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Abstract

This work endeavoured to improve current methods of investigating cerebrovascular function
using functional magnetic resonance imaging (fMRI). The main areas identified for improve-
ment were retrospective motion correction (Chapter 3) and data-based quantification of cardiac
pulsatility and heart rate variability (Chapters 4 and 5).

Chapter 3 demonstrated that conventional motion correction techniques result in erroneous
motion estimates in scans of cerebrovascular function. The severity of this was investigated
using an external camera and novel methods were introduced to improve motion estimates. The
ICA-based method more accurately estimated motion when compared with the other methods.
However, this didn’t work for multi-PLD pseudo-continuous ASL scans. Additionally, the
ICA-based methods performed the best when quantifying measures of cerebrovascular function.
Therefore, I would recommend the use of an ICA in the calculation of motion parameters for
scans of cerebrovascular function.

Chapter 4 aimed to develop data-based methods to quantify cardiac pulsatility using resting-
state fMRI (rfMRI). Ultimately, these methods failed because the cardiac signal was aliased and
could not be accurately located. This chapter also showed that a regression-based approach using
cardiac-related components as regressors would be better in the estimation of cardiac pulsatility.

In Chapter 5, two novel methods of estimating cardiac pulsatility were introduced. Both
methods created training datasets by isolating independent components that were cardiac-related.
These were then used to train FSL’s ICA-based Xnoisifier (FIX). The first method (HRV method)
used quality physiological traces to achieve this. Whereas the second method (Frequency method)
used only the frequency data. Then, FIX was used to isolate cardiac components for all rfMRI
datasets. Estimates of cardiac pulsatility were produced and compared to a gold standard. Results
showed that both methods correlated highly with this gold standard. The HRV method showed
slightly higher correlations than the Frequency method and is the recommended method.
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Chapter 1

Introduction to fMRI

1.1 Chapter Overview

Functional Magnetic Resonance Imaging (fMRI) is widely used to map brain function. It is
thought to be a superior method of mapping brain function due to its relatively high spatial
resolution. The majority of fMRI experiments make use of the Blood Oxygenation Level
Dependent (BOLD) effect, first described by Ogawa and colleagues in 1990 (Ogawa et al., 1990).
They showed that by using the BOLD technique, signals from the brain micro-vasculature could
be measured. In 1992, the first detections of the BOLD effect were reported by three separate
labs (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992). Since then, BOLD fMRI
has been used extensively by cognitive neuroscientists to investigate the relationship between
behaviour and the brain (Jezzard et al., 2003). While many fMRI studies use tasks to activate
areas of the brain, resting-state fMRI (rfMRI) uses the ongoing fluctuations of neural activity to
infer connections between different regions (Lee et al., 2013; Smith et al., 2013; Van Essen et al.,
2013). Additionally, rfMRI can be used to identify resting-state networks (RSNs), disparate
regions of the brain connected together to support functional processing (Lee et al., 2013; Smith
et al., 2013; Van Essen et al., 2013). During an rfMRI experiment, participants are instructed
to not perform any cognitive tasks so that the resting brain can be measured. Biswal and
colleagues (Biswal et al., 1995) performed the first rfMRI experiment and detected spontaneous
low frequency fluctuations (LFFs) within the BOLD signal. The authors also noted that these
LFFs showed a high correlation with the left and right motor cortex at rest (Biswal et al., 1995).
There is evidence suggesting that rfMRI can be used in surgical planning (Bettus et al., 2010;
Kokkonen et al., 2009; Liu et al., 2009; Shimony et al., 2009), in the detection of patients with
Alzheimer’s Disease (Dai et al., 2012; Koch et al., 2012; Supekar et al., 2008) and in the detection
of patients with autism (Anderson et al., 2011). Since BOLD-fMRI is derived from a vascular
signal, conclusions related to the health of the cerebrovasculature can also be drawn from it.

Perfusion imaging measures brain perfusion, the rate of blood delivery to a particular region,
which when combined with other measures can lead to the quantification of cerebral blood flow
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(CBF) (Alsop et al., 2015; Buxton et al., 1998; Chen et al., 2008), cerebrovascular resistance
(CVR) (Fierstra et al., 2013) and the cerebral metabolic rate of oxygen consumption (CMRO2)
(Davis et al., 1998; Germuska et al., 2019; Hoge et al., 1999a; Merola et al., 2016; Wise et al.,
2013). These metrics allow us to understand the cerebrovasculature much better. Typically,
perfusion imaging can be performed in one of two ways, using an exogeneous contrast agent
in a process known as Dynamic Susceptibility Contrast, or using arterial spin labelling (ASL)
which will be covered in detail in a further section in this chapter. From here on when referring
to perfusion imaging I will be talking about ASL.

In this chapter, I will introduce the basic concepts that enable functional imaging, including
spin, precession, echo creation and k-space (among other fundamental concepts), as well as
introduce and explain the BOLD effect and ASL imaging methods.

1.2 Nuclear Magnetic Resonance

1.2.1 Spin

Functional Magnetic Resonance Imaging (fMRI) is an adapted version of Magnetic Resonance
Imaging (MRI), an imaging technique that uses the principles of Nuclear Magnetic Resonance
(NMR), to explore the functional aspects of the brain. To fully understand the principles of
fMRI, one must understand the principles of NMR. NMR was initially discovered in 1938 when
researchers used a beam of lithium chloride, an electromagnet and a hairpin coil to measure the
resonance of peaks of lithium and chlorine (Rabi et al., 1938). This was taken further in the
1940s when two separate groups demonstrated NMR in condensed matter (Bloch et al., 1946;
Purcell et al., 1946). The protons and neutrons that make up matter have an intrinsic quantum
mechanical property known as spin which is a quantum mechanical form of angular momentum
(Buxton, 2009). Many believe that spin can be likened to a ball spinning, which is implied by the
name spin. However, this is not the case as spin is an intrinsic characteristic of the protons and
neutrons and its values occur in specific quantized values (Jezzard et al., 2003). Protons (and
neutrons) that make up a nucleus do so in pairs of opposite spin (Buxton, 2009). This results
in elements with even numbers of protons and neutrons having no net spin and those with odd
numbers having a net spin. Elements with no net spin have no NMR signal associated with them
and thus cannot be measured in this way (Jezzard et al., 2003). The magnetic dipole moment
is a property closely related to spin and it is this property that makes protons slightly magnetic.
The relationship between the magnetic dipole moment and the spin angular momentum is shown
in equation 1.1, where −→

µ is the magnetic dipole moment, γ is the gyromagnetic ratio (for a
hydrogen atom this is 4.258×107 HzT−1) and

−→
S is the spin. MRI is an adapted version of NMR

that produces images of the inside of a human body, which contains an abundance of hydrogen
atoms. Hydrogen has only one proton within its nucleus and so has a net spin. This coupled with
its abundance in the human body makes hydrogen an important part of MRI experiments.
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−→
µ = γ

−→
S (1.1)

1.2.2 Precession, Excitation and Relaxation

In the presence of a uniform external magnetic field, a torque will be exerted on the protons
causing the magnetic dipole moment to align either parallel (low energy state) or anti-parallel
(high energy state) (Figure 1.1) to the magnetic field (Huettel et al., 2014). The ratio of parallel
to anti-parallel alignment can be calculated from equation 1.2, where N+ is the number of
anti-parallel spins, N− is the number of parallel spins, E is energy, k is the Boltzmann Constant
and T is the temperature. The energy variable can be calculated using equation 1.3, where ℏ is
the reduced Planck Constant and B0 is the Magnetic Field Strength. Assuming a 3T scanner
and a temperature of 37◦ C (average human body temperature) the ratio of parallel spins to
anti-parallel spins is equal to 1.00003.

N+

N− = e−
E
kT (1.2)

E = γℏB0 (1.3)

The percentage of spins aligning parallel can be determined from equation 1.4. This was
calculated to be ∼50.00008% and so the percentage aligning anti-parallel is ∼49.99992%.
Therefore, the majority of the proton’s magnetic dipole moments will align parallel to the field as
this is a lower energy state (although the difference in those aligning parallel and those aligning
anti-parallel is small ∼0.00016%). This causes a net magnetisation, M0, to occur in the direction
parallel to the B0 field.

%N− =
N−

N−+N+
·100 (1.4)

Fig. 1.1 Magnetisation before and after alignment with an external magnetic field. Initially, the
magnetic moments will be orientated in a random direction, but in the presence of an external
magnetic field, they will align parallel (or anti-parallel) to the field.
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In the presence of this B0 field, a torque will be exerted on the magnetic dipole moments
causing them to precess around the direction of the magnetic field (Buxton, 2009). The frequency
of precession, ν , is known as the Larmor frequency and is directly proportional to the strength
of the magnetic field. It can be calculated using equation 1.5. Figure 1.2 diagrammatically
represents precession for an individual proton.

ν = γB0 (1.5)

Fig. 1.2 Diagrammatic representation of precession for an individual proton when in the presence
of an external magnetic field (B0). The spin axis will precess around the B0 field as depicted by
the circular arrow with frequency ν

The sum of all the individual proton’s magnetic dipole moments is called the net magneti-
sation vector (M0) and this quantity is zero in the absence of an external magnetic field. When
aligned with the B0 field, the value of M0 is substantially smaller than that of B0. To measure an
MR signal, the net magnetisation vector needs to be perturbed so that it has a transverse compo-
nent associated with it (Jezzard et al., 2003). This is achieved using the transmit radiofrequency
(RF) coils. Within these coils, an oscillating current produces an oscillating magnetic field known
as the B1 field. If the oscillation frequency is at the Larmour frequency for which resonance
occurs, the magnetisation is tipped towards the transverse plane. The angle of perturbation is
known as the flip angle (α). While the magnetic field is oscillating, M0 will move towards the
transverse plane. As noted by Bloch, the M0 vector can be resolved into three components, Mx(t),
My(t), and Mz(t) (Bloch, 1946). Mz(t) is defined as the longitudinal component and Mx(t) and
My(t) are known as the transverse components, which together in the rotating frame are called
Mxy(t). Once the magnetisation is tipped away from the longitudinal z-direction, the transverse
component of the M(t) will precess in the x-y plane and will induce an oscillating voltage in
the RF receiver coils. This oscillating voltage can be converted into a digital signal which is the
MR signal. The precession caused by the B1 field continues after it is switched off and M(t)

will begin to realign with B0 in a process known as relaxation. During relaxation the transverse
components of M(t) will reduce in magnitude and the longitudinal component will increase.
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The precession of the transverse components of M(t) will induce an oscillating voltage in the
RF receive coils and therefore an MR signal is generated during relaxation. The longitudinal
and transverse magnetisations are defined in equations 1.6 and 1.7, where t is time, T1 is the
longitudinal relaxation time constant and T2 is the transverse relaxation time constant.

Mz(t) = M0(1− e
−t
T1 ) (1.6)

Longitudinal relaxation is characterised by the time constant T1 whereas transverse relaxation
is characterised by the time constant T2.

Mxy = M0e
−t
T2 (1.7)

In reality, the decay of the transverse magnetisation is much quicker than its theoretical decay.
This is due to local and external magnetic field inhomogeneities that interact with the individual
spins, causing them to move out of phase with each other (dephase) much quicker. This is called
T ∗

2 decay and is represented in equation 1.8, where T
′

2 is the relaxation rate contribution from the
field inhomogeneities.

1
T ∗

2
=

1
T2

+
1
T ′

2
(1.8)

These principles form the basis of any MRI experiment. A patient is placed into the static B0

field, and the M0 of the protons within their water molecules align with it. A B1 field oscillating
at the Larmor frequency is used to perturb M0 and rotate the magnetisation towards the transverse
plane. During this, the magnetisation will precess around B0. This precession continues even
when the B1 field is switched off, however M(t) will begin to relax and re-align with B0. The
precession of M(t) produces RF signal which can be detected in the RF receiver coils. This is
the MR signal. Figure 1.3 demonstrates these steps diagrammatically.
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Fig. 1.3 The generation of an MR signal. A. The initial magnetisation is aligned with the B0 field.
B. A B1 field is used to perturb the system (in this case a 90° flip angle was used). C. While the
signal is perturbed, M(t) precesses in the x-y plane and a measurable signal can be detected. D.
Once the B1 field is switched off, the magnetisation relaxes back into alignment with the B0 field.
During which, a measurable signal can be detected. E. B0 and M(t) are back in alignment.

1.3 Basic MR Signals

The most basic MR signal that can be acquired is called free induction decay (FID) which is
collected by perturbing the net magnetisation and recording the signal received. FID was first
detected by Hahn in the 1950s (Hahn, 1950a) and a simulation of FID is shown in Figure 1.4. T ∗

2

weighted signal can be obtained from FID as this is the raw signal which includes dephasing
information described by T ∗

2 .

Fig. 1.4 A simulated example of the free induction decay (FID) signal. The signal oscillates at
the Larmour frequency and is dampened by T2∗ decay. A T2∗ weighted signal can be measured
from FID. The parameters used in this simulation this were; T1=0.6 s, T2=0.1 s.
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1.3.1 Echo Creation

FID alone is unable to measure T2 weighted signal and another technique must be used to achieve
this. This technique makes use of echo creation. Individual proton spins dephase more quickly
than expected due to magnetic field inhomogeneities and this is characterised by T ∗

2 . If the
inhomogeneous dephasing could be removed then one could measure T2 weighted signal. In the
1950s Hahn discovered that the proton spins could be refocused by use of a pair of consecutive
90◦ RF pulses separated by time period, τ (Hahn, 1950b). This refocusing resulted in the
reversal of some dephasing allowing M(t) to regrow to a measurable value. The regrowth of
M(t) is called an echo. In the paper where Hahn first described the spin echo, the initial 90◦

pulse was used to move the spins into the transverse plane, and the second 90◦ pulse was used to
move the spins back into the longitudinal plane. The x-component of the spins will still precess
and, after some time, refocus to produce an echo (Figure 1.5).

Fig. 1.5 Figure describing Spin Echo with two consecutive 90◦ pulse (taken from (Hahn, 1950b)).
A. Spins are all precessing in the longitudinal plane. B. A 90◦ RF pulse is applied to move the
spins into the transverse plane. C. Spins precess in the transverse plane at different frequencies.
D. A second 90◦ pulse is applied and the spins are moved into the longitudinal plane. E. The
z-component of these spins will be static and in alignment with Mz. The x-component will
precess around the x-y plane. F. After a time period (2τ from the start of the experiment) the
spins precessing in the x-y plane will refocus forming an echo.

This sequence was further modified by Carr and Purcell who proposed the use of an initial
90◦ RF pulse, to move the spins into the transverse plane. Following this, a 180◦ RF pulse
(applied at time τ after the 90◦ pulse) was used to invert the spins and cause them to refocus
instead of two 90◦ pulses (Carr and Purcell, 1954). By doing this the signal regrows back to the
T2 curve. Repeating this process multiple times enables the measurement of the T2 decay curve.
This process is simulated in Figure 1.6.
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Fig. 1.6 A simulated example of a multiple spin echo sequence used to estimate T2 decay. The
blue line represents the MR signal which initially decays and is then regrown after the refocusing
pulse is turned on. The green line represents the estimated T2 decay curve. The red lines represent
the spin echoes. In this simulation 3 echoes were used with parameters; T1=0.6 s, T2=0.1 s.

Another method of generating an echo that doesn’t require the use of another RF pulse is
called a gradient echo which is T ∗

2 dependent. This method works by initially using a negative
gradient to dephase the spins and causes them to precess in a frequency dependent pattern (Elster,
1993). Then a positive gradient is used to rephase the spins and generates a gradient echo.

The longitudinal magnetisation (Mz(t)) is very small in comparison to the B0 field and, as
such, its characteristic time constant, T1, is also difficult to measure. The accepted method of
measuring T1 is called Inversion Recovery (IR) and uses an initial 180◦ RF pulse to flip M0 so
that it points in the opposite direction to B0. Following this 180◦ RF pulse, the magnetisation is
allowed to evolve for a time period known as the inversion time (TI) and then a 90◦ pulse is used
to flip the resulting longitudinal magnetisation into the transverse plane. During the inversion
time, the individual spins will relax back to alignment with the B0 field at a rate determined by
their T1 relaxation value (Jezzard et al., 2003). Different tissues in the body will relax at different
T1 rates and those with shorter T1 values will relax quicker than those with longer T1 values,
therefore defining different tissue types. A simulation of inversion recovery is shown in Figure
1.7.
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Fig. 1.7 Simulation of Inversion Recovery to determine T1 curves for two different tissue types.
The two dotted lines represent each of the estimated T1 curves. The magnetisation is tipped into
the -z direction with a 180◦ RF pulse and then relaxes back to the +z direction at a rate of T1

1.4 Image Formation

1.4.1 K-space

The signal detected by the receiver coils is not an image, instead, it is a mixture of signals which
are contained within k-space. From Fourier theory, we know that a 2D image can be represented
by a set of sine and cosine terms that differ by their frequency and amplitude. The information
collected by the receiver coils is in this form and the signals are known as spatial frequencies.
An inverse Fourier transform must be used to convert these spatial frequencies into an image.
Equation 1.9 shows the discrete Fourier transform used to convert between k-space and image
space for a 1-dimensional signal.

X j =
N−1

∑
k=0

xke
−2πik j

N , j = 0,1, ...,N −1 (1.9)

Before an image can be generated, enough of k-space must be sampled to ensure good data
quality. Sampling of k-space can be achieved through many different methods, one of these is
Echo Planar Imaging, which will be discussed further in section 1.5.

1.4.1.1 Gradients

Magnetic field gradients are used to vary the precession frequency of the magnetisation M at
different points in space to localise the source of the MR signal. These gradients are generated
in gradient coils and there are three different types. Each gradient works to vary the magnetic
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field in each of the three spatial directions (x, y, z). To select an axial slice, a gradient is applied
in the z-direction with the magnetic field gradient causing spins to precess at different rates
depending on their position in the z direction. This leads to spins with position dependent
resonant frequencies. An RF pulse with frequency matching the resonant frequency of spins
in the desired slice will excite only the spins within that slice, thus selecting it. Equation 1.10,
which is a variation of equation 1.5, describes the effect of the linearly varying magnetic field on
the resonant frequency of spins along the z-direction. As before ν is the precessional frequency
as a function of z, γ is the gyromagnetic ratio and B0 is the magnetic field strength as a function
of z.

ν(z) = γB0(z) (1.10)

The x-direction is normally denoted the frequency encoding direction. Gradients applied
in this direction result in a linear series of frequencies representing spatial locations along the
x-axis. This results in spins that precess slower where the gradient is weakest and faster where
the gradient is strongest. In the y-direction, magnetic field gradients applied momentarily alter
the phase of precession of the spins in the y-direction for a given frequency in the x-direction.
This process is called phase encoding. For this explanation, frequency encoding was chosen to
work in the x-direction and phase encoding was chosen to work in the y-direction, however the
choice of the direction of the x, y, z coordinate system is arbitrary. Figure 1.8 shows the effect of
the different magnetic field gradients on the magnetic field.
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Fig. 1.8 A representation of the effect each gradient field has on the magnetic field. For example,
when the x-gradient is on, the frequency of the proton precession is altered in the x-direction. In
addition an example where there is no gradient field is included. This figure is adapted from the
figure found here: https://www.mriquestions.com/gradient-coils.html

In k-space, the frequency encoding gradient corresponds to the sampling of a single line of
k-space in one direction (the kx-direction in this example), whereas the phase encoding gradient
gradient alters the position that this line of k-space is sampled in the ky direction.

A typical MR experiment follows a complex pulse sequence that dictates when each RF pulse
and gradient field are used. By repeating the sequence and only changing the phase encoding
gradient one can cycle through k-space and collect a full image (or slice). Each repetition of the
sequence would encode one line of k-space and the time between each repeat is the repetition
time (TR). To collect an image of the whole brain, multiple slices must be acquired by changing
the slice select gradient and then traversing k-space as outlined earlier in this section. An example
of a pulse sequence used to acquire a slice and its corresponding k-space is shown in Figure 1.9.
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Fig. 1.9 A pulse sequence and its corresponding k-space acquisition. Each letter (A, B, C &
D) represents the different parts of the pulse sequence on the k-space image. Each repetition
of this sequence would acquire a different part of k-space by changing Gy (the phase encoding
direction) only. Finally, after all spatial areas of k-space are acquired a discrete Fourier transform
can be used to convert the data into image space.

1.5 EPI Imaging

As explained in the previous section, an image is formed by using magnetic field gradients
to navigate k-space, and each repeat of the experiment will encode a different line of k-space.
This is inefficient as the collection of one slice would take a large amount of time. Echo Planar
Imaging (EPI) significantly reduces this acquisition time by navigating the whole of k-space with
one excitation pulse. This is achieved by rapidly switching the frequency encoding gradient so
that it traverses back and forth through the entirety of k-space. As well as changing the frequency
encoding gradient, the phase encoding gradient is used as a series of ‘blips’ which enable a slight
movement in the y-direction for each k-space line acquired in the x-direction. This is shown in
Figure 1.10.
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Fig. 1.10 A pulse sequence showing an EPI acquisition and its associated k-space. Instead of
starting from the centre and acquiring one line of k-space at a time, EPI captures the whole of
k-space by ‘blipping’ through the Gy (phase encode) direction.

1.5.1 Aliasing

When sampling a signal, it is important to ensure that samples are collected fast enough, as under
sampling will result in an incorrect reconstruction of the original signal. The Nyquist theorem
states that the sampling frequency must be equal or higher than two times the highest frequency
present in the data. This is described by equation 1.11 where fs is the sampling frequency and
fN is the Nyquist frequency, or the highest frequency present in the data.

fs = 2 fN (1.11)

In MR, aliasing can be detrimental to the output image. These effects cause signal wrap
around, resulting in parts of the image to be misplaced in space. An example of this wrap around
artefact is shown in Figure 1.11, which was taken from (Pusey et al., 1988). Aside from causing
issues in the image itself, aliasing can cause issues with frequency related data. An example
of this is discussed in detail in Chapter 4, where frequency data related to the cardiac cycle is
aliased to another location on the frequency spectrum.
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Fig. 1.11 Aliasing example showing wrap around of the nose (highlighted with the arrow). This
image was taken from (Pusey et al., 1988)

1.6 Acceleration & Parallel Imaging

When designing a pulse sequence, a trade-off must be made between the speed of k-space
sampling and the data quality. The more of k-space that is sampled, the better the data quality
will be. However fully sampling k-space is a lengthy procedure that may not dramatically
increase data quality. Additionally, because the MR signal will decay over time, it is important
to sample k-space before the signal is no longer measurable.

Parallel imaging techniques can be used to accelerate the imaging process. These techniques
make use of receiver coil placements and sensitivities to aid in spatial encoding. This information
allows for a reduction in the number of required phase encoding steps which is used to accelerate
the scan time. Reducing the number of phase encoding steps is the same as undersampling
k-space.
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Fig. 1.12 An example figure showing that different receiver coils will detect a different magnitude
of signal depending on where they are in relation to the voxel being sampled. In this example,
the green ellipses represent the receiver coils, the square represents the sampling voxel and the
arrows represent the magnitude of the signal. Notice that the arrows closest to the sampling
voxel are much thicker and longer. This figure is an adapted version of a figure found here:
https://mriquestions.com/what-is-pi.html

Two examples of parallel imaging methods which will be explained in this section include
GRAPPA and SENSE. Additionally, I will introduce multi-band imaging, which is not a parallel
imaging method but can be used to achieve accelerated scan times by acquiring multiple slices
simultaneously. In a non-accelerated pulse sequence, the majority of k-space will be sampled as
shown in Figure 1.13.

Fig. 1.13 An example of cartesian sampling of k-space in non-accelerated pulse sequences. The
red lines represent the lines of k-space that are collected.
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1.6.1 Generalized autocalibrating partially parallel acquisitions (GRAPPA)

In 2002 Griswold and colleagues introduced an acceleration technique known as the Generalized
autocalibrating partially parallel acquisitions (GRAPPA) (Griswold et al., 2002). This purpose-
fully undersamples k-space by increasing the distance between sampled k-space lines. However,
the centre of k-space is fully sampled and this makes the autocalibration region. This is repeated
for all of the receive coils and results in a k-space matrix for each coil. Before an image can
be generated, GRAPPA must estimate the k-space lines that were missed. GRAPPA uses an
interpolation algorithm that takes in information from 3 dimensions. These dimensions are: the
frequency encode direction, the phase encode direction and the k-space information from the
other coils. It calculates weighting factors from the autocalibration region which determine the
amount of distortion, displacement and shear each coil has on the spatial frequencies within
k-space. This is shown in Figure 1.14.

Fig. 1.14 Estimation of k-space lines for undersampled k-space using the GRAPPA method. In
this example, the red lines represent the sampled lines of k-space, the dashed white line represents
lines of k-space that are unsampled, the yellow dashed line represents the autocalibration region,
the green dot represents that target location, the orange arrows represent the weighting factors
from the autocalibration and the blue dashed line represents the 3D interpolation kernel. GRAPPA
purposefully undersamples k-space. The centre of k-space is fully sampled and this makes up
the autocalibration region. There is an autocalirbation region for each receiver coil. Then
the undersampled lines of k-space can be estimated using the autocalibration region using an
interpolation algorithm.
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Following the estimation of the missing k-space lines, an inverse Fourier transform is used to
generate an image for each coil and these can be combined using a sum-of-squares combination
(or any array reconstruction method) to generate a whole image (Griswold et al., 2002).

1.6.2 Sensitivity Encoding for Fast MRI (SENSE)

GRAPPA works to estimate missing k-space lines before performing an inverse Fourier trans-
form. Another acceleration technique works in a similar way to GRAPPA but performs image
reconstruction before estimating the missing data. This method, known as Sensitivity Encoding
for Fast MRI (SENSE) was first described by Pruessmann and colleagues in 1999 (Pruessmann
et al., 1999). The initial step that SENSE performs is to generate coil sensitivity maps which
determine the spatial sensitivity distribution for each receiver coil. Once coil sensitivity maps
have been generated, undersampling of k-space is performed for each coil. This results in an
image containing aliasing with a ‘wrap around’ artefact, an example of which is shown in Figure
1.15.

Fig. 1.15 SENSE reconstructed image before correction. This image shows the aliasing and wrap
around artefact. SENSE ’unwraps’ the image by using coil sensitivity maps that were generated
prior to sampling k-space. This image was taken from (Pruessmann et al., 1999).

Using the coil sensitivity data collected before image acquisition, an unfolding matrix is
calculated and used to separate the images and unfold the image. This procedure is repeated for
each pixel resulting in an unaliased image (Pruessmann et al., 1999).
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1.6.3 Multi-band

In both non-accelerated and accelerated MRI acquisitions, slice select gradients are used to select
a slice of interest within which k-space is sampled, resulting in a 2D image. This is repeated for
every slice to generate a whole brain image. Multi-band imaging accelerates image acquisition
by allowing multiple slices to be excited at once. A complex RF pulse is used which is the sum
of multiple RF waveforms (Barth et al., 2015), each of which has a resonant frequency able
to excite a specific slice. Following the excitation step, accelerated acquisition/reconstruction
techniques such as GRAPPA or SENSE can be used to generate an image.

1.7 Functional Imaging & BOLD

In an ideal world, fMRI would be capable of detecting neural activity in the brain directly by
measuring the magnetic signals associated with the electrical activity in those neurons. However,
these magnetic fields are very weak and difficult to detect with current MR techniques (Huettel
et al., 2014). Instead, fMRI relies on measuring the haemodynamic effects associated with neural
activity which typically occur within a few seconds of neural activation.

1.7.1 Neurovascular Coupling

Changes in local neural activity cause changes in local blood flow. This process is known
as neurovascular coupling (Phillips et al., 2016). However, the mechanisms underlying the
blood flow response are not fully understood. Changes in local blood flow result in changes in
blood oxygenation and differences in blood oxygenation allow for the blood oxygenation level
dependent (BOLD) signal to be collected. The BOLD effect was first described in 1990 (Ogawa
et al., 1990) and it exploits the differences in magnetic susceptibility of oxyhaemoglobin (oHb),
which is diamagnetic, and deoxyhaemoglobin (dHb), which is paramagnetic. Paramagnetic
materials cause inhomogeneities to be introduced to the local magnetic field which in turn causes
the spins to dephase more quickly. So, a larger concentration of dHb would cause a reduction
in MR signal. During neural activity, neurons consume more oxygen which results in a slight
localised increase in the concentration of dHb. Due to neurovascular coupling, local blood flow
increases but at a greater rate than needed for the increased oxygen consumption (Davis et al.,
1998; Hoge et al., 1999b) resulting in an oversupply of oHb. Consequently, the concentration
of dHb is decreased and the MR signal (or BOLD signal) is increased. Therefore, local fMRI
signals increase as local neural activity increases.

1.7.1.1 The Haemodynamic Response

The haemodynamic response typically occurs within a few seconds of neural activation and typi-
cally peaks between 5 and 10 seconds (see Figure 1.16) following a stimulus. The signal returns
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to a baseline level after around 12 seconds following the initial stimulus delivery. Following this,
the signal undergoes a "post-stimulus undershoot" which typically lasts around 10-20 seconds.
The reason for this post-stimulus undershoot has been debated by scientists for the lifetime of
fMRI (van Zijl et al., 2012), but is thought to be neuronally modulated (Mullinger et al., 2013).

Fig. 1.16 The haemodynamic response function. Typically it occurs within a few seconds of
neural activation (Blue arrow) and peaks between 5 and 10 seconds. The signal then undergoes a
‘post-stimulus undershoot" which lasts around 10-20 seconds.

1.7.2 Spatial and Temporal Resolution of BOLD

The BOLD effect is a result of the haemodynamic response of blood vessels to neural activity.
These effects are not instantaneous, and following a stimulus, the haemodynamic changes
are not observable for around 1-2 s (Huettel et al., 2014). This leads to fMRI having a low
temporal resolution as it is reliant on this haemodynamic response. It has been noted that the
haemodynamic response is faster in subcortical structures than in the cortex at 7 T (Lewis et al.,
2018). On the other hand, fMRI has quite a high spatial resolution in comparison with other
methods (such as MEG and EEG) with a typical value of < 3 mm3 (Glover, 2011). Spatial
resolution as high as 0.5 mm has been demonstrated in layer fMRI (Finn et al., 2021). Spatial
resolution is dependent on the field-of-view (FOV), matrix size, slice thickness and number of
slices. Higher spatial resolution will result in more noise associated with the signal and a lower
SNR. SNR is proportional to the voxel volume (Scouten et al., 2006). So when deciding on the
optimal MR sequence a trade-off must be made between a higher resolution and a high SNR.
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1.7.3 Analysis of fMRI data

Some fMRI studies make use of different stimuli to investigate their effects on the brain. For
example, a simple study to map the visual cortex would use flashing checkerboards that cause a
strong BOLD response in the visual cortex (DeYoe and Raut, 2014).

1.7.3.1 Preprocessing of fMRI data

Typical preprocessing steps in fMRI include slice timing correction, motion correction, distortion
correction, temporal filtering, and spatial filtering/smoothing. Each of these steps aims to improve
the image and time-series information acquired by the scanner.

Since fMRI slices are collected at different times, slice time correction is required so that
further analysis methods can assume the slices were collected simultaneously (Jezzard et al.,
2003). Slice time correction is achieved by aligning each slice to a reference slice (Henson
et al., 1999; Sladky et al., 2011; Soares et al., 2016). Another method to achieve this correction
uses multiple regression. This method includes additional regressors to the general linear model
(introduced in section 1.7.4). These regressors can be the temporal derivatives of the expected
HRF or regressors which are shifted in time to account for the time delay and are dependent
on the slice (Henson et al., 1999; Sladky et al., 2011). Sladky and colleagues investigated slice
timing effects on fMRI datasets and found no adverse effects when including slice time correction
(Sladky et al., 2011). Their results showed that the addition of slice time correction improved the
accuracy of fMRI data and recommend it as a preprocessing step in fMRI analysis (Sladky et al.,
2011).

Motion correction is a key preprocessing step and will be discussed in detail in Chapters 3
and 4 of this thesis. As a brief introduction, fMRI is very susceptible to motion effects due to the
long acquisition times associated with MR imaging. These effects can influence fMRI results by
introducing motion artefacts into the data.

Distortion correction is used to reduce the effects of geometric distortions that affect fMRI
images. These distortions are usually a result of magnetic field inhomogeneities and in severe
cases can cause signal loss (Huettel et al., 2014). Distortion correction is usually performed by
generating a field map which represents the magnetic field intensity throughout the image. This
can then be used to correct the image of inhomogeneities (Jezzard and Balaban, 1995). Another
method involves collecting the data twice with different phase encoding directions (Andersson
et al., 2003).

Spatial filtering/smoothing aims to reduce noise effects in the fMRI image and increase the
overall signal-to-noise ratio (SNR) (Huettel et al., 2014; Lowe and Sorenson, 1997). However as
the SNR increases using smoothing, the resolution of the image will decrease. Therefore, there is
a trade-off between increasing the SNR and losing spatial resolution. Spatial filtering is usually
performed using a Gaussian filter of a specific width which averages signals between adjacent
voxels (Huettel et al., 2014; Soares et al., 2016). The width of the filter used is important as it
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determines the amount of smoothing that will be applied (Soares et al., 2016). Determining the
width of the filter is a difficult task due to the trade-off between SNR and spatial resolution, as
mentioned earlier.

Temporal filtering works similarly to spatial filtering but acts on the time series rather than
individual volumes. It aims to increase the SNR of the data and remove components of the
time series that are not of interest (noise) (Jezzard et al., 2003). Typically, fMRI data contains
information related to the cardiac and respiratory cycles as well as slow scanner drifts and these
are usually regarded as noise. Thus, temporal filtering aims to remove the effects of these from
the time series while having a minimal effect on the signal of interest. Temporal filtering usually
makes use of highpass and bandpass filters to perform the filtering (Soares et al., 2016). It has
been shown that relevant functional information can be determined from high frequencies (Chen
and Glover, 2015; Gohel and Biswal, 2015), so highpass filters will leave only those signals of
interest. However, Biswal and colleagues determined that spontaneous low frequency fluctuations
are functionally relevant and represent neural activity (Biswal et al., 1995). Therefore, it is
important to include these low frequencies in fMRI analysis and a bandpass filter can achieve
this.

1.7.4 Statistical Analysis

The general linear model (GLM) is a statistical tool used in most fMRI research. It can be
used to model fMRI signals in terms of other variables known as regressors (Jenkinson et al.,
2020). The GLM can be described by equation 1.12 where Y represents the data, X represents
the regressor, β represents the scaling parameter (also known as beta weights) and ε represents
the error (otherwise known as residuals).

Y = Xβ0,1 + ε (1.12)

Equation 1.12 represents a GLM with only one regressor. In the case of most fMRI analyses,
multiple regressors are used. In this case, each regressor will have its own scaling parameter as
shown in equation 1.13 (Jenkinson et al., 2020).

Y = X1β1 +X2β2 +X3β3 +X4β4 + ε (1.13)

In addition to statistical testing, the GLM can be used to remove nuisance parameters from
fMRI datasets. Using the nuisance time series as individual regressors in the model will allow the
residual time series to contain everything not related to these nuisance regressors. This results in
a dataset that has been stripped of noise.
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1.8 Arterial Spin Labelling (ASL)

Dynamic susceptibility contrast (DSC) MRI is a form of perfusion imaging that uses a bolus of
gadolinium, injected intravenously, which results in a loss of T ∗

2 weighted signal. Measurement
of the signal intensity can lead to the calculation of different perfusion parameters. The use
of gadolinium is considered generally safe but can bring risks of adverse effects related to the
bolus (Essig et al., 2013). An alternative to DSC was developed in 1992 (Williams et al., 1992)
which used arterial blood water as an endogenous tracer. This method removes the need for
intravenous injections of gadolinium and is known as arterial spin labelling (ASL). In ASL,
the magnetisation of blood in the labelling plane, or slab, (usually the neck) is inverted using a
180◦ RF pulse. Then, after waiting a short amount of time for the labelled blood to reach the
imaging plane, images are acquired. This is interleaved with control images where no blood is
labelled, and the difference in both the tag and control images is proportional to the amount of
blood that was delivered to the tissue by perfusion (Alsop et al., 2015). This difference image is
known as the ASL difference image, or simply the ASL image (Wong, 2014). When the tagged
blood reaches the target tissue it causes the overall magnetisation to decrease. This is due to the
inverted spins associated with the tagged blood (these spins are flipped by 180◦ at the beginning
of the tag). This results in a ‘zig-zag’ pattern when plotting the ASL signal, an example of which
is shown in Figure 1.17.

Fig. 1.17 An example of the ‘zig-zag’ pattern seen when plotting the ASL signal. At around
20s the intensity of the ASL signal is increased as shown by the increase in size of the ’zig-zag’
pattern. This intensity then decreases to the baseline level at around 40s.

There are three different forms of ASL, continuous ASL (CASL), pulsed ASL (PASL) and
pseudo-continuous ASL (pCASL). CASL uses a continuous RF pulse applied in the labelling
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slice to continuously invert blood flowing through this slice (Borogovac and Asllani, 2012; Wong,
2014). A continuous gradient is applied in the z-direction (the direction of flow) which allows
for the selection of the labelling slice by creating a gradient of spins precessing at different
frequencies. Then, the continuous RF pulse is applied at the labelling slice, with frequency equal
to the Larmour frequency (Wong, 2014). The inversion of blood happens due to a process called
adiabatic inversion and this results in the 180◦ inversion of all spins passing through the labelling
slice (Borogovac and Asllani, 2012; Wong, 2014). Although CASL has the largest SNR, the
continuous pulse of RF energy causes increases in the specific absorption rate (SAR) which
could lead to tissue heating. Pulsed ASL (PASL) works slightly differently to CASL. Instead of
inverting all spins that flow through the labelling slice, PASL inverts a slab of spins (Alsop et al.,
2015). Unlike CASL, PASL achieves this inversion of spins by use of a 180◦ RF pulse. The SNR
of PASL is lower than that of CASL, but the SAR is also much lower. Pseudo-Continuous ASL
(pCASL) is a form of CASL and works in a similar way, however instead of a continuous pulse
that deposits a large amount of RF energy into the participant, pCASL uses a large number of
RF pulses (∼1000 or more) rapidly applied to the labelling slice (Alsop et al., 2015). The SNR
of pCASL is higher than that of PASL but lower than that of CASL. The difference in labelling
scheme between PASL, pCASL and CASL is shown in Figure 1.18.

Fig. 1.18 The differences in labelling schemes between PCASL, CASL and PASL. The blue
boxes represent the imaging volume and the red boxes represent the labelling slab (PASL) or the
labelling plane (CASL/PCASL).

1.9 Summary

The physics underlying MRI is complex and in this chapter, I have summarised the key ideas
needed to understand the work conducted within this thesis. The BOLD effect, which is the basis
of fMRI, is derived from the NMR signal. This can be described by the quantum mechanical
property known as spin. The magnetic dipole moment, a property closely related to spin, causes
protons to be slightly magnetic. In the presence of an external magnetic field, the magnetic
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dipole moment will align either parallel or anti-parallel to the field. A torque is exerted on
the net magnetisation vector causing it to align with the field. However, this does not happen
immediately as the proton will precess into alignment. Using RF energy, these protons can be
knocked out of alignment with the field and once the RF energy is no longer applied, the protons
will precess back into alignment. This process is called relaxation, and the receiver coils can be
used to measure it (and generate the MR signal). Gradient fields are used to determine where,
in space, the signals originated. This process happens in k-space and a Fourier transform of
the information generated in k-space results in the generation of an image. Pulse sequences
are used to determine the method of generating and reading the MR signal and variations of
these pulse sequences can generate different images. EPI imaging uses a pulse sequence that
allows the whole of k-space to be navigated with one excitation pulse. The BOLD effect exploits
the difference in magnetic susceptibility of oxyhaemoglobin and deoxyhaemoglobin. When
neurons are active they require more oxygen and neurovascular coupling is the process that
controls the flow of blood to these active areas. As local neurons become more active, the BOLD
effect becomes larger, resulting in a greater fMRI signal. Arterial spin labelling allows for the
quantification of cerebral blood flow by inverting the blood flowing into a target tissue. This
results in a reduction in the MR signal in the target tissue. By comparing a control image, where
no tag is present, and the image where the tag is present, the quantification of CBF is possible.
In the next chapter, I will discuss the theory underlying the anatomy and physiology of the
cerebrovasculature and the processes that regulate the flow of blood. I will also discuss the
effects of ageing on these processes (and vessels) and introduce algorithms and datasets used
within this thesis.



Chapter 2

Introduction to Cerebral Physiology

2.1 Chapter Overview

The BOLD effect and its associated haemodynamic response function arise from the need for
the human body to transport and utilise blood efficiently. In this chapter, I will introduce the
concepts that govern the ability of blood to move around the body. I will discuss how the body
is able to regulate blood flow and how this changes with age. I will talk about the methods we
currently have to investigate cerebrovascular health including CVR, CBF, CMRO2 and OEF.
Finally, I will discuss some of the pre-defined algorithms and datasets that are later used in the
experimental chapters of this thesis.

2.2 Anatomy of the Cerebrovasculature

2.2.1 Blood Vessels

Blood is circulated throughout the human body within blood vessels. There are three main
groups of blood vessels: arteries, veins and capillaries. Arteries branch into smaller vessels called
arterioles. Arterioles further branch into capillaries which are the site of oxygen exchange. These
capillaries then converge into small vessels called venules which further converge into larger
veins. Arteries can be split into two groups, elastic and muscular. The former making up the
bigger arteries found near the heart, such as the aorta, and the latter making up the anatomically
named arteries, such as the femoral artery (Tucker et al., 2017). The role of the arteries is to
supply the body with oxygen and nutrients through the medium of blood. The heart pushes blood
into the arteries forcefully, meaning arteries are under a large amount of pressure. Arteries have
elastic walls which can accommodate the large pressure and stress they experience. The arteries
must dampen the high pressure before it reaches the smaller vessels (arterioles and capillaries)
(James et al., 2019; London and Pannier, 2010) and their elastic walls allow for this.

Arteries lead to arterioles after continuous bifurcation. Arterioles are surrounded by smooth
muscle which allows them to change their diameter by vasoconstriction (narrowing of the vessel
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diameter) or by vasodilation (the widening of the vessel diameter). They do this to respond to
the oxygen/nutrient needs of the tissue (Tucker et al., 2017). Arterioles further branch until they
reach the capillary network. Capillaries are the site where oxygen and nutrients are exchanged
between tissue and blood (usually through diffusion). They are thin-walled vessels with porous
junctions that make up the blood-brain-barrier (BBB). They connect the arteries in the body to
the veins through the arterioles and venules. Venules are smaller blood vessels that converge
to the veins. They carry de-oxygenated blood from capillaries after the exchange of oxygen
and nutrients has occurred, eventually reaching the veins on its journey back to the heart. They
are less elastic than arteries as they are not under the same amount of pressure. The veins have
one-way valves contained within them to ensure blood moves in one direction only. Blood
moving through the veins will eventually reach the heart where it will begin it’s journey through
the body. Initially, the blood will move through the right chambers of the heart and will be
pushed through the pulmonary artery towards the lungs. Blood will move from the pulmonary
artery into capillaries within the lungs. The blood will then be oxygenated through diffusion and
CO2 will be exchanged into the lungs. The blood will then move from the capillaries into the
pulmonary vein and back into the left chambers of the heart. Then, the blood will be pumped
through the aorta and to the rest of the body through the network of arteries, arterioles, capillaries,
venules and veins found within the body.

2.2.2 Circle of Willis

The human brain is supplied with blood from four arteries. These are the left and right internal
carotid arteries and the left and right vertebral arteries (Cipolla, 2016). The internal carotid artery
stems from the bifurcation of the common carotid artery into the internal and external carotid
arteries (Snell, 2011). The external carotid artery is responsible for supplying blood to the face
and neck while the internal carotid artery mainly supplies blood to the cerebrum.

The vertebral arteries join to form the basilar artery which connects with the internal carotid
arteries through the Circle of Willis. This is an anastomotic ring at the base of the brain which
is responsible for supplying blood to all areas within the brain (Cipolla, 2016). In theory, the
Circle of Willis can supply blood to any area of the brain since it is connected to all four feeding
arteries. This is advantageous as it allows perfusion to occur in all areas of the brain in the case
of a stenosis or blockage in any part of the Circle or its feeding arteries. The Circle of Willis is
made up of the anterior communicating, posterior communicating, anterior cerebral, posterior
cerebral, internal carotid and basilar arteries (Snell, 2011). Coming from the Circle of Willis
are smaller arteries which are responsible for supplying blood to different sections of the brain.
The middle cerebral arteries are also connected to the Circle of Willis. Figures 2.1 and 2.2 show
some of these arteries and how they link through the Circle of Willis.
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Fig. 2.1 A front on view of the anatomy of the vessels within the brain. The vessels highlighted
are: the Internal Carotid Artery (green), the Anterior Cerebral Artery (orange), the Anterior Com-
municating Artery (pink), the Middle Cerebral Artery (turquoise), the Posterior Communicating
Artery (red), the Posterior Cerebral Artery (teal) and the Basilar Artery (yellow).

Fig. 2.2 A side view of the anatomy of the vessels within the brain. The vessels highlighted are:
the Internal Carotid Artery (green), the Anterior Cerebral Artery (orange), the Anterior Commu-
nicating Artery (pink), the Middle Cerebral Artery (turquoise), the Posterior Communicating
Artery (red), the Posterior Cerebral Artery (teal) and the Basilar Artery (yellow).
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2.3 Regulation of Blood Flow

2.3.1 Autoregulation

Autoregulation is the mechanism by which the brain maintains a constant cerebral blood flow
(CBF) in response to changes in cerebral perfusion pressure (CPP) (Powers, 2016). This can be
understood using equation 2.1 (Payne, 2016; Powers, 2016).

CBF =
CPP

R
(2.1)

As CPP increases, an increase in cerebrovascular resistance (R) is required to maintain a
constant CBF. In the opposite scenario, as CPP decreases a decrease in cerebrovascular resistance
is required to maintain a constant CBF. The resistance of a single vessel can be calculated by
equation 2.2 (Payne, 2016).

R =
8µL
πr4 (2.2)

Resistance of a blood vessel is therefore dependent on the length of the vessel (L), the
viscosity of blood (µ) and the radius of a vessel (r). However, viscosity and length are properties
that don’t change in time (except in extreme time scales). Therefore, resistance is mainly
controlled by changes in vessel radius (Payne, 2016). Equation 2.3 shows that the resistance
of a single vessel is inversely proportional to its radius to the fourth power. This means that
a small change in vessel radius translates to a large change in vessel resistance (Payne, 2016).
Arterioles, the small-diameter vessels that arteries branch into, are comprised of smooth muscle
which allows them to change their radius resulting in changes in resistance to maintain a constant
CBF.

R ∝
1
r4 (2.3)

2.4 Effects of Ageing on Vessel Health

2.4.1 Arterial Stiffness

As mentioned in section 2.2.1, arteries are made up of vessel walls which are very elastic
in order to accommodate the high pressure they experience. Arterial stiffening is the loss of
elasticity resulting in arteries with stiffer walls (Oh, 2018; Sun, 2015). Arterial stiffness is more
prevalent with age (Sun, 2015) and is much more common in older adults (Palta et al., 2019).
Cardiovascular risk factors (such as hypertension, diabetes mellitus and chronic kidney diseases)
can increase arterial stiffness (Lacolley et al., 2020). Arterial stiffness has been associated with a
decrease in cognitive function (Gorelick et al., 2011; Hanon et al., 2005; Singer et al., 2014),
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cerebral small-vessel disease (Singer et al., 2014), microvascular brain damage (Gorelick et al.,
2011) and structural brain changes such as white matter hyperintensities (Singer et al., 2014).
Therefore, measuring the extent of arterial stiffness may be an early marker to detect and treat
potential damage to the cerebrovasculature.

2.4.2 Arterial Compliance

Arterial compliance is defined as the ability of an artery to increase its volume by distending
under large amounts of pressure (Papaioannou et al., 2014). As noted in Section 2.2.1, arteries
are both under large amounts of pressure and surrounded by elastic tissue that allows them to
be compliant. Arterial compliance can be represented by equation 2.4 (Nichols et al., 2011;
Papaioannou et al., 2014), where AC is arterial compliance, ∆V represents a change in volume
and ∆P represents a change in pressure. Arterial compliance is the inverse of arterial stiffness and
so the stiffer an artery becomes, the less compliant it will be (Nichols et al., 2011; Papaioannou
et al., 2014). The compliance of an artery determines how well it will dampen the pressure
before it reaches micro-vessels. This is important since large pressure waves reaching the
microvasculature could cause damage.

AC =
∆V
∆P

(2.4)

2.4.3 Pulsatility

The flow of blood within arteries is pulsatile in nature. This is because the blood flowing from
the heart into the arteries does so in a pulsatile way (i.e. the heartbeat). The compliance of
arteries allows them to expand and account for the pulsatile nature of the flow, dampening
the changes in pressure. Pulsatility is therefore an important metric related to stiffness and
compliance that may indicate potential damage to the microvasculature. This could open avenues
for tracking, prevention and treatment of related diseases. As arterial stiffness correlates highly
with age, the arteries in older people will be less compliant and unable to dampen the pulsatile
flow. Therefore, this increase in pulsatile flow could cause damage to the microvasculature
and may be a contributing factor in age-related deterioration of brain health. Chapters 4 and 5
develop methods to measure cardiac-related information in fMRI signals to provide an estimate of
pulsatility. These will allow researchers to track deterioration in cerebrovascular function/health.

2.4.4 Heart Rate Variability (HRV)

The heart is responsible for moving blood throughout the body and achieves this with a pumping
action. The term used to describe this pumping action is a beat and the number of times the
heart beats per minute is called the heart rate (measured in beats per minute - BPM). Typically,
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the heart rate is measured using a photoplethysmograph (PPG) during MRI experiments. An
example of a PPG trace is shown in Figure 2.3.

Fig. 2.3 An example of a PPG trace as taken from work completed in Chapters 4 and 5. The PPG
trace was collected by (Kassinopoulos and Mitsis, 2020).

A PPG records the variation in blood volume which is synchronous to heart rate. The time
interval between heart beats can be variable and this variation is called heart rate variability (HRV).
HRV is an important measure of overall cardiac health. It reflects how well the autonomic nervous
system (ANS), responsible for regulating cardiac activity, is working (Rajendra Acharya et al.,
2006). Two branches of the ANS, the sympathetic nervous system (SNS) and parasympathetic
nervous system (PNS), balance to control HR (Rajendra Acharya et al., 2006). Variations in HRV
could be attributed to changes in the activity of the SNS and the PNS. A decrease in HRV has
been observed as we age (Jandackova et al., 2016; Reardon and Malik, 1996). Measurement of
HRV and pulsatility from a BOLD signal is difficult due to the lack of samples collected within
a single heartbeat. Blood flowing into vessels is pulsatile in nature and this is undersampled by
BOLD imaging. In a toy example, if there were no variation in HR the fMRI signal collected
would not change. This is shown in part A of Figure 2.4. However, if there was some variation in
HR (HRV), then there would be an increase/decrease in one fMRI point reflecting the variability
in HR. This is shown in part B of Figure 2.4. This isn’t the only situation which could lead
to this change in fMRI signal. In the case of a change in pulsatility, there would also be an
increase/decrease in the fMRI signal. Therefore, it is difficult to distinguish whether the change
is related to HRV or pulsatility. As a result, these two measures are coupled from an fMRI
perspective, and voxels that show HRV changes should also show pulsatility changes. This can
be seen schematically in parts B and C of Figure 2.4. HRV is used in Chapter 5 as part of a new
method to quantify cerebrovascular physiology (and therefore cerebrovascular health).
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Fig. 2.4 A schematic diagram showing how closely related HRV and Pulsatility are from an
fMRI perspective. A change in either HRV or Pulsatility would be reflected by the same change
in fMRI and so the ability to distinguish between these two measures is difficult.

2.5 Quantifying Cerebrovascular Physiology

2.5.1 Quantification of Cerebrovascular Reactivity (CVR)

CVR is the change in CBF in response to a vasoactive stimulus (Fierstra et al., 2013). A
vasoactive stimulus is a stimulus that causes changes to the radius of blood vessels (and therefore
the vessel resistance). CVR can be calculated from BOLD/CBF data in which a vasoactive
stimulus is present. In the case of CO2 administration, CVR can be calculated using a general
linear model and the end-tidal CO2 (EtCO2) as shown in equation 2.5. To ensure the units of
CVR are %Signal/mmHg, the BOLD data must be converted into %BOLD and the EtCO2 must
be in units of mmHg.

MRISignal(t) =CV R ·EtCO2(t)+β0 + ε(t) (2.5)

CVR can be used as an indicator of autoregulation efficiency (Chen, 2018) and early vascular
dysfunction (Glodzik et al., 2013). The latter is predominantly due to arterial stiffening. Studies
have shown that CVR is impaired in Alzheimer’s Disease and people with mild cognitive
impairment (Cantin et al., 2011; Glodzik et al., 2013).

Measurement of EtCO2 can be achieved using a face mask or nasal cannula which records
expired breath throughout the scanning session. The vasoactive stimulus required to measure
CVR can be administered in different ways. Two of the most common ways make use of CO2 to
cause vasodilation. The first uses inhaled CO2 and the second increases the concentration of CO2

by asking participants to hold their breath for extended periods. As the concentration of CO2
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increases, dilation of vessels occurs to increase the relative concentration of oxygen. Inhalation
of CO2 works very well as a vasodilator and inhalation of 5% CO2 results in an increase in
CBF of ∼75% (Kety and Schmidt, 1948). Asking participants to hold their breath increases
the concentration of CO2 in the blood due to the lack of exhalation which removes CO2 from
the body. CVR measures obtained through either method have been shown to correlate highly
suggesting that either method works to a similar accuracy (Kastrup et al., 2001).

2.5.2 Quantification of Cerebral Blood Flow (CBF)

Cerebral Blood Flow is defined as the volume of blood delivered to 100g of tissue per minute
(Buxton, 2005) and is an important metric for determining the health of brain tissue. It can be
quantified using ASL techniques (explained in Chapter 1).

CBF = 0 0 < t < AAT (2.6)

CBF =
λ · (SIcontrol −SItag) · e

PLD
T ′1 · e

AAT
T1,blood

2 ·α ·T ′
1 ·SIPD(1− e

τ

T ′1 )
τ +AAT < t (2.7)

CBF =
λ · (SIcontrol −SItag) · e

AAT
T1,blood

2 ·α ·T ′
1 ·SIPD · (1− e

−(t−AAT )
T ′1 )

AAT < t < τ +AAT (2.8)

Equations 2.6, 2.7 and 2.8 can be used to calculate CBF for data acquired using a pseudo-
continuous ASL data acquisition (Alsop et al., 2015; Buxton et al., 1998). In these equations, λ

is the brain/blood partition coefficient, SIcontrol and SItag are the time-averaged signal intensities
in the control and tag images respectively, T1,blood is the longitudinal relaxation time of blood,
α is the labelling efficiency, SIPD is the signal intensity for a proton density weighted image,
τ is the label duration, T ′

1 is the effective T1 of a voxel which includes the original T1 plus
another component related to the flow of blood into the voxel, AAT is the arterial transit time and
PLD is the post labelling delay. The units of CBF derived from these equations are mlg−1s−1.
The addition of a factor of 6000 in the numerator would allow these units to be converted to
ml100g−1min−1

In pCASL, a time period is left to allow the inverted blood to move to the imaging plane
after labelling blood. This time period is called the post labelling delay (PLD). In an ideal case,
the PLD would be slightly longer than the time it takes for the blood to travel from the labelling
plane to the imaging plane (known as the arterial arrival time, ATT). In practice, this is not an
achievable feat as the AAT is an unknown variable. If the PLD was just longer than the AAT, all
the labelled blood would reach the imaging plane (and target tissue) before images are acquired.
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Therefore, the signal would have decayed, resulting in a decreased signal-to-noise ratio (SNR).
Aside from SNR concerns, the PLD must also be long enough to ensure a large amount of the
labelled blood has reached the target tissue before imaging. AAT varies with age and can be
different for different disease states. So, these need to be accounted for when choosing the best
PLD. Alsop and colleagues recommend a PLD of 1500ms for a PCASL acquisition in children,
1800ms in healthy adults under the age of 70, 2000ms for healthy adults over the age of 70 and
2000ms for adult clinical patients (Alsop et al., 2015).

Multiple-PLD methods make use of multiple different PLD values. The advantage of this is a
more precise quantification of CBF and the ability to collect information about the AAT (Alsop
et al., 2015). Methods that make use of multiple-PLD’s are more complicated and require more
analysis to generate accurate results.

2.5.3 Quantification of the Cerebral Metabolic Rate of Oxygen Consump-
tion (CMRO2) and Oxygen Extraction Fraction (OEF)

The cerebral metabolic rate of oxygen consumption is the rate at which oxygen is consumed by
the brain at rest. It is considered a direct indicator of brain health. Quantifying it is a difficult task,
however. CMRO2 can be calculated using equation 2.9, where CaO2 represents the concentration
of arterial oxygen, OEF represents the oxygen extraction fraction and CBF represents cerebral
blood flow.

CMRO2 =CaO2 ·OEF ·CBF (2.9)

CaO2 can be quantified using end-tidal O2 partial pressure and CBF can be quantified using
ASL. OEF can be quantified using equation 2.10, where SvO2 represents the venous oxygen
saturation, φ is the oxygen carrying capacity of haemoglobin and [Hb] is the concentration of
haemoglobin.

OEF =
CaO2 −SvO2φ [Hb]

CaO2
(2.10)

It is useful to rearrange equation 2.9 so that it is in terms of SvO2 and this can be achieved
using equation 2.10. This results in equation 2.11 which shows that the estimation of SvO2 leads
to the calculation of CMRO2.

CMRO2 = (CaO2 −SvO2φ [Hb]) ·CBF (2.11)

Initial work to estimate CMRO2 was performed by Davis (Davis et al., 1998) and Hoge
(Hoge et al., 1999a). Their model took into account hypercapnia to calculate M (the BOLD
signal change if total elimination of deoxyhaemoglobin in the image voxel was achieved). Then,
the model could be used to calculate task-related changes in CMRO2. Wise and colleagues
modified this model to include hyperoxia and the modified model is described by equation 2.12
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(Wise et al., 2013). In this equation, CBV is the BOLD-relevant blood volume, [dHb] is the
concentration of deoxyhaemoglobin, and β is a constant that is dependent on the vessel size,
geometry and magnetic field strength. The parameters with the subscript ‘0’ indicate baseline
conditions.

∆S
S0

= M

{
1−
(

CBV
CBV0

)(
[dHb]
[dHb0]

)β
}

(2.12)

The CBV
CBV0

term can be described in terms of CBF via the use of equation 2.13, resulting in
equation 2.14. In these equations, α is the Grubb exponent (Grubb et al., 1974).(

CBV
CBV0

)
=

(
CBF
CBF0

)α

(2.13)
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S0

= M

{
1−
(

CBF
CBF0

)α( [dHb]
[dHb0]

)β
}

(2.14)

In equation 2.14, M and [dHb]0 are unknown values and their estimation is necessary to
calculate CMRO2. M can be calculated using equation 2.15, but is dependent on [dHb]0. In this
equation T E represents the echo time and A is a constant dependent on the field.

M = T E ·A ·CBV0 · [dHb]β0 (2.15)

The estimation of [dHb]0 can be achieved using equation 2.16 leaving the unknown variables
M and SVO2.

[dHb]0 = 1−SvO2|0[Hb] (2.16)

During the experiment proposed by Wise and colleagues (Wise et al., 2013), periods of
hypercapnia and hyperoxia were interleaved which allowed variables such as the partial pressure
of oxygen in arterial blood (PaO2), the partial pressure of carbon dioxide in arterial blood
(PaCO2), the cerebral blood flow (CBF) and the BOLD signal to be measured using both the
physiological equipment and the MR data. The measurement of PaO2 allows for the estimation
of CaO2.

The [dHb]
dHb0

term in equation 2.14 can be replaced with equation 2.17 as per (Wise et al., 2013).

[dHb]
[dHb0]

=
CBF0

CBF
− 1

[dHb]0

{
1
φ

(
CaO2 −

(
CBF0

CBF

)
CaO2|0

)
+[Hb]

(
CBF0

CBF
−1
)}

(2.17)

In equation 2.17, φ was assumed to be 1.34mlO2/gHb and the concentration of haemoglobin
([Hb]) was assumed to be 15gHbdl−1blood (Wise et al., 2013). Then, to estimate the unknown
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variables (M and SvO2), a nonlinear least-squares fitting function (Germuska et al., 2019) can be
used. Once these variables have been calculated, CMRO2 can be estimated from equation 2.11.

The assumed values were φ , which represents the carrying capacity of haemoglobin, and [Hb],
which represents the concentration of haemoglobin. φ is not expected to change in ageing and
disease unless the hameoglobin is damaged. One disease in which there could be an exception is
sickle cell disease. In sickle cell disease, haemoglobin has a decreased oxygen affinity (Safo and
Kato, 2014), which could mean that the carrying capacity is also reduced. [Hb] could change
in ageing and disease and it is expected to decrease in either of these conditions. For this work
[Hb] was assumed, however it is possible to measure this variable by taking a blood sample.

2.6 Overview of Algorithms

2.6.1 Volume Registration Algorithm (VRA)

Volume registration can be used for many different applications. Two of which include motion
correction and alignment of functional images to a structural image. The latter ensures spatial
correspondence between the functional and structural images. One of its more common uses is
in motion correction. In motion correction, volume registration is used to realign each image (or
volume) collected as part of a functional MRI data acquisition to a pre-defined image (e.g., the
first image acquired). The aim of this is to realign the images to where they would have been
acquired in the absence of motion. Typically, volume registration uses 6 degrees of freedom,
3 translational parameters (x - defined as side to side movement in the scanner, y - defined
as movement into/out of the bed of the scanner (towards/away from the sky), z - defined as
movement into/out of the bore of the scanner) and three rotational parameters (pitch - rotation
about x, yaw - rotation about y, roll - rotation about z). An example of volume registration is
shown in Figure 2.5.

Fig. 2.5 An example of volume registration used to correct motion. A) The volume to be
registered. B) The pre-defined image to register to. There is a clear difference between A and B
with A needing to be rotated around the z axis (roll). C) The registered volume after its rotation
about z.
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2.6.2 Volume Regression

Volume registration is the first step of motion correction in fMRI. However, it does not remove
motion effects from the time series. Volume regression accounts for this by removing motion
regressors from time series data. The 6 motion parameter estimates (as explained in section
2.6.1) are included as regressors in a general linear model to remove their related variance. This
is further explained in chapter 3.

2.6.3 Independent Components Analysis (ICA)

Data generated from an fMRI scan contains a mix of different signals pertaining to different
sources of information. For example, a typical fMRI dataset will contain signals related to head
motion, respiratory information, cardiac information, neural signal and scanner artefacts. To
analyse this data effectively it may be desirable to separate these mixed signals into their con-
stituent parts using an independent components analysis (ICA). An ICA works by assuming that
these different processes can be represented by one or more spatially-independent components or
maps (Mckeown et al., 1998). The maps are spatial in nature as there are not enough time-points
sampled in order to generate temporal components. The ICA results in spatial maps and an
associated time-course which can be classified as different source signals (head noise, scanner
artefacts, cardiac pulsation). This classification can be performed by hand (Griffanti et al., 2017)
or by use of an automatic classifier (Salimi-Khorshidi et al., 2014). Hand-classification requires
skilled researchers who are able to identify features from within the spatial maps and associated
time-courses to correctly classify the components. Automatic classification tries to avoid the
potential for human error by performing statistical tests on the time-course in order to classify
the components. Automatic classification is covered in depth in Chapters 4 and 5.

2.6.4 FMRIB’s ICA-based X-noiseifier (FIX)

FMRIB’s ICA-based X-noiseifier (FIX) is an automatic classification algorithm that can distin-
guish ‘good’ and ‘bad’ components from within an ICA decomposition. It is part of the FSL
software package. FIX is predominantly used for denoising of fMRI data. It is used to distinguish
components related to neural activity from components related to various noise sources (such
as head motion, physiological noise, scanner artefacts, etc). From the ICA decomposition, FIX
is able to generate spatial and temporal features for each ICA component. These features are
then are fed into a multi-level classifier (Salimi-Khorshidi et al., 2014). For the classifier to work
it must first be trained with training datasets containing components that have been labelled as
‘good’ or ‘bad’ components. FSL recommend that at least 10 training datasets are required to
enable an accurate classification by FIX, however, in the paper introducing FIX the authors used
100 datasets (Salimi-Khorshidi et al., 2014). The authors also suggested that the training datasets
contain a list of hand-labelled components determining which components are ‘good’ or ‘bad’.
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After FIX is trained, it is able to generate a list of ‘good’ and ‘bad’ components for any dataset
passed to it (assuming the dataset is collected with the same parameters as those which provided
the training). After determining which components are ‘good’ and which are ‘bad’ a linear
regression can be used to regress the ‘bad’ components from the dataset leaving only those of
interest. In their initial investigation of FIX, Salimi-Khorshidi and colleagues (Salimi-Khorshidi
et al., 2014) reported that FIX achieved a 95% overall accuracy when working on conventional
resting-state data, and over 99% accuracy when working on high-quality resting-state data from
the Human Connectome Project. It is possible to train FIX on a dataset that classifies other
features as ‘good’ instead of neural activity. Chapter 5 looks at using FIX to classify components
related to cardiac data as ‘good’ components, removing the other signals from the dataset.

2.6.5 Human Connectome Project datasets

The Human Connectome Project (HCP) aims to study brain connectivity and function in healthy
adults (age range - 22-35) (Van Essen et al., 2012, 2013). In the 1200 release, ∼1200 subjects
underwent brain scans through four different imaging modalities, structural MRI, resting-state
functional MRI, task-based fMRI and diffusion MRI (Van Essen et al., 2013). All subjects were
scanned at 3 T, with a subset (200 subjects) repeating the scanning protocols at 7 T. Additionally,
100 subjects were scanned with MEG/EEG (Van Essen et al., 2013). A range of behavioural and
genetic tests were also conducted (Van Essen et al., 2012, 2013). During functional scanning,
cardiac, respiratory and head motion information was acquired. Chapters 4 and 5 make use of the
resting-state datasets collected by the HCP to develop methods of measuring HRV and pulsatility.
Each resting-state fMRI scan was completed four times, two of which were performed on day
one with opposite phase encode orientations (LR then RL) and the other two collected on day
two (again with different phase encode orientations). Each raw rfMRI scan was around 1 GB
in size equating to around 4 GB of storage per subject. This large amount of data posed new
challenges during analysis, most of which related to storage capacity and quotas. Improved
efficiency of scripts overcame this issue.

2.6.6 Global Intensity Changes

Global Intensity Changes (GICs) describe a global change in MR signal intensity. This change in
global signal can arise for many different reasons. An example of this is a global increase in CBF
caused by an increase in the concentration of CO2 in the blood. The larger the concentration of
CO2, the larger the BOLD signal change. This effect is especially prevalent in edge voxels as
the biggest signal change is detected here. ASL sequences cause GICs too. These occur due to
the reduction in MR signal in the imaging plane after the labelled blood has reached this plane.
The labelled blood has an inverted magnetisation and will result in a reduction in the overall
MR signal. Many VRA algorithms use a least squares approach to determine the magnitude of
signal within the voxels in the brain, with a specific focus on edge voxels. Edge voxels represent
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the biggest signal change during motion, CO2 changes and ASL tagging. These GICs can look
like motion to the VRA and this can cause signal loss when performing motion correction. As a
participant moves their head, the magnetisation signal that was previously collected in one voxel
can change intensity dramatically as the head moves into/out of the voxel. This is especially true
for voxels that did not contain any brain tissue prior to the movement, as the intensity of the
signal in this voxel will increase by a large amount. Figure 2.6 diagrammatically represents the
signal change in two scenarios, one with motion and one with a GIC.

Fig. 2.6 Diagram explaining the hypothesis that the VRA can misrepresent GICs as motion. 1.
During a scan a participant’s brain fills 10% of an edge voxel. 2. The participant moves so that
their brain occupies much more of the voxel (90%) an accompanying signal increase in this edge
voxel is seen by the VRA. 3. The same participant in a case where no motion occurred. Their
brain occupies 10% of an edge voxel. 4. After a GIC is present the MR signal intensity increases.
As there is no motion the brain only occupies 10% of the edge voxel as before. However, the
VRA sees the intensity change and misrepresents this as motion.

2.7 Summary

Throughout this chapter, I have introduced some key physiological concepts, including the
cerebrovasculature, the role of the Circle of Willis, cerebral autoregulation, arterial stiffness,
arterial compliance, pulsatility and heart rate variability. Additionally, I’ve outlined various
algorithms and datasets that are relevant to the experimental chapters of this thesis.
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2.8 Outline of Experimental Chapters

This thesis is divided up into three experimental chapters. Each of these chapters aims to improve
methods of measuring cerebrovascular physiology and, therefore, cerebrovascular health.

Chapter 3 investigates the current methods used to correct motion in fMRI data and how they
may fail in the measurement of cerebrovascular physiology. Correction of motion is important to
ensure accurate estimates of cerebrovascular function. The conventional method used (volume
registration - Outlined in section 2.6.1) falls short in experiments that make use of Global
Intensity Changes to quantify cerebrovascular health. Therefore, it is important to correct the
errors derived from VRA-based methods or find a new method to correct for motion. I propose
some techniques to achieve this.

Chapters 4 and 5 make use of the Human Connectome Project’s 1200 Young Person dataset
to derive measures related to cardiac pulsatility and Heart Rate Variability from resting state
fMRI information. Chapter 4 outlines some of the initial attempts and highlights why they failed.
Chapter 5 outlines the methods that achieved high correlations with a gold standard which could
be rolled out to larger datasets.





Chapter 3

Correcting motion registration errors
caused by Global Intensity Changes (GICs)

3.1 Chapter Overview

In this chapter, the conventional retrospective motion correction method used in fMRI is inves-
tigated since erroneous motion parameter estimates may be calculated using this method. An
external, optical motion tracking system was used to generate motion parameters that should
avoid this issue. This was compared with the conventional technique. Data-based methods
were developed to determine whether the erroneous estimates could be improved. In total, five
new motion correction methods were developed (including the camera-based method), and their
ability to generate accurate motion parameter estimates was explored. Finally, measures of
cerebrovascular function/health were quantified using all of the motion correction techniques to
determine the accuracy of these motion correction strategies.

3.2 Introduction

To acquire accurate information about the health of the cerebrovasculature, sources of noise
that could otherwise affect the results should be removed. One big source of noise in all fMRI
experiments is subject motion. The long scan times required to collect quality BOLD-fMRI
images increase the likelihood of subject motion. Such sources of subject motion include
involuntary motion of the brain due to cardiac and respiratory motion, coughing and movement
in the posterior direction (sinking into the scanner bed), as well as voluntary motion such as
fidgeting, shaking of the head, scratching an itch, etc. Subject motion can compromise data
quality by affecting M0 in three different ways: changes to the content of each voxel, changes to
the uniformity of the magnetic field and spin history effects. These changes are explored in detail
by Murphy and colleagues (Murphy et al., 2013). The main approaches to account for subject
motion are prevention and retrospective correction, the former being the most desirable. Making
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participants more aware of their movement has been effective in reducing motion during a scan in
some cases. It has been shown that using medical sticky tape applied to the participants’ forehead
and the scanner head coil to introduce tactile feedback significantly reduced translational and
rotational motion (Krause et al., 2019). Additionally, multiple memory foam cushions are packed
into the head coil, which helps to keep the participant more comfortable and limits the amount of
head motion. Even after implementing these methods to reduce motion there is usually some
residual motion during the scan. As a result correction of motion is a needed step to ensure good
data quality. This is not quite as straightforward as the methods to reduce motion, however.

There are two groups of methods that can reduce noise associated with motion, prospective
and retrospective motion correction. Prospective motion correction deals with correcting the
effects of motion in real time, usually by measuring motion during a scan and updating scanner
gradients to move the imaging slice or volume to compensate (Maclaren et al., 2012; Zahneisen
and Ernst, 2016; Zaitsev et al., 2017). On the other hand, retrospective motion correction deals
with correction of motion after the experiment. There are many methods of achieving this in
fMRI with the most common being image realignment. Image realignment algorithms typically
use a rigid body method that assumes the motion can be accounted for by three translational
and three rotational parameters. This accounts for six degrees of freedom (Zaitsev et al., 2017).
These algorithms then align each volume to a reference volume to determine the six motion
parameters.

Retrospective motion correction can be split into two separate steps, motion registration and
motion regression. The former deals with the removal of motion from the image, whereas the
latter deals with removing the effects of that motion from the time series. Motion affects the time
series in various ways. The density of spins in a voxel is directly related to the net magnetisation
and so a change of tissue composition within the voxel (i.e the head moves so that the voxel
contains grey matter rather than the white matter that it contained before the movement) will
affect the net magnetisation (Caballero-Gaudes and Reynolds, 2017). Spin history effects can
have a large effect on the fMRI signal. Spin history artefacts arise due to changes in the steady
state magnetisation reached in a typical fMRI experiment. Head motion results in a change in
timing between the excitations experienced by the spins which causes a shift from a steady state
(Caballero-Gaudes and Reynolds, 2017). This shift from a steady state causes the spin history
artefact. This is shown schematically in Figure 3.1.

Throughout this chapter, I investigate the use of AFNI’s image realignment algorithm referred
to as the Volume Registration Algorithm (VRA). The six motion parameters estimated by the
VRA are used to generate a motion-registered dataset with the motion removed from the image.
The standard regression approach involves regressing the six motion parameters along with
their temporal derivatives from the time series data. The addition of the temporal derivatives as
regressors is to account for small timing differences. Some studies have even proposed the use
of up to 36 regressors. The 36 regressors include 3 initial parameters (mean global time series,
white matter and cerebrospinal fluid time series), 6 standard motion parameters, 9 temporal
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Fig. 3.1 A. A schematic diagram showing the MR signal reaching a steady state. B. Head motion
effects cause a change in timing between the excitations experienced by the spins causing a shift
from a steady state magnetisation. This is known as the spin history effect.

parameters (the temporal derivatives of the previous 9 parameters) and 18 quadratic parameters
(the quadratic terms for all the previous 18 parameters) (Satterthwaite et al., 2013). However, it
has been shown that using large numbers of motion regressors is detrimental and could result
in a loss of signal (Bright and Murphy, 2015). Therefore, using the six motion parameters
as regressors could be more beneficial than including the temporal derivatives as it will avoid
the signal loss noted by Bright and Murphy (Bright and Murphy, 2015). As a result, only six
regressors were used to generate the motion regression datasets in this study.

Additionally, I considered an external motion detector that uses an external camera mounted
to the bed of the MRI scanner. This is a marker-less system that uses infrared light to create a
3D surface on the face of the participants. It provides real-time motion feedback as well as the
estimation of translational and rotational motion parameters that can be used in retrospective
correction. This system is the Tracoline (TCL) v3.074 motion tracking system (TracInnovations,
Bellarup, Denmark) and has been shown to be compatible with both MR and positron emission
tomography (PET) scanners (Slipsager et al., 2019). An overview of this system is explained in
detail in section 3.3.1.2. The work demonstrated in this chapter focuses on retrospective motion
correction which the TCL system is capable of. However, most studies that have used this camera
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focus on prospective motion correction (Berglund et al., 2020; Frost et al., 2019; Slipsager
et al., 2019). One study compared the system’s ability to perform retrospective and prospective
motion correction (Slipsager et al., 2021). Slipsager and colleagues determined that the TCL
system performed prospective correction far more accurately than retrospective correction when
compared visually and quantitatively (Slipsager et al., 2021). The TCL system has been shown
to reduce motion artefacts and significantly improve prospective motion estimates in both PET
and MR scans (Slipsager et al., 2019). One study found that the median absolute differences
between the TCL tracking system and MR image registration were 0.26mm in the y-direction
and 0.02◦ rotation about the y-axis and motion artefacts were significantly reduced when using
TCL (Frost et al., 2019).

Measurement of cerebral vascular health can be achieved using physiological challenges
that cause vasodilatory responses in the brain. Such challenges include inducing periods of
hypercapnia and hyperoxia (Germuska et al., 2016; Wise et al., 2013) and introducing a breath-
hold challenge that increases the arterial blood CO2 level (Cohen and Wang, 2019; Murphy
et al., 2011). The use of arterial spin labelling (ASL) has been verified as a non-invasive method
of acquiring information about cerebral blood flow (CBF) (Buxton et al., 1998; Fantini et al.,
2016a). These methods increase the signal in all areas of the brain (‘globally’) and are referred
to as global intensity changes (GICs) throughout this work. GICs were explained in detail in a
previous chapter as part of section 2.6.6.

There are three main hypotheses for this work. The first is that the GIC’s cause the misrepre-
sentation of motion in standard motion registration algorithms (the VRA’s), contaminating the
resulting motion estimates. The second is that the markerless motion tracking system, introduced
in this section, will provide a gold standard that can be used to test the misrepresentation of
motion. The third is that data-driven approaches to estimate motion will be improved by two
approaches: i) using an independent component analysis as part of the motion estimation, ii)
using a brain mask that is eroded at the edges to remove edge voxels that may be driving this
misrepresentation of motion.

Although motion registration methods are designed to accurately determine motion parame-
ters from the data, they can also contain a large amount of signal that does not pertain to motion
in certain circumstances. Figure 3.2, which shows the motion parameters derived from ASL data
during a CO2 gas challenge, displays a clear ‘tag-control’ pattern and CO2 signal. Therefore,
as mentioned earlier, I propose that the VRA interprets GICs at edge voxels to be motion, and
the GICs are represented in the motion parameters – thus causing signal loss when motion
regressions using these parameters are performed. Here, I compare VRA-based and external
marker-less camera-based correction with novel techniques designed to limit the influence GICs
on the estimated motion parameters.
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Fig. 3.2 The VRA-derived motion parameters (y-direction) for a CO2 gases challenge which
contained Arterial Spin Labelling (ASL) (blue) and the corresponding CO2 trace recorded by
external physiological equipment during the scan (orange).

3.3 Methods

3.3.1 Data Collection

Healthy participants (19-32 years) were recruited for the study of which, 5 were male and 5 were
female. Data were acquired on a Siemens 3T MAGNETOM Prisma scanner using a 64-channel
receiver head coil.

3.3.1.1 Overview of Scanner Protocols

To investigate the issue of misrepresenting GICs as motion, multiple different scan types were
chosen as part of the scanning protocol. Each scan type enabled a different metric of cerebrovas-
cular health to be quantified. The different scan types can be represented as a resting state scan
plus some added task and will be referred to as ‘Rest+task’ throughout this chapter. Firstly, a
resting state scan was collected as a sanity check. This scan does not contain a GIC and was
expected to produce VRA motion estimates most similar to the camera-based method (and the
other novel motion correction methods). Following the resting state scan, a BOLD scan was
collected with participants asked to move their head along with a pre-defined movement sequence
which introduced severe motion. The reason for this was to consider the accuracy of the motion
correction methods in severe motion conditions. Additionally, connectivity measures could be
collected from the resting state data. The multi-PLD pCASL scan allowed for the calculation
of cerebral blood flow (CBF). This scan type used multiple post-labelling delay (PLD) times
in an attempt to improve the accuracy of CBF quantification. The dual-excitation pCASL scan
type was used to quantify cerebrovascular reactivity (CVR), cerebral blood flow (CBF), oxygen
extraction fraction (OEF) and the cerebral metabolic rate of oxygen consumption (CMRO2).
During this scan, participants underwent periods of hypercapnia and hyperoxia as per (Germuska
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et al., 2016; Wise et al., 2013). The breath hold (BH) scan was collected to quantify CVR.
End-expiration breath holding causes a rise in end-tidal CO2 (Moreton et al., 2016) which in turn
induces a GIC. BH scans are also very easy to implement and so this was added to the protocol.

The scanning protocols used were as follows:

• Resting state - "RestOnly" (TR=2s,TE=30ms,α=70°,In-plane=2mm2, 64 slices(2mm+0.5mm
gap)). An EPI readout was used. This was collected as a control without any GICs. Con-
nectivity measures were quantified. It was expected that motion estimates would perform
in a similar way across all motion-correction methods.

• BOLD with applied motion - "Rest+Motion". The protocol was identical to the Resting
state protocol. An EPI readout was used. Participants were asked to move their heads along
with a predefined movement sequence. This was collected to determine how well methods
perform in severe motion conditions. Connectivity values were quantified. Expected
similar results to that of resting state.

• Dual-excitation pCASL - "Rest+CO2+ASLTag & Rest+CO2"(TR=1.1/3.8s, TE=11/30ms,
α=90°, In-plane=3.4mm2, 19 slices(6mm+1.2mm gap)). This protocol uses an inter-
leaved BOLD/ASL sequence (Germuska et al., 2019; Schmithorst et al., 2013) in which a
BOLD image is collected (TR=1.1s, TE=11ms), followed by an ASL tag image (TR=3.8s,
TE=30ms), followed by a BOLD image (TR=1.1s, TE=11ms), followed by an ASL control
image (TR=3.8s, TE=30ms). This is repeated for the duration of the sequence. This scan
was collected to quantify cerebrovascular reactivity (CVR), cerebral blood flow (CBF),
oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen consump-
tion (CMRO2). Participants underwent periods of hypercapnia and hyperoxia during this
scanning session as per (Germuska et al., 2016; Wise et al., 2013). It was expected that
CO2 and O2 increases would drive erroneous motion estimates in the BOLD portion and a
mixture of ASL tagging and CO2 would drive errors in ASL motion estimates.

• Multi-PLD pCASL - "Rest+ASLTag" (MaxTR=5.60, MinTR=2.85s, TE=11ms, PLD=250-
3000ms in 250ms steps, α=90°, In-plane=3.4mm2, 20 slices(6mm+1.2mm gap)). This was
collected to quantify CBF. It was expected that a PLD-ramp and ASL tagging would drive
errors in VRA motion parameter estimates.

• Breath Hold EPI BOLD - "Rest+CO2+Motion" (TR=2s,TE=30ms, α=70°,In-plane=2mm2,64
slices(2mm+0.5mm gap)). This was collected to quantify CVR. It was expected that CO2

would drive errors in motion estimates although it was also expected that large amounts of
motion would be present.
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3.3.1.2 Overview of External Motion tracking system

As mentioned previously, as well as collecting MR data, motion data was collected using the
Tracoline (TCL) motion tracker (TracInnovations, Bellarup, Denmark). The TCL is made up
of two units, the camera/light source and the vision probe (Slipsager et al., 2019). The camera
sits behind the bore of the MR scanner and the vision probe is mounted to the MR bed using a
specially designed mounting arm. The vision probe and camera are attached by 3-meter long
fibre optic cables housed within an energy chain cable to protect them from damage (Slipsager
et al., 2019). The vision probe is positioned so that it is directly above the participant’s face and
has a focus of 10-25cm (Slipsager et al., 2019). The TCL system uses Infra-Red light to generate
a 3D facial surface at the beginning of the data acquisition and this surface is used as a reference
for motion parameter estimation. It does this by projecting the IR light onto the participant’s
face using the vision probe. The IR light is generated in the camera and transferred to the vision
probe using the optical fibres. Throughout the scanning session, the TCL continuously generated
3D facial surfaces known as point clouds. The reference surface can be edited by the operator
using the tracsuite software and this is how the eye was cropped from the reference. The system
generates 30 point clouds per second and these are registered to the reference surface to generate
motion parameter estimates. An example of the point clouds collected and the reference surface
can be seen in Figure 3.3 (taken from (Frost et al., 2019)). For retrospective correction, the
motion parameter estimates need to be calibrated to a structural MPRAGE image acquired at
the beginning of the scanning session. This is to ensure that the motion information from the
camera is in the coordinate system of the MR scanner (the isocentre). The surface model of the
MPRAGE and the reference point cloud calibration can be seen in Figure 3.4.

Fig. 3.3 Representation of the 3D surface collected during tracking. The green surface shown is
the reference surface that the point clouds were registered to which was used to generate motion
parameters. This image was taken from (Frost et al., 2019)
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Fig. 3.4 MPRAGE to surface calibration example. The MPRAGE collected at the beginning of
the scanning session is shown in purple and the reference surface is shown in grey. The eye was
cropped out of the reference surface to prevent corruption of motion estimates by blinking.

3.3.2 Data Analysis

Estimates of motion regressors were calculated in four groups of methods; VRA-based, camera-
based, ICA-based and Erosion-based. This project investigated motion parameters in detail and
so no preprocessing steps were used. Preprocessing was avoided in case spurious interactions
with motion occurred, as these could alter motion parameter estimation. The VRA-based method
is the conventional motion correction method. It was included in this analysis in order to draw
comparisons with the novel methods. The camera-based method is external to the MR scanner
and should not be prone to the misrepresentation error outlined in Figure 3.2. Therefore, it is
expected that this will produce accurate estimates of motion. The ICA-based methods isolate
the signal expected to drive the error and removed it from the data before calculating motion
parameters. This was to generate more precise motion estimates without the erroneous signal.
The external influence on the GIC can be identified for each scan type using the table (Table 3.1)
The Erosion-based methods used whole brain masks that were eroded at the edges with differing
severity’s. This was to remove the edge voxels from the estimation in an attempt to improve the
motion estimates. The edge voxels would have the largest change in signal intensity and as so it
was hypothesised that their removal would improve the estimation of motion.
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Table 3.1 A table showing the external influence on the GIC for each scan type analysed in this
project

Scan Type Alternative Name External influence on GIC

Resting state RestingOnly None
BOLD with applied motion Rest+Motion None
Multi-PLD pCASL Rest+ASLTag PLD ramp/ASL Tagging
Dual-excitation pCASL - BOLD Rest+CO2 CO2 + O2 challenge
Dual-excitation pCASL - ASL Rest+CO2+ASLTag CO2 challenge/ASL Tagging
Breath Hold EPI BOLD Rest+CO2 +Motion CO2 breath hold challenge

3.3.2.1 Volume Registration Algorithm (VRA) based correction

The VRA-based method used AFNI’s 3dAllineate (Cox, 1996; Cox and Hyde, 1997), a program
that performs alignment of a dataset with a pre-defined base dataset, to perform rigid-body volume
registration and calculate motion parameters. This has 6 degrees of freedom (3 translational and
3 rotational). The temporal resolution of these motion parameters is one parameter per TR.

3.3.2.2 Camera-based correction & the issues associated with it

The camera motion parameter estimates were calculated with a temporal resolution of 30Hz.
However this was downsampled to match the VRA-based method (one parameter per TR).

Initially, it was thought that the camera-based motion parameter estimates should be consid-
ered the ‘true’ motion of the participant throughout the scanning session. This is because the
camera is external to the scanner. However, on initial analysis of the motion parameters produced
by the TCL motion tracking system, it was clear that there is a large amount of movement and
noise within the parameter estimates. This can be seen in the comparison between Figures 3.5,
3.6, 3.7 and 3.8 which shows the parameter estimates for the VRA-based and camera-based
methods. The TCL system works by attaching to the scanner bed by an arm. During the scan
this arm would vibrate with the vibration of the gradients within the MR scanner and so it
was hypothesised that this vibration is driving the added noise. By isolating the frequency of
vibration, I tried to remove this added source of noise and improve the accuracy of the camera-
based estimates. An FFT was applied to the camera-based motion parameters to determine the
frequency range that the vibration occurred in. I determined that the vibration was occurring
between 0.2Hz and 0.3Hz and so a bandpass filter was applied with these frequencies as the
upper and lower bandpass frequencies. Then, the bandpassed motion parameters were subtracted
from the original motion parameters to calculate the filtered motion parameters. Figures 3.9 and
Figure 3.10 show the FFT and the bandpassed FFT. The filtered motion parameters were then
used to rotate the raw data to generate a camera-based registration file. Unfortunately, the filtered
parameters showed a large amount of noise and the registration dataset contained more motion.
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As such, this attempt at reducing the noise is not substantial enough to remove noise fully even
though a small visual reduction in noise can be seen.

Fig. 3.5 Camera-derived translational (x, y, z) motion parameters for ASL data taken from a dual
echo excitation scan. The blue line represents the x parameter, the orange line represents the y
parameter and the yellow line represents the z parameter.

Fig. 3.6 Camera-derived rotational (roll, pitch, yaw) motion parameters for ASL data taken
from a dual echo excitation scan. The blue line represents the roll parameter (rotation around
z-direction), the orange line represents the pitch parameter (rotation around x-direction) and the
the yellow line represents the yaw parameter (rotation around y-direction).
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Fig. 3.7 VRA-derived translational (x, y, z) motion parameters for ASL data taken from a dual
echo excitation scan The blue line represents the x parameter, the orange line represents the y
parameter and the yellow line represents the z parameter.

Fig. 3.8 VRA-derived rotational (roll, pitch, yaw) motion parameters for ASL data taken from
a dual echo excitation scan. The blue line represents the roll parameter (rotation about the
z-direction), the orange line represents the pitch parameter (rotation about the x-direction) and
the yellow line represents the yaw parameter (rotation about the y-direction).
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Fig. 3.9 FFT of camera-derived motion parameters from ASL data acquired using a dual echo
excitation scan.

Fig. 3.10 FFT of camera-derived motion parameters with the problematic frequency range
bandpass filtered out.
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3.3.3 Independent Component Analysis (ICA) based correction

The ICA-based method used FSL’s MELODIC to perform an Independent Component Analysis
(ICA) (Beckmann and Smith, 2004) to decompose the data into independent components. Then,
the external influence on the GIC caused by any CO2 or tagging-induced global changes along
with the ICA decomposition was used to isolate and remove components related to these signals.
Data were pre-processed by MELODIC in the following way: masking of non-brain voxels,
voxel-wise demeaning of data and normalisation of the voxel-wise variance. The data was then
whitened and projected into a 60-dimensional subspace using principal component analysis.
Next, the whitened observations were decomposed into sets of vectors which describe the signal
variation across the temporal and spatial domains. Finally, the estimated component maps were
divided by the standard deviation of the residual noise and thresholded by fitting a mixture model
to the histogram of intensity values. Components were removed by regressing them from the
data using ordinary least squares regression (part of the MELODIC toolbox). Then, motion
parameters were calculated from the datasets that no longer contained the external influences on
the GICs using a VRA. The number of components removed was determined by a correlation of
the external influence on the GIC with each ICA component. The components with statistically
significant p-values (p<0.05 - uncorrected) were removed (Method 1). In Method 2, a Bonferroni
correction accounted for multiple comparisons and statistically significant components were
removed.

3.3.4 Erosion-based correction

The Erosion-based method excluded voxels from the VRA using a whole brain mask that had
been eroded (from the outer edge) by either 5mm or 20mm.

3.3.4.1 Erosion-based ‘doughnut’ masks

Masks were created that combined the Erosion-based masks to generate ‘doughnut’ masks.
These masks removed data from the centre of the original Erosion-based masks so that they were
‘ring-shaped’ (or doughnut shaped). The idea behind this was to isolate the signal originating
from the GM. Additionally, the masks were thought to remove any signal from the brain stem
which could interfere with the calculation of motion parameters. The results for this method
have not been included in this work as initial analyses suggested the method did not work well.

3.3.5 Hybrid Independent Component Analysis (ICA) & Erosion-based
correction

A hybrid method that combined the ICA and Erosion methods was used to determine if a mixture
of these methods would increase the accuracy of the motion parameter estimates. An ICA was
run and the external influence on the GICs was removed from the data as per the ICA-based
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method (section 3.3.3). Then, motion parameters were calculated from the data that no longer
contained the external influences on the GICs using a VRA. However, in the setup of the VRA,
an eroded whole brain mask was used to restrict the registration so that it did not include the
edge voxels in its estimate of motion. The results from this method have not been included in
this work as initial analyses suggested the method did not work well.

3.3.6 Boundary Based Registration (BBR)

Boundary based registration was used as an alternative data-based method which is independent
of the GICs brought on by registering the fMRI volumes with each other. BBR works by mapping
the white matter boundaries to the EPI images. This is usually performed with a rigid-body
registration with 6 degrees of freedom. FSL’s implementation of BBR was used to perform the
registration. Initially, the EPI image was averaged and this was registered to the structural image
using FSL’s epi reg resulting in an initial BBR registration matrix. The next step used the initial
BBR matrix and each fMRI volume to register them to the structural image. This produced a
BBR matrix and BBR volume for each fMRI volume. The resulting matrix corresponds to the
motion between each successive volume. Finally, the BBR volumes were combined to create one
BBR dataset corrected of motion. Unfortunately, the initial results for this method showed that it
did not work as expected and so have not been added to the results for this work. The conclusion
made is that there is not enough information in the fMRI images to allow for an accurate BBR
correction of motion.

3.3.7 Registration & Regression analysis

Retrospective motion correction can be achieved in two stages, motion registration and motion
regression. The former deals with the correction of motion in the images themselves which is
important to remove any rotations/translations that can be seen within the images. The latter
deals with the correction of motion within the time series data. This is achieved by using linear
regression and the motion parameters (or regressors in this case). The motion parameters are
then regressed from the data resulting in a dataset corrected of motion.

Following the creation of motion parameters, a registration dataset was created for each
method by rotating and translating the raw data using the motion parameters. For the VRA-based
and Erosion-based methods this was an automatic process that formed part of the registration
algorithm. For the camera-based and ICA-based methods this was completed manually by using
AFNI’s 3drotate. The six motion parameters were then used as regressors in a linear regression
and regressed from the registration dataset resulting in datasets that were fully corrected of motion.
To understand whether the different steps of motion correction affect the misrepresentation of
signal, the different stages of motion correction will be presented separately in the results. The
data corrected up to the motion registration step will be referred to as registration only and the
data that is fully corrected of motion will be referred to as registration + regression.
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3.3.8 Analysis of Motion Parameters

A global signal was created from the raw data acquired directly from the scanner. This was
accomplished using AFNI’s 3dmaskave function which computed an average of all voxels within
the input dataset (the raw data). This was repeated for all scan types and participants.

To determine how much variance GICs add to the motion parameters, linear regression was
performed on the global signal with the motion parameters (from each method) used as regressors
for each scan and participant. The global signal was then plotted against the model fit created
from the linear regression. This was to determine how closely fitting the model fit was to the
global signal. R2 statistics were calculated from the linear regression.

Linear regression was also used to compare the motion parameters for each method to
the VRA motion parameters and to compare to the external influence on the GIC that was
hypothesised to drive the misrepresentation of signal (explained in Table 3.1). This would
indicate how closely the estimates were to the VRA-based estimates as well as the driver of the
error. R2 values were calculated from each regression and paired t-tests were used to estimate
the significance when compared to the VRA-based R2 values.

This analysis was expected to identify which technique performed the best at calculating
motion parameters. The graphs that were created by this method show how much variance in
the global signal, the expected GIC and the VRA-based estimation each method’s estimation
of motion explains. This would therefore show which method produces motion estimates that
contain the least variance related to the global signal and GIC. It would also demonstrate which
method was most similar to the VRA method (which has been found to show erroneous motion
parameter estimates). The impact that improved motion correction would have on the calculated
physiological parameters would vary for each. It is thought that the values of CVR and CBF
would increase where there is a more accurate correction of motion. The expected trend for
CMRO2 and OEF is not as straight forward, however. It is currently unclear whether motion
correction would lead to a drop in these measures or an increase. It is expected that measures of
connectivity will increase with better motion correction.

3.3.9 Quantification of Cerebrovascular Physiology

Cerebrovascular measures were quantified for each motion correction method. For completeness,
these measures were calculated after the registration only dataset was created and also after the
registration + regression dataset was created.

3.3.9.1 Connectivity analysis

Left and right motor cortex masks from the Juleich atlas were registered to subject space. These
were combined with participant grey matter masks (explained in section 3.3.10) to generate a
left and right motor cortex masks containing only grey matter. These masks were then used to
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generate the average BOLD (RestOnly or Rest+Motion) signal contained within the left and right
motor cortex for each of the motion correction types. A correlation was performed between the
average BOLD signal in the left and right motor cortex and these correlation values were used
as connectivity values. This was repeated for each motion correction type and each participant,
considering both registration only and registration + regression. The average connectivity value
across all 10 participants was calculated.

3.3.9.2 CBF Quantification

To calculate CBF it is first necessary to calculate the M0,blood as this will allow for the
determination of the amount of magnetisation in the tag and control images that is related to
blood. The protocol used a multi-PLD pCASL acquisition with PLD times ranging from 250-
3000ms in 250ms steps. CBF values were quantified by fitting all PLD values simultaneously
using equations 2.6, 2.7 and 2.8 (as per the method outlined by Buxton (Buxton et al., 1998)
- This is described in detail in Chapter 2). Initially a value for the magnetisation of arterial
blood (M0,a) was calculated using equation 3.1 (Pinto et al., 2019). The parameters used
in this equation included the magnetisation of tissue (CSF in this case - M0,CSF ), echo time
(T E = 11ms (Pinto et al., 2019)), the transverse relaxation time of tissue (CSF used as reference
tissue - T ∗

2,CSF = 400ms), the transverse relaxation time of arterial blood (T ∗
2,a = 48.4ms) and the

blood-brain water partition coefficient λt = 1.15 (Pinto et al., 2019).
Following the calculation of M0,a, CBF was calculated using equations 2.6, 2.7 and 2.8.

Parameters used within this equation were as follows: λ = 0.9mlg−1 (Alsop et al., 2015),
α = 0.85, τ = 1.8ms

M0,a =
M0,CSF · e

T E( 1
T∗2,CSF

− 1
T∗2,a

)

λt
(3.1)

3.3.9.3 CVR Quantification

CVR quantification initially involved the normalisation of the BOLD signal to produce a per-
centage BOLD dataset. This was achieved using equation 3.2. Then a linear regression was
used with the measured CO2 trace as a regressor. This follows the method outlined in Chapter 2,
following equation 2.5. This resulted in the quantification of CVR maps.

%BOLD =
BOLD

BOLDmean
·100 (3.2)

Additionally, CBF CVR was also generated in this study. Quantification of CBF CVR follows
the same method as above however the CO2 trace is regressed from the CBF data in place of the
BOLD data.
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3.3.9.4 CMRO2 Quantification

Quantification of CMRO2 followed the method described in Chapter 2 using equation 2.9.
Calculation of CaO2 was achieved using equation 3.3 where φ = 1.34[ml]O2([g]Hb)−1 (the
O2 carrying capacity of haemoglobin), Hb is the hameoglobin concentration, SaO2 is the
arterial oxygen saturation, PaO2 is the partial pressure of oxygen in arterial blood and ε =

0.000031[ml]O2([ml]blood[mmHg])−1 is the coefficient of solubility of oxygen in blood. In
this work the value used for Hb depended on the gender of the participant as blood sam-
ples weren’t taken to measure this per participant. For male participants the value used was
0.155[g]Hb([ml]blood)−1 and for female participants the value used was 0.135[g]Hb([ml]blood)−1

(Billett, 1990).

CaO2 = φ ·Hb ·SaO2 +PaO2 · ε (3.3)

To use equation 3.3, one must first calculate SaO2. This can be accomplished using equation
3.4 (Wise et al., 2013). PaO2 can be measured from the O2 trace collected as part of the data
collection.

SaO2 =

(
1

23400
(PaO2)3+150(PaO2)

+1

)
(3.4)

The parameters used to calculate CMRO2 (equation 2.9) follow those outlined in Chapter 2
as well as using equation 3.3 to calculate CaO2.

3.3.10 Grey Matter Segmentation

Following the creation of maps containing CVR, CBF, CMRO2 and OEF, the values for each
parameter in grey matter (GM) were extracted from the maps using GM masks. These masks
were generated from structural T1w images acquired as part of the scanning protocol. Generation
of these masks began by running Advanced Normalization Tools (ANTs) cortical thickness
pipeline to segment the different tissues within the brain. Then, the segmented GM (T1) image
was registered to functional (EPI) space using boundary based registration (epi_reg - part of
FSL’s FLIRT (Jenkinson et al., 2002; Jenkinson and Smith, 2001)). This resulted in a GM masks
in EPI space. The average signal in GM within the CVR, CBF, CMRO2 and OEF maps was
calculated using AFNI’s 3dmaskave to generate cerebrovascular measures in GM.
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3.4 Results

3.4.1 Volume Registration Algorithm (VRA) based correction

Motion parameter estimates generated by the VRA-based correction method varied across the
different scan types collected. The motion estimates for the scans containing a GIC supported
my hypothesis that the VRA misrepresents signal as motion in the presence of a GIC. This is
demonstrated in both Figure 3.11 and Figure 3.12 where the former represents the effects on
the global signal (mean across voxels) and the latter represents the effects on the different GICs
that were expected to cause the misrepresentation. It is clear from both Figures that a high
R2 was calculated from the VRA-based estimates in most of those scans that contained a GIC
(Rest+CO2, Rest+ASLTag, Rest+CO2+Motion, Rest+CO2+ASLTag).

3.4.2 Camera-based correction

Motion parameter estimates generated by the camera-based method showed a large variation
across scan types. The lowest values were detected for the Rest+ASLTag scans with almost all
values of R2 less than 0.2 (Figure 3.11). In some cases, the R2 values were similar to that of the
VRA-based method which was predominantly the case for the scans that did not contain GICs
(RestOnly and Rest+Motion). Figure 3.13 compared the novel methods of correction to that of
the VRA-based method and in most cases the camera-based method showed a large difference to
the VRA-based method. This is reflected in the low values of R2 calculated for the camera-based
method in most scan types.
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Fig. 3.11 R2 variance values showing how much variance the motion parameters from each
method could explain in the global signal (average over voxels). The lines connecting each
method show the deviation between methods and each coloured line represents one participant.
The colours of the points represent the method used. For example, all participants have the same
coloured point for the data-derived method but a different coloured line connecting the points.
At each step in the diagram, the scan type can be represented as a resting-state scan + a task. The
lower the R2 value, the less variance is explained in the global signal by the motion parameters
which would suggest the method with the lowest variance is the least problematic method.
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Fig. 3.12 R2 variance values showing how much variance the motion parameters from each
method could explain in the external signal expected to influence the GIC (explained in Table
3.1). The lines connecting each method show the deviation between methods. and each coloured
line represents one participant. The colours of the points represent the method used. For example,
all participants have the same coloured point for the data-derived method but a different coloured
line connecting the points. At each step in the diagram, the scan type can be represented as a
resting-state scan + a task. The lower the R2 value, the less variance is explained in the external
signal influencing the GIC by the motion parameters which would suggest the method with the
lowest variance is the least problematic method.
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3.4.3 Independent Component Analysis (ICA) based correction

Examining Figure 3.11, the ICA-based methods displayed R2 values that were lower than the
VRA-based estimate in some scans that contained a GIC (Rest+CO2, Rest+CO2+ASLTag). The
most prominent case was detected for the Rest+CO2 scan type with p-values 2.2×10−4 (ICA
method 1) and 1.6×10−4 (ICA method 2). This highlights that the motion parameter estimates
calculated by the ICA methods do not show as much R2 variance as the other methods and so
they contain less information related to the GICs.

Examining the results from Figure 3.12, the ICA-based methods showed a lower R2 in most
scan types that contained a GIC (Rest+CO2, Rest+CO2+Motion, Rest+CO2+ASLTag). The
greatest difference was detected for the Rest+CO2 scan with p-values of 2.1×10−4 (ICA method
1) and 5.8× 10−3 (ICA method 2), when comparing the VRA-based method. A significant
difference was found for the Rest+ASLTag scan, when compared to the VRA-based method. The
PLD-ramp was the predominant GIC causing the misrepresentation of motion (p-vals=6.6×10−3

(ICA method 1), 3.0×10−3 (ICA method 2)). ASL tagging showed a significant p-value when
compared to the VRA-based estimate also (p-value=4.0× 10−2 (ICA method 1), 3.8× 10−2

(ICA method 2)). Lower R2 values were calculated for the RestOnly scan (p-vals=7.8×10−3

(ICA method 1), 2.6× 10−3 (ICA method 2)) and the Rest+Motion scan (p-vals=2.2× 10−2

(ICA method 1) suggesting less signal is misrepresented as motion when using the ICA-based
methods.

The ICA-based results showed similarities to that of the VRA-based results in all scan
types (Figure 3.13). A bigger spread of R2 values is present in the scans that contained GICs
(Rest+CO2, Rest+ASLTag, Rest+CO2+Motion, Rest+CO2+ASLTag) as expected. In most cases,
the R2 values calculated from ICA method 2 were higher than ICA method 1 and thus more
similar to those of the VRA-based method.
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Fig. 3.13 R2 variance values showing how much variance the motion parameters from each
method (TCL, ICAmet1, ICAmet2, Erode05mm, Erode20mm) could explain in the VRA-based
motion parameter estimates. The lines connecting each method show the deviation between
methods and each coloured line represents one participant. The colours of the points represent
the method used. For example, all participants have the same coloured point for the data-derived
method but a different coloured line connecting the points. At each step in the diagram, the scan
type can be represented as a resting-state scan + a task. The lower the R2 value, the less variance
the motion parameters will explain in the VRA-based motion parameters which would suggest
the method with the lowest variance is the least problematic method.
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3.4.4 Erosion-based correction

Referring to the similarities to the global signal (Figure 3.11) the Erosion-based methods
displayed R2 values that were consistent with that of the VRA-based estimates in most cases.
This differs when looking at the Rest+ASLTag scan type where there was a statistical difference
observed with p-values of 3.7×10−3 (Erosion 05mm) and 7.4×10−2 (Erosion 20mm).

On the whole, Erosion-based estimates generated similar results to that of the VRA-based es-
timates when looking at the effects of the different GICs (Figure 3.12). There were statistical dif-
ferences between the VRA-based estimate and the Erosion-based estimates in some cases, namely
for the Rest+Motion scan (p-value=3.2×10−2 (Erosion 05mm)), the Rest+CO2+ASLTag (p-
value=2.03×10−3 (Erosion 05mm), p-value=3.4×10−3 (Erosion 20mm)) and the Rest+ASLTag

(p-value=9.4×10−4 (Erosion 20mm)).
For scans that did not include a GIC (RestOnly, Rest+Motion), the Erosion-based estimates

showed a very high similarity (and therefore R2 value) to the VRA-based estimates (Figure
3.13). In the scans that did contain a GIC (Rest+CO2, Rest+ASLTag, Rest+CO2+Motion,
Rest+CO2+ASLTag), there was a large spread in R2 for the Erosion-based estimates with the
erosion 5mm estimates showing less of a spread in similarity.

3.4.5 Quantification of Cerebrovascular Physiology

3.4.5.1 Connectivity analysis

Both the RestOnly and Rest+Motion scans were used to generate connectivity values for the
right and left motor cortex areas. Results are shown in Figures 3.14 and 3.15 with the former
showing the results for the RestOnly and the latter showing the results for the Rest+Motion. The
bar plots show the average connectivity values across the participants for that correction method.
For the RestOnly scan, values of connectivity varied across the different correction methods with
most methods showing connectivity values between 0.5 and 1. The average connectivity for
each scan type fell between 0.76 and 0.86. The average value for each correction method was
quite similar for each correction type. A statistical difference was detected when comparing
the registration only VRA-based and camera-based methods (p-value=7.3× 10−2) and the
registration + regression VRA-based and camera-based correction methods (p-value=8.9×
10−4). The Rest+Motion scan was more variable with values ranging from -0.1 to 1 across
the different methods. Registration only methods showed lower values for connectivity than
registration + regression methods overall. No statistically significant differences were detected
for the registration only methods when compared to the VRA-based method. The VRA-based
method alone showed similar values to those that were data-based with the camera-derived
and ICA-based method 1 showing slightly lower values. When comparing the VRA-based
registration + regression method to the other registration + regression methods, a statistically
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significant difference was detected for no motion correction (p-value=7.5×10−3) and for ICA
method 1 (p-value=1.5×10−2).

Fig. 3.14 Connectivity values generated from the RestOnly scan for each correction method.
Each correction method is represented by a different coloured dot. Each line connecting the
dots represents a different participant. The bars represent the average connectivity across
participants for each method. The ’regis’ terms represent registration and the ’regis+regr’
represents registration and regression.

Fig. 3.15 Connectivity values generated from the Rest+Motion scan for each correction method.
Each correction method is represented by a different coloured dot. Each line connecting the
dots represents a different participant. The bars represent the average connectivity across
participants for each method. The ’regis’ terms represent registration and the ’regis+regr’
represents registration and regression.

3.4.5.2 CBF Quantification

From Rest+ASLTag scans
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Mean values of CBF across participants are displayed as a bar chart along with the values
per participant (asterisks) in Figure 3.16. CBF values calculated from registration only meth-
ods were similar across all correction types with CBF values in the range 20 ml/100g/min to
80 ml/100g/min. Mean values for each registration only correction type were between 40.31
ml/100g/min and 41.68 ml/100g/min with standard deviations between 12.27 ml/100g/min
and 13.26 ml/100g/min. A statistical difference was detected when comparing the VRA-based
method with the Erosion 05mm method (p-value=2.4×10−3). Methods involving registration +

regression showed a decrease in CBF value for most correction types. The camera-based and Ero-
sion 20mm based methods showed an increase in mean CBF value but this was accompanied by
an increase in standard deviation (camera: mean=67.24 ml/100g/min, stdev=29.60 ml/100g/min;
Erosion 20mm: mean=45.00 ml/100g/min, stdev=38.93 ml/100g/min). Across participants,
values for CBF stabilised for the ICA-based methods and spread variably for Erosion-based
methods as explained by the high standard deviations detected for the Erosion methods (Ero-
sion 05mm: mean=32.70 ml/100g/min, stdev=32.94 ml/100g/min). When compared to the
VRA-based method, statistically significant differences were detected for no motion correction
(p-value=1.8×10−2) and Erosion 05mm (p-value=4.4×10−2).

Fig. 3.16 CBF values generated from the Rest+ASLTag scan for each correction method. Each
correction method is represented by a different coloured dot. Each line connecting the dots
represents a different participant. The bars represent the average CBF across participants for
each method. The ’regis’ terms represent registration and the ’regis+regr’ represents registration
and regression.

From Rest+CO2+ASLTag scans

Mean values of CBF across participants are displayed as a bar chart along with the values
per participant (asterisks) in Figure 3.17. Values generated from registration only methods
lie between 30-60 ml/100g/min and most involving registration + regression fall in the same
range. The average value across participants for those involving registration + regression

was slightly lower than those involving registration only. Values generated using the Erosion-
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based methods involving registration + regression were much lower falling in the range 20-40
ml/100g/min (Erosion 05mm: mean=26.55 ml/100g/min, stdev=6.09 ml/100g/min; Erosion
20mm: mean=21.46 ml/100g/min, stdev=9.95 ml/100g/min). ICA-based methods generated
higher values than the VRA-based method overall but had a greater variation (VRA: mean=34.31
ml/100g/min, stdev=4.44 ml/100g/min; ICA method 1: mean=38.75 ml/100g/min, stdev=13.22
ml/100g/min; ICA method 2: mean=38.27 ml/100g/min, stdev=12.53 ml/100g/min). When
comparing the registration only VRA-based method to the other registration only methods,
statistically significant differences were detected for no motion correction (p-value=2.8×10−2),
ICA method 2 (p-value=3.1×10−3), Erosion 05mm (p-value=5.1×10−3) and Erosion 20mm
(p-value=2.0× 10−4). For the same comparison with registration + regression methods, sta-
tistically significant differences were detected for no motion correction (p-value=7.8×10−3),
camera-based (p-value=1.0×10−2), Erosion 05mm (p-value=1.7×10−3) and Erosion 20mm
(p-value=5.9×10−3).

Fig. 3.17 CBF values generated from the Rest+CO2+ASLTag scan for each correction method.
Each correction method is represented by a different coloured dot. Each line connecting the dots
represents a different participant. The bars represent the average CBF across participants for
each method. The ’regis’ terms represent registration and the ’regis+regr’ represents registration
and regression.

3.4.5.3 CVR Quantification

From Rest+CO2 scans

Figure 3.18 shows the CVR values calculated for the Rest+CO2 scan. The mean value across
participants is plotted as a bar for each method of correction. On the whole, values of CVR
calculated using registration only methods were higher. A spread of CVR values is evident
between participants ranging from 0.1 %BOLD/mmHg to 2.5 %BOLD/mmHg with the VRA-
based registration only method displaying the most variable results (mean=1.19 %BOLD/mmHg,
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stdev=0.78 %BOLD/mmHg). Calculated CVR values were lower when considering registration

+ regression although the ICA methods estimates were closer to that of registration only (ICA
method 1 - registration only: mean=1.03 %BOLD/mmHg, stdev=0.60 %BOLD/mmHg; ICA
method 1 - registration + regression: mean=0.79 %BOLD/mmHg, stdev=0.38 %BOLD/mmHg;
ICA method 2 - registration only: mean=1.04 %BOLD/mmHg, stdev=0.62 %BOLD/mmHg; ICA
method 2 - registration + regression: mean=0.80 %BOLD/mmHg, stdev=0.42 %BOLD/mmHg).
Values of CVR were higher for ICA-based methods involving registration + regression in com-
parison to other methods containing registration + regression with p-values=6.8×10−4 (ICA
method 1) and 1.2×10−3 (ICA method 2) when compared to the VRA-based estimates. When
compared to the registration only VRA-based methods, statistically significant differences were
detected for no motion correction (p-value=1.4×10−2), camera-based (p-value=4.7×10−2),
ICA method 1 (p-value=3.3×10−2), ICA method 2 (p-value=4.0×10−2), Erosion 05mm (p-
value=4.2×10−2) and Erosion 20mm (p-value=3.0×10−2).

Fig. 3.18 CVR values generated from BOLD data acquired during the Rest+CO2 scan for each
method of correction. Each correction method is represented by a different coloured dot. Each
line connecting the dots represents a different participant. The bars represent the average CVR
across participants for each method. The ’regis’ terms represent registration and the ’regis+regr’
represents registration and regression.

From Rest+CO2+ASLTag scans

CVR values generated from the Rest+CO2+ASLTag scan data are shown in Figure 3.19.
Most values fall within the range 0.4-0.8 %BOLD/mmHg with an exception detected for the
Erosion-based methods. There is no obvious difference in the average values for the methods
using registration only and the methods using registration + regression and these values fell
in the range 0.52-0.65 %BOLD/mmHg. No statistically significant differences were detected
when comparing the VRA-based methods (registration only and registration + regression) with
the other methods. A lot of variation was detected for the ICA method 2 and Erosion 05mm
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methods considering registration + regression (ICA method 2: stdev=0.16 %BOLD/mmHg;
Erosion 05mm: stdev=0.21 %BOLD/mmHg).

Fig. 3.19 CVR values generated from the Rest+CO2+ASLTag scan for each method of correction.
Each correction method is represented by a different coloured dot. Each line connecting the dots
represents a different participant. The bars represent the average CVR across participants for
each method. The ’regis’ terms represent registration and the ’regis+regr’ represents registration
and regression.

From Rest+CO2+Motion scans

CVR values generated from the Rest+CO2+Motion scan data are shown in Figure 3.20.
Most values lie within the range 0-0.8 %BOLD/mmHg with some outliers detected above
this. In general, the values generated using registration only methods were higher than those
that used registration + regression methods. ICA-based methods using both registration +

regression showed values closer to that of the registration only methods which is similar
to the Rest+CO2+ASLTag results for CVR (ICA method 1 - registration only: mean=0.67
%BOLD/mmHg, stdev=0.35 %BOLD/mmHg; ICA method 1 - registration + regression:
mean=0.46 %BOLD/mmHg, stdev=0.19 %BOLD/mmHg; ICA method 2 - registration only:
mean=0.66 %BOLD/mmHg, stdev=0.33 %BOLD/mmHg; ICA method 2 - registration + re-

gression: mean=0.45 %BOLD/mmHg, stdev=0.30 %BOLD/mmHg). When compared to the
VRA-based estimate that considered registration only, the Erosion-based method that considered
registration only was statistically different (p-value=9.0×10−3).
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Fig. 3.20 CVR values generated from the Rest+CO2+Motion scan data for each correction
method. Each correction method is represented by a different coloured dot. Each line connecting
the dots represents a different participant. The bars represent the average CVR across partici-
pants for each method. The ’regis’ terms represent registration and the ’regis+regr’ represents
registration and regression.

3.4.5.4 CMRO2 & OEF Quantification

Measures of CMRO2 and OEF were generated using the CMRO2 quantification pipeline.

CMRO2

Figure 3.21 shows the CMRO2 values calculated from the dc-fMRI data. The mean values
across participants are plotted as bar plots for each correction type. Values generated using
registration only gave higher values of CMRO2 when compared with registration + regression

methods. The two ICA-based methods considering registration + regression generated values
falling between 140-180 µmol/100g/min for most participants (ICA method 1: mean=142.68
µmol/100g/min, stdev=44.19 µmol/100g/min; ICA method 2: mean=142.12 µmol/100g/min,
stdev=45.49 µmol/100g/min). The average value was lower due to two outliers with extremely
low values of CMRO2. For the VRA-based method, the average value per participant dropped be-
low 120 µmol/100g/min considering registration + regression. The Erosion-based methods that
considered registration + regression generated values of CMRO2 that were much lower than the
VRA-based method (Erosion 05mm, p-value=7.2×10−3, Erosion 20mm, p-value=2.5×10−2)
suggesting that the erosion of voxels may interfere with the quantification of CMRO2.
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Fig. 3.21 CMRO2 values generated from a dc-fMRI scan for each correction method. Each
correction method is represented by a different coloured dot. Each line connecting the dots
represents a different participant. The bars represent the average CMRO2 across participants for
each method. The ’regis’ terms represent registration and the ’regis+regr’ represents registration
and regression.

OEF

Figure 3.22 shows the OEF values generated from a dc-fMRI scan. A drop in OEF value was
observed for those methods considering registration + regression compared to those considering
registration only and values generated from registration only were consistent across correction
methods. ICA-based methods utilising registration + regression produced values closer to those
generated using registration only than the other registration + regression methods (ICA method
1 - registration only: mean=159.15, stdev=18.34; ICA method 1 - registration + regression:
mean=142.68, stdev=44.19; ICA method 2 - registration only: mean=165.23, stdev=19.99; ICA
method 2 - registration + regression: mean=142.12, stdev=45.49).
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Fig. 3.22 OEF values generated from a dc-fMRI scan for each motion correction method. Each
correction method is represented by a different coloured dot. Each line connecting the dots
represents a different participant. The bars represent the average OEF across participants for
each method. The ’regis’ terms represent registration and the ’regis+regr’ represents registration
and regression.

3.5 Discussion

The results outlined here suggest that there is no one method of correction that works perfectly
for every scan type explored. As such, the suggested method may be different depending on the
desired analysis. The ICA-based methods outperformed both the camera-based and Erosion-
based methods for most scan types with the strongest effect noticed in the Rest+CO2 scan. This
scan type involved long periods of hypercapnia/hyperoxia and the CO2 and O2 traces were
recorded for these. These traces would allow for a more accurate removal of the components
within the ICA that were related to CO2 and O2. This would result in a more accurate estimation
using the ICA-based method. This could explain why the ICA method out performed both the
camera-based and Erosion-based methods. However, one would expect a similar power detected
for the Rest+CO2+ASLTag scan if this was the reason. This expected result was not reflected in
the data, however. The Rest+CO2+ASLTag scan type included ASL tagging in addition to CO2

which could have influenced the motion estimate and therefore explain the decrease in power.

3.5.1 Volume Registration Algorithm (VRA) based correction

The VRA-based methods resulted in relatively large values of R2 as shown in Figures 3.11 and
3.12, especially for the Rest+ASLTag scan. This is significant as the R2 values directly relate
to the amount of motion that is present in the Global, GIC, or VRA-based motion parameters.
Therefore, it is expected that higher R2 values were related to a less accurate estimate of motion.
Interestingly, the VRA-based method also showed relatively large R2 values for the RestOnly and
Rest+Motion scans. This result is strange as it’s expected that there would be no misrepresentation
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of signal as motion in scans that do not contain GICs (RestOnly and Rest+Motion). It could
be the case that in these resting-state scans there was an increased amount of motion, or that
accidental breath holds were present resulting in an unexpected GIC. Figure 3.12 suggests the
CO2 expired by the participant does cause a similar misrepresentation of the motion as the
motion parameter estimates are similar to that of the expired CO2 trace in some participants.

3.5.2 Camera-based correction

The camera-based methods showed large differences when compared to the VRA-based methods.
This is expected as the camera is external to the scanner and estimates of motion would not be
affected by the global changes induced by CO2 or ASL tagging. This was especially noticeable
for the Rest+ASLTag scan in Figures 3.11 and 3.12. Figure 3.12 shows that the main driver
of this difference is the PLD-ramp. This is expected because longer PLD values translate to
more of the tagged blood arriving at the target tissue. This would mean that the intensity change
would be much larger as more signal is subtracted from the MR signal. However, when dealing
with smaller motion, such as that seen within the Rest+CO2 and Rest+CO2+ASLTag scans it
seems that the camera-derived estimate overestimated the amount of motion. As a result, the
registration datasets contained additional motion unrelated to the actual head motion. This was
outlined in section 3.3.2.2. Therefore, the camera-derived estimates need to be treated with
caution.

3.5.3 Independent Component Analysis (ICA) based correction

The ICA-based method shows less GIC variance than the other methods overall (Figure 3.12).
They also shows less global signal within the motion parameters (Figure 3.11). These results sug-
gest that there is less GIC information contained within the ICA-based estimation of motion. This
is true in most scans that contained a GIC (Rest+CO2, Rest+CO2+Motion, Rest+CO2+ASLTag),
but was not true for those that did not contain a GIC (RestOnly and Rest+Motion).

The results from Figure 3.13 showed that the ICA-based estimates were similar to the VRA-
based estimation for the scans that did not contain a GIC (RestOnly and Rest+Motion) which
was expected. However, some participants did show lower R2 values which could be a result
of accidental breath holds from participants thus causing a GIC. For the scans that did contain
a GIC (Rest+CO2, Rest+ASLTag, Rest+CO2+Motion, Rest+CO2+ASLTag), the ICA-based
estimates did show a difference in comparison with the VRA-based estimates. This shows
that these methods are calculating different motion parameters to the VRA-based method. It
was noted that the ICA method 2 showed R2 values that were more similar to the VRA-based
method than the estimates generated from ICA method 1. This was attributed to the Bonferroni
correction restricting the number of components that were removed. The estimates generated
for the Rest+CO2+Motion had high R2 values, especially for ICA method 2. In this scan type,
the ICA method may not work as accurately due to the variation in CO2 between participants.
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The accuracy of the CO2 trace would depend on how good the participant is at following the
breath-hold challenge. Aside from this, the CO2 trace is time-locked to motion and so the ICA
would find it difficult to distinguish between motion and CO2.

3.5.4 Erosion-based correction

Given that the Erosion-based estimates stayed consistent with the VRA-based estimate for most
scan types one could draw the conclusion that erosion of edge voxels has little to no effect on the
VRA-based algorithm. This, however, doesn’t explain the differing results for the Rest+ASLTag

scan type from Figure 3.11. Although a statistical difference was not found when comparing the
Erosion-based methods to the VRA-based method, the spread in results for both Erosion-based
methods is peculiar as all other results suggest that the Erosion-based methods should be similar
to the VRA-based methods. The differences are further seen in Figure 3.12, especially for the
scans that contained ASL Tagging (Rest+ASLTag, Rest+CO2+ASLTag). Specifically focusing on
the ASL Tagging, for Rest+CO2+ASLTag a large difference can be seen between the VRA-based
and Erosion-based 20mm methods (p-value=3.4×10−3). This suggests that ASL Tagging has
a larger impact when performing a VRA with an eroded mask. As the erosion of the mask
increases in size, the result seems to be more spurious across participants, resulting in an increase
in R2. This implies that using a harsher mask does the opposite of what is expected and increases
the amount of GIC present in the motion, even more so than the VRA-based estimate alone.
Therefore, there may more noise associated with the 20mm erosion masks as more voxels are
eroded.

3.5.5 Quantification of Cerebrovascular Physiology

The Erosion-based methods fell short on most occasions (Figures 3.14, 3.15, 3.16, 3.17, 3.18,
3.19, 3.20, 3.21, 3.22), either agreeing with the VRA-based estimate or showing spurious results.
This suggests that using a mask eroded at the edge voxels may corrupt the estimate of motion
and lead to erroneous values of cerebrovascular function. Even though it was expected that
excluding the areas where more issues lie (the edge voxels) would result in a better estimate
of motion, it could be the case that too much (or too little) information is excluded resulting in
inaccurate estimates. Additionally, the mask used may exclude the edge voxels for the initial
volume, but as the volume registration progresses the edge voxels could be located at a different
position in space. This is entirely possible and would therefore lead to erroneous results when
the edge voxels are included in the estimation of motion. It would be desirable to allow this mask
to move with the individual volumes to ensure that the edge voxels are always excluded. Doing
so may improve the Erosion-based method of estimating motion. This could also explain why
the Erosion-based method produces results that have a higher R2 when looking at the regression
of GICs and the global signal. The initial voxel would contain a low signal (without the signal in
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those edge voxels) and the following voxels could contain a large signal as the edge voxels are
now being included in the estimation, resulting in higher R2 values.

All other methods showed a decrease in quantified value when using registration + regression
(Figures 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21, 3.22), which is expected due to the removal
of the motion-related signal (as well as the GIC related information in some cases). In almost
all cases the ICA-based methods calculated quantified values which were greater than those
calculated by the VRA-based method. This fits with the aforementioned results regarding the
GIC information where there was seen to be less GIC information within the ICA-based motion
estimates than for the VRA-based estimates.

3.5.5.1 Connectivity analysis

Values of connectivity varied across the different methods of correction with the values staying
fairly consistent for the RestOnly scan type (Figure 3.14) but varying greatly for the Rest+Motion

scan type (Figure 3.15). In the case of Rest+Motion, it seems that using both registration +

regression improves the estimate of connectivity. It is important to note that asking participants
to move deliberately during a BOLD scan is not a usual procedure and does lead to data that
is difficult to draw conclusions from. As such these results need to be taken lightly. Such data
was collected as a proof of concept to verify the accuracy of the camera-based estimate for large
motion events.

3.5.5.2 CBF Quantification

A typical CBF value for healthy 20-year-old participants has been reported to be 58.1ml/100g/min
and reduces every decade at a rate of 0.8ml/100g/min (Lu et al., 2011). As such a healthy range
for the participants in this study would be between 50-60ml/100g/min.

From Rest+ASLTag scans

The CBF values stayed consistent across the motion correction methods that considered
registration only. However, considering registration + regression caused a large variability in
the CBF values. In the VRA-based, ICA-based and Erosion-based 05mm methods the values
of CBF dropped when considering registration + regression indicating that a large amount of
motion was removed in the regression stage. This was not the case for the camera-based and
Erosion-based 20mm scans as the mean CBF increased. Values calculated for this scan type did
not reach the expected value for this population group with most falling below 40ml/100g/min.

From Rest+CO2+ASLTag scans

The average CBF values considering registration only were fairly consistent between the
different motion correction methods. A drop in CBF value was detected for most methods
considering registration + regression suggesting that the regression step is much harsher than the



3.5 Discussion 75

registration only step (as expected). Both ICA methods were fairly consistent in the quantification
when considering registration + regression. Only a minor drop in the average value of CBF
was observed for ICA method 2. The Erosion-based methods showed a big drop in CBF value
between the registration only and registration + regression steps. This is problematic as typical
motion correction includes both registration and regression. The drop in CBF for the Erosion-
based methods suggests that the inclusion of an eroded mask actually degrades the CBF signal.
As the erosion should only be effecting the edge voxels of the brain it implies that more of the
brain is being eroded than expected.

3.5.5.3 CVR Quantification

CVR measures the blood vessels ability to contract/dilate in response to an increase in demand
of blood (Sleight et al., 2021). It is therefore an important metric for the measurement of
cerebrovascular health.
From Rest+CO2 scans

The VRA-based registration only method gave a value of CVR that was higher than most
other registration only methods. A significant drop was seen for the camera-based registration

only method. This is the opposite of what I hypothesised - the VRA-based method is expected to
removed more signal than the camera-based method which should be reflected by a drop in CVR
quantification. One explanation for this is due to the issues associated with the creation of the
camera-based registration only datasets as these display more motion than expected (explained
in depth in section 3.3.2.2). All other registration only methods displayed a drop in CVR value
when compared to the VRA-based method, although these methods displayed similar CVR
values. The opposite scenario can be seen in the registration + regression datasets, with the
VRA-based estimation showing the lowest values of CVR. This follows the original hypothesis
that more signal is removed in VRA-based methods. Additionally, this verifies that removal of
signal occurs in the regression step of motion correction. Focussing only on the registration +

regression results, the ICA-based methods show the highest values of CVR.

From Rest+CO2+ASLTag scans

Estimated CVR values from the registration only methods showed similar CVR values to
that of no correction. This further demonstrates that the registration step of motion correction has
a very limited impact on the quantification of cerebrovascular measures. A small increase was
observed in the registration + regression VRA-based mean estimate when compared to that of the
registration only estimates. A similar increase was detected in the ICA-based and Erosion-based
methods. Figure 3.19 shows a different trend to Figure 3.18 as the registration + regression

step increases CVR value. This is reflected in Figure 3.11, which shows the amount of variance
explained by the motion parameters on the global signal for the Rest+CO2+ASLTag scan type.
In this Figure, the novel motion correction estimation methods (camera-based, ICA-based and
Erosion-based) displayed a similar amount of variance in the global signal to the VRA-based
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method. Therefore, for this scan type, it is expected that the errors described in the hypothesis
would have less of an impact.

From Rest+CO2+Motion scans

For most participants, the estimated CVR value increased when comparing no correction
to registration only correction. ICA-based methods showed the largest average CVR values
amongst the registration only methods. Similarly to Figure 3.18, a drop in CVR values was seen
when moving from registration only to registration + regression. This drop was smallest for the
ICA-based methods. This follows the expectation that the regression step of motion correction
will remove a larger amount of signal than the registration step.

3.5.5.4 CMRO2 & OEF Quantification

A typical CMRO2 value for a healthy 20-year-old participant is roughly 165 µmol/100g/min and
is expected to decrease, with age, every decade at a rate of 2.6 µmol/100g/min (Lu et al., 2011).
Thus a healthy range for CMRO2 for the age range collected (19-32 years) would be 150-170
µmol/100g/min.

CMRO2

Values of CMRO2 calculated without motion correction and with registration only correction
methods lead to similar estimations of CMRO2. This implies that the use of registration does not
affect the quantification of CMRO2. With the addition of regression (registration + regression),
a drop in estimated CMRO2 was observed. This is expected as the removal of motion should
affect the quantification of CMRO2. The VRA and Erosion-based methods displayed the largest
drop in estimated CMRO2, whereas, the camera and ICA-based methods showed a smaller drop.
None of the registration + regression methods fell within the expected CMRO2 values for the
group.

OEF

A similar trend was observed for OEF estimates as was seen for CMRO2 estimates. The reg-

istration only estimates were similar to no correction and the registration + regression methods
resulted in a drop in OEF estimation. As with CMRO2, the ICA-based methods performed the
best and only a small drop was observed between registration only and registration + regression.

3.6 Conclusion/Summary

Motion during functional imaging studies can lead to erroneous results if not dealt with correctly.
Standard motion correction algorithms derive motion parameters from the data itself. These are
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then used to realign individual volumes and to regress any related variance from the time series.
Here, I demonstrate that although this might work well in a lot of cases, when global intensity
changes (GICs) are an integral part of the experiment, this approach is prone to errors. The use
of an ICA to remove signals related to the GIC resulted in motion parameters that explained
less variance when regressed from the external influence on the GIC (as shown in Figure 3.12).
However, this may not be enough and in some cases other methods should be incorporated to
remove the GIC prior to correction of motion. For example, in multi-PLD ASL scans where a
PLD-ramp drives a global signal increase, it may be better to use a temporal ICA. This is because
the PLD is spatially uniform and spatial ICA may not be able to isolate the signal driving the GIC.
However, at present, there are not enough time-points sampled in order to generate temporal
components meaning temporal ICA is not a viable option. Additionally, the use of eroded masks
in the estimation of motion is not accurate as the position of these edge voxels change with
each voxel. A mask that moves with the volumes could work improve these methods and is
a possible future direction for this work. Therefore, I recommend incorporating an ICA into
the motion correction stage of any analysis pipeline for scans of cerebrovascular function. By
avoiding the removal of variance related to imposed physiological changes caused by standard
motion regression techniques, it is expected that cerebrovascular health measures will reflect the
underlying physiology more accurately, however this cannot be tested without a gold standard
measure.





Chapter 4

Data-driven methods for collecting cardiac
information from functional MRI scans

4.1 Overview of the following two Chapters

For nearly three decades, resting state functional magnetic resonance imaging (rfMRI) has been
widely used to study neural activity in the brain. Its prevalence is partly down to its ease of use
as it requires no external stimulus or task, with participants only required to rest in the scanner
while BOLD signals are collected. This makes it an easy experiment to setup and perform.
In addition to evaluating neural activity, vascular processes can also be measured from rfMRI
(Jahanian et al., 2016).

Microvasculature damage can lead to cognitive decline and dementia in an ageing population
(Vikner et al., 2021). In a healthy person, the pulsatile flow generated by the contraction of
the ventricles in the heart is dampened by the elastic properties of the larger arteries. As a
result, the microvasculature is not subjected to high pulsatile pressure and flow (Climie et al.,
2019). With increasing age, the stiffness of large arteries increases (Mitchell et al., 2004) and
so these arteries may not dampen the pulse pressure as effectively. This leads to damage of the
microvasculature and is thought to be particularly damaging to high flow organs such as the
brain and kidneys (Mitchell, 2008). Investigating the extent of damage is therefore important
to avoid the progression into cognitive decline and dementia. In MR, this is usually evaluated
by measuring vasoreactivity of large intracranial vessels (Climie et al., 2019). A more direct
measure of the processes that damage these vessels would be much more beneficial, however.
Cardiac pulsatility is a measure of how pulsatile blood flow is in cerebral vessels in response
to the pulsations of the heart. Excessive amounts of pulsatile flow can contribute to damage of
the microvasculature leading to impaired function (Mitchell et al., 2011). Thus, the amount of
pulsatile flow in the brain could be a vital indicator of the level of damage to microvasculature.
For example, an increase in cardiac pulsatility has been observed in the brain in patients with
Alzheimer’s disease (Rivera-Rivera et al., 2017). Contributing factors in increased cardiac
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pulsatility include hypertension and arterial stiffness. With age, the walls of systemic arteries
lose elasticity resulting in an increase in vessel stiffness (Oh, 2018). Similarly, it is expected that
arteries in the brain will become less elastic and stiffer with age. This would lead to a larger
amount of pulsatile energy reaching the microvasculature. Other factors, such as BMI, bring
about an increase in arterial stiffness (Kappus et al., 2014). Additionally, it has been suggested
that an increase in mean arterial pressure (MAP) directly relates to a functional increase in
arterial stiffening (Cecelja and Chowienczyk, 2010).

In rfMRI experiments, when interested in neural processes, it is important to remove effects
of physiological noise. The BOLD signal is noisy and contains information related to fluctuations
from physiological sources in addition to neural activity and vascular effects. Such physiological
sources include cardiac-related information, respiratory information, changes in arterial CO2

concentration, vasomotion, cerebral autoregulation and blood flow information (Murphy et al.,
2013). The majority of physiological noise arises from cardiac-related noise and respiratory
sources which account for around one sixth of the total signal (Bianciardi et al., 2009). Head
motion also accounts for a large amount of the total signal. When combined with cardiac
and respiratory noise, this can account for around 50% of the total signal (Bianciardi et al.,
2009). Many studies use external physiological recordings to record cardiac and respiratory
information. The former is usually recorded using a photoplethysmograph (PPG) and the latter
with a respiratory bellows or nasal cannula (or mask that can record end-tidal oxygen and CO2).
These recordings are then used to separate the signal of interest (usually neuronal in origin) from
the physiological noise. However, it is possible to separate any signal of interest from the ‘noise’.
For example, good quality physiological recordings (and good quality recording equipment)
would be required to separate cardiac-related signal from non-cardiac-related signal(Salimi-
Khorshidi et al., 2014). Some data-based approaches make use of an independent component
analysis (ICA) (Beckmann and Smith, 2004) to separate an rfMRI timeseries into individual
components (ICs). These ICs can include components that represent various noise sources
(Murphy et al., 2013). Nuisance components can then be isolated and removed from individual
voxel timeseries resulting in a dataset corrected for physiological noise. This can be achieved
using FMRIB’s ICA-based Xnoisifier (FIX) which is part of the FSL software package (Griffanti
et al., 2014; Salimi-Khorshidi et al., 2014). FIX is an automated process that utilises ICA analysis
to classify ICA components into ‘good’ and ‘bad’ components. FIX needs to be trained before it
can be used to classify components. The training dataset used to train FIX is comprised of a list
of ICA components that have been determined to be ‘bad’ ICA components. The components
that make up the training dataset can be hand-labelled by an expert (Griffanti et al., 2017), or
through an automated process. Typically, neuronal signals are labelled as ‘good’ components
and all other signals are labelled as ‘bad’ components.

In the following two chapters methods to quantify cardiac pulsatility were developed. These
methods make use of rfMRI data derived from the Human Connectome Project (HCP) S1200
release (Glasser et al., 2013; Van Essen et al., 2013). In Chapter 4 (this chapter) I describe the
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methods I initially thought would work but did not and outline their shortcomings. Throughout
the chapter the methods described build upon the previous method in some way. The final method
outlined in this chapter was flawed but is improved in Chapter 5 and the results it produces are
promising.

Therefore, an easy way to think of the chapter structure is Chapter 4 contains the failed
methods and their reasons for failing, and Chapter 5 contains the successful methods which were
derived from those in Chapter 4.

4.2 Chapter 4

4.2.1 Introduction

In this chapter, three novel methods of isolating ICA components related to the cardiac-cycle
from rfMRI data are introduced. These methods were fundamentally flawed, however, and these
flaws are explained throughout. During the development of these methods I learnt from these
flaws and the subsequent method tried to overcome them. The final method introduced (section
4.3.8) is further built upon in Chapter 5. The novel methods work in the frequency domain
and aim to determine the frequency range within which the cardiac-related information will be.
Aside from introducing the novel methods, three different methods to calculate pulsatility from
the cardiac-related signal were introduced and compared with each other.

4.3 Methods

4.3.1 HCP data

Data used in this study were collected by the WI-Minn Human Connectome Project in their
Young Adult (22-35 years) S1200 release (Glasser et al., 2013; Van Essen et al., 2013). Over
two days, participants were scanned using four different modalities: structural MRI, functional
MRI, task MRI and diffusion MRI (Van Essen et al., 2013). As part of the functional session,
four 15-minute resting state (rfMRI) scans were collected on a Siemens 3T ‘Connectome Skyra’
scanner with a 32-channel receive head coil. On each day, the two rfMRI scans were collected
with a different phase encode direction (PE), one with a left-right (LR) PE and the other with
a right-left (RL) PE. The rfMRI acquisition used a spatial resolution of 2 mm isotropic voxels
(72 slices) and a TR of 0.72 s (Glasser et al., 2013; Van Essen et al., 2013). Other sequence
parameters included: TE=720 ms, Flip angle=52◦, FOV=208x180 mm, Matrix size=104x90.
The structural session collected T1 weighted and T2 weighted images with a spatial resolution of
0.7 mm isotropic voxels (Glasser et al., 2013; Van Essen et al., 2013). For the T1w acquisition,
the MR sequence parameters were as follows: TR=2400 ms, TE=2.14 ms, TI=1000 ms, Flip
angle=8◦ and FOV=224x224 mm. The T2w MR sequence parameters were: TR=3200 ms,
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TE=565 ms, Flip angle=variable and a FOV=224x224. The task and diffusion sessions were not
important for this study and so will not be discussed here. Physiological monitoring was used
to collect cardiac and respiratory signals for each scan using a Siemens pulse oximeter and a
respiratory belt. Head motion information was collected in most scan sessions using an optical
tracking camera system (Van Essen et al., 2013).

4.3.2 Processing of rfMRI Data

These pre-processing steps were carried out by the HCP and are detailed in (Glasser et al., 2013)
and (Smith et al., 2013). Here, I will briefly describe the steps performed. The pipeline used,
fMRIVolume (the name of the HCP pipeline), initially performed gradient-nonlinearity-induced
distortion correction to reduce gradient-nonlinearity. The next step was to perform motion
correction using rigid body motion registration with 6 degrees of freedom (DOF). Next, EPI
image distortion correction was performed to reduce distortion in the PE direction. Finally, a
non-linear registration was used to register images to MNI space. Following these pre-processing
steps, rfMRI data was high pass filtered at 0.00072 Hz (a cutoff of 2000s (Smith et al., 2013)).
No low-pass filtering was applied as useful neuronal signal could be present up to 0.2Hz. In total
4123 individual rfMRI datasets were analysed in this study.

4.3.3 Processing of Structural T1w Data

The processing of structural T1W data was performed by the HCP and is detailed in (Glasser
et al., 2013). Here I will briefly described these steps. Structural information was pre-processed
in three stages, PreFreeSurfer, FreeSurfer and PostFreeSurfer. The initial PreFreeSurfer stage
included gradient-nonlinearity-induced distortion correction, alignment of repeated runs with
6-DOF rigid-body registration and averaged across repeated runs, alignment to MNI space using
rigid-body 6-DOF transformation, brain extraction, readout distortion correction, boundary-based
registration (BBR) of T2w to T1w, bias-field correction and registration to MNI space. The
second FreeSurfer stage included downsampling of T1w images to 1 mm isotropic (using spline
interpolation), FreeSurfer recon-all (stopping when white matter surfaces are generated), high
resolution white matter surface generation from 0.7 mm resolution T1w image, a continuation of
FreeSurfer recon-all with new white matter surfaces (stopping when Pial surfaces generated),
generation of Pial surfaces from PreFreeSurfer T1w images and a continuation of FreeSurfer
recon-all with new Pial surfaces. The generated Pial and white matter surfaces were used to
define a grey matter (GM) ribbon as the GM voxels lie between the two surfaces. The final stage
(PostFreeSurfer) included the conversion of outputs from FreeSurfer stage to standard NIFTI
and GIFTI formats, generation of a final brain mask, generation of a cortical ribbon volume,
generation of cortical myelin maps, normalisation of myelin maps to Conte69 group average and
generation of a native surface mesh in native and MNI volume space. The structural data was
used in this study to generate brain masks.



4.3 Methods 83

4.3.4 Processing of ICA components

The processing of ICA components was performed by (Smith et al., 2013) and is explained
in detail in their paper. Here I will briefly summarise the processing steps they took. The
pre-processed rfMRI data were passed through FSL’s MELODIC (Beckmann and Smith, 2004)
which uses an ICA to decompose datasets into different spatial and temporal components. ICA
is explained in detail in Chapter 2 - Section 2.6.3. Automatic dimensionality estimation was
used as this allows MELODIC to choose the optimal number of components to separate. The
maximum number of components was restricted to 250.

4.3.5 Generation of Brain Masks

I generated GM masks for each participant from a GM ribbon created as part of the FreeSurfer
processing stage of the structural T1w data outlined in the section 4.3.3.

4.3.6 Processing of Cardiac Data

Heart rate variability (HRV) traces were used to verify the accuracy of some of the methods
introduced in this chapter. The processing performed to generate these traces is outlined in depth
by (Kassinopoulos and Mitsis, 2020) but will be summarised briefly here. The PPG signal for
each participant was band-pass filtered with a 2nd order Butterworth filter between 0.3 and 10
Hz. A heart rate (HR) signal was calculated (in BPM) by multiplying the inverse of the time
differences between pairs of adjacent peaks by 60. This was resampled at 10 Hz (Kassinopoulos
and Mitsis, 2020). This gave HRV traces for each participant.

4.3.7 Frequency Method 60-100 BPM & 50-100 BPM

These methods were the first to be attempted during this study. The underlying idea behind these
methods was to identify where in the frequency domain cardiac cycles would occur. Typically,
they occur at frequencies of ∼ 1 Hz at rest (Murphy et al., 2013) but this frequency is dependent
on the HR of the participant in question. In an ideal world, the average resting HR for each
participant would be used to determine this. However, this was not available in the HCP data and
therefore rough estimates had to be made. A ‘window’ of frequencies within which the cardiac
frequency was expected to lie was defined and this will be referred to as the cardiac window.
Assuming that the average resting HR for healthy adults was in the range 60-100 BPM would
mean that the frequency window would lie between the values of 0.6 Hz and 1.00 Hz. The power
of the signal in this window was determined by normalising each melodic FT component and
calculating the mean average value within the cardiac window for each component. Components
with a mean value (across their cardiac window) greater than 2.5 standard deviations from the
mean of all values were determined to be cardiac-related components. This test was performed
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as components with a significant amount of signal in the cardiac window would show as outliers
in the test.

Initial results from this classification method showed a large number of cardiac-related
components, suggesting the method was too lenient in its classification. A second concern was
the definition of the cardiac window. The lower value used for the resting HR of the population
(60 BPM) may have been too high and so the lower bound was changed to 50 BPM for the
second attempt to capture those participants with a resting HR lower than 60BPM. However, this
didn’t have any affect on the leniency of the classifier in its classification.

When deciding on the frequency range to use, issues due to aliasing were ignored and it is
clear now that they should have been considered. The TR of rfMRI data collected by the HCP
was 0.72 s. The sampling frequency was determined by taking the inverse of the TR. This was
calculated to be 1.389 Hz. Using equation 4.1 (Viessmann et al., 2019) the aliased frequency
can be determined. In this equation, ftrue represents the true frequency, falias represents the
aliased frequency, fs represents the sampling frequency and n represents the harmonic number.
For a lower HR of 60 BPM, this equation states that the cardiac cycle would occur at ∼ 0.398
Hz (and not 1 Hz as originally expected). Therefore, a method to isolate the cardiac-related
information using average resting HR estimates will not work for this data and a new method
which encompasses more of the frequency spectrum was required.

| falias|= ftrue −n · fs (4.1)

4.3.8 Frequency Method 100-400 Samples

As explained in the previous section, a method that encompasses more of the frequency spectrum
would be needed to achieve the goals of this study. Therefore, the next iteration of the classi-
fication algorithm expanded the bounds of the cardiac window in an attempt to overcome any
aliasing.

4.3.8.1 Definition of the Cardiac Window

To remove the influence of any neural related frequency fluctuations (Zou et al., 2008), the lower
bound of this window was defined to be 0.11 Hz (or 100 frequency bins, based on the sampling
rate of 1.389 Hz). This was because, typically, low-frequency fluctuations are found below
0.1 Hz. A large erroneous frequency peak was previously detected at around 0.55 Hz and was
revealed to be an artefact by Power and colleagues (Power et al., 2019). To avoid this peak, the
value of the upper bound was chosen to be less than 0.55 Hz. Assuming a resting HR of 110
BPM (1.83 Hz) is the maximum HR for all participants, the aliased frequency for this maximum
HR is calculated to be ∼ 0.440 Hz using 4.1. Then rounding this up to make the number of
frequency samples a whole number would make the upper bound of this window 0.46 Hz (or
400 frequency bins).
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The classification of components into cardiac or non-cardiac was completed in three stages.
Each stage is outlined here and graphically represented in Figure 4.1. At each stage, the
independent components (from the ICA decomposition) were assessed to determine if they were
related to the cardiac cycle.

4.3.8.2 Stage One of Classification

The aim of the first stage of the classification was to determine which independent components
were outliers as these were believed to be representative of cardiac components. Each component
was considered separately for this step. First, the frequency data of each component was
normalised by dividing by its mean. Then, the cardiac window was subdivided into smaller,
sliding windows, each with a width of 0.1171Hz (equivalent to 101 frequency bins), moving
in steps of 0.0058Hz (or 5 frequency bins). Within each window, the mean of the frequency
data was calculated for each component. This will be referred to as the componentMean. This
process resulted in an array containing the componentMean for each sliding window. Then,
for each window, the average of these componentMeans across all components was computed.
This will be referred to as the windowMean. A component was identified as an outlier if its
componentMean exceeded the windowMean by more than 2.5 standard deviations. Components
were considered preliminary cardiac components if they were an outlier in any of the windows.
Components that were considered outliers in multiple windows were not treated differently to
those that were outliers in only one window. The preliminary cardiac components were moved
onto the second stage of classification. The components that did not meet this criterion were
considered as noise.

4.3.8.3 Stage Two of Classification

The second stage of classification involved fitting a two-term Gaussian curve to the individual
component frequency data within the cardiac window. A two-term Gaussian fit was used because
this seemed to be the most appropriate fit when inspecting the data. Initially, the frequency data
within the cardiac window was smoothed using a first order Savitzky-Golay filter with a frame
length of 9. The two-term Gaussian curve was fit to the data within the cardiac window only and,
as a result, only 301 points were fit. The R2 value for each Gaussian fit was calculated and those
with an R2 greater than 0.9 were considered to be preliminary cardiac components and moved
to the third and final stage of classification. The components that did not pass this stage were
considered to be noise.

4.3.8.4 Stage Three of Classification

The third and final stage of classification aimed to remove erroneous Gaussian fits in order to
classify more accurately. The first step was to determine which term from the two-term Gaussian
fit had fit the peak of the data. This was achieved by calculating the value of the frequency
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peak for each term of the Gaussian fit (for each component) and the largest absolute value was
chosen to be the peak related to the cardiac cycle. This will be referred to as the cardiac peak.
For all components that passed the first two stages, the median value across the cardiac peaks
was calculated. From this, a median window defined as the median value ±100 samples was
generated. The cardiac peaks that were within this median window were then determined to be
cardiac components. The components that did not pass all three stages were considered to be
noise.
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Fig. 4.1 Schematic diagram detailing the classification steps used in the 100-400 samples
classifier. These steps included: Preprocessing, Mean calculation, Two-term Gaussian fitting,
Gaussian Outlier estimation, Training of FIX and generation of pulsatility maps.
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4.3.8.5 Calculation of Heart Rates

Calculation of HR values for each rfMRI scan was possible using the 100-400 classification
method. By isolating the frequency peak for each term of the two-term Gaussian curve for
each component, it was possible to determine an aliased frequency. Working backwards using
equation 4.2 (Viessmann et al., 2019), a rearranged version of equation 4.1, the true frequency
could be calculated and converted into a HR. Equation 4.2 results in two discrete values and
therefore two HR values per component. These values were then averaged across components,
resulting in two values per run. Then, the values for HR1 and HR2 were averaged across runs to
get values of HR1 and HR2 for each participant.

ftrue =± falias +n · fs (4.2)

4.3.8.6 Regression Method

Linear regression was used to calculate pulsatility. AFNI’s 3dDeconvolve (Cox, 1996; Cox
and Hyde, 1997), a program that is capable of performing multiple linear regression, was used
with each associated cardiac component input as a regressor in the model. Additionally, motion
parameter estimates provided by the HCP were used in this model as a means of further reducing
the effects of motion. The R2 variance statistic was calculated from this regression and a map of
R2 was created. For this case, the definition of pulsatility is the variance explained by the cardiac
components on the high pass data and as a result, the R2 maps are synonymous with pulsatility.

4.3.8.7 Fast Fourier Transform (FFT) Method

An FFT was used to generate frequency information pertaining to the rfMRI data. A metric
named the fractional amplitude of cardiac frequency fluctuations (fACFF) was calculated for
each rfMRI scan. This metric is similar to the fractional amplitude of low-frequency fluctuations
(fALFF) documented by (Zou et al., 2008). The fALFF metric is the ratio of the power in the
low frequency range (0.1-0.8 Hz) to the power in the whole frequency range. Similarly, the
fACFF is the ratio of the power in the cardiac frequency range to that of the whole frequency
range. The cardiac frequency range was determined by defining a ‘bespoke’ cardiac window
for each rfMRI scan. This was defined to be the mean value across the cardiac peaks ± 0.083
Hz (5 BPM). This resulted in a 0.16 Hz (10 BPM) bespoke cardiac window and this window
was used to calculate fACFF. This bespoke cardiac window will be referred to as the bespoke
window elsewhere in this work. The power within the bespoke window (or the amplitude of
cardiac frequency fluctuations (ACFF)) was calculated by taking the square root of the power
spectrum at each frequency and then averaging across the frequency window. The equation used
to generate fACFF is shown in equation 4.3. This method differed from the Regression method
as it didn’t use the ICA components generated from the classification algorithm and instead used
the bespoke windows that the algorithm produced.
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f ACFF =
ACFFCardiac

ACFFWhole
(4.3)

4.3.8.8 Bandpass Method

Bandpass regressors were generated across the ‘bespoke’ cardiac window (that was generated
in section 4.3.8.7) using AFNI’s 1dBport (Cox, 1996; Cox and Hyde, 1997). This is a program
designed to generate regressors that filter out frequency components within a bandpass range.
The regressors were used in a linear regression (using 3dDeconvolve) to perform the bandpass
filtering and calculate R2 values per run. For this method, the definition of pulsatility is the
variance explained by the bandpass regressors on the high passed data and therefore the R2

values are directly related to pulsatility. This method differed from the Regression method as it
didn’t use the ICA components generated from the classification algorithm and instead used the
bespoke windows that the algorithm produced.

4.3.9 Generation of Pulsatility

Isolating the components that contained cardiac information was a useful step in the calculation
of cardiac pulsatility in the microvasculature. However, knowing which components contained
cardiac information is not a direct reflection of pulsatility. Sections 4.3.8.6, 4.3.8.8 & 4.3.8.7
outline the methods that were used to generate pulsatility maps. GM masks were used along
with the pulsatility maps to calculate GM pulsatility values in each rfMRI scan. The median
value across each participant’s repeated rfMRI scans was taken to get a value of pulsatility per
participant. Pulsatility was calculated for 200 participants only to determine the accuracy of each
method.

4.3.10 Correlation with physiological measures

A correlation analysis between GM median pulsatility and age, BMI, Mean Arterial Pressure
(MAP), Brain Volume (BV), haematocrit and Framewise Displacement (FD) was performed.
These parameters were chosen for various reasons. Age, BMI and MAP are related to arterial
stiffness and so it is expected that there will be significant correlations between pulsatility and
these parameters. Haematocrit and BV were chosen as they influence BOLD signal amplitudes
and so should be reflected in pulsatilty measures. FD was chosen as a control variable to ensure
that motion correction worked as expected. MAP was calculated using equation 4.4 (Sainas.
et al., 2016) where SYS is the mean systolic blood pressure and DIA is the mean diastolic blood
pressure.

MAP =
SY S+2 ·DIA

3
(4.4)
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To evaluate the statistical significance of each correlation, a statistical permutation analysis
was performed. This analysis initially calculated the correlation value of the GM median pulsatil-
ity against the physiological parameter of interest. Then, the index order of the physiological
vector was randomly changed and the correlation value between the GM median pulsatility and
the new physiological vector was calculated. This was repeated for 10,000,000 iterations with
each iteration randomly changing the index order of the physiological vector. The p-value was
determined by equation 4.5, where n is the number of random correlations calculated, corrrand is
the correlation value from the random permutation and corrtrue is the actual correlation value.

p− value =
∑(corrrand > corrtrue)

n
(4.5)

4.4 Results

4.4.0.1 Classification of Components

A total of 1088 participants were classified using the 100-400 window method, with an average
of 10.25±4.87 classified components per participant. Figure 4.2 shows the second stage of this
classification where a two-term Gaussian curve was plotted with the data and peak values were
acquired. A) Displays all the components that passed stage 1 of classification and highlights the
need for an accurate Gaussian plot. Some of the components that passed stage 1 show a low
magnitude signal which does not represent the cardiac peak as expected. B) shows the same
graph after the second classification stage. All the non-cardiac related signal has been removed,
leaving the components containing signal related to cardiac fluctuations only.

Fig. 4.2 Stage two in classification of cardiac components. A) All components surviving stage
one of classification with a two-term Gaussian curve plotted. B) Two-term Gaussian curve
plotted to components after noise is removed.

The components surviving all three classification steps were considered cardiac components.
An example of this is shown in Figure 4.3.
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Fig. 4.3 Frequency plot of components surviving all three steps of classification the shaded area
represents the bespoke cardiac window for this rfMRI scan.

4.4.0.2 Calculation of Heart Rates

Two HR values were calculated per participant. The mean value across all participants for HR1

was 66.3 BPM while for HR2 it was 100.32 BPM. In Figure 4.4, A) and B) are histograms of
HR1 and HR2 respectively. Both HR values follow a normal distribution. C) shows the HR
values on one graph.

Fig. 4.4 A) Histogram showing the distribution of HR values for HR1. B) Histogram showing
the distribution of HR values in HR2. C) HR1 and HR2 values plotted on one graph.
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4.4.0.3 Verification of Classification

Of the 4123 rfMRI scans that were collected by the HCP, 1588 had high-quality physiological
data associated with them. Calculation of HR was achieved by taking the average across the HR
trace contained within the physiological data. Plots of actual HR and HR calculated from the
classification script are shown in Figure 4.5. The estimation of HR values fell short around 80-90
BPM (1.333-1.500 Hz - near the sampling frequency (1.389 Hz)) and 40-50 BPM (0.667-0.833
Hz - near the Nyquist frequency (0.694 Hz)) as shown in Figure 4.5 A) and B). This suggests
that the algorithm is not accurate for participants who have a HR around the sampling or Nyquist
frequencies and so a new method of classification would be required to accurately classify
participants with HR values near these frequencies.

Fig. 4.5 Comparison of actual HR values and estimated HR values. A) Histogram showing the
HR values estimated by classification algorithm. B) Histogram showing the actual range of heart
rates. C) Plot showing the difference between the two methods with lines connecting the actual
and estimated HR’s.

4.4.0.4 Generating Pulsatility - Comparison between methods

All three pulsatility generating methods were used to generate pulsatility for 200 participants.
Figure 4.6 shows the similarity between the three methods through a correlation analysis. All
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three methods fail to show a strong correlation with each other with correlation values of 0.174
(regression vs FFT), -0.195 (regression vs bandpass) and -0.221 (FFT vs bandpass).

Fig. 4.6 A correlation matrix showing the similarity of the three different generating pulsatility
methods used. The colour of the box represents the correlation value (see colour bar) and the
size of the box represents the significance of the p-value. A larger box signifies a smaller p-value.
The values highlighted in red were statistically significant (alpha < 0.05).

4.4.0.5 Correlation with physiological information

Figure 4.7 shows a correlation matrix comparing the different methods with physiological
information collected by the HCP. All three methods showed similar correlation values. The
largest correlation was detected between the FFT method and framewise displacement (FD).
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Fig. 4.7 Correlation matrix showing the correlation values for each method (Regres-
sion/FFT/Bandpass) with the associated physiological information. The colour of the box
represents the correlation value (see colour bar) and the size of the box represents the signifi-
cance of the p-value. A larger box signifies a smaller p-value. The values highlighted in red were
statistically significant (alpha < 0.05).

4.4.0.6 Iteration Problem

Evaluation of the significance of each correlation was performed using a statistical permutation
analysis (as outlined in section 4.3.10). Initially, this analysis was run with 1,000 iterations
although the results returned a p-value of 0. This was because none of the random permutations
resulted in a correlation value greater than the actual correlation value. To account for this, more
iterations were required. An analysis was run to determine the ideal number of iterations by
increasing the number of iterations and calculating the p-value using equation 4.5. Additionally,
I plotted these results as histograms (Figure 4.8). This Figure shows that as the number of
iterations is increased, the estimated p-value also increases, which is consistent with expectations.
Aside from this, it can be shown that the best estimate of the p-value was determined using
10,000,000 iterations and therefore this value of iterations was used in the subsequent p-value
estimations. The data used in this analysis is introduced in Chapter 5. However, I wanted to
introduce this analysis here to explain why the number of iterations used was 10,000,000.
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Fig. 4.8 A permutation analysis to determine the number of iterations required to calculate an
accurate p-value. This data is introduced in Chapter 5. A) A histogram showing 1000 iterations.
B) A histogram showing 10,000 iterations. C) A histogram showing 100,000 iterations. D) A
histogram showing 1,000,000 iterations. E) A histogram showing 10,000,000 iterations.

4.5 Discussion

4.5.1 Generating Pulsatility - Comparison between methods

All three methods of generating pulsatility varied in complexity, with the regression method
being the simplest. This method used ICA components that had been classified as cardiac-related
as regressors in a linear regression to determine the amount of variance they could explain. The
bandpass method was slightly more complex as it required the creation of a bespoke cardiac
window. Using the bounds of this window, cardiac regressors were generated around the passband
(defined as the upper and lower frequencies of this bespoke window). A linear regression was
performed with the cardiac regressors to determine the amount of variance explained by them
(and bandpass filter the data). The FFT method was the most complex as it required an FFT to
be performed before the calculation of fACFF was possible. As can be seen from Figure 4.6, the
three different methods fail to show high correlations with each other. This suggests that they are
all evaluating different things related to the cardiac cycle. However, Figure 4.7 shows that their
correlations with physiological information are all very similar.

Initially, the results showing that the three methods so not show high correlations with
each other was puzzling as they are derived from the same classification algorithm. However,
the regression method works by utilising the components deemed to be cardiac, whereas the
bandpass and FFT methods work from the frequency windows generated from the classification
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algorithm. These frequency windows should include information related to the cardiac cycle, but
will also include information related to other sources of noise. As such, the bandpass and FFT
methods do not isolate only the cardiac signal which could explain their differing results when
compared to the regression method. It is expected that the regression method would produce
more accurate measures of pulsatility as it isolates components that are cardiac-related only.
However, as explained in section 4.4.0.3, there is a discrepancy in HR values determined from
the classification algorithm and those that were measured by (Kassinopoulos and Mitsis, 2020),
specifically around the 40-50 BPM and 80-90 BPM range. These ranges are close to the Nyquist
and sampling frequencies where a large amount of aliasing would occur. Thus, the classification
algorithm setup in this chapter will not produce accurate results for participants with average HR
values in these ranges.

4.6 Conclusion/Summary

This chapter has outlined various methods of calculating pulsatility from rfMRI scans collected
by the HCP. Classification of cardiac-related ICs was most accurately performed by the 100-400
samples Frequency Method. This algorithm was able to distinguish between ICs related to noise
and those related to the cardiac cycle for most participants. However, the participants with HR
values around the Nyquist and sampling frequencies (40-50 BPM and 80-90 BPM) caused issues
with the algorithm due to aliasing. This is because the algorithm worked on expected frequency
values and the participants who had HR values around the Nyquist and sampling frequencies
would have had the frequency of the cardiac-related information shifted in the frequency domain.

Once the IC data were classified into cardiac-related and non-cardiac-related components,
different methods were used to generate values of pulsatility in the microvasculature. Of these
methods it was determined that the most accurate was the regression method which used a linear
regression and the cardiac-related components to determine pulsatility. The other methods used
bespoke cardiac windows which contained other signals not related to the cardiac cycle, thus
lowering their accuracy. However, due to the aforementioned issue with participants whose
HR is near the Nyquist and sampling frequencies, this method is not without its flaws. Moving
forward with this work, it would be desirable to address the problem of aliasing that arises when
using the regression method in HR ranges of 40-50 BPM and 80-90 BPM. To mitigate this issue,
an adapted version of the regression method that avoids the problem of aliasing is needed and is
introduced in chapter 5.



Chapter 5

Novel Methods for quantifying cardiac
pulsatility in resting state functional images

5.1 Chapter Overview

Methods to estimate cardiac pulsatility from resting-state fMRI (rfMRI) data were introduced in
the previous chapter. Although these methods failed to accurately calculate cardiac pulsatility,
some did show promise. In this chapter, I will build upon these to develop two novel methods.
Results showed that the estimates generated from these novel methods correlated highly with
estimates from a gold standard measure of pulsatility. Comparisons were also made between the
estimated pulsatility from both novel methods and physiological parameters (Age, BMI, Mean
Arterial Pressure (MAP), Framewise Displacement (FD), Brain Volume (BV) and Haematocrit)
using a correlation analysis. These analyses displayed similar trends to the same analysis using
the gold standard.

5.2 Introduction

In the previous chapter, I introduced multiple methods of calculating cardiac pulsatility from
rfMRI data. These methods, however, had flaws which affected their accuracy in calculating
pulsatility. The final method discussed showed promise and this method will be built upon
in this chapter. Additionally, a second, novel method of isolating ICA components related
to cardiac-cycle from rfMRI data is introduced. The rfMRI data was taken from the Human
Connectome Project (HCP) S1200 release (Glasser et al., 2013; Van Essen et al., 2013). Both
methods isolated cardiac-related information from non-cardiac-related information using an
ICA. One method (the HRV method) used a subset (∼1588) of processed cardiac traces (HRV)
(Kassinopoulos and Mitsis, 2020) to achieve this. The other method (the Frequency method)
used frequency information from an ICA and the rfMRI data to classify the ICA components.
The advantage of using the Frequency method over the HRV method is that it bypasses the need
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for cardiac traces to be collected. This would allow for a fully data-derived cardiac classification
process which is desirable. Some big data releases either have not collected cardiac traces when
scanning or the quality of the traces is not good enough for training in this way. Once classified,
these groups of components were then used to train FIX to calculate cardiac pulsatility for all
1200 participants in the release. The influence of age, BMI, mean arterial pressure (MAP), Brain
Volume (BV) and framewise displacement (FD) on these pulsatility measures was investigated.

5.3 Methods

5.3.1 HCP data

The data used in this study is outlined in detail in 4 - section 4.3.1 but I will summarise here.
The data used was collected by the WI-Minn Human Connectome Project in their Young Adult
(22-35 years) S1200 release (Glasser et al., 2013; Van Essen et al., 2013). They collected data
from four modalities: structural MRI, functional MRI, task MRI and diffusion MRI (Van Essen
et al., 2013). Only the structural and functional MRI data was used in this study. The functional
session collected four resting state (rfMRI) scans across two days. Two of these scans had a
left-right phase encoding (PE) direction and the other two had a right-left PE direction. The
spatial resolution is 2 mm isotropic voxels with a TR of 0.72s (Glasser et al., 2013; Van Essen
et al., 2013). The TE is 33.1 ms and a flip angle of 52◦ was used. The structural information
included T1 weighted and T2 weighted scans with a spatial resolution of 0.7 mm isotropic voxels
(Glasser et al., 2013; Van Essen et al., 2013). The T1w acquisition used a TR of 2400 ms, a TE
of 2.14 ms and a flip angle of 8◦. The T2w acquisition used a TR of 3200 ms, a TE of 565 ms
and a variable flip angle. Additionally, physiological information was collected including cardiac
and respiratory signals and head motion tracking was performed (Van Essen et al., 2013).

5.3.2 Processing of Cardiac Data

Making use of cardiac traces collected by the HCP and processed by (Kassinopoulos and Mitsis,
2020) was essential for the HRV method. The processing performed on these cardiac traces is
outlined in depth by (Kassinopoulos and Mitsis, 2020) and summarised in Chapter 4 - section
4.3.6. Briefly, PPG signals were band-pass filtered between 0.3 and 10 Hz. Then a HR signal
was calculated (in BPM) by multiplying the inverse of the time differences between pairs of
adjacent peaks by 60 and resampled at 10 Hz. This resulted in HRV traces for each participant.

5.3.3 Processing of rfMRI Data

The HCP pre-processed the rfMRI data and the steps they took are detailed in their paper
(Glasser et al., 2013). These steps were briefly summarised in 4 - section 4.3.2. They used the
fMRIVolume pre-processing pipeline which performs gradient-nonlinearity-induced distortion
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correction, motion correction, EPI image distortion correction and non-linear registration to
register images into MNI space. Following these steps, the data was high pass filtered at 0.00072
Hz (a cutoff of 2000s (Smith et al., 2013)). No low-pass filtering was applied as useful neuronal
signal could be present up to 0.2Hz.

5.3.4 Processing of Structural T1w Data

Structural data was processed by the HCP and the details of this are outlined in (Glasser et al.,
2013) and summarised in Chapter 4 - section 4.3.3. This data was used to generate different
brain masks. The processing was completed in three stages: PreFreeSurfer, FreeSurfer and
PostFreeSurfer.

5.3.5 Processing of ICA components

The processing of ICA components is explained in detail in (Smith et al., 2013) and was sum-
marised in Chapter 4 - Section 4.3.4. Briefly, MELODIC was used to generate ICA components
from the pre-processed rfMRI data. The number of components was chosen by MELODIC using
Automatic dimensionality estimation. The maximum number of components was restricted to
250.

5.3.6 Generation of Brain Masks

I generated four masks for each participant, a whole brain (WB) mask, a grey matter (GM) mask,
a white matter mask (WM) and a ventricle mask (Vent). The WB mask was generated from
the MNI standard 2 mm Brain mask. The GM mask was generated from a GM ribbon created
as part of the FreeSurfer processing stage of the structural T1w data outlined in Chapter 4 -
Section 4.3.3. The WM mask was generated from the subtraction of the GM from the WB mask.
The Vent mask was generated from the MNI standard 2 mm Ventricle mask. Pulsatility was
calculated in the WM region as a sanity check as it is expected that there will be more pulsatility
in the GM than the WM.

5.3.7 Classification of ICA Components - HRV Method

In this method, the processed HRV traces were used to determine which ICA components most
resembled cardiac signal. FMRIB’s ICA-based X-noiseifier (FIX), introduced in Chapter 2 -
Section 2.6.4, can be used to distinguish ‘good’ and ‘bad’ components from within an ICA
decomposition. In this work, the ICA components that most resembled cardiac signal were used
to train FIX so that it could automatically isolate cardiac pulsatility for each rfMRI dataset. FIX
was run with a threshold of 20. Initially the associated HR for each rfMRI dataset was calculated
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from the HR signal (outlined in section 4.3.3) by calculating the average across this beat-to-beat
HR.

5.3.7.1 Correlation of ICA & Cardiac data

The correlation value between each ICA component time series and the associated HR variability
trace was calculated. This determined which ICA components had significant levels of cardiac
pulsatility associated with them. An α-significance value of 0.05 was used to determine signifi-
cance and this was adjusted to account for the number of components used in the correlation.
Components that met this significance criteria were then deemed to be cardiac components.
Using this information, 4 training datasets containing 100 (randomly selected) classified rfMRI
datasets were created. The creators of FIX recommend that these training datasets are comprised
of at least 10 different datasets. To increase the probability of a good classification, 100 rfMRI
datasets were chosen. It was expected that a larger number of rfMRI datasets used in the training
would increase the accuracy of the classifier. The rfMRI datasets used for each of the four
training datasets were grouped based on their HR value: 60BPM, 70BPM, 90BPM and mixBPM,
where mixBPM contained a mixture of participants chosen from the first three groups. This
was to investigate whether the HR of the participants used would bias the classifier causing
it to only calculate pulsatility values for the participants with a matching HR. Which would
result in a reduction in the number of rfMRI datasets that could be classified. Furthermore, it
could lead to the calculation of incorrect pulsatility values. The mixBPM group was used as
a control to investigate how the classifier worked with a mixture of participants with different
HR values. Participants with HR value around 80 BPM (1.333 Hz) were not included as this is
close to the sampling frequency of 1.389 Hz. As explained in Chapter 4, aliasing was expected
to cause errors in the classification for participants with HRs close to the sampling and Nyquist
frequencies. Following the creation of the training datasets, FIX (Salimi-Khorshidi et al., 2014)
was trained and used to determine which ICA component time series displayed large amounts of
signal related to heart rate variability (HRV) for all of the 4123 rfMRI datasets.

5.3.7.2 Calculation of Pulsatility

Pulsatility was defined as the amount of variance explained by the cardiac component time
series in the rfMRI BOLD time series. Calculation of pulsatility was performed on a voxel wise
basis using AFNI’s 3dDeconvolve (Cox, 1996; Cox and Hyde, 1997). Each associated cardiac
component time series was included as an input regressor to the model. Additionally, motion
parameter estimates provided by the HCP were used in the model as covariates of no interest.
The R2 variance statistic was calculated from this regression and a map of R2 (or pulsatility) was
created for each individual fMRI time series. The median pulsatility value was calculated within
the three brain masks (WB, GM and WM – described fully in section 5.3.6). Figure 5.1 outlines
the classification steps in a schematic diagram.



5.3 Methods 101

Fig. 5.1 Schematic diagram outlining the classification process for the HRV method of classifica-
tion. These steps included: Preprocessing, Correlation analysis, Classification into Cardiac and
Noise, Training of FIX and generation of pulsatility maps.
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5.3.7.3 The relationship between HRV and Pulsatility

Blood flowing through arteries is pulsatile in nature. This pulsatile flow will affect the signal
measured using fMRI. So, to measure this accurately, external equipment is used (such as a pulse
oximeter). Using this independent measure, we can look for variance in the brain and assume
this is related to the cardiac cycle. Therefore, these peripheral measurements (referred to as the
cardiac trace) allow for the estimation of the "True" pulsatility and this is the method used to
calculate the gold standard here. HRV is derived from the cardiac trace as detailed in Chapter 4 -
Section 4.3.6. However, this requires good quality cardiac traces to be collected and, as such, a
method of measuring HRV using fMRI is desirable. It is difficult to measure HRV using fMRI
due to the lack of samples collected within a single heartbeat. The blood flowing into vessels is
pulsatile in nature but is undersampled by BOLD imaging. Using fMRI, instead of sampling the
whole heartbeat, an average will be collected across it. In voxels that contain a large blood signal,
where there is an increase in HRV, there will be an increase in the BOLD signal for that voxel.
This would also be the case for an increase in pulsatility. Therefore, from an fMRI perspective,
HRV and pulsatility are coupled and voxels that show a change in HRV should also show a
change in pulsatility. This is shown schematically in Figure 5.2, which was originally shown
in Chapter 2 but I have placed it here as this concept is very important for understanding why I
have used HRV measures to try to investigate pulsatility.

Fig. 5.2 A schematic diagram showing how closely related HRV and Pulsatility are from an
fMRI perspective. A change in either HRV or Pulsatility would be reflected by the same change
in fMRI and so the ability to distinguish between these two measures is difficult.
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5.3.8 Classification of ICA components - Frequency Method

The Frequency method used the classification algorithm detailed in Chapter 4. The version of
the algorithm used in this chapter is identical to that of Chapter 4, however the method used
to calculate pulsatility is different. I will give a brief overview of this algorithm here. ICA
components were classified into cardiac and non-cardiac based on their frequency content. This
differs to the HRV method (detailed in section 5.3.7) as it uses frequency content rather than a
comparison to an externally recorded HRV trace. Typically, cardiac cycles occur at a frequency
of ∼1 Hz at rest (Murphy et al., 2013). This frequency depends on the HR of the participant
and so the definition of the upper and lower bounds of the frequency range window was crucial.
The lower bound of the frequency range was chosen to be 0.11 Hz (or 100 frequency bins,
based on the sampling rate of 1.389 Hz). The upper bound was chosen to be 0.46 Hz (or 400
frequency bins). This frequency range will be referred to as the cardiac window throughout the
rest of this chapter. The classification algorithm then worked to classify components based on
the contents of this frequency range. The algorithm worked in three stages with each aiming
to build upon the last. The initial step used a smaller ‘sliding window’ of 0.0058 Hz (or 5
frequency bins) and cycled through the entire cardiac window, calculating the mean in each
sliding window. Components within the sliding window with a mean value greater than the mean
of all components within the sliding window (+2.5 standard deviations from the mean) were
considered to be preliminary cardiac components. The second stage involved fitting a two-term
Gaussian curve to the individual component frequency data within the cardiac window. The R2

value for each Gaussian fit was calculated and those with an R2 greater than 0.9 were considered
to be preliminary cardiac components. The final stage of classification aimed to remove erroneous
Gaussian fits in order to classify more accurately. The first step was to determine which term
from the two-term Gaussian fit had fit the peak of the data. This was achieved by calculating
the value of the frequency ‘peak’ for each term of the Gaussian fit (for each component) and
the largest absolute value was chosen to be the peak related to the cardiac cycle. This will be
referred to as the cardiac peak. Then, the median value across the cardiac peaks was calculated.
From this, a median window defined as the median value ±100 samples was generated. The
cardiac peaks that were within this median window were then considered cardiac components.
All components that failed these tests were considered noise components. A schematic diagram
outlining these steps is shown in Figure 5.3 (this diagram is the same as found in Chapter 4).
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Fig. 5.3 Schematic diagram detailing the classification steps used in the 100-400 samples
classifier. These steps included: Preprocessing, Mean calculation, Two-term Gaussian fitting,
Gaussian Outlier estimation, Training of FIX and generation of pulsatility maps.
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5.3.8.1 Calculation of Pulsatility

Using this information, 100 participants (the same participants as selected for the HRV method)
were used to create four FIX training datasets. FIX was then used to determine the cardiac
components for each of the 4123 rfMRI datasets. A linear regression was used to generate
pulsatility maps. These were defined to be the variance explained by the cardiac component time
series. Values of pulsatility were calculated for each participant by taking the median pulsatility
values across the WB mask, the GM mask and the WM mask.

5.3.9 Cardiac Regressors

Regressors used by the linear regression included the MELODIC IC time series for the compo-
nents considered to be cardiac. These are referred to as cardiac regressors. The baseline model
included motion regressors calculated from a rigid body motion registration with 6 degrees-of-
freedom. These were included in the model as regressors of no interest. Pulsatility maps and
pulsatility values were calculated on a voxelwise basis.

5.3.10 Verification of pulsatility values

To verify the accuracy of the methods outlined in this chapter, pulsatility values were calculated
for each of the 1588 rfMRI datasets which had useable HRV traces. To do this, the processed
HRV traces were used as regressors in a linear regression from the rfMRI datasets. The outcome
from the linear regression will represent the "true" pulsatility values for that participant as the
cardiac was data recorded during the scan. The linear regression generated a pulsatility map
and pulsatility values were created by taking the median pulsatility values across the WB mask,
the GM mask and the WM mask. The values of "true" pulsatility were then compared to each
method (HRV and Frequency method) in order to determine the accuracy of these methods.
This comparison was achieved using a correlation between the "true" pulsatility values and the
pulsatility values for each of the novel methods. Then a correlation matrix was generated and
represented in a colourmap.

5.3.11 Correlation with Physiological measures

Correlation of GM median pulsatility with age, BMI, Mean Arterial Pressure (MAP), Brain
Volume (BV), haematocrit and Framewise Displacement (FD) was performed. The method
of doing this was detailed in Chapter 4 - Section 4.3.10 and will be briefly outlined here.
The statistical significance of these correlations was evaluated using a permutation analysis
where the index order of the physiological vector was randomly changed and the correlation
recalculated with this new order. This was repeated so that there were 10,000,000 iterations
in total. The p-value was determined from equation 4.5. Throughout this work, the level of
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statistical significance was measured using an α-significance level of 0.05 (after correction for
multiple comparisons).

5.4 Results

5.4.1 Verification of method accuracy - HRV method

To verify the accuracy of the pulsatility maps generated by the HRV method a comparison
between the generated pulsatility and the "true" pulsatility was made. In this case, the "true"
pulsatility was generated using the processed HRV traces. The desired outcome from this
comparison would be a high correlation value (and significant p-value) as this would indicate
an accurate calculation of pulsatility using the HRV method. Around 390 participants were
involved in this comparison, as this was the number of good quality physiological traces that
were analysed.

Correlation matrices were generated to determine the similarity between the "true" pulsatility
values and the values generated by the HRV method. Correlation values exceeded 0.88 (associated
p-value=1.2×10−125) in all cases with a maximum correlation value of 0.91 (p-value=8.6×
10−149) (Figure 5.4), between the "true" GM pulsatility and that generated from the HRV
method with the 60BPM training dataset. The mixBPM training dataset generated values of
GM pulsatility with the lowest similarity to the "true" pulsatility with a correlation value of
0.88 (associated p-value=1.2×10−125). The high correlations with the "true" pulsatility values
suggest the methods used demonstrate an accurate calculation of pulsatility and are further
shown in the scatter plots included in the Appendix (Figure A.1). Further demonstrated in Figure
5.4 is the similarity of pulsatility values generated by each training dataset. The 70BPM and
90BPM methods showed the most similarity in GM pulsatility with a correlation value of 0.93
(associated p-value=7.6×10−171). However, all correlation values exceeded 0.90 (associated
p-value=4.2×10−146) when comparing across methods.

Fig. 5.4 Correlation matrix showing the similarity between "true" pulsatility values generated
with the HRV trace and the different training datasets used in the HRV method. Correlation
values are defined by the colourmap and the boxes scale based on the p-value. Values with a
statistical significance (α<0.05) are enclosed in a red box.
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5.4.2 Verification of method accuracy - Frequency Method

Similarly to the verification of the HRV method, correlation matrices were generated to compare
the "true" pulsatility values with the Frequency method estimates for the 390 participants. These
results are shown in Figure 5.5.

Fig. 5.5 Correlation matrix showing the similarity between "true" pulsatility values generated
using HRV traces and the different training datasets used in the Frequency method. Correlation
values are defined by the colourmap and the boxes scale based on the p-value. Values with a
statistical significance (α<0.05) are enclosed in a red box.

Correlation values exceeded 0.90 (associated p-value=3.0×10−140) in all cases. Overall,
the correspondance to the "true" pusatility was higher than for the HRV method. Values of
correlation between training datasets (60BPM, 70BPM, 90BPM, mixBPM) did not differ by
much. Scatter graphs showing the high correlations are shown in Figure A.2. The percentage
difference between the gradients for the HRV and Frequency method were quantified and are
shown in Figure 5.6. The HRV methods showed larger gradients. The largest difference was
between the 60BPM methods. The smallest difference was between the mixBPM methods.

Fig. 5.6 A bar chart showing the percentage difference between the gradients of the scatter
graphs (found in the Appendix - Figures A.2 & A.1) for both methods. The lower the percentage
difference, the more similar the gradients are.
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5.4.3 "True" Pulsatility correlations with physiological information

To further validate the methods used to calculate pulsatility, correlation values of the "true"
pulsatility with different physiological parameters were calculated (Figure 5.7). Again, 390
participants were analysed here.

Fig. 5.7 Correlation matrix comparing "true" GM pulsatility values with different physiological
parameters. The parameters in question are: Age, BMI, Mean Arterial Pressure (MAP), Frame-
wise Displacement (FD), Brain Volume (BV) and Haematocrit. Correlation value is defined by
the colourmap and the boxes scale depending on the p-value (smaller p-values result in larger
boxes). Values with a statistical significance (α<0.05) are enclosed in a red box.

Overall, the correlation values were low (Figure 5.7). The greatest correlation values detected
were for the comparison of GM pulsatility with BMI (corr=1.9×10−1, p-value=3.7×10−4) and
FD (corr=3.3×10−1, p-value=0). The correlation with the least significant p-value was age vs
GM pulsatility with a p-value of 3.68×10−1, and the most significant was FD vs GM pulsatility
with a p-value of 0. Figure 5.7 also shows the correlation values when the physiological
parameters were compared with each other.

5.4.4 HRV Method Pulsatility correlations with physiological information

Correlations between HRV method estimates of pulsatility and physiological parameters are
shown in Figure 5.8. This analysis included all participants. Correlation values with significant
p-values were detected for all training groups following a similar trend to the results for "true"
pulsatility. This similarity shows that this method is looking at cardiac-related information as
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expected. The highest correlation values were detected when comparing the 60BPM estimation
of pulsatility to BMI (corr=2.2× 10−1, p-value=0), the 60BPM estimate of pulsatility to FD
(corr=3.9×10−1, p-value=0) and the 90BPM estimate of pulsatility to BV (corr=2.87×10−1,
p-value=0). The least significant correlation value was detected for the mixBPM estimate of
pulsatility with age (corr=1.2×10−2, p-value=7.1×10−1).

Fig. 5.8 Correlation matrix comparing GM pulsatility generated from each training dataset using
the HRV method and physiological parameters. The parameters in question are: Age, BMI, Mean
Arterial Pressure (MAP), Framewise Displacement (FD), Brain Volume (BV) and Haematocrit.
Correlation values are absolute correlations and are defined by the colourmap, the boxes scale
based on the p-value. Values with a statistical significance (α<0.05) are enclosed in a red box.

5.4.5 Frequency Method Pulsatility correlations with physiological infor-
mation

Correlations between Frequency method estimates of pulsatility and physiological parameters
are shown in Figure 5.9. Values of correlation were similar to the "true" pulsatility correlations
and the HRV correlations. The most significant correlation was found between the 90BPM
estimate of pulsatility and FD (corr=3.31×10−1, p-value=0) and the least significant correlation
was found between the 60BPM estimate of pulsatility and haematocrit (corr=3.81× 10−2, p-
value=2.6×10−1).
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Fig. 5.9 Correlation matrix comparing GM pulsatility generated from each training dataset using
the Frequency method and physiological parameters. The parameters in question are: Age,
BMI, Mean Arterial Pressure (MAP), Framewise Displacement (FD), Brain Volume (BV) and
Haematocrit. Correlation values are absolute correlations and are defined by the colourmap, the
boxes scale based on the p-value Values with a statistical significance (α<0.05) are enclosed in a
red box.

5.4.6 Comparisons across methods

Comparisons between GM pulsatility values calculated from both the HRV and Frequency
methods are represented using a correlation matrix (Figure 5.10). Within methods, correlation
values were high, all of which were greater than (or equal to) 0.8 (associated p-value=6.37×
10−217). However, correlation values were lower between methods with the lowest value equal
to 7.97×10−1 (p-value=6.37×10−217).
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Fig. 5.10 Correlation matrix comparing the GM pulsatility calculated from both the HRV method
and the Frequency Method. Correlation values are absolute correlations and are defined by the
colourmap, the boxes scale based on the p-value Values with a statistical significance (α<0.05)
are enclosed in a red box.

The number of rfMRI scans analysed by each method was dependant on how harsh the
classifier was in creating the training dataset. A harsher classifier would not classify as many
components as cardiac. This could mean that some rfMRI scans finish classification with no
components deemed to be cardiac. Figures 5.11 and 5.12 show this in detail by displaying the
number of rfMRI runs (Figure 5.11) and participants (Figure 5.12) analysed for each method used.
The number of runs analysed is affected quite substantially by the harshness of the Frequency
method classifier and at most 1526 runs were not classified by this method. However, as can
be seen in Figure 5.12 this did not translate to a large number of unclassified participants. The
reason for this difference was that at least 1 run was classified for all participants allowing a
value of pulsatility to be generated. However, this may have been due to luck and may not be the
case if this classifier was used on another dataset.



112 Novel Methods for quantifying cardiac pulsatility in resting state functional images

Fig. 5.11 Bar chart showing the number of ‘runs’ analysed for each method used to generate
pulsatility. The colours represent the different methods: The red bar represents the "true"
pulsatility, the green represents the estimates generated from the Frequency method and the blue
represents the estimates generated from the HRV method. The number of runs is displayed above
each bar.

Fig. 5.12 Bar chart showing the number of participants analysed for each method used to
generate pulsatility. The colours represent the different methods: The red bar represents the
"true" pulsatility, the green represents the estimates generated from the Frequency method and
the blue represents the estimates generated from the HRV method. The number of participants is
displayed above each bar.
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5.4.7 Averaged pulsatility maps

5.4.8 HRV Method

Average pulsatility maps were generated for each method (60BPM, 70BPM, 90BPM, mixBPM)
and are shown in Figure 5.13. A clear structure can be seen within the GM, suggesting that this
method works well. The values of pulsatility in different tissue types were compared. Bar charts
showing the average pulsatility value estimated for WB, GM, WM and ventricles are shown in
Figure 5.14. These results show that the largest value of average pulsatility is found when using
the WB mask. The second largest pulsatility value was observed in the GM, with the third and
fourth largest values found in the WM and the ventricles respectively. These trends all showed
statistically significant differences with p-values less than 6.88×10−29.

Fig. 5.13 Average Pulsatility maps for the HRV method. All four methods show very similar
maps. Structure can be seen within the GM and a clear GM/WM border is evident with GM
greater than WM. The white halo surrounding the brain is thought to be related to the CSF
outside of the brain.
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Fig. 5.14 A bar chart showing the estimated pulsatility value in different tissue types using the
HRV method. Error bars are included on these bars and these tend to overlap between methods.
This graph shows that there is a hierarchy of pulsatility value ranging from WB to Ventricles
(with the largest pulsatility represented in the WB).

5.4.9 Frequency Method

Similarly to the HRV method, average pulsatility maps were generated for each method (60BPM,
70BPM, 90BPM, mixBPM) and these are shown in Figure 5.15. A clear structure can be seen
within the GM which was also "true" for the HRV method. However, in comparison to the
HRV method, these results show a slightly less obvious structure (the contrast is lower). Figure
5.16 shows average pulsatility values in the different tissue types using the Frequency method.
Similar to the HRV method, these results show the estimated average pulsatility is largest using
the WB mask, and decreases in magnitude in the GM, then the WM and then the ventricles. In
comparison with the HRV method (5.14), the average pulsatility is lower when estimating it
using the Frequency method.
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Fig. 5.15 Average Pulsatility maps for the Frequency method. All four methods show very
similar maps. Structure can be seen within the GM and a clear GM/WM border is evident with
GM greater than WM. The white halo surrounding the brain is thought to be related to the CSF
outside of the brain.

Fig. 5.16 A bar chart showing the estimated pulsatility value in different tissue types using the
Frequency method. Error bars are included on these bars and these tend to overlap between
methods. This graph shows that there is a hierarchy of pulsatility value ranging from WB to
Ventricles (with the largest pulsatility represented in the WB).
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5.4.10 "True" Pulsatility

A bar chart showing the average pulsatility (for different tissue types) estimated using the HRV
trace is shown in Figure 5.17. Overall, the value of pulsatility was lower using this method when
compared to the HRV and Frequency methods.

Fig. 5.17 A bar chart showing the estimated pulsatility value in different tissue types using the
HRV trace ("true" pulsatility). Error bars are included on these bars and these tend to overlap
between methods. This graph shows that there is a hierarchy of pulsatility value ranging from
WB to Ventricles (with the largest pulsatility represented in the WB).

5.5 Discussion

Calculation of the effects of pulsatile flow on the microvasculature is an important metric in
the tracking and diagnosis of cognitive decline and dementia (Mitchell et al., 2011; Rivera-
Rivera et al., 2017; Vikner et al., 2021). In this study, we have presented two novel methods
for the calculation of cardiac pulsatility from existing resting state datasets. The first relying
on physiological recordings in a subset of participants and the second fully data driven. Both
methods were compared to the "true" pulsatility values as measured using the cardiac recordings
for a subset of participants (∼390 participants). Similar values of pulsatility were measured
suggesting a high accuracy for both methods with correlation values exceeding 0.88 (associated
p-value=1.2×10−125) in the comparison between each method and the "true" pulsatility.

Initially, it was expected that there would be large differences in the pulsatility estimates
generated from the different training datasets. One might expect that the HR values used to train
the dataset would bias the classifier to detect cardiac components with similar HR’s. However,
these results suggest this is not the case. The values of pulsatility estimated using a classifier
trained using groups of participants with different HR values (60BPM, 70BPM and 90BPM)
were highly correlated with "true" pulsatility values. Furthermore these estimates also correlated
highly with pulsatility values estimated using the other training datasets. This suggests that the
HR value for participants used in training dataset does not bias the classifier. Figures A.1 and A.2
show scatter graphs that compare the "true" pulsatility estimates with those generated from the
novel methods. Comparing these, it is clear that the gradient for those using the HRV method is
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much steeper than that of the Frequency method suggesting the HRV estimates are more similar
to the "true" pulsatility.

It is expected that as we age, our ability to dampen the pulse pressure from inflowing pulsatile
blood decreases. This is due to the increased stiffness of vessels with advancing age (Mitchell
et al., 2004) which results in damage to the microvessels within the brain. As such, it is expected
that values of pulsatility will correlate highly with age. This was not the case in the results
presented here as low correlations were detected. However, the HCP data is not the ideal dataset
to see this relationship as the participants were young, healthy adults with a small age range
(22-35). A large change in arterial stiffness and pulsatility across this age range is not expected
(Reference Values for Arterial Stiffness’ Collaboration, 2010).

Increases in BMI have been found to correlate with an increase in arterial stiffening (Kappus
et al., 2014). Therefore, a high correlation between BMI and pulsatility was expected. BMI was
one of the higher correlations observed for all methods that produced values of pulsatility and
was statistically significant for each method. This supports the hypothesis that increases in BMI
are associated with increases in arterial stiffness.

Motion regression was used to remove any artifacts due to motion from the time series data.
However, high correlations were observed between pulsatility and framewise displacement (FD)
even after motion regression. It’s important to note that FD and motion are not identical. FD is
an estimate of the movement of the head from one volume to another and this does not precisely
represent head motion (Power et al., 2012, 2014). Additionally, it was observed that FD and
BMI were strongly correlated implying that the higher the BMI, the more FD was present. The
relationship between BMI and FD in the HCP dataset has been independently reported by another
group (Hodgson et al., 2016) and other studies have shown a similar relationship in other datasets
(Beyer et al., 2017; Ekhtiari et al., 2019). In fact, it was reported by Beyer and colleagues that
losing weight (and therefore reducing BMI) resulting in a decrease in head motion during MRI
(Beyer et al., 2017).

Both methods used to generate pulsatility showed promising results when compared with
"true" pulsatility, which leaves the question – which method is better? Figure 5.10 compares
the methods with each other to determine the similarities in their pulsatility values. Within each
method, the values of pulsatility generated by each training dataset were similar with correlation
values greater than 0.80 (associated p-value=6.37×10−217 for lowest correlation). The values
generated by the HRV method had slightly higher correlation values and all of which were greater
than 0.91 (associated p-value=0). The correlations of pulsatility in WM with the "true" pulsatility
were slightly higher than that of GM (Figures 5.4 & 5.5). One explanation for this could be
that WM doesn’t have the confounding factor of ongoing neuronal-related fluctuations that are
present in GM. This, therefore, makes the GM "true" measurements nosier, even though they are
larger. Thus, the correlation to the other methods is lower. The downside to the HRV method is
the requirement to collect physiological traces along with the fMRI data for classifier training.
This would restrict this method to studies that have good quality physiological traces in a subset
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of participants. This study used only 100 physiological traces and generated accurate pulsatility
maps and so this could be used for bigger studies that have larger numbers of participants.
The Frequency method correlation values exceeded 0.89 (associated p-value=0) for all training
datasets. The upside to this method is that it can be run on any dataset without the need for
external physiological recordings. However, the number of runs analysed for each method within
the Frequency method was significantly less than that of the HRV method as shown in Figure
5.11. One explanation could be the strict algorithm used to classify components in the Frequency
Method which resulted in small numbers of components classified as cardiac-related for each
run. This meant that FIX was unable to detect cardiac-related components based on the training
data for some participants. In future, it may be necessary to make the classifying algorithm less
strict to overcome this issue. The numbers classified using the HRV method stayed consistent
and almost all runs resulted in the production of a measure of pulsatility. This discrepancy in
the number of runs classified did not translate to a large loss in participants classified as most
participants had at least one of the four runs that was classified by the Frequency Method. As
such the number of participants lost was not that great as shown in Figure 5.12.

When comparing values of pulsatility in the different brain tissue types (WB, GM, WM and
Ventricles), the WB returned the largest values. This was expected as this mask encompasses
signal from all areas of the brain. The GM showed the second largest pulsatility values as
expected. Pulsatility in the WM was attributed to cardiac-related noise. The average value of
pulsatility varied across methods, with the largest values calculated using the HRV method, and
the lowest values calculated using the HRV trace. It was expected that the HRV trace would
show the most accurate values of pulsatility. However, only one degree of freedom is used in the
estimation of the "true" pulsatility (the HRV trace), whereas the other methods contain multiple
degrees of freedom as multiple cardiac components were regressed from the data. Therefore,
these methods can explain more variance in the data that is related to pulsatility.

In future, it would be interesting to determine how FIX would perform using a smaller
number of training datasets. If this was reducible then the number of high-quality physiological
recordings required to generate measures of cardiac pulsatility using the HRV method would
be significantly less. This would allow for this method to be used on other studies with smaller
numbers of participants or physiological traces. Additionally, it would be useful to discover
whether the FIX training datasets generated within this study can be used to classify data from
other studies. The FIX recommendation is that the training dataset must be generated from
a subset of the data to be classified. However, on looking through the FIX user guides, there
are a small number of preset training datasets which FSL recommend to train FIX with. This
implies that training datasets can be used between studies assuming the data to be classified was
collected and pre-processed under the same conditions as the training data.
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5.6 Conclusion

In this chapter, I have introduced two novel methods for generating measures of cardiac pulsatility
in the brain that do not require HRV traces for all participants. Both methods perform well
when compared with "true" measures of pulsatility (a gold standard). High correlations were
observed between the "true" pulsatility values and those of the two novel methods introduced.
Training datasets used to train FIX were varied by HR value but no significant difference was
detected between the pulsatility values generated by each of these training datasets. This was
the case for both methods and indicates that the value of HR used within the training dataset
does not influence the classification of cardiac components. Since FIX is based on separating
spatial components, perhaps this is not surprising. Correlations between pulsatility generated
from these methods and physiological parameters were similar across the different methods.
This suggests that both methods work to a similar level of accuracy. The Frequency method
does not require any additional information to accompany the rfMRI data when creating training
datasets and so can be implemented easily. On the other hand, the HRV method requires high
quality physiological information on a subset of participants to generate training datasets. This
disqualifies this method in cases where these traces are unavailable (or of a bad quality). The
downside to the Frequency method was that it suffered from a large number of imaging runs that
could not be classified. Although not problematic for this study, as most participants had at least
one run that was classified, it is a potential shortcoming of the method. Of the two methods, the
HRV method had the strongest correlation with the "true" pulsatility. This is the reason that I
would recommend this method if high quality cardiac traces are available. If these high quality
traces are not available, then the Frequency method does produce similar results, although these
have a slightly lower correlation with the "true" pulsatility values.





Chapter 6

Discussion

Overview of Thesis

The aim of the work presented in this thesis is to improve the methods currently available to fMRI
researchers attempting to measure cerebrovascular function. Gaining a better understanding
of how the vascular system works within the brain enables researchers to understand how the
breakdown of this system can lead to disease states, such as dementia, and discover methods
to mitigate the decline of the system. Current methods used to measure cerebrovascular func-
tion include: the measurement of cerebrovascular reactivity (CVR) shown to be impaired in
Alzheimer’s disease and in people with mild cognitive impairment (Cantin et al., 2011; Glodzik
et al., 2013); the measurement of cerebral blood flow (CBF) (Buxton, 2005; Fantini et al., 2016b)
which is important in understanding brain function; and the measurement of CMRO2 (Davis
et al., 1998; Germuska et al., 2019; Hoge et al., 1999a; Merola et al., 2016; Wise et al., 2013)
which is considered a direct indicator of brain health. The methods to determine these metrics all
come with their own limitations and improvements can be made to the analysis pipelines that aim
to address them. One such flaw in this is motion, to which fMRI and ASL are both susceptible.
Attempts to compensate for this include the use of tactile feedback to reduce motion (Krause
et al., 2019), prospective correction methods that correct the motion during scanning (Maclaren
et al., 2012; Zahneisen and Ernst, 2016; Zaitsev et al., 2017) and retrospective correction methods
that correct the motion after scanning. These methods all fall short in scans of cerebrovascular
function (as demonstrated in Chapter 3 - Figure 3.2).

The vast majority of resting state fMRI (rfMRI) studies infer connectivity between brain
regions (Lee et al., 2013; Smith et al., 2013; Van Essen et al., 2013) and identify resting state
networks (Lee et al., 2013; Smith et al., 2013; Van Essen et al., 2013). These investigations
of functional connectivity have lead to studies that aim to detect patients with Alzheimer’s
disease (Dai et al., 2012; Koch et al., 2012; Supekar et al., 2008), autism (Anderson et al., 2011)
and studies that show it is useful in surgical planning (Bettus et al., 2010; Kokkonen et al.,
2009; Liu et al., 2009; Shimony et al., 2009). However, rfMRI can also be used to investigate
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cerebrovascular function. One way was explored in Chapters 4 & 5 and uses cardiac pulsatility.
By exploiting the relationship between HRV and pulsatility it was possible to make inferences
about pulsatility in the brain.

Throughout this work, I have presented different methods to improve our processing pipelines
in order to combat some of these issues. Namely, developing new methods to estimate motion
parameters in order to generate non-erroneous estimates of motion and developing methods of
isolating information pertaining to cardiac frequency fluctuations from resting state BOLD data.

Correcting Motion Registration Errors (Chapter 3)

Initial Thoughts

The first aspect that I attempted to improve upon was that of subject motion correction. Chapter 3
of this work focused on the quantification and reduction of an issue which arises in retrospective
correction of motion using the conventional motion correction method in fMRI, the volume
registration algorithm (VRA). Although the focus was on AFNI’s implementation of the VRA,
this issue is present in all variations of the VRA. The issue in question is global changes in MR
signal intensity brought about by a global increase in CBF, for example. There are other ways
these global changes can occur, however. Throughout this work, these changes are referred to as
Global Intensity Changes (GICs) and more details about them can be found in Chapter 2 - Section
2.6.6. Initial inspection of the VRA motion parameter estimate for scans containing Global
Intensity Changes (GICs) showed that they looked strikingly similar to the signal causing the
GIC, indicating that signals of interest were deemed to be motion and, thus, would be removed
in a motion regression step. This is shown in Chapter 3 - Figure 3.2, which shows the motion
parameter estimate overlayed with the signal driving the GIC (in this case this was the CO2

trace).

Analysis of Motion Parameters

Probing further, the estimates generated from the VRA were compared to an external motion
tracker (TracInnovations, Bellarup, Denmark) through use of a linear regression with the global
(average) signal in the brain. This is shown in Chapter 3 - Figure 3.11 where the R2 value
represents how well the motion parameter estimates fit the global (average) brain signal. The
difference between the camera-based estimates and VRA-based estimates were very clear for
some scan types (Rest+CO2+ASLTag), indicating that this is a problem which could cause signal
loss when using a VRA to correct for motion. Attempts to reduce the significance of the problem
were tested using the same regression tests. The proposed methods included: ICA-based methods
where ICs that most closely matched the external influence on the GIC were removed and the
VRA was re-run and Erosion-based methods where a mask was eroded at the edges and used in
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the VRA to exclude edge voxels from the estimation. Edge voxels contain the biggest signal
change when movement is present. Therefore, the Erosion-based methods were expected to work
as they removed these edge voxels from the data used to estimate motion. This would prevent the
VRA from misinterpreting an increase in signal due to a GIC as motion. However, these methods
produced estimates that were similar to the VRA-based estimates disproving this theory. The
results showing the linear regression analyses are shown in Chapter 3 - Figures 3.11, 3.12 and
3.13. These figures all looked at how well the motion estimates fit the global signal, the external
influence on the GIC and the VRA-based motion parameter estimates. From these results, it
was clear that the ICA-based methods showed less GIC variance than the other methods for
some scan types (Figure 3.12). It also showed less global signal within these motion estimates
(Figure 3.11). However, the scans that did not contain a GIC (RestOnly & Rest+Motion) showed
a similar variance to the VRA-based estimates for these scan types. This was as expected due to
the lack of a GIC driving the erroneous misrepresentation of signal as motion.

The Rest+CO2+Motion scan type showed high R2 values when looking at Figure 3.13 for
all correction methods. This suggests that the different correction methods produced motion
parameters that were similar to the estimates generated by the VRA-based method. This was
attributed to the fact that this scan type is dependent on each participant’s ability to hold their
breath, which meant that the magnitude of the GIC was variable between participants. This
results in a less accurate estimation of the ICA components that are related to the GIC and
therefore a less accurate estimate of motion. Also, the breath hold periods and motion are
time-locked meaning that, when holding their breath, participants will move more. This could be
because of hyperventilation in preparation for the breath hold, or that they are fidgeting more
during the breath hold. Therefore, the estimation of motion during a breath hold challenge
is difficult and ICA decomposition may be unable to separate motion from CO2 effects. The
Erosion-based method estimates were consistent with the VRA-based methods in most scan
types. This implies that this method did not work to reduce this issue as well as expected. In
fact, in some cases the use of the eroded mask resulted in a higher R2 value, suggesting the use
of a harsh mask increases the amount of GIC present in the motion estimate. This may result
in more noise associated with these harsher masks. The results for the camera were trivial. On
inspection of some of the camera-based registration only datasets (generated from the rotation
and translation of the raw fMRI data with the motion parameters) an obvious amount of motion
had been added to the data. This was only present with smaller amounts of motion such as that
seen with the Rest+CO2 and Rest+CO2+ASLTag scan types. This motion was not included in
other registration only datasets. This issue was explored in Chapter 3 - Section 3.3.2.2 and arises
from the noisy motion parameter estimates. As a result, the camera-based results are questionable
for these scan types (Rest+CO2 and Rest+CO2+ASLTag) and may not be trustworthy for other
scan types. The camera-based estimates were very different to the VRA-based estimates. This
was expected as the camera is external to the scanner and not affected by the GICs. This was
especially noticeable in the Rest+ASLTag scan type and the driver of this difference was shown
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to be the PLD-ramp (Figure 3.12). This was not surprising as a larger intensity change would be
expected with increasing PLD values. This is because a longer PLD value will equate to more of
the tagged blood reaching the target tissue. Therefore, a bigger subtraction from the MR signal
would occur translating to a bigger GIC.

Quantification of Cerebrovascular Physiology

As well as investigating the effects of these methods on the motion parameter estimates, I also
looked at how they affected the quantification of cerebrovascular physiology. In most cases, the
ICA-based methods calculated quantified values that were greater than the VRA-based estimates.
This was not surprising as the ICA-based method removes the signal driving the GIC before
performing motion correction. As a result, a reduction in the loss of signal of interest would
occur. Motion can be broken into two different things: the real motion and GIC-induced apparent
motion. These methods aim to reduce the GIC-induced apparent motion. This is important when
discussing the quantification of cerebrovascular physiology.

Connectivity

Connectivity analysis was performed for the RestOnly and the Rest+Motion scan types. The
connectivity values were consistent for the RestOnly scan type across most of the motion
correction methods. A slight deviation was detected for the camera-based registration only

correction type. However, this was not the case for the Rest+Motion scan type as a large amount
of variation was detected for these motion correction methods. As discussed earlier, this scan
type involved a large motion task which is not standard practice and this could have interfered
with the connectivity estimates. The Rest+Motion scan type was only used as a way to test the
capability of the external motion tracking system and therefore the connectivity results should be
treated with care. In both of these scan types there should be no GIC-induced apparent motion
as there is no external GIC to introduce this. Therefore connectivity values shouldn’t be affected
by this apparent motion.

Cerebral Blood Flow (CBF)

Cerebral blood flow (CBF) values were calculated for some scan types as this quantity gives
an indication of the amount of blood delivered to brain tissue and is an important indicator of
the tissue health. It is expected that as the GIC-induced apparent motion is removed, the CBF
value will increase. It is also important to consider the effects that real motion will have on
CBF values. A stricter motion correction would leave less signal that could be used to quantify
CBF. This would then lead to a lower CBF value. In almost all correction types, a drop in CBF
value was detected with the addition of motion regression, the second stage in motion correction
(registration + regression). The exception to this was the camera-based and Erosion-based
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correction methods for the Rest+ASLTag scan type (Figure 3.16) which showed an increase in
average CBF value. As the camera-based method is independent of the GIC’s it suggests that
this method removed a lot of real motion. However, when compared to the ’registration only’
and ’nomoco’ estimates which had average CBF values of around 40 ml/100g/min, it doesn’t
seem likely that the camera-based regression step would increase the CBF value to around 70
ml/100g/min (an increase of around 30 ml/100g/min). Other results from the camera-based
method did show that it didn’t work well for similar scan types and so the results shown for
the Rest+ASLTag should be taken lightly. The Erosion-based correction methods also showed
an increase in average CBF value which initially suggests that there was more GIC-induces
apparent motion removed. However, the CBF values for each participant are very diffuse which
makes the average CBF value unreliable. Therefore, conclusions cannot be drawn about the
effectiveness of these correction methods for this scan type. The largest difference between the
VRA-based and camera-based motion parameters was seen for the Rest+ASLTag scan type in all
three analyses performed on the motion parameters (Figures 3.11, 3.12, 3.13).

Cerebrovascular Resistance (CVR)

Values of cerebrovascular resistance (CVR) were calculated as these allow us to understand
the ability of blood vessels to contract/dilate in response to stimulus (and therefore the health
of the vessels). It is expected that as the GIC-induced apparent motion is removed, the CVR
value will increase. After including the regression step of motion correction, the ICA-based
methods showed the largest values of CVR overall which follows the expected trend (better
motion correction equates to larger CVR values). This was the case in all scan types except for
the Rest+CO2+ASLTag scan type where the higher values were estimated by the Erosion-based
methods. Aside from this, the Erosion-based methods showed lower values of CVR in the other
two scan types (Rest+CO2 & Rest+CO2+Motion) when compared to that of the ICA methods.

Cerebral Metabolic Rate of Oxygen Consumption (CMRO2) & Oxygen Extraction Fraction
(OEF)

The cerebral metabolic rate of oxygen consumption (CMRO2) and oxygen extraction fraction
(OEF) could be estimated from the Rest+CO2+ASLTag scan type. As mentioned previously, it is
expected that CBF and CVR will be underestimated when there is GIC-induced apparent motion
present. If every other physiological parameter was unchanging in this case then it is expected
that this would lead to a reduction in CMRO2. However, in reality, the other physiological
parameters aren’t going to remain constant. Therefore, it is unclear what would happen with the
estimation of CMRO2 in the case of increased apparent motion. The CMRO2 results showed
a drop in value when the regression motion correction step was included in the analysis. The
camera-based and ICA-based methods showed the highest values of CMRO2. However, none
of these fell within the expected CMRO2 range for the population suggesting the regression
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step may be too harsh to allow accurate quantified values to be produced. Aside from this,
the registration only results were similar to that of no motion correction implying that the
registration only step does not have much of an effect on the quantification. This also suggests
that the registration only step has a very minor effect on motion correction in general and the
regression step is the driving force which removes the majority of motion. This is also true
for the OEF registration only results as they are similar to that of no motion correction. The
registration+regression results show a drop in OEF value when compared to the registration

only estimates.
These results show that current retrospective motion correction methods lead to erroneous

estimates of motion in scans that include GICs. I have shown that for some scan types this
can be reduced by using ICA to isolate and temporarily remove the components related to the
GIC prior to estimation of motion parameters. This is not the case for all scan types however
and further steps, such as motion reduction techniques, should be implemented prior to the
correction of motion. Such motion reduction techniques could include the use of memory foam
cushions and tactile tape which could reduce the amount of motion present. These techniques
were discussed briefly in the introduction to Chapter 3. Masks eroded at the edges do not produce
more accurate estimates of motion when compared to the conventional techniques (VRA-based
estimation). Although, this could be because the masks used in the study were in line with the
initial volume. For subsequent volumes, the mask may introduce errors as the edge voxels may
not be in the same location as they were in previous volumes. Therefore, a mask that moves with
the subsequent volumes may improve this estimation.

Recommendations

Moving forward I would recommend that an ICA is used in the correction of motion for the
following scan types: Rest+CO2, Rest+CO2+ASLTag and Rest+CO2+Motion. This is because I
have shown an improvement in motion parameter estimation in these scan types and the addition
of this would not add much work to the existing analysis pipelines. For the Rest+ASLTag scan
type, the results using an ICA weren’t significantly different to the VRA-based method and
therefore the use of an ICA may not add anything to the correction of motion. Finally, for the
scan types that did not contain an external influence on the GIC (RestOnly & Rest+Motion)
because there is no external influence on the GIC’s their results were similar to that of the
traditional VRA-based method. Therefore in these cases there is no reason to include any of
these data-based methods.

Wider Picture

Subject motion is a source of artefact in fMRI studies due to the length of time required to collect
the images. Reduction of subject motion is, therefore, important in the world of research as well
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as the clinical world. In the following two sections I will outline the impact that this project
could have in the research and clinical settings.

Research Impact

In all MR studies, the subject motion problem needs to be considered. This is particularly true
when collecting data from groups that are less-compliant, such as children. One way of reducing
motion in these groups is behavioural in nature. Showing younger children a movie clip whilst
they are being scanned significantly reduced head motion compared to them looking at a fixation
cross (Greene et al., 2018). The method outlined in this work is a retrospective method, meaning
it is a processing method that works on the data after it has been acquired. There are many
different retrospective methods used to correct data of motion. Retrospective correction can
make use of motion information collected during the scan through optical tracking systems (Frost
et al., 2019; Zaitsev et al., 2006), electromagnetic tracking systems (Afacan et al., 2019), and
RF probes (Ooi et al., 2013, 2009). However, these rely on accurate recording of motion using
these systems. Other, data-based approaches, are easier to implement as they don’t require the
use of external equipment. The use of fat-selective excitation as a motion navigator has been
shown to estimate motion with high precision (Gallichan et al., 2015). In many cases, external
motion trackers are not available and motion must be estimated from the realignment of each
image to a reference image (Cox and Jesmanowicz, 1999; Woods et al., 1998). As shown in
this work, the image realignment methods fall short for scans of cerebrovascular physiology
where there is a GIC present, especially when CO2 is used a stimulus. This work builds upon
the existing image realignment method outlined by (Cox and Jesmanowicz, 1999) to improve
it’s accuracy when dealing with data that includes a GIC. By improving the accuracy of motion
correction researchers will measure physiological parameters with more precision leading to a
greater understanding of these physiological parameters.

Clinical Impact

The impact that motion correction has on the clinical world is enormous. Motion artefacts
can make it difficult for the interpretation of MRI images which could lead to a diagnosis
being missed. By reducing motion there is a chance that these missed diagnoses may not
occur. In addition, more accurate physiological measures could allow certain disease states to
be recognised earlier. For example, evidence suggests that impaired CVR is associated with
dementia risk (Wolters et al., 2016) and stroke risk (Gupta et al., 2013). Certain patient groups
will move more while being scanned such as children and patients suffering from Parkinson’s
disease. Current clinical practice to reduce head motion in children is to use sedation (Dong et al.,
2019; Greene et al., 2018) which is costly (Slipsager et al., 2020) and can be risky (Dong et al.,
2019). This also could affect the BOLD response. There is evidence suggesting that sedation
suppresses the BOLD signal (Hassanzadeh et al., 2023). Other studies show that sedative agents
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can affect cerebral blood flow which in turn could affect the haemodynamic response function
(Di Francesco et al., 2013). Another study showed that the use of propofol (an anaesthetic agent)
was not prohibitive of performing fMRI (Souweidane et al., 1999). Additionally, BOLD signal
increases have been detected in response to passive listening, visual and movement tasks while
patients are sedated (Ives-Deliperi and Butler, 2015). There doesn’t seem to be a consensus
If head motion could be accounted for then these added costs and risks would be reduced.
Therefore, by improving motion estimation and correction methods we could better understand
cerebrovascular physiology. As well as this we could detect and diagnose certain diseased earlier
leading to better care for patients. The work carried out in Chapter 3 aimed to achieve these
goals by trying to improve methods to correct for motion in fMRI.

Quantification of Cardiac Pulsatility (Chapters 4 and 5)

In Chapters 4 and 5, I aimed to improve estimation of cardiac pulsatility, specifically from
resting state data. Data taken from the Human Connectome Project (HCP) S1200 release was
used to calculate values of pulsatility in the brain. Multiple attempts were made to achieve
this goal, most of which worked without the use of any external recordings of cardiac signals.
These methods took ICA data and attempted to isolate the cardiac-related components. Then,
using these cardiac components a measure of pulsatility could be generated. The initial method
looked at the frequency content of ICA information. This was used to estimate a frequency range
referred to as the cardiac window. The bounds of this window were determined by estimating
the range of resting heart rates (HR) for the participants in the study. The initial HR range used
was 60BPM-100BPM. However, this was quickly changed to 50BPM-100BPM due to concerns
that this range would overlook those with lower resting HR values. Another issue with this
method was aliasing which meant that cardiac-related signals could be aliased to a frequency
range outside of the cardiac window (as defined previously). Therefore, an expansion of the
cardiac window was required. Additionally, the initial results from this method suggested that
the algorithm was too lenient and therefore stricter tests were required.

The next iteration of this algorithm also aimed to isolate ICA components related to the
cardiac cycle. However, this method differed from the previous method as it worked over a larger
cardiac window: 100-400 samples (0.11Hz-0.46Hz). This method also implemented a stricter
selection criteria in a three step classifier. This classifier allowed the HR of each participant to be
estimated by isolating the frequency ‘peak’ for each term of the two-term Gaussian curve for
each component. Then, the true frequency could be calculated from the aliased frequency (the
frequency represented by the frequency peak) using equation 4.2. This resulted in two HR values
per run which can be seen in Chapter 4 - Figure 4.4. These HR values were compared with
"true" values of HR calculated from physiological data. This comparison can be seen in Chapter
4 - Figure 4.5. These results show that the classification algorithm was unable to determine the
correct HR value for participants who’s actual HR was around 80-90BPM (1.333-1.500Hz) and



129

40-50BPM (0.667-0.833Hz). These values are close to the Nyquist and sampling frequencies
which shows the classification algorithm is unable to detect cardiac components accurately near
to these values.

Once the classification algorithm was refined, values of pulsatility were generated in one
of three methods: The regression method, the FFT method and the Bandpass method. These
were outlined in detail in Chapter 4 - Sections 4.3.8.6, 4.3.8.7 and 4.3.8.8. These methods varied
in complexity, the regression method was the least complex and the FFT method was the most
complex. None of the three methods showed a high correlation with each other suggesting
that either they are analysing different things about the cardiac cycle or that they are analysing
something that has nothing to do with the cardiac cycle. The FFT and bandpass methods both
worked with bespoke frequency windows taken from the full frequency spectrum whereas the
regression method worked with spatial ICA component time series. As a result, the FFT and
bandpass methods could be evaluating other signals that were contained within the frequency
window as well as the cardiac-related information. Thus, these methods may not isolate only
cardiac-related information. Therefore, the regression method was the method of choice to
generate pulsatility as it was determined that this method is the most likely to isolate only cardiac-
related information. This method still had flaws related to aliasing, however. This lead onto
Chapter 5 which fixed the issues with the classification algorithm by using FMRIB’s ICA-based
Xnoisifier (FIX).

The main issue with the 100-400 samples classification algorithm was the aliasing issue
which meant that cardiac-related information in participants with HR value around 80-90BPM
and 40-50BPM were not selected accurately. In an attempt to fix this, FIX was used to classify
components based on a training dataset generated from the classification algorithm. Four training
datasets were generated each of which contained participants with HR value of 60BPM, 70BPM,
90BPM and a mix of the participants in these three groups (called the mixBPM group). Each
dataset contained 100 randomly selected participants. FIX was trained with these training
datasets and used to classify the components for the other rfMRI runs. This method was called
the Frequency Method. Additionally, a second method was used to identify which components
were related to the cardiac cycle. This method used high quality HRV traces processed by
Kassinopoulous and Mitsis (Kassinopoulos and Mitsis, 2020). A correlation analysis was used to
determine which of the cardiac components showed a significant correlation with the processed
cardiac traces and these were used to train FIX. The training datasets were created in the same
way as those for the Frequency method, with the same 100 participants making up four training
datasets and had each with a different HR value (60BPM, 70BPM, 90BPM, mixBPM). This
method was called the HRV method. Generation of pulsatility maps followed the same method
outlined in Chapter 4 - Section 4.3.8.6 and pulsatility was calculated using WB, GM, and WM
masks. Additionally, the cardiac traces were used to calculate "true" pulsatility values by using
them as regressors in a linear regression from the rfMRI datasets. In an ideal world, this would
be the best method to produce pulsatility maps. However this relies on the availability of good
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quality physiological monitoring which is not always easy to achieve. A better approach might
be to collect only a select number of physiological traces and use a classifier to generate these
estimates of cardiac pulsatility. However, as a sanity check the "true" pulsatility values were
generated and these were compared to the values generated by both the HRV and Frequency
methods.

Both methods estimated pulsatility values that correlated highly with the "true" pulsatility
which shows that these methods are in fact generating valid pulsatility information. This also
shows that the classification methods used work well to isolate cardiac-related data from an ICA.
The values generated between training datasets also showed a high correlation and this was even
true between methods. This was not what was originally expected as there was a worry that the
training datasets would bias FIX to classify information related to the HR of the training dataset
that trained it. However, this was not the case as shown in the highly correlated pulsatility values
generated from each training dataset. This is advantageous as it allows for studies to collect
cardiac traces in only a small number of participants. The method of choice would depend on
a few factors. The results show that the HRV method is slightly more accurate in determining
pulsatility. However, this method relies on the collection of a small number of high quality HRV
traces. This is problematic for some studies that may not have collected such information or
those that have low quality HRV traces. This is not the case for the Frequency method which
does not need external recordings to work. However, the results also showed a discrepancy in the
number of rfMRI runs analysed in comparison to the HRV method. I attributed this to the strict
algorithm that classified the components in the Frequency method which may results in a lack
of classification in some runs. The result is that FIX could not distinguish the cardiac-related
information for similar runs which could result in less cardiac-related components classified. In
this work, the number of runs did not translate to a large loss in the number of participants.

Aside from looking at the accuracy of the classifiers, I also performed correlation analyses
between the pulsatility values and common physiological parameters. The reason for this
was to determine if the values of pulsatility estimated by these methods correlated with these
physiological parameters in the expected way (as seen with the "true" pulsatility correlations with
physiological parameters). This would also allow conclusions to be drawn about the population
and their current cerebro-physiological health. Significant correlation values between pulsatility
and BMI as well as pulsatility and FD were observed. The former was expected as a higher
BMI has been associated with increases in arterial stiffness (Kappus et al., 2014). The latter was
surprising as steps were taken to correct for motion in these datasets. A relationship between BMI
and FD was shown which is supported by other literature (Beyer et al., 2017; Ekhtiari et al., 2019;
Hodgson et al., 2016). A significant correlation between age and pulsatility was not detected
even though this correlation was expected prior to analysis. On reflection, a large correlation
between age and pulsatility would be difficult to observe in this data as the participants were
young adults. Overall, these methods worked well at isolating cardiac-related components from
an ICA and allowed the estimation of accurate pulsatility values to be achieved. These methods
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would be a viable option for any study that would like to generate measures of pulsatility in
resting state fMRI datasets.

Wider Picture

The estimation of cardiac pulsatility has the potential to be an important biomarker for tracking
cognitive decline from mild cognitive impairment to dementia (Mitchell et al., 2011; Rivera-
Rivera et al., 2017; Vikner et al., 2021). It has been shown to correlate with hypertension in
cerebral vessels (van den Kerkhof et al., 2023) and to be associated with cerebal small vessel
disease (cSVD) in stroke patients (Birnefeld et al., 2019). Patients with acute ischemic stroke
and transient ischemic attacks (TIA’s) the pulsatility index in the middle cerebral arteries was
found to be increased as the severity of intracranial arterial calcification increased (Park et al.,
2012). There is evidence suggesting that the pulsatility index correlates with intracranial pressure
in patients with clinical features of intracranial hypertension (Kaloria et al., 2020). It could allow
for insights to be made about the glymphatic system. The work outlined in Chapters 4 and 5
introduced novel methods for the estimation of cardiac pulsatility in resting state fMRI. In the
following sections I will outline the research and clinical impacts of this work.

Research Impact

Measurement of cardiac pulsatility is difficult using fMRI due to the low number of samples
collected in a typical fMRI acquisition. Approaches to measure pulsatile flow do exist (Markl
et al., 2016; Whittaker et al., 2022), but these only work in large arteries. Our approach works
in smaller arteries and would allow us to determine cardiac pulsatility in these. In the case of
arterial stiffening, it is unclear whether we would measure an increase or decrease in cardiac
pulsatility in smaller vessels, but this technique could allow us to investigate this question further
and potentially determine the answer.

The glymphatic system, a clearance pathway that removes solutes from the brain (Hablitz and
Nedergaard, 2021; Iliff et al., 2012) is mediated by arterial pulsations (Hablitz and Nedergaard,
2021; Iliff et al., 2013; Jessen et al., 2015; Weller et al., 2008) as well as other physiological
processes such as respiration and CSF pressure gradients. Arterial pulsations alter the size of
perivascular spaces which send CSF into the brain (Hablitz and Nedergaard, 2021). With age,
arteries stiffen and it has been suggested that the stiffening of arteries could result in a decrease
in solute clearance (a reduction in the glymphatic capacity) (Hughes et al., 2015). Therefore
estimation of pulsatility in these arteries could give insights to the glymphatic system. Another
study demonstrated that changes in arterial pulsatility lead to the accumulation and deposition of
toxic solutes in the ageing brain (Iliff et al., 2013). Iliff et al also suggested that the deposited
solutes could lead to a further reduction in arterial pulsatility, causing a feedforward pathogenic
cycle leading to further neurodegeneration (Iliff et al., 2013).
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Clinical Impact

Blood moving through vessels in pulsatile and high pressured. Arteries allow blood to flow from
the heart and around the body. These arteries have elastic walls to allow them to accommodate
the pulsatile, high pressured blood flowing through them. These vessels can distend and dampen
the pulsatile flow before it reaches smaller vessels which are unable to accommodate such
pressures. However, in ageing and disease, these vessels can stiffen and their ability to dampen
the blood flow is reduced. This can lead to damange to smaller vessles and disease states such
as cSVD. Pulsatility is related to stiffness ad it’s measurement could allow for certain disease
states to be understood better. Such disease states include: Dementia (and mild cognitive decline)
(Mitchell et al., 2011; Rivera-Rivera et al., 2017; Vikner et al., 2021), cSVD (Birnefeld et al.,
2019), hypertension (van den Kerkhof et al., 2023), intracranial hypertension (Kaloria et al.,
2020), and stroke (and TIA’s) (Birnefeld et al., 2019; Park et al., 2012). Measurement of cardiac
pulsatility could allow us to better understand the glymphatic system. This is important from a
clinical perspective as the glymphatic system is known to play a key role in the removal of solutes
in the brain (Hablitz and Nedergaard, 2021; Iliff et al., 2012). These accumulation of these
solutes is characteristic of Alzheimer’s disease (Hawkes et al., 2011; Weller et al., 2007) and
understanding this system better could allow earlier diagnosis of Alzheimer’s disease. In addition,
the glymphatic system could be responsible for the prevention of other neurodegenerative diseases
such as Parkinson’s disease (Kylkilahti et al., 2021).

The overarching goal of this thesis was to improve current methods of measuring cerebrovas-
cular function in fMRI. I believe that the results provided throughout this thesis prove that
these methods can be improved with small changes to analysis pipelines. An ICA used as part
of conventional motion correction has been shown to improve estimates of motion as well as
estimates of cerebrovascular function in some scan types. As well as this, the estimation of
cardiac pulsatility is possible from resting state fMRI datasets via the use of FIX, the frequency
component of an ICA and a small number of high quality cardiac traces. This work will open up
the possibility of evaluating cardiac pulsatility in large datasets where there was no cardiac data
collected facilitating more cerebrovascular discoveries.

Future Directions

Motion Correction (Chapter 3)

The work conducted within this chapter focused on improving the conventional retrospective
motion correction methods used in fMRI, namely the volume registration algorithm. Of the
methods used to improve this, the Erosion-based methods did not work as well as I had initially
expected. I outlined in section 6 that the reason for this could be down to the fixation of the
erosion mask in a single position. So as subsequent volumes are evaluated, in extreme cases the
location of the edge voxels (which are the voxels that I wanted to erode) may not be located



133

within the eroded section of the mask. This may be problematic as the intensity change at edge
voxels is expected to be largest and so the most erroneous motion parameter estimates would
originate from these voxels. Therefore, a potential improvement might be to use a mask that
moves with the subsequent volumes. A potential caveat is that in order to move the eroded
mask accurately, one would need to know the motion parameter from one volume to the next.
Therefore, it is unclear if this would result in a feedback cycle that may end in a failure of this
method.

As well as improving on the Erosion-based methods, it would be interesting to determine why
all the other data based methods failed when working on the Rest+ASLTag scan type. Finding a
method that is robust for all scans of cerebrovascular function is the ultimate goal. Although, this
is a difficult feat and may not be achievable as shown by this work without the use of external
recordings of motion.

Estimation of Cardiac Pulsatility (Chapters 4 & 5)

The future of this work could investigate the smallest number of training datasets required to
produce accurate values of pulsatility. Reducing the number of training datasets would mean
that the number of high quality cardiac traces required would be significantly reduced for a
given study. This would allow this method to be more accessible for those who are unable to
collect such data, or those who do not have access to this data. Further improvements could be
made by examining the severity of the Frequency method classifier to understand if this explains
the lack of classification by FIX in some run instances (as explained in section 6). Finally, the
transferability of one FIX training dataset to another dataset could be investigated. The FSL
website (which explains how to use FIX) provides training datasets that can be used with other
data. This suggests that the training datasets could be applied widely thus negating the need for
high quality cardiac traces. These training datasets may only work if the data to be classified is
processed in the same way as the training datasets were.
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Appendix A

Additional Figures and Tables

Fig. A.1 Scatter Graphs showing the positive correlation between the pulsatility values estimated
from the HRV method and the True pulsatility values.
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Fig. A.2 Scatter Graphs showing the positive correlation between the pulsatility values estimated
from the Frequency method and the ‘True’ pulsatility values.

Fig. A.3 Tables showing the correlation and p-values for the comparison between the HRV
method and the ‘true’ pulsatility. The values highlighted in yellow signify the lowest correlation
value and those in green signify the highest correlation value. The values highlighted in red
signify statistically significant p-values.
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Fig. A.4 Tables showing the correlation and p-values for the comparison between the Frequency
method and the ‘true’ pulsatility. The values highlighted in yellow signify the lowest correlation
value and those in green signify the highest correlation value. The values highlighted in red
signify statistically significant p-values.
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Fig. A.5 Tables showing the correlation and p-values for the comparison between the ‘true’
pulsatility and different physiological parameters. The parameters in question are: Age, BMI,
Mean Arterial Pressure (MAP), Framewise Displacement (FD), Brain Volume (BV) and Haemat-
ocrit. The values highlighted in yellow signify the lowest correlation value and those in green
signify the highest correlation value. The values highlighted in red signify statistically significant
p-values.
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Fig. A.6 Tables showing the correlation and p-values for the comparison between the HRV
estimates of pulsatility and different physiological parameters. The parameters in question are:
Age, BMI, Mean Arterial Pressure (MAP), Framewise Displacement (FD), Brain Volume (BV)
and Haematocrit. The values highlighted in yellow signify the lowest correlation value and those
in green signify the highest correlation value. The values highlighted in red signify statistically
significant p-values.
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Fig. A.7 Tables showing the correlation and p-values for the comparison between the Frequency
estimates of pulsatility and different physiological parameters. The parameters in question are:
Age, BMI, Mean Arterial Pressure (MAP), Framewise Displacement (FD), Brain Volume (BV)
and Haematocrit. The values highlighted in yellow signify the lowest correlation value and those
in green signify the highest correlation value. The values highlighted in red signify statistically
significant p-values.



153

Fig. A.8 Tables showing the correlation and p-values for the comparison between the HRV
estimates of pulsatility and the Frequency method estimates of pulsatility. The parameters in
question are: Age, BMI, Mean Arterial Pressure (MAP), Framewise Displacement (FD), Brain
Volume (BV) and Haematocrit. The values highlighted in yellow signify the lowest correlation
value and those in green signify the highest correlation value. The values highlighted in red
signify statistically significant p-values.
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