 2024, 16, 1102 14 of 29

y∗i =
K

∑
k=1

fk(xi) fk ∈ F (19)

In this context, xi =
(

xi1, xi2, · · · , xij
)
, xij denotes the feature j of the sample i. y∗i

represents the output of the XGBoost model, F symbolizes the collection of CART decision
trees, fk corresponds to a tree, so fk(xi) is the result of tree k. Each CART decision tree
consists of a tree structure, denoted as q , and T leaf nodes. Every leaf node j has a
continuous value corresponding to it, which is termed the weight wj of the leaf node.
The weight vector w is an assembly of the weights from all leaf nodes. The objective of
XGBoost is:

Obj(θ) = L(θ) + Ω(θ), (20)

In supervised learning, a loss function is utilized to quantify the discrepancy between the
model’s predicted values and the actual values. The loss function for the XGBoost model
can be articulated as:

L(θ) =
N

∑
i=1

l(y∗i , yi) +
K

∑
k=1

Ω(fk) (21)

where L(θ) is loss function, y∗i is the prediction, yi is the target, Ω is the regular terms, and
Ω(θ) penalizes the complexity of the model.

Figure 8. A general architecture of XGBoost.

The model is trained using an additive approach, where the prediction for the i-th
instance at the t-th iteration, denoted as ŷ(t)i , can be represented as:

ŷ(t)i = ŷ(t−1)
i + ft(xi) (22)

In this situation, it minimizes the following objective:

Obj(t) =
n

∑
i=1

l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ Ω(ft) (23)

To accelerate the optimization of the objective, the method of second-order approxi-
mation is employed as follows:

Obj(t) =
n

∑
i=1

(
l
(

yi, ŷ(t−1)
i

)
+ gi ft(xi) +

1
2

hi f 2
t (xi)

)
+ Ω(ft),

(24)

Sustainability 2024, 16, 1102 15 of 29

where gi and hi represent the first- and second-order gradient statistics on the loss func-
tion, respectively.

4. Classification Accuracy, Sensitivity, and Specificity Analysis

The classifiers are assessed to understand how well they perform, using a confusion
matrix to calculate specific metrics. The most significant aspect of performance is accuracy,
based on the extent to which classifications are correct. Further metrics applied are recall
and precision [41], and their respective definitions are given below:

Classification Accuracy =
TP + TN

d
× 100% (25)

Sensitivity =
TP

TP + FN
× 100% (26)

Specificity =
TN

TN + FP
× 100% (27)

Positive Predictivity (Precision) =
TP

TP + FP
× 100%

(28)

TP represents the number of True Positive classification results, indicating how many
samples should fall into the “x” classification and are correctly identified by the classifier.
FN gives the number of False Negatives, which are samples that should be classified
as “x” but have been given a different classification. The number of True Negatives is
given by TN and indicates how many samples that should not be in class “x” have been
classified as not in class “x”. FP indicates the number of False Positives, which are samples
incorrectly identified by the classifier as belonging to class “x” when this is not their real
category. The term d gives the number of samples in the test set. A further metric that is
frequently added to the previous metrics when evaluating the classifiers’ performances
is the confusion matrix, sometimes termed the contingency table. This metric provides
a definitive and simple approach to representing the findings from classifications. This
matrix shows binary classification problems through a two-row, two-column matrix. The
meaning of the confusion matrix is shown in Table 6.

Table 6. Confusion matrix for the performance evaluation of learning algorithms.

1st Class (Predicted) 2nd Class (Predicted)

1st class Actual True Positive (TP) False Negative (FN)

2nd class Actual False Positive (FP) True Negative (TN)

5. Implementation Proposed Methods

To evaluate the efficacy of the proposed fault diagnosis approach, an empirical study
was undertaken. The experimental setup employed a desktop computer equipped with
an Intel(R) Core(TM) i7-10700 central processing unit (CPU) operating at 2.90 GHz and
bolstered by 32.0 GB of RAM. The diagnostic methods were coded in the Python program-
ming language. Rapid execution of the method was enabled through the use of specialized
modules tailored for Machine Learning algorithms, optimizers, and cost functions.

5.1. Implementation of SVM

In this study, a dataset of labeled samples from the PV array is carefully collected,
where each sample represents a specific observation from the PV system and is labeled as
either normal or faulty. Before training the SVM model, data preprocessing steps, such
as data cleaning and feature scaling, are performed to enhance model performance and
ensure that all features have equal significance during training. To evaluate the SVM

Sustainability 2024, 16, 1102 16 of 29

model’s performance, the dataset is divided into a training set (80% of the data) used to
teach the SVM model and a 20% testing set used to assess the model’s ability to generalize
to unseen data. Since the PV dataset is nonlinear, the SVMs were trained using a non-
linear Radial Basis Function (RBF) kernel through LIBSVM. Fine-tuning (C) and (gamma)
are of the utmost importance when utilizing a Support Vector Machine (SVM) for fault
detection in PV arrays. These parameters directly influence the SVM model’s ability to
accurately classify samples and its robustness in handling unseen data. In SVMs, (C) acts as
a regularization parameter, and “gamma” serves as the kernel coefficient parameter, which
is especially crucial for non-linear kernels such as the Radial Basis Function (RBF) kernel.
(C) determines the trade-off between maximizing the margin of the decision boundary and
minimizing the classification errors on the training data. Ultimately, the effectiveness of the
SVM model is assessed using common evaluation metrics such as the root-mean-square
error (RMSE) and confusion matrix.

Support Vector Machine-Based Hybrid Expert Systems

Hybrid techniques have emerged as a compelling approach by amalgamating two dis-
tinct fault detection methods into a single algorithm. These techniques have found applica-
tion in fault detection within photovoltaic (PV) systems with the overarching objectives
of: (1) Enhancing the precision of fault detection; (2) Mitigating the computational load,
(3) Facilitating precise differentiation between faults that share similar characteristics; and
(4) Enabling the identification of multiple instances of faults. Support Vector Machine
(SVM)-based hybrid expert systems are intelligent systems that merge the principles of
SVM with other methodologies or techniques. Their goal is to enhance performance, espe-
cially in the decision-making and predictive analysis domains. To ensure the best selection
of hyperparameters, two optimization strategies, the Bees Algorithm (BA) and Particle
Swarm Optimization (PSO), are implemented.

(a) Parameter optimization of SVM based on PSO

Swarm intelligence algorithms are commonly employed in simulations to tackle
problems involving multiple local extrema. The PSO algorithm, which models social
behaviors, such as bird flocking, stands as an exemplar of swarm intelligence. The combined
variable (C) of the SVM penalty factor (C) and the RBF kernel parameter (δ) is used as the
search target of the PSO algorithm so as to find the combinatorial variable value that has
the highest classification accuracy of an SVM. As previously mentioned, the parameters to
be optimized are (C, δ). These parameters should be restricted in order to guarantee the
learning capacity and generalization capacity of the model. The optimization problem is
formulated as:

RMSE =

√
1
n ∑(ȳi − yi)

2 (29)

where ȳi and yi represent the predicted and actual output of the model, and n represents
the number of samples in the dataset.

The PSO algorithm employs particles that move through the hyperparameter space to
identify the best set of hyperparameters that minimize the error rate of the SVM classifier on
the test dataset. The movement of each particle is influenced by its own best-known position
and the global best-known position found by any particle in the swarm. Table 7 presents
the configuration of the PSO parameters specifically designed for PV fault detection. PSO is
established with a simpler architecture, and the process for constructing a PSO-SVM model
is detailed in Algorithm 1.

Sustainability 2024, 16, 1102 17 of 29

Table 7. Default parameters of PSO algorithm for SVM parameter optimization.

Parameters Default Value

Number of iterations (n) 100

(W) Inertia weight 1.1
(w_damp) Damping factor for inertia weight 0.3

Personal attraction coefficient (C1) 0.8

Global attraction coefficient (C2) 1

particles_num 2

Particle dimensions 6

Algorithm 1 Pseudocode of PSO-SVM.

1: Input: - Training dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}
2: - Define the search space for SVM hyperparameters {C, γ}
3: - Set the number of particles, maximum iterations, and inertia weight
4: Create an initial population of particles with random positions and velocities
5: for each iteration until maximum iterations do
6: for each particle do
7: Update the particle’s velocity and position using the PSO equations:
8: velocity(i) = inertia weight ∗ velocity(i)
9: + c1 * random() * (best position(i) - current position(i))

10: + c2 * random() * (global best position - current position(i))
11: position(i) = current position(i) + velocity(i)
12: Evaluate the fitness of the particle’s position by training SVM with the corre-

sponding hyperparameter
13: if fitness(position(i)) > fitness(global best position) then
14: global best position = position(I)
15: end if
16: end for
17: end for
18: Retrieve the hyperparameters corresponding to the global best position
19: Train an SVM model using the optimized hyperparameters on a training dataset
20: Evaluate the performance of the optimized SVM model on a validation dataset
21: Output: Optimized hyperparameters for SVM.

(b) Parameter optimization of SVM based on BA

The Bees Algorithm (BA), inspired by the foraging behavior of honey bees, is em-
ployed to optimize the hyperparameters of Support Vector Machines (SVMs). First, “scout
bees” explore the SVM hyperparameter space, encompassing potential values for parame-
ters such as the penalty parameter C and the gamma parameter δ if using an RBF kernel.
Through a process similar to bees evaluating nectar quality, each scout evaluates the perfor-
mance of the SVM for its specific hyperparameters, typically via cross-validation. Based
on preliminary evaluations, the best-performing hyperparameter combinations, termed
“sites”, are identified. A subset of these sites is distinguished as “elite” due to their superior
performance metrics. By drawing parallels with how bees swarm richer nectar sources,
other bees are “recruited” to further investigate these promising sites. Elite sites naturally
attract more bees than non-elite sites, confirming the search around the hyperparameters
that already show promise. As the bees further scrutinize the surroundings of these sites,
they may discover better combinations of hyperparameters, thus updating the site’s coordi-
nates. However, if certain locations consistently perform poorly over many iterations, they
will be “abandoned”, leading to the initialization of new scouts in different regions of the
hyperparameter landscape. This mechanism ensures that the BA is not overly focused on
local optima, promoting large-scale exploration. As the algorithm progresses, it exhibits a

Sustainability 2024, 16, 1102 18 of 29

pattern of discovery, mobilization, improvement, and intermittent stopping. It reaches con-
vergence either after a predetermined number of iterations or when no further performance
gains are observed, ultimately determining the best-suited SVM hyperparameters.

Finally, Table 8 shows how the parameters for the Bees Algorithm were set to find the
optimal SVM parameters for enhancing the PV fault detection accuracy. However, if the
optimization goal is modified to search for different optimal parameters, the optimization
parameters must be modified to match the new search criteria. Algorithm 2 details the
procedure to construct a BA-SVM model.

Table 8. Default parameters of BA algorithm for SVM parameter optimization.

Parameter Value

Number of scout bees (ns) 50

Number of selected sites (selected bees) (m) 10

Number of elite bees (out of (m) selected sites) (e) 3

Number of bees recruited for best (e) sites (nep) 14

Recruitment numbers of bees for the other (m− e) selected sites (nsp) 4

Neighborhood size for a patch (ngh) 5

Number of iterations (Niter) 100

Algorithm 2 Pseudocode of BA-SVM.

1: Input: - Training dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}
- Define the search space for SVM hyperparameters H = {C, γ}
- Parameter settings of BA

2: Initialize (ns) scout bees with positions P = {p1, p2, . . . , pns} in H
3: for iter = 1 to Niter do
4: for i = 1 to (ns) do
5: f (pi)← SVM_Train(D, pi)
6: if f (pi) > f (pbest) then
7: pbest = pi
8: end if
9: end for

10: Select the top (e) bees with positions Pelite based on f
11: for each p in Pelite do
12: Recruit (nep) bees to search near p
13: for j = 1 to (nep) do
14: pnew ← Explore near p
15: if f (pnew) > f (p) then
16: p = pnew
17: end if
18: end for
19: end for
20: Other bees explore randomly in H
21: end for
22: Retrieve the best hyperparameters pbest
23: Train SVM with pbest and dataset D
24: Output: Optimized hyperparameters pbest for SVM.

5.2. Implementation of XGBoost

XGBoost offers a set of superior parameters that can be tuned to optimize its perfor-
mance. One of the primary parameters is the learning rate, or ‘eta’, which controls the
step size at which the boosting process adjusts the weights of weak learners. The model’s

Sustainability 2024, 16, 1102 19 of 29

complexity is dictated by the number of boosting rounds or trees, denoted as ‘n-estimators’.
The tree’s depth, given by ‘max-depth’, determines how deep each tree can grow, with
deeper trees resulting in more complex models. On the other hand, ‘subsample’ determines
the fraction of samples and features used to build each tree, to prevent overfitting. For
the maximum tree depth, greater values produce results that are more specific to localized
samples. The ‘gamma’ parameter introduces regularization by specifying the minimum
loss reduction necessary to create an additional partition on the terminal node, and ‘min-
child-weight’ specifies the minimum sum of the instance weight required in a child node,
preventing overly fine-grained partitioning. On the other hand, ‘reg-lambda’ provides L2
regularization on the model’s weights to prevent over-fitting.

Another noteworthy aspect is the possibility of ‘early-stopping-rounds’, which enables
the training to halt if the model’s performance on a validation set starts deteriorating.
Furthermore, when validating the model, the number of folds for cross-validation can
be determined using ‘num-folds’. Due to the interaction between these parameters, it is
beneficial to employ methods such as grid search or random search to identify the optimal
hyperparameter set for a specific problem. The information of each parameter is shown
in Table 9. However, “Default values” denote the initial settings that XGBoost uses if not
explicitly altered. When using XGBoost without customizations, it adopts these values.
Although these defaults are based on standard scenarios and often yield decent results,
adjusting them can enhance the performance for particular tasks ordatasets [42,43].

Table 9. Tuning XGBoost model hyperparameters.

Parameters Default Values Range Explanation

learning_rate (eta) 0.3 [0, 1] Reduces size of weight in each step

max_depth 5 [0, 10] Great values of maximum tree depth produce
results that are more specific to localized samples

min child weight 1 [0, 10] Larger values of minimum leaf weight help avoid
local optimization

gamma 0 [0, ∞] Governs loss function

subsample 1 [0, 1] Adjusting the random sampling proportion helps
prevent overfitting

n_estimators 100 [100, 1000] Indicates the number of boosting rounds or
trees to build

reg_lambda 0.1 [0, 10] L2 regularization term on weights; used for
avoiding overfitting.

5.3. XGBoost-Based Hybrid Expert Systems

Optimizing hyperparameters is essential to improving XGBoost’s performance. By
incorporating optimization techniques directly into the XGBoost model, one can system-
atically explore its hyperparameter space. This effort not only aims to boost the model’s
accuracy but also to enhance its predictive capabilities, allowing superior predictive results
to be obtained at significantly lower computational time and cost.

(a) Parameter optimization of XGBoost based on PSO

In this study, XGBoost serves as the basic model for fault detection in the PV array,
while the PSO approach plays a pivotal role in optimizing the hyperparameters of the
XGBoost model. The comprehensive optimization technology involves optimizing seven
parameters that affect the control quality of the XGBoost model. To determine the optimal
XGBoost model using the PSO algorithm, a fitness function described in Equation (29) is
employed. The flowchart illustrating the proposed PSO-XGBoost model for PV array fault
detection is depicted in Figure 9a. Initially, an XGBoost model was developed using the
training dataset. Subsequently, the PSO algorithm was employed to tune the hyperpa-
rameters of the XGBoost model. Within the PSO algorithm, there are several parameters
that drive the optimization process. This includes the population size (p), the maximum

Sustainability 2024, 16, 1102 20 of 29

number of iterations (n), the maximum velocity of particles (Vmax), the individual cognitive
coefficient (c1), the group cognitive coefficient (c2), and the inertia weight (w).

The PSO begins by initializing a population of particles. Each of these particles
represents a unique set of XGBoost hyperparameters, which include values such as the
learning rate, maximum depth, and regularization terms. Once initialized, the XGBoost
model for each particle is trained, and its performance is evaluated using a fitness function.
This function, typically based on a validation dataset, quantifies the model’s performance
with the current hyperparameter set.

In this process, each particle keeps track of the best set of hyperparameters it has
encountered based on a fitness function, known as its “personal best”. In addition, the
best-performing hyperparameter combination across all particles is identified as the “global
best”. As particles navigate the hyperparameter space, their movement or “velocity” is
affected by two main factors: their own personal best and the global best. These attractions,
along with inertia, determine how particles adjust their velocities, with parameters such
as inertial weight and cognitive and social parameters controlling their influence. With
modified velocities, the particles’ positions in the hyperparameter space change, effectively
changing the hyperparameter values. This iterative process of adjusting velocities and
positions continues until convergence is achieved. Convergence is usually determined by a
specific stopping criterion, such as when the improvement to the global best becomes negligible.

Once convergence is achieved, the XGBoost model is trained using the best set of
hyperparameters found, which is the global best, on the entire training dataset. Finally, to
ensure that the optimized model performs well in real-world scenarios, its performance is
evaluated on a separate test dataset. The specific parameters used in PSO can be referred to
in Table 10. The default parameters and typical search spaces for XGBoost optimization
are illustrated in Table 11 while Algorithm 3 offers the basic pseudocode of the PSO-
XGBoost model.

Algorithm 3 Pseudocode of PSO-XGBoost.

1: Training dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}
2: Initialize population of particles with random positions in the hyperparameter space.
3: Evaluate the fitness of each particle using XGBoost error rate.
4: Define personal best (pbest) for each particle and global best (gbest) for the swarm.
5: while termination conditions are not met do
6: for each particle do
7: Update velocity using: vid = w × vid + c1 × rand() × (pbestid − xid) + c2 ×

rand()× (gbestid− xid) Where: vid is the velocity of the ith particle in the dth dimension,
xid is Position of the ith particle in the dth dimension, w is the inertia weight factor, c1
and c2 are personal and global best influence, respectively, and rand() is the random
function between (0 and 1).

8: Update position: xid = xid + vid
9: Evaluate fitness using XGBoost.

10: if fitness better than pbest then
11: Update pbest.
12: end if
13: if fitness better than gbest then
14: Update gbest.
15: end if
16: end for
17: end while
18: Return gbest as optimal hyperparameters.

Sustainability 2024, 16, 1102 21 of 29

Table 10. Default parameters of PSO algorithm for XGBoost parameter optimization.

Parameters Default Value

Number of iterations (n) 100

(W) Inertia weight 1.1

(w_damp) Damping factor for inertia weight 0.95

Personal attraction coefficient (C1) 1

Global attraction coefficient (C2) 1.3

particles_num 30

Particle dimensions 6

Figure 9. Flowchart of XGBoost framework: (a) PSO-XGBoost model; (b) BA-XGBoost model.

Sustainability 2024, 16, 1102 22 of 29

Table 11. Default parameters and typical search spaces for XGBoost optimization.

Parameter Default Value Description

max_depth [1, 10] Maximum depth of the trees

gamma [0.01, 0.9] Regularization term

n_estimators [100, 1000] Number of boosting rounds

subsample [0.5, 1] Fraction of training data for boosting

min_child_weight [0, 5] Minimum sum of instance weight

reg_lambda [0.0001, 1] L2 regularization term on weights

learning_rate (eta) [0.1, 0.9] Step-size shrinkage

(b) Parameter optimization of XGBoost based on BA

The flowchart illustrating the proposed BA-XGBoost model for PV array fault detection
is depicted in Figure 9b. In this optimization model, a population of scout bees is initially
launched where each bee has a unique set of XGBoost parameters derived from the specified
ranges. For instance, a scout might be assigned a max_depth of three, a gamma of 0.5, and
n_estimators set to 500. Each of these scout bees then gauges the fitness of its designated
parameters. This fitness assessment usually involves training the XGBoost model with the
given parameters, using techniques such as cross-validation, and then recording relevant
performance metrics, such as the accuracy or RMSE, as mentioned in Equation (29).

After scouts calculate their fitness scores, the most promising parameter combinations,
those that achieve superior model performance, are classified as “promising sites”. Within
this elite group, some sites stand out more due to their exceptional fitness values and are
therefore termed “elite sites”. The BA then dispatches a larger group of bees to examine
these elite sites more closely. These bees fine-tune the parameters, exploring the nearby
hyperparameter space to see if any neighboring group might provide better results. Con-
versely, promising non-elite sites attract a smaller group of bees for a similar exploratory
mission. To ensure a comprehensive survey of the hyperparameter landscape, some bees
are dispatched to randomly traverse the vast parameter space, safeguarding against an
undue concentration on local regions and facilitating broader exploration.

As this dynamic is repeated, the algorithm progressively improves the hyperparam-
eters. The iterative cycle continues either for a predetermined number of cycles or until
the XGBoost model’s performance improvements reach a plateau. At the conclusion of
this regimen, the algorithm accurately identifies the bee with the highest fitness score and
provides the optimal set of parameters to the XGBoost model for the data in question.
Through the BA, the focus has been on promising regions in the hyperparameter space,
providing a more efficient alternative to exhaustive grid searches, especially in light of the
multifaceted nature of XGBoost hyperparameters.

Table 12 illustrates how the parameters for the Bees Algorithm were set to find the
optimal XGBoost parameters for enhancing its ability to accurately detect photoelectric
faults. Conversely, Table 11 displays the default parameters and common search spaces
for XGBoost optimization. However, if the optimization target was to be modified to
search for different optimal parameters, the optimization parameters would need to be
adjusted to match the new search criteria. Algorithm 4 outlines the procedure for building
a BA-XGBoost model.

Sustainability 2024, 16, 1102 23 of 29

Algorithm 4 Pseudocode of BA-XGBoost.

1: Training dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}
2: Parameter settings of BA
3: XGBoost parameters: learning_rate (eta), max_depth, min child weight, gamma, sub-

sample, n_estimators, reg_lambda
4: Initialize (ns) scout bees at random positions Xi in hyperparameter space.
5: Evaluate fitness F(Xi) using F(X) = ErrorRateXGBoost(X).
6: Set Xbest = min(F(Xi))
7: while termination criteria not met do
8: Employed Bee Phase:
9: for each scout bee i do

10: Generate neighbor X′ = Xi + ϕ× (Xi − Xj), where j ̸= i, ϕ is a random factor,
X′ is a new solution and Xi is the current position

11: if F(X′) < F(Xi) then
12: Xi = X′.
13: end if
14: end for
15: Onlooker Bee Phase:
16: Select (e) bees with probability Pi =

F(Xi)
∑ F(X)

.
17: for selected bee i do
18: Generate neighbor (ngh) as in Employed Phase.
19: Update Xi if F(X′) < F(Xi).
20: end for
21: Scout Bee Phase:
22: if bee’s site not improved for L iterations then
23: Reinitialize bee’s position Xi.
24: end if
25: Update Xbest if better solution found.
26: end while
27: Return Xbest as optimal hyperparameters.

Table 12. Default parameters of BA algorithm for XGBoost parameter optimization.

Parameter Value

Number of scout bees (ns) 50

Number of selected sites (selected bees) (m) 5

Number of elite bees (out of (m) selected sites) (e) 3

Number of bees recruited for best (e) sites (nep) 30

Recruitment numbers of bees for the other (m− e) selected sites (nsp) 10

Neighborhood size for a patch (ngh) 2

Number of iterations (Niter) 100

6. Results and Discussion

The performance of the proposed methods, SVMs and XGBoost, has been assessed in
terms of detection accuracy. These methods are further enhanced by integrating nature-
inspired algorithms, specifically the Bees Algorithm (BA) and Particle Swarm Optimization
(PSO), with the aim of improving the model’s efficacy and accuracy. Figure 10 displays a
confusion matrix that illustrates the performance metrics of the SVM, SVM-PSO, and SVM-
BA, while Figure 11 provides confusion matrix details regarding the classification outcomes
achieved by XGBoost, XGBoost-PSO, and XGBoost-BA. The results for the standard SVM
and XGBoost techniques, together with the newly introduced optimization strategy for
these classification methods, are illustrated in Figure 12.

Sustainability 2024, 16, 1102 24 of 29

As shown in Table 13, an insightful comparison of different Machine Learning clas-
sifiers is provided, demonstrating their effectiveness in detecting faults in a small-scale
photovoltaic (PV) system as described in Section 2. Each classifier’s efficacy is evaluated
based on its accuracy in detecting specific fault types and its overall accuracy. In the
provided data, five scenarios are outlined: F0 represents a healthy condition; F1 and F2
denote intra-string line-to-line faults, with F1 characterized by a large voltage difference
and F2 by a small voltage difference; F3 is identified as a cross-string line-to-line fault;
and F4 signifies an open-circuit fault. In order to ensure the fairness of the experiment
and comparison between the proposed classifier methods, while taking into account the
accuracy and computational complexity of the model, the number of iterations of the
hyperparametric algorithm is set to 100 for each classifier.

Table 13. Comparison of the performance assessment between proposed methods.

ML Classifier

Classes

Overall
Accuracy

F0
(Class No. 0)

F1
(Class No. 1)

F2
(Class No. 2)

F3
(Class No. 3)

F4
(Class No. 4)

User Accuracy

SVM 56.49% 80.27% 34.82% 59.90% 85.73% 63.45%

PSO-SVM 60.46% 91.98% 48.46% 51.89% 92.03% 68.55%

BA-SVM 57.97% 92.79% 64.08% 47.23% 91.42% 70.79%

XGBoost 53.42% 87.02% 57.63% 47.55% 84.76% 65.88%

PSO-XGBoost 75.72% 88.49% 84.32% 80.09% 90.15% 82.79%

BA-XGBoost 83.86% 91.56% 86.56% 80.09% 93.08% 87.56%

In the context of a confusion matrix evaluating the performance of a classification
model, as shown in Figure 10a, FP represents the count of False Positives (6.14%). These
instances denote samples incorrectly classified by the model as belonging to class F3
but should be categorized as F2. Notably, F1 achieves the highest accuracy. Looking at
Figure 10c, it is evident that the classifier BA-SVM shows a significant improvement, with
F2 registering a 12.85% classification rate. Examining the classification metrics in greater
detail improves the comprehension of the BA-XGBoost system’s performance, as shown in
Figure 11c and illustrated in Table 14. The F3 fault had its own challenges: it was correctly
classified at 15.53%, but there was a notable 3.86% rate of misclassification, yielding a user
accuracy of 80.09%. Among all, the F4 fault stood out by achieving the highest accuracy. It
was correctly classified at 20.19% and misclassified at a mere rate of 1.5%, resulting in a
user accuracy of 93.08%.

Table 14. Classification results of the hybrid BA-XGBoost method for the testing data using confu-
sion matrices.

Fault Classes F0 F1 F2 F3 F4 Total User Accuracy

F0 (class no. 0) 16.32% 0.10% 1.40% 1.04% 0.60% 19.46% 83.86%

F1 (class no. 1) 0.40% 18.90% 0.45% 0.84% 0.05% 20.64% 91.56%

F2 (class no. 2) 0.94% 0.25% 16.62% 1.19% 0.20% 19.20% 86.56%

F3 (class no. 3) 0.94% 0.74% 1.44% 15.53% 0.74% 19.39% 80.09%

F4 (class no. 4) 0.60% 0.20% 0.10% 0.60% 20.19% 21.69% 93.08%

Total 19.20% 20.19% 20.01% 19.20% 21.78% Overall Accuracy

Producer
Accuaracy 85.00% 93.61% 83.05% 80.88% 92.69% 87.56%

Sustainability 2024, 16, 1102 25 of 29

An evaluation of the performance of various classifiers is presented in Table 13. Among
the classifiers, BA-XGBoost emerges as the most proficient, achieving an overall accuracy of
87.56%. This indicates its superior ability to correctly classify different types of faults. PSO-
XGBoost is another standout, displaying an overall accuracy rate of 82.79%. Traditional
SVM, while not the most advanced, holds an overall accuracy of 63.45%. PSO-SVM and
XGBoost are also noteworthy, posting overall accuracies of 68.55% and 65.88%, respectively.
In terms of user accuracy for specific fault types, SVM, XGBoost, PSO-SVM, and BA-SVM
show particularly low sensitivity in detecting F0, F2, and F3 faults. On the other hand,
BA-XGBoost provides a balanced performance across the various fault types. Diving
deeper into the classification metrics provides a clearer picture of the system’s performance,
as shown in Figures 10 and 11. The F3 fault had its own challenges; it is evident that
there is a significant misclassification between the categories of F0 and F3. This can be
attributed to the data similarity between the two classes, which leads to reduced accuracy
in classification. While the computational times for all compared methods to detect and
classify PV faults with the number of features considered, the proposed hybrid BA-SVM
and BA-XGBoost are observed to have higher computational times, followed by PSO-
SVM, PSO-XGBoost, SVM, and XGBoost, around 3.2, 2.56, 1.69, 0.91, 0.17, and 0.09 min,
respectively. However, the proposed hybrid BA-XGBoost establishes itself as the most
accurate ML technique for fault diagnosis; all five ML techniques perform better than the
BA-XGBoost in terms of computational time speed.

Figure 10. Confusion matrix illustrating fault identification based on classifiers: (a) SVM, (b) SVM-
PSO, and (c) SVM-BA.

Sustainability 2024, 16, 1102 26 of 29

Figure 11. Confusion matrix illustrating fault identification based on classifiers: (a) XGBoost,
(b) XGBoost-PSO, and (c) XGBoost-BA.

Figure 12. Assessed outcomes of the proposed methods in terms of overall precision.

In the continuous pursuit of enhancing renewable energy technologies, when detecting
faults within small-scale photovoltaic systems, the application of optimization techniques,
whether Particle Swarm Optimization (PSO) or the Bees Algorithm (BA), considerably
elevates the performance of base classifiers such as SVM and XGBoost. The results for
the standard SVM and XGBoost techniques, together with the newly introduced optimiza-
tion strategy for these classification methods, are illustrated in Figure 12. Specifically,
BA-XGBoost stands out with the most impressive overall accuracy among the presented
methods. This suggests that the Bees Algorithm, in this context, offers significant advan-

Sustainability 2024, 16, 1102 27 of 29

tages for parameter optimization, potentially leading to more accurate and reliable fault
detection outcomes in PV systems.

7. Conclusions

This paper highlights the imperative need for advanced fault detection techniques
in PV systems. In a bid to enhance the accuracy and dependability of Machine Learning
classifiers, a small-scale PV system was designed and constructed. This experimental
setup was carefully designed to mimic the complexities of real-world solar systems. By
intentionally introducing certain faults within the arrays, various challenges that these
systems would face in real-world operations were simulated. The primary motivation for
this endeavor was to create a robust dataset, both comprehensive and rooted in realistic
scenarios. Such high-quality training data are vital, especially for the Machine Learning
algorithms deployed. The addressed faults include line-to-line faults (LLFs) in different
scenarios and open-circuit fault (OCFs), and tests were conducted in accordance with
established standard testing conditions. By utilizing the power of Machine Learning,
specifically through Support Vector Machines (SVMs) and Extreme Gradient Boosting
(XGBoost), the research successfully demonstrated the capabilities of these techniques in
accurately identifying a multitude of fault conditions present in PV arrays. To further
improve their accuracy in PV fault detection, this paper introduces two optimization
algorithms: Particle Swarm Optimization (PSO) and the Bees Algorithm (BA). The primary
goal is to improve the model’s precision and overall performance. The evaluation of these
fault detection and classification methods utilizes metrics such as accuracy and confusion
matrices. Among the methods compared, BA-XGBoost shows the highest accuracy in
detecting different types of faults and overall performance, making it the recommended
choice for fault detection in PV systems. The findings put forth a persuasive case for the Bees
Algorithm’s resilience and efficiency. The SVM and XGBoost classifiers optimized using BA
demonstrated exceptional accuracy in detecting complex PV array faults, achieving 70.79%
and an impressive 87.56%, respectively. In contrast, classifiers fine-tuned with the PSO
algorithm registered a comparatively lower performance, with SVM scoring 68.55% and
XGBoost reaching 82.56%. In essence, the Bees Algorithm (BA) had a significant impact on
improving the efficiency of the XGBoost classifier, which indicates the possibility of using
this technique not only in fault detection within solar energy but also across other domains.

Author Contributions: Methodology, F.S., F.A. and M.P.; software, F.S. and M.P.; validation, F.S.,
F.A. and M.P.; investigation, F.S. and F.A.; writing—original draft, F.S.; writing—review & editing,
F.S.; supervision, F.A. and M.P.; project administration, F.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study does not require ethical approval because it is
related to my study.

Informed Consent Statement: Not applicable as this study does not involve humans.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

List of Abbreviations

AC Alternative Current ML Machine Learning
AI Artificial Intelligence MPP Maximum Power Point (W)
BA Bees Algorithm OCF Open-Circuit Fault
DC Direct Current Pmax Maximum Power Point
FD Fault Detection PV Photovoltaic
FDC Fault Detection Classification P-V Power-Voltage
FN False Negative PVA Photovoltaic Arrays

Sustainability 2024, 16, 1102 28 of 29

FP False Positive PVS Photovoltaic System
G Sun Irradiance (W/m2) SCF Short-Circuit Fault
Impp Current at Maximum Power Point (A) STC Standard Test Condition
Isc Short-Circuit Current (A) Vmpp Voltage at Maximum Power Point (V)
I-V Current–Voltage Voc Open-Circuit Voltage (V)
LLF Line-to-Line Fault

References
1. Matemilola, S.; Sijuade, T. Renewable Resource. In Encyclopedia of Sustainable Management; Springer International Publishing:

Cham, Switzerland, 2022; pp. 1–6.
2. Mellit, A.; Tina, G.M.; Kalogirou, S.A. Fault detection and diagnosis methods for photovoltaic systems: A review. Renew. Sustain.

Energy Rev. 2018, 91, 1–17. [CrossRef]
3. Pillai, D.S.; Rajasekar, N. A comprehensive review on protection challenges and fault diagnosis in pv systems. Renew. Sustain.

Energy Rev. 2018, 91, 18–40. [CrossRef]
4. Madeti, S.R.; Singh, S.N. A comprehensive study on different types of faults and detection techniques for solar photovoltaic

system. Sol. Energy 2017, 158, 161–185. [CrossRef]
5. Ghosh, R.; Das, S.; Panizrahi, C.K. Classification of different types of faults in a photovoltaic system. In Proceedings of the 2018

International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), Chennai, India, 28–29
March 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 121–128.

6. Arani, M.S.; Hejazi, M.A. The comprehensive study of electrical faults in pv arrays. J. Electr. Comput. Eng. 2016, 2016, 8712960 .
7. Akram, M.N.; Lotfifard, S. Modeling and health monitoring of dc side of photovoltaic array. IEEE Trans. Sustain. Energy 2015, 6,

1245–1253. [CrossRef]
8. Chen, Z.; Han, F.; Wu, L.; Yu, J.; Cheng, S.; Lin, P.; Chen, H. Random forest based intelligent fault diagnosis for pv arrays using

array voltage and string currents. Energy Convers. Manag. 2018, 178, 264–2018. [CrossRef]
9. Lu, X.; Lin, P.; Cheng, S.; Lin, Y.; Chen, Z.; Wu, L.; Zheng, Q. Fault diagnosis for photovoltaic array based on convolutional neural

network and electrical time series graph. Energy Convers. Manag. 2019, 196, 965–2019. [CrossRef]
10. Chen, Z.; Wu, L.; Cheng, S.; Lin, P.; Wu, Y.; Lin, W. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel

extreme learning machine and iv characteristics. Appl. Energy 2017, 204, 931–2017. [CrossRef]
11. Chang, H.-C.; Lin, S.-C.; Kuo, C.-C.; Yu, H.-P. Cloud monitoring for solar plants with support vector machine based fault detection

system. Math. Probl. Eng. 2014, 2014, 564517. [CrossRef]
12. Harrou, F.; Dairi, A.; Taghezouit, B.; Sun, Y. An unsupervised monitoring procedure for detecting anomalies in photovoltaic

systems using a one-class support vector machine. Sol. Energy 2019, 179, 58–2019. [CrossRef]
13. Yi, Z.; Etemadi, A.H. Line-to-line fault detection for photovoltaic arrays based on multiresolution signal decomposition and

two-stage support vector machine. IEEE Trans. Ind. Electron. 2017, 64, 8546–8556. [CrossRef]
14. Adhya, D.; Chatterjee, S.; Chakraborty, A.K.; Diagnosis of PV Array Faults Using RUSBoost. J. Control. Autom. Electr. Syst. 2023,

34, 157–165. [CrossRef]
15. Jimenez-Aparicio, M.; Patel, T.R.; Reno, M.J.; Hernandez-Alvidrez, J. Protection Analysis of a Traveling-Wave, Machine-Learning

Protection Scheme for Distributions Systems With Variable Penetration of Solar PV. IEEE Access 2023, 11, 127255–127270. [CrossRef]
16. Sairam, S.; Seshadhri, S.; Marafioti, G.; Srinivasan, S.; Mathisen, G.; Bekiroglu, K. Edge-based explainable fault detection systems

for photovoltaic panels on edge nodes. Renew. Energy 2022, 185, 1440–2022. [CrossRef]
17. Eskandari, A.; Milimonfared, J.; Aghaei, M. Fault detection and classification for photovoltaic systems based on hierarchical

classification and machine learning technique. IEEE Trans. Ind. Electron. 2020, 68, 12750–12759. [CrossRef]
18. Badr, M.M.; Abdel-Khalik, A.S.; Hamad, M.S.; Hamdy, R.A.; Hamdan, E.; Ahmed, S.; Elmalhy, N.A. Intelligent fault identification

strategy of photovoltaic array based on ensemble self-training learning. Sol. Energy 2023, 249, 122–138. [CrossRef]
19. Eskandari, A.; Milimonfared, J.; Aghaei, M. Line-line fault detection and classification for photovoltaic systems using ensemble

learning model based on IV characteristics. Sol. Energy 2020, 21, 354–365. [CrossRef]
20. Hong, Y.-Y.; Pula, R.A. Diagnosis of photovoltaic faults using digital twin and PSO-optimized shifted window transformer. Appl.

Soft Comput. 2024, 150, 111092. [CrossRef]
21. Eldeghady, G.S.; Kamal, H.A.; Hassan, M.A.M. Fault diagnosis for pv system using a deep learning optimized via pso heuristic

combination technique. Electr. Eng. 2023, 105, 2287–2301. [CrossRef]
22. Garud, K.S.; Jayaraj, S.; Lee, M. A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic,

genetic algorithm and hybrid models. Int. J. Energy Res. 2021, 45, 6–35. [CrossRef]
23. Adhya, D.; Chatterjee, S.; Chakraborty, A.K. Performance assessment of selective machine learning techniques for improved PV

array fault diagnosis. Sustain. Energy Grids Netw. 2022, 29, 100582. [CrossRef]
24. Chine, W.; Mellit, A.; Lughi, V.; Malek, A.; Sulligoi, G.; Pavan, A.M. A novel fault diagnosis technique for photovoltaic systems

based on artificial neural networks. Renew. Energy 2016, 90, 501–512. [CrossRef]
25. Kenny, R.P.; Viganó, D.; Salis, E.; Bardizza, G.; Norton, M.; Müllejans, H.; Zaaiman, W. Power rating of photovoltaic modules

including validation of procedures to implement IEC 61853-1 on solar simulators and under natural sunlight. Prog. Photovoltaics
Res. Appl. 2013, 21, 1384–1399. [CrossRef]

http://doi.org/10.1016/j.rser.2018.03.062
http://dx.doi.org/10.1016/j.rser.2018.03.082
http://dx.doi.org/10.1016/j.solener.2017.08.069
http://dx.doi.org/10.1109/TSTE.2015.2425791
http://dx.doi.org/10.1016/j.enconman.2018.10.040
http://dx.doi.org/10.1016/j.enconman.2019.06.062
http://dx.doi.org/10.1016/j.apenergy.2017.05.034
http://dx.doi.org/10.1155/2014/564517
http://dx.doi.org/10.1016/j.solener.2018.12.045
http://dx.doi.org/10.1109/TIE.2017.2703681
http://dx.doi.org/10.1007/s40313-022-00947-6
http://dx.doi.org/10.1109/ACCESS.2023.3330464
http://dx.doi.org/10.1016/j.renene.2021.10.063
http://dx.doi.org/10.1109/TIE.2020.3047066
http://dx.doi.org/10.1016/j.solener.2022.11.017
http://dx.doi.org/10.1016/j.solener.2020.09.071
http://dx.doi.org/10.1016/j.asoc.2023.111092
http://dx.doi.org/10.1007/s00202-023-01806-6
http://dx.doi.org/10.1002/er.5608
http://dx.doi.org/10.1016/j.segan.2021.100582
http://dx.doi.org/10.1016/j.renene.2016.01.036
http://dx.doi.org/10.1002/pip.2365

Sustainability 2024, 16, 1102 29 of 29

26. Subudhi, B.; Pradhan, R. A comparative study on maximum power point tracking techniques for photovoltaic power systems.
IEEE Trans. Sustain. Energy 2012, 4, 89–98. [CrossRef]

27. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS’95. Proceedings of the Sixth
International Symposium on Micro Machine and Human Science,Nagoya, Japan, 4–6 October 1995; IEEE: Piscataway, NJ, USA,
1995; pp. 39–43.

28. Kennedy, J.; Eberhart, R.C. Particle swarm optimization. Encycl. Mach. Learn 2010, 4, 760–766.
29. Pham, D.T.; Ghanbarzadeh, A.; Koç, E.; Otri, S.; Rahim, S.; Zaidi, M. The bees algorithmâa novel tool for complex optimisation

problems. In Intelligent Production Machines and Systems; Elsevier: Amsterdam, The Netherlands, 2006; pp. 454–459.
30. Kamsani, S.H. Improvements on the Bees Algorithm for Continuous Optimisation Problems. Ph.D. Thesis, University of

Birmingham,Birmingham, UK, 2016.
31. Pham, D.T.; Castellani, M.; Thi, H.A.L. Nature-inspired intelligent optimisation using the bees algorithm. In Transactions on

Computational Intelligence XIII; Springer: Berlin/Heidelberg, Germany, 2014; pp. 38–69.
32. Suliman, F.; Anayi, F.; Packianather, M. Bees-algorithm for parameters identification of pv models. In Proceedings of the 2022 2nd

International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India,
28–29 April 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 2219–2223.

33. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995.
34. Carrizosa, E.; Morales, D.R. Supervised classification and mathematical optimization. Comput. Oper. Res. 2013, 40, 150–165.

[CrossRef]
35. Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder

by the authors). Ann. Stat. 2000, 28, 337–407. [CrossRef]
36. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001 29, 1189–1232. [CrossRef]
37. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference

on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
38. Wang, H.; Sun, F. optimal sensor placement and fault diagnosis model of pv array of photovoltaic power stations based on

xgboost. In IOP Conference Series: Earth and Environmental Science; IOP Publishing:Bristol, UK, 2021; Volume 661, p. 012025.
39. Mellit, A.; Kalogirou, S. Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems.

Renew. Energy 2022, 184, 1090–2022. [CrossRef]
40. Wang, Y.; Pan, Z.; Zheng, J.; Qian, L.; Li, M. A hybrid ensemble method for pulsar candidate classification. Astrophys. Space Sci.

2019, 364, 139. [CrossRef]
41. Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International

Conference on Machine Learning,Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240.
42. Jiang, H.; He, Z.; Ye, G.; Zhang, H. Network intrusion detection based on PSO XGBoost model. IEEE Access 2020, 8, 58392–58401.

[CrossRef]
43. Liu, B.; Wang, X.; Sun, K.; Zhao, J.; Li, L. Fault diagnosis of photovoltaic array based on xgboost method. In Proceedings of

the 2021 IEEE Sustainable Power and Energy Conference (iSPEC), Nanjing, China, 23–25 December 2021; IEEE: Piscataway,
NJ, USA, 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSTE.2012.2202294
http://dx.doi.org/10.1016/j.cor.2012.05.015
http://dx.doi.org/10.1214/aos/1016218223
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1016/j.renene.2021.11.125
http://dx.doi.org/10.1007/s10509-019-3602-4
http://dx.doi.org/10.1109/ACCESS.2020.2982418

	Introduction
	A Small-Scale PV Array
	Experimental Setup
	Validating the Model for PV Modules
	Typical Faults Curves and Interpretation
	Line-to-Line Fault in a PV Array under STC
	Open-Circuit Fault under STC

	Proposed Fault Diagnosis Method
	Particle Swarm Optimization (PSO)
	The Bees Algorithm
	Support Vector Machines (SVMs)
	Extreme Gradient Boosting (XGBoost)

	Classification Accuracy, Sensitivity, and Specificity Analysis
	Implementation Proposed Methods
	Implementation of SVM
	Implementation of XGBoost
	XGBoost-Based Hybrid Expert Systems

	Results and Discussion
	Conclusions
	References

