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Abstract  9 

Biophysical models of diffusion tailored to quantify gray matter microstructure are gathering 10 

increasing interest. The two-compartment Neurite EXchange Imaging (NEXI) model has been 11 

proposed recently to account for neurites, extra-cellular space and exchange across the cell 12 

membrane. NEXI parameter estimation requires multi-shell multi-diffusion time data and has so far 13 

only been implemented experimentally on animal data collected on a preclinical MRI set-up. In this 14 

work, the translation of NEXI to the human cortex in vivo was achieved using a 3T Connectom MRI 15 

system with 300 mT/m gradients, that enables the acquisition of a broad range of b-values (0 – 7.5 16 

ms/µm²) with a window covering short to intermediate diffusion times (20 – 49 ms) suitable for the 17 

characteristic exchange times (10 – 50 ms). Microstructure estimates of four model variants: NEXI, 18 

NEXIdot (its extension with the addition of a dot compartment) and their respective versions that 19 

correct for the Rician noise floor (NEXIRM and NEXIdot,RM) that particularly impacts high b-value signal, 20 

were compared. The reliability of estimates in each model variant was evaluated in synthetic and 21 

human in vivo data. In the latter, the intra-subject (scan-rescan) vs between-subjects variability of 22 

microstructure estimates were compared in the cortex. The better performance of NEXIRM highlights 23 

the importance of correcting for Rician bias in the NEXI model to obtain accurate estimates of 24 

microstructure parameters in the human cortex, and the sensitivity of the NEXI framework to 25 

individual differences in cortical microstructure. This application of NEXI in humans represents a 26 

significant step, unlocking new avenues for studying neurodevelopment, ageing, and various 27 

neurodegenerative disorders. 28 
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1. Introduction  1 

Quantifying microstructure features of the human cortex in vivo has the potential to significantly 2 

improve our understanding and management of neurological and psychiatric diseases, which are 3 

associated with cognitive, motor, and behavioral deficits (Illán-Gala et al., 2022; Nürnberger et al., 4 

2017; Spotorno et al., 2022; Voldsbekk et al., 2022). Early diagnosis and effective treatment of these 5 

diseases remain a challenge, as their pathophysiology is not fully understood. Identifying the 6 

associated changes in the cortex microstructure could lead to a better understanding of the disease 7 

progression, earlier diagnoses and access to treatment, and help develop targeted therapies. 8 

Diffusion-weighted magnetic resonance imaging (dMRI) can provide such an insight into the 9 

microstructure of the brain, by exploiting the sensitivity of the signal to the motion of water 10 

molecules within tissue. In particular, biophysical modeling of the dMRI signal aims to characterize 11 

the tissue microstructure by fitting an analytical model of the tissue described by its most relevant 12 

geometric and diffusion features (Alexander et al., 2019; Jelescu et al., 2020; Novikov et al., 2019, 13 

2018; Stanisz et al., 1997) to the measured signals. 14 

There is already a wide variety of biophysical models of white matter, based on what is now 15 

commonly referred to as the “Standard Model” (Novikov et al., 2019) of non-exchanging 16 

compartments within which the diffusion displacement profile is Gaussian. However, recent studies 17 

indicate that the Standard Model does not hold in gray matter. At high b-values, the deviation of the 18 

directionally-averaged signal in gray matter from the impermeable stick power-law 𝑆̅ ∝ 𝑏−1/2 19 

(McKinnon et al., 2017; Veraart et al., 2016a) prompted the hypotheses that other features such as 20 

the cell body or ‘soma’ (Palombo et al., 2020, 2018), inter-compartment exchange (Jelescu et al., 21 

2022; Olesen et al., 2022; Veraart et al., 2018) and non-Gaussian diffusion within a compartment 22 

resulting from structural disorder (Henriques et al., 2019; Lee et al., 2020) should be accounted for. 23 

Indeed, in the cortex, most neurites are unmyelinated, so that the exchange of water between the 24 

intracellular and extracellular compartments may be significant for diffusion times that are longer 25 

than 20 ms (typical of the minimal diffusion time achievable on human MRI scanners). Additionally, 26 

the assumption of Gaussian diffusion within a given compartment may not hold in the presence of 27 

irregularities on length scales that are similar to the diffusion length, such as dendritic spines and 28 

neurite beading. Furthermore, the volume occupied by soma, in the gray matter is approximately 10-29 

20%, but negligible in white matter and therefore not currently included in white matter models.  30 

As an extension of the Standard Model, the Soma And Neurite Density Imaging (SANDI) model 31 

(Palombo et al., 2020), incorporated the soma size and signal fraction in addition to neurite signal 32 

fraction, thereby enabling their joint estimation. However, as it does not account for inter-33 

compartment exchange, the SANDI model is currently only applicable to data acquired within 34 

diffusion times shorter than 20 ms, for which the assumption of impermeable compartments is valid 35 

(Jelescu et al., 2020). As noted above, such diffusion times can only be achieved for very high b-values 36 

(up to 10 ms/μm²), on systems with ultra-strong gradients, such as preclinical scanners or human 37 

scanners with dedicated gradient sets (such as the Connectom scanner, 300 mT/m gradient 38 

amplitude) (Huang et al., 2021; Jones et al., 2018; Setsompop et al., 2013). 39 

The Neurite Exchange Imaging (NEXI) model (Jelescu et al., 2022) – proposed in parallel by (Olesen 40 

et al., 2022) as SMEX (Standard Model with EXchange) – was introduced recently to recognize and 41 
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quantify water exchange across the neurite membrane. As such, NEXI is applicable on clinical grade 1 

scanners because it does not necessarily require short diffusion times. NEXI models the neurites as a 2 

collection of randomly-oriented sticks – occupying a relative signal fraction f – where the intra-3 

neurite diffusion is uniaxial with diffusivity 𝐷𝑖,∥. Moreover, given the quasi-uniform orientation-4 

distribution of neurites in gray matter, the extra-neurite compartment is considered to be Gaussian 5 

isotropic with characteristic diffusivity 𝐷𝑒. The two compartments exchange with a characteristic 6 

time 𝑡𝑒𝑥. NEXI models the total orientation-averaged signal as the sum of these two exchanging 7 

compartments. They are assumed to have the same transverse relaxation time, or T2. The soma are 8 

not explicitly modeled and the signal contribution arising from this compartment is most likely pooled 9 

with the signal contribution from the extra-cellular space in NEXI (Jelescu et al., 2022). Importantly, 10 

the experimental observation of decreasing signal with increasing diffusion times supports exchange 11 

as a dominant contributor to signal features over a soma compartment with restricted diffusion 12 

(Jelescu et al., 2022; Olesen et al., 2022), although accounting for soma improves the fit of the signal 13 

tail (highest b-values). Thus, if the available diffusion MRI data do not allow fitting a model with 14 

enough parameters to account for both exchange and soma, modeling exchange while neglecting 15 

soma can be justified for diffusion times td longer than 20ms. On the other hand, an extension of 16 

SMEX which also models the soma as a separate compartment (SANDIX – SANDI with eXchange) has 17 

been proposed and applied to ex-vivo preclinical data (Olesen et al., 2022). The stability of fitting 18 

such a large number of model parameters on human in-vivo data remains to be established. 19 

The NEXI signal equation is a spherical mean of the kernel 𝒦, the anisotropic extension of the Kärger 20 

model of two well-mixed exchanging compartments in a barrier-limited regime (Fieremans et al., 21 

2010; Jelescu et al., 2022; Kärger, 1985): 22 

𝑆�̅�𝐸𝑋𝐼(𝒑; 𝑞, 𝑡𝑑) =  ∫ 𝒦(𝑞, 𝒈, 𝑡𝑑; 𝒑, 𝒏)𝑑(𝒈. 𝒏)²1
0  (1) 

where 𝒑 = [𝑡𝑒𝑥, 𝐷𝑖,∥, 𝐷𝑒 , 𝑓] are the microstructure parameters to fit, n are the neurite orientations, 23 

q is the wave vector along direction g. 24 

The assumption of the barrier-limited regime is supported if the characteristic time tc to reach the 25 

long-time diffusion limit in each compartment is shorter than the characteristic exchange time 26 

between compartments. In the case of infinitely long cylinders modeling the neurites, the radial plane 27 

is relevant for exchange across the membrane. In the case of neurites with a diameter d ~ 1 µm, the 28 

characteristic time in the intra-neurite space 𝑡𝑐,𝑖 = 𝑑22𝐷𝑖 ≈ 0.25 𝑚𝑠 and extra-neurite space 𝑡𝑐,𝑒 =29 𝑑22𝐷𝑒 𝜋𝑓 ≈ 7.5 𝑚𝑠 at most – assuming the lower bound of f~0.3 (Fieremans et al., 2010). Both timescales 30 

are shorter than the exchange time reported in previous studies 𝑡𝑒𝑥 > 5 ms. We note that the Kärger 31 

model assumption implies diffusion should be time-independent, while some time-dependence has 32 

been reported in a previous in vivo study of the human cortex (Lee et al., 2020), D(t) was weak and 33 

the long-time limit was reached for td > 20 ms, which agrees with the experimental setting in the 34 

present study.  35 

The aim of this study was to evaluate the feasibility and value of using the NEXI model and some of 36 

its variants for quantifying microstructural parameters in the human cortex in vivo. 37 
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To achieve this, we acquired multi-shell multi-diffusion time dMRI data in healthy human volunteers 1 

on a Connectom MRI system equipped with very strong (300 mT/m) gradients. The Connectom 2 

scanners are an important steppingstone in terms of hardware capabilities between preclinical MRI 3 

systems (with gradients >600 mT/m) and clinical MRI systems (with gradients ≤ 80 mT/m). They 4 

provide the opportunity for an initial translation of NEXI in human subjects by enabling the 5 

acquisition of the necessary broad range of b-values (0 – 7.5 ms/µm²) at diffusion times 20 – 49 ms, 6 

that are short enough to capture exchange processes with tex = 10 - 50 ms, as previously reported for 7 

brain cortex in vivo (Jelescu et al., 2022; Lee et al., 2020). 8 

Here, we compared NEXI-derived estimates in the human cortex to those obtained from its three-9 

compartment variant, allowing for an extra ‘dot’ compartment, filled with stationary water. This NEXI 10 

extension, referred to here as NEXIdot, has been proposed previously (Olesen et al., 2022) to explain 11 

the non-zero signal asymptote at high b-value ex vivo. In the cerebellum, the presence of such a 12 

compartment has been shown in vivo (Tax et al., 2020), but its existence in the cortex remains 13 

unclear. This compartment’s stationary water signal does not decay with diffusion-weighting, thus 14 

yielding the NEXIdot signal attenuation equation:  15 𝑆�̅�𝐸𝑋𝐼𝑑𝑜𝑡(𝒑; 𝑞, 𝑡𝑑) = (1 − 𝑓𝑑𝑜𝑡). 𝑆�̅�𝐸𝑋𝐼(𝒑; 𝑞, 𝑡𝑑) + 𝑓𝑑𝑜𝑡  (2) 

where 𝑓𝑑𝑜𝑡  is the stationary water fraction. 16 

 17 

At high b-values, high spatial resolution and moderate field strength, the diffusion-weighted signal 18 

magnitude is heavily affected by the Rician noise floor.  The effect of this noise floor can be accounted 19 

for by considering the expectation value of the signal 𝑆�̅�𝐸𝑋𝐼(𝒑; 𝑞, 𝑡𝑑) given the normalized Rician 20 

noise level 𝜎 =  𝜎𝑆𝑖𝑔𝑛𝑎𝑙𝑆𝑏=0 . The NEXI signal equation corrected for the Rician Mean (RM) is: 21 

𝑆�̅�𝐸𝑋𝐼𝑅𝑀(𝒑; 𝑞, 𝑡𝑑, 𝜎) = √𝜋2 . 𝜎. 𝐿1/2 (− 12 (𝑆�̅�𝐸𝑋𝐼(𝒑; 𝑞, 𝑡𝑑)𝜎 )2) (3) 

Figure 1. Sketch of relevant features and parameters in the NEXIdot model, the three-compartment 
variant of NEXI. The latter can be obtained by removing the dot compartment (in yellow) from the 
sketch. 
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where 𝐿1 2⁄ (𝑥) =  1𝐹1 (− 12 , 1, 𝑥) is the generalized Laguerre polynomial, expressed in terms of the 1 

confluent hypergeometric function of the first kind. This correction behaves like the identity function 2 

in cases where 𝑆�̅�𝐸𝑋𝐼 ≫ 𝜎 and converges to √𝜋2 𝜎, the Rician noise floor, for cases where 𝑆�̅�𝐸𝑋𝐼 ≤ 𝜎. 3 

Similarly, the signal equation for the NEXIdot,RM model is: 4 

𝑆�̅�𝐸𝑋𝐼𝑑𝑜𝑡,𝑅𝑀(𝒑; 𝑞, 𝑡𝑑 , 𝜎) = √𝜋2 . 𝜎. 𝐿1/2 (− 12 (𝑆�̅�𝐸𝑋𝐼𝑑𝑜𝑡(𝒑; 𝑞, 𝑡𝑑)𝜎 )2) (4) 

 5 

We therefore compared NEXI and NEXIdot estimates to their respective RM-corrected counterparts. 6 

Furthermore, we compared the estimates of tex from the different model variants with the one from 7 

the Kärger model time-dependent kurtosis (Els Fieremans et al., 2010; Jelescu et al., 2022; Jensen 8 

and Helpern, 2010) : 9 

𝐾𝐾𝑀(𝑡𝑑) = 2 𝑡𝑒𝑥𝑡𝑑 [1 − 𝑡𝑒𝑥𝑡𝑑 (1 − 𝑒 𝑡𝑑𝑡𝑒𝑥)] (5) 

 10 

Finally, we estimated the repeatability and sensitivity of NEXI cortex microstructure estimates by 11 

comparing their intra-subject (scan-rescan) to inter-subject variability. Parameter spatial distribution 12 

across different brain regions was also evaluated in comparison with known distribution maps from 13 

postmortem histological staining. 14 

  15 

2. Methods  16 

2.1 Experimental  17 

2.1.1 Participants 18 

The study was approved by the School of Psychology Ethics Committee at Cardiff University. Written 19 

informed consent was obtained from all participants. Data were acquired in four healthy adults (Age: 20 

30.5 +/- 3.8 years; 2 M / 2 F). Three participants were rescanned two days after the first scan.  21 

2.1.2 Data acquisition 22 

All data were acquired on a Connectom MRI scanner, a modified 3T MAGNETOM Skyra system fitted 23 

with a gradient coil capable of 300 mT/m (Siemens Healthcare, Erlangen, Germany). An anatomical 24 

reference was acquired using an MP-RAGE sequence (1-mm isotropic resolution, FOV = 256 x 256 25 

mm2, 192 slices, TI/TR = 857/2300 ms). Diffusion-weighted images were acquired using a Pulsed 26 

Gradient Spin Echo Echo-Planar Imaging (PGSE EPI) sequence with b-values of 1 (13 directions), 2.5 27 

(25 dir.), 4 (25 dir.), 6 (32 dir.) and 7.5 ms/µm² (65 dir.), at each of four diffusion times Δ = 20, 29, 39 28 

and 49 ms, in addition to 15 b = 0 ms/µm² images per Δ. Other parameters were fixed: δ = 9 ms, 29 

TE/TR = 76 ms/3.7 s, FOV = 216 x 216 mm2, matrix: 120x120, 66 slices, 1.8-mm isotropic resolution, 30 

partial Fourier = 0.75, GRAPPA = 2, multiband = 2. The total dMRI scan time was 45 min. 31 
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2.1.3 Data preprocessing 1 

While each diffusion time was acquired in a separate scan, all multi-shell multi-diffusion time data (N 2 

= 700 volumes) were pooled together for pre-processing. Pre-processing included Marchenko-Pastur 3 

principal component analysis (MP-PCA) magnitude denoising (Veraart et al., 2016b), Gibbs ringing 4 

correction (Kellner et al., 2016), distortion and eddy current correction (Andersson and Sotiropoulos, 5 

2016). A separate MP-PCA denoising of b = 0 and b = 1 ms/µm² images (N = 112 volumes) was used 6 

to extract an unbiased noisemap, σ, from high SNR data, to be used in the Rician mean correction 7 

(Eq. 3-4). For NEXI, data were averaged over directions (powder-average, using the arithmetic mean) 8 

and normalized by the mean value of the b = 0 ms/µm² volumes.  9 

2.1.4 Time-dependent kurtosis 10 

DKI fitting (Jensen et al., 2005) was performed using a weighted linear least squares algorithm 11 

implemented in Matlab (Veraart et al., 2013) to extract Mean Diffusivity (MD) and Mean Kurtosis 12 

(MK) for each diffusion time using b-values up to 2.5 ms/µm². KKM(t) (Eq. 5) was then fit to MK to 13 

yield an alternative estimation of tex.   14 

2.1.5 ROI parcellation.  15 

Grey matter region of interests (ROIs) from the Desikan-Killiany-Tourville (DKT) atlas (Klein and 16 

Tourville, 2012) were segmented on the anatomical MPRAGE image using FastSurfer (Henschel et al., 17 

2020) and transformed into diffusion native space using linear registration of distortion-corrected b 18 

= 0 ms/µm² images to MPRAGE images. The cortical ribbon was segmented by merging the gray 19 

matter ROIs obtained with the DKT atlas. 20 

2.2 Simulations 21 

Three separate datasets were generated. Dataset 1: Synthetic NEXI signals were generated using Eq. 22 

1 and the same diffusion times and b-values as the experimental acquisition. The ground truth 23 

parameters of each signal were randomly chosen within the following bounds with uniform 24 

probability distribution: [1 - 150] ms for tex, [0.1 - 3.5] µm²/ms for the two diffusivities and [0.1 - 0.9] 25 

the fraction f, with the constraint that Di>De  (Dhital et al., 2019; Howard et al., 2022; Kunz et al., 26 

2018). Twenty Rician noise realizations were generated for each ground truth, assuming SNR = 34 at 27 

b = 0 ms/µm² (as estimated from our in vivo data), and then averaged to mimic powder-averaging of 28 

magnitude images, which increases the SNR but does not lower the Rician floor. A dataset of 10,000 29 

ground truth combinations was generated in this way. Dataset 2: A similar synthetic dataset was 30 

produced using bounds derived from the experimental data estimates, [1 - 110] ms for tex, [2.5 - 3.5] 31 

µm²/ms for Di , [0.5 - 1.5] µm²/ms for De and [0.3 - 0.5] the fraction f. For each ground truth, the noise 32 

realization followed an SNR that was randomly picked from the SNR distribution of the experimental 33 

data. In order to assess the performance of NEXI and NEXIRM in the presence of a dot compartment, 34 

we built Dataset 3 in the same way as Dataset 2, but using NEXIdot as ground truth with fdot within [0 35 

- 0.1]. 36 

2.3 Comparison between NEXI model variants  37 

The four NEXI model variants (Eq. 1-4) were fit to the synthetic and experimental data by Nonlinear 38 

Least Squares (NLS) using the L-BFGS-B algorithm and minimize function from the package 39 
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scipy.optimize (Virtanen et al., 2020), with a tolerance of 1e-14. The bounds specified for the 1 

optimization were the same as those described above for the simulations. For the models with a dot 2 

compartment, we fitted fdot as an additional parameter, with bounds of [0.0001 0.3]. For the models 3 

with Rician mean correction, σ was fixed to the noise level estimated in 2.1.3 for experimental data, 4 

and to the noise level set in the simulations for synthetic data. To assess the impact of 5 

a misestimation of σ in MP-PCA on the performance of NEXIRM, σ was also fixed to a value 6 

overestimated by 10%, 20% and 50% of the actual noise level set in the simulations on Dataset 1. The 7 

metric used for the optimization was the Mean Square Error (MSE) of the estimated signals against 8 

the measured or simulated signals. An initial grid search was applied before the NLS to find an optimal 9 

starting point.  10 

2.3.1 Performance in synthetic data 11 

The comparison of the model performance was based on the Median Absolute Error (MedAE) 12 

between ground truth and estimation of each model, on the four parameters of interest. This metric 13 

was chosen to observe both the real performance of the model and the variance of this performance. 14 

The MedAE is more robust to outliers and thus more representative of the performance of the model 15 

than Root Mean Square Error (RMSE). 16 

2.3.2 Performance in experimental data 17 

To compare the fit of the four models on our experimental data, one of the criteria used was the 18 

corrected Akaike Information Criterion (AICc) (Akaike, 1973). The AICc is a measure used in statistical 19 

modeling to assess the goodness of fit of a model while penalizing for its complexity, aiming to 20 

balance the trade-off between model accuracy and simplicity. 21 

Furthermore, since both the dot compartment and the Rician noise floor account for the diffusion 22 

signal not decaying asymptotically to zero, the dot compartment estimation fdot in NEXIdot was 23 

compared to the Rician floor derived from the noise standard deviation in each ROI, estimated using 24 

MP-PCA and used as an input to NEXIRM. 25 

 26 

2.3.3 Repeatability and brain region-specific patterns 27 

Intra-subject vs inter-subject variability was assessed on average GM median ROI estimates obtained 28 

by the NEXIRM model using Bland-Altman plots (Altman and Bland, 1983). 29 

The spatial distribution of GM microstructure features quantified using NEXIRM was also examined 30 

using inflated brain surfaces obtained using Connectome Workbench (Marcus et al., 2011) and 31 

compared to distribution patterns of neurite density and myelination from the Glasser MRI atlas 32 

(Glasser et al., 2022). 33 

  34 
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3. Results 1 

3.1 Simulations 2 

Given the broad parameter ranges spanned by the synthetic Dataset 1 ground truths, we provide a 3 

binned representation of estimation error (Figure 2). For parameters with the highest estimation 4 

uncertainty, tex and Di, the upper and lower bounds on the estimation yielded very asymmetric 5 

distributions for bins with ground truth values near those bounds (e.g. for tex target ~140 ms or Di 6 

target ~ 3.0 µm2/ms).  7 

 8 

Figure 2. Boxplots (median and interquartile range) of parameter estimates by each of the four model 
variants on synthetic Dataset 1 with random Rician noise (σ = 0.03). The error is defined as the 
difference between the estimation and the target value. The upper and lower limits of the grey 
dashed box represent the maximum and minimum error of the estimator, in the given bin, due to
lower and upper bounds in the NLS algorithm. 
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The neurite fraction f and extra-cellular diffusivity De estimates benefit from good to excellent 1 

accuracy and precision with any model variant. For the two parameters with higher bias and 2 

uncertainty (tex and Di): The accuracy on tex and Di was markedly reduced using NEXI, NEXIdot and 3 

NEXIdot,RM as compared to NEXIRM, as well as the precision on tex using NEXIdot and NEXIdot,RM.  4 

 5 

MedAE of NEXIRM using: tex (ms) Di 
(µm²/ms) 

De 
(µm²/ms) 

f 

Ground truth σ 22.2 0.393 0.060 0.044 

110% σ 22.8 0.389 0.065 0.045 

120% σ 24.6 0.389 0.073 0.047 

150% σ 31.1 0.413 0.099 0.055 

Table 1. MedAE of NEXIRM using the true and overestimated σ, on synthetic Dataset 1 with 6 

random Rician noise (true σ = 0.03). Note the synthetic data spanned broad parameter ranges of 7 

ground truths, thus these summary statistics are only partially informative.  8 

For a 50% overestimation of σ in Dataset 1, the NEXIRM errors are comparable to those of the other 9 

models (Table 1 and Supplementary Figure S1). This indicates that some error in the σ estimation 10 

from MP-PCA can be tolerated within the NEXIRM model. Releasing σ as a free model parameter in 11 

NEXIRM yielded either similar values to MP-PCA, or a convergence of σ to zero and poorer AICc (data 12 

not shown). 13 

Estimation errors on synthetic Dataset 2 (Table 2A) show the NEXIRM model yields tex estimates with 14 

an over 50% lower MedAE compared to all the other model variants. The estimates of neurite fraction 15 

f and extracellular diffusivity De are also substantially improved using the NEXIRM model, lowering the 16 

MedAE by at least 25% and 40%, respectively. Remarkably, estimation errors on synthetic Dataset 3 17 

(Table 2B) show the NEXIdot,RM model yields the lowest errors, closely followed by NEXIdot. The errors 18 

using NEXIRM are double those of NEXIdot and NEXIdot,RM, which suggests that the Rician mean 19 

correction is not able to substitute for the dot compartment. 20 

A. 21 

MedAE on 
NEXI data 

tex (ms) Di (µm²/ms) De (µm²/ms) f 

NEXI 28.3 0.63 0.05 0.04 

NEXIRM 11.7 0.34 0.03 0.03 

NEXIdot 26.1 0.52 0.05 0.07 

NEXIdot,RM 25.1 0.44 0.06 0.06 

 22 

B. 23 

MedAE on 
NEXIdot data 

tex (ms) Di (µm²/ms) De (µm²/ms) f fdot 

NEXI 61.1 1.41 0.13 0.14 - 

NEXIRM 53.3 1.26 0.11 0.13 - 
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NEXIdot 24.7 0.60 0.05 0.06 0.014 

NEXIdot,RM 24.2 0.57 0.05 0.06 0.012 

Table 2. MedAE of the different model variants on synthetic dataset generated with NEXI (A.) and 1 

NEXIdot (B.) with Rician noise.  2 

 3 

Since the synthetic Datasets 1 and 2 were generated assuming a model of two exchanging 4 

compartments, it is expected that NEXIRM variants perform better than NEXIdot variants. However, 5 

the simulations underline that failing to account for the Rician floor in the NEXI fit, when Rician noise 6 

is present in the data, results in a drastic deterioration of the quality of estimates (NEXI vs NEXIRM). 7 

They also reveal that the dot compartment fails to mitigate the error due to Rician noise. Introducing 8 

a dot compartment in the model when it is not present in the data results in a deterioration of 9 

estimates for all other model parameters, in particular for the exchange time (NEXIdot and NEXIdot,RM 10 

vs NEXIRM). Conversely, when ignoring the dot compartment in the model when it is present in the 11 

data results in a deterioration of estimates for NEXI and NEXIRM. 12 

3.2 Experimental  13 

Based on the DKT parcellation, median values across GM ROIs for each of the model variants are 14 

presented in Table 3. The four model variants give very different exchange time estimates. Notably, 15 

tex estimates are ordered as NEXI > NEXIRM > NEXIdot. All these estimates are also much longer than 16 

3-5 ms, as reported using NEXIdot,RM (though the latter was comparable to NEXIdot in the simulations) 17 

and previously in ex vivo data  (Jelescu and Uhl, 2022; Olesen et al., 2022). The extra-neurite 18 

diffusivity estimates are comparable across methods. Three of the four models give an intra-neurite 19 

diffusivity very close to the upper limit, indicating that the model often hit the bounds, and it may be 20 

missing a component to explain experimental data well. The first three methods seem to agree for 21 

an average f around 0.35 while NEXIdot,RM places it higher, at 0.47. In terms of goodness of fit, NEXIRM 22 

displays the lowest AICc of all models. When comparing between models with and between models 23 

without Rician mean correction, NEXIdot has a better corrected AICc than NEXI, but the opposite 24 

happens when we add the Rician correction, NEXIRM outperforms NEXIdot,RM.  25 

 
tex (ms) Di (µm²/ms) De (µm²/ms) f fdot AICc 

NEXI 
103.9 

[100.3, 107.5] 
2.79 

[2.71, 2.88] 
0.95 

[0.94, 0.96] 
0.32 

[0.318, 0.325] 
- -139.3 ± 15.0 

NEXIdot 
14.3 

[12.2, 16.3] 
3.36 

[3.32, 3.40] 
1.00 

[0.99, 1.01] 
0.36 

[0.35, 0.37] 
0.03 

[0.033, 0.037] 
-140.8 ± 15.6 

NEXIRM 
42.3 

[40.0, 44.7] 
3.35 

[3.32, 3.38] 
0.92 

[0.91, 0.93] 
0.38 

[0.379, 0.389] 
- -143.0 ± 16.0 

NEXIdot, RM 
2.90 

[2.71, 3.09] 
3.36 

[3.34, 3.39] 
1.03 

[1.01, 1.04] 
0.47 

[0.47, 0.48] 
0.01 

[0.009, 0.010] 
-141.6 ± 16.7 

Table 3. Mean estimates and 95% confidence intervals of the median in every ROI of the DKT atlas 26 

using NEXI, NEXIdot, Corrected for Rice Mean (RM) or not. The last column shows the mean corrected 27 

Akaike Information Criterion (AICc) for each model; lower AICc indicates a better fit.  28 

 29 
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The mean fitted powder-average signal in the whole cortical ribbon by the four model variants is 1 

shown in Figure 3. The quality of fit shows that at high b-value and high diffusion time, NEXI performs 2 

poorly compared to the other models. However, there is limited agreement between the mean signal 3 

and all the models mean fitting curves at high b-value. This is due to the trade-off of fitting the signal 4 

across the entire b-value range (Supplementary Figure S2). Furthermore, the lower quality of the 5 

average fit is due to voxels in the cortical ribbon with high AICc, which likely correspond to voxels 6 

with substantial partial volume effect, where the model is not performing well.  7 
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Furthermore, the dot fraction fdot estimated using NEXIdot was perfectly correlated with the Rician 1 

expectation value √𝜋2 𝜎 in each ROI (Figure 4). The Kolmogorov-Smirnov (KS) test reveals that fdot and 2 𝜎 distributions are similar (p = 0.1967). This suggests that the dot compartment in NEXIdot is fitting 3 

the Rician floor with a systematic offset, casting doubt on an actual dot compartment being relevant 4 

for cortical GM in vivo, in agreement with (Tax et al., 2020) and that the NEXIRM model should 5 

therefore be preferred.  6 

Figure 3. Mean estimated signal in the cortical ribbon by the four NEXI model variants at high b-

value (b > 4 ms/µm²) compared to the mean measured signal, represented by plus signs. Each color 

represents a different diffusion time.  
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Based on this model variant comparison which favors the use of NEXIRM in vivo, we report NEXI gray 1 

matter microstructure estimates in the human brain (Figure 5). Using the NEXIRM implementation, 2 

quantitative maps show, as expected, tex estimates in the range 20 – 50 ms in the cortex, and much 3 

longer in the white matter, where the diffusion time range does not allow a reliable estimation. The 4 

De map shows lower values in the cortex compared to sub-cortical WM. This aligns with the idea that 5 

the high cellular abundance and random neurite orientations in GM slow down extra-cellular 6 

diffusion. In contrast, WM experiences less hindrance to diffusion, especially along axons. The De 7 

contrast may also be consistent with the soma compartment being absorbed into the extra-cellular 8 

compartment in NEXI, thereby reducing its apparent diffusion in GM by the inclusion of restricted 9 

components. The neurite density fraction map reveals expected WM/GM contrast, with much higher 10 

fraction in WM; the cortical neurite fraction is estimated at ~40%. It should be noted that NEXI is not 11 

designed for WM, where the assumption of randomly oriented sticks and isotropic extra-neurite 12 

diffusivity is not expected to hold. This could have affected estimates in single-fiber WM population 13 

voxels vs crossing fiber WM areas, for example. 14 

  15 

Figure 4. Agreement between fdot estimate of NEXIdot and the Rician floor expectation value, 
derived from the noise standard deviation (σ) obtained by denoising small b-values during 
preprocessing. A: Overlay of fdot and σ√(π/2) value distributions across DKT atlas ROIs. B: 
Correlation between these two quantities. Each point represents the average in an ROI of the DKT 
atlas.  
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 1 

 2 

  3 

Figure 5. Axial slice of NEXIRM parametric maps, averaged across sessions and subjects (N=7). tex 

and De are consistent throughout the cortex, but tex is presumably longer in the WM and cannot 

be reliably estimated using available diffusion times. f displays the expected anatomical pattern 

in white vs gray matter. Di shows large variability across voxels, while hitting its upper bound 

frequently. 
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These parametric maps, averaged within each DKT ROI, projected onto a study-average inflated 1 

cortical surface and averaged at the cortical thickness level voxel-wise after a multivariate template 2 

registration (Figure 6), reveal remarkable patterns across the healthy human brain. First, there is an 3 

expected level of symmetry between left and right hemispheres, although their estimates are 4 

completely independent, which suggests that spatial patterns are not casual. 5 

Figure 6. Projection onto cortical surface of NEXIRM maps averaged across subjects and sessions. 

We find some of the expected pattern of a larger fraction of neurites in the occipital lobe (white 

arrow). This pattern can also be seen in the exchange time, which is also longer in the temporal 

lobe (white arrows). A higher extracellular diffusivity is also observed in the somatosensory cortex 

(white arrow).  
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Figure 6 shows that the longest exchange time was found in the occipital lobe, in the posterior part 1 

of the parietal lobe and in the ventral parts of the temporal lobe, possibly indicating correlation with 2 

cortical myelination. Di estimates reach the upper bound in most of the regions of interest, limiting 3 

interpretation. However, a decrease in Di is observed in the rostral and ventral parts of the temporal 4 

lobe. De revealed spatial patterns of faster extra-cellular diffusivity along the somatosensory cortex, 5 

as opposed to the occipital lobe and caudal part of the temporal lobe which have the slowest De. In 6 

the insula, De is also considerably faster, however the level of partial volume effects might be higher, 7 

biasing the estimates upwards. As suggested above, De is likely impacted by cellular density (extra-8 

cellular tortuosity and high soma density) which reduces its estimate, or by fiber alignment that 9 

increases its estimate. Lastly, the neurite fraction f follows a pattern of highest density in the occipital 10 

lobe and in the caudal part of the parietal lobe, comparable to tex pattern possibly linked with 11 

myelination, but with moderate to lower densities in the ventral part of the temporal lobe. Figure S3 12 

in the supplementary material presents a comprehensive depiction of these results, showcasing the 13 

parametric medians per region of interest. 14 

Agreement with time-dependent diffusion and kurtosis 15 

Mean Diffusivity was almost independent of the diffusion time, with a weak yet measurable slope of 16 −7.5x10−4 µm²/ms²  (p=0.01) (Figure 7A). This diffusion time-dependence, albeit weak, potentially 17 

calls into question the assumption of Gaussian compartments in our models. This would be consistent 18 

with a minor degree of structural disorder, encapsulating the subtle heterogeneities within the 19 

compartments (Lee et al., 2020), potentially impacting the model's precision. Mean Kurtosis 20 

decreased more markedly with time, which is consistent with previous studies (Jelescu et al., 2022; 21 

Lee et al., 2020). We find good agreement between 𝑡𝑒𝑥𝐾𝑀 obtained from MK(t) analysis and the one 22 

obtained from the NEXIRM fit. This agreement is expected as MK(t) in Eq (5) uses low b-value data 23 

that are less affected by Rician floor than the full NEXI model (Eqs. (1) and (3)). 24 

 25 

Figure 7. A. Time-dependent Mean Diffusivity and Mean Kurtosis in the cortex, averaged over voxels

in the cortical ribbon and across the seven datasets (subjects and sessions). B. Distribution of 𝑡𝑒𝑥𝐾(𝑡)
values estimated voxelwise across the cortex, averaged across subjects (first session). 
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Inter- vs intra-subject variability  1 

To assess intra-subject variability, we compared the first and second sessions of the three subjects 2 

who were scanned twice. To assess inter-subject variability, we compared the first session of the four 3 

subjects between them. Below, we compared NEXIRM results (Figures 8 and 9); for the other models, 4 

the plots are provided in Supplementary Figure S4. 5 

The difference in median tex over each ROI between different sessions is approximately 3.0 ms, while 6 

the difference in tex across subjects is more than 2.5 times larger, at 7.70 ms (Figure 8). It is also 7 

Figure 8. Bland-Altman plots of the tex estimations from NEXIRM model. Each row and column refer 
to the same subject. On the diagonal, the two sessions of each subject are compared. In the upper 
triangle, the results of the first session of each subject are compared to those of another subject.
The colors reflect the density of points on the plot, each of them representing the mean value in a
given DKT ROI. 
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noteworthy that the tex do not display a broad range across the ROIs, with most values concentrated 1 

between 40 – 60 ms. 2 

 3 

 In terms of neurite fraction f, the mean difference increases from 0.0040 for the inter-session 4 

comparisons to 0.01770 for the inter-subject comparisons (Figure 9), i.e. intra-subject variability is 5 

over four times larger than scan-rescan variability, a difference even more pronounced than for tex. 6 

The variance is also higher in the inter-subject vs intra-subject comparisons. Unlike the exchange time 7 

Figure 9. Bland-Altman plots of the f estimations from NEXIRM model. Each row and column refer to 
the same subject. On the diagonal, the two sessions of each subject are compared. In the upper
triangle, the results of the first session of each subject are compared to those of another subject. 
The colors reflect the density of points on the plot, each of them representing the value in a given 
DKT ROI. 
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tex, neurite fraction values cover a broader range across DKT ROIs, showing brain regional specificity 1 

of this parameter. 2 

This suggests that NEXIRM estimates are sufficiently reproducible to retain sensitivity to inter-subject 3 

differences.  4 

For comparison, the Bland-Altman plots for tex and f of the other models can be found in 5 

Supplementary Figure S4. Additionally, the Bland-Altman plots for the two diffusivities of NEXIRM are 6 

available in Supplementary Figure S5. 7 

 8 

4. Discussion 9 

In this study, we compared different variants of the NEXI model in order to quantify microstructure 10 

features in the human cortex. We thus compared NEXI estimates, implemented as a two-11 

compartment model with exchange as in (Jelescu et al., 2022), to those from its three-compartment 12 

variant NEXIdot, also accounting for a dot compartment as proposed in (Olesen et al., 2022) for ex vivo 13 

data, as well as two new versions that correct for the Rician bias in the signal at high b-values: NEXIRM 14 

and NEXIdot,RM. By examining these four model variants, the goal was to investigate the pertinence of 15 

a dot compartment to model human cortical gray matter, similar to the one identified in the 16 

cerebellum (Tax et al., 2020), and to study the effect of the Rician noise correction on these two 17 

models, given the lower SNR of clinical dMRI data as compared with preclinical data. 18 

In the case where the ground truth is a two-compartment model with exchange and the standard 19 

deviation of the noise is known, the simulation results clearly show that the NEXIRM model is to be 20 

preferred against the other models and that the dot compartment is not able to substitute the Rician 21 

noise correction efficiently. Similarly, adding both a dot compartment and a Rician noise correction 22 

seems to disturb the model in the estimation of the main parameters, likely by the addition of an 23 

unnecessary free parameter (fdot). The bias in NEXI estimates when the Rician floor is not accounted 24 

for is also very marked, although this bias is expected to be dependent on the SNR of the data. 25 

Simulations show that the performance of NEXIRM is equivalent to the performance of the other 26 

models in the case where the estimation of the noise level input into the Rician mean correction is 27 

overestimated by 50%.  28 

While the RM correction is clearly beneficial, the performance of the three-compartment NEXIdot 29 

model on synthetic data generated using the two-compartment NEXI model is challenging to 30 

interpret. On the one hand, it is obvious that a non-zero dot compartment will be estimated, even 31 

when it is absent in the ground truth. On the other hand, if a dot compartment is present in the 32 

ground truth, NEXIRM is not able to account for that as it uses the realistic σ value for the Rician floor 33 

as would be typically obtained from MP-PCA denoising. It is important to underline that the existence 34 

of the dot compartment in healthy in vivo cerebrum tissue is not highly supported by histological 35 

evidence or previous experiments using spherical diffusion tensor encoding (Tax et al., 2020). 36 

Furthermore, NEXIRM and NEXIdot fits on experimental data show that NEXIdot essentially captures the 37 

Rician noise floor as a dot compartment, rather than the latter having a biological relevance as a 38 

compartment of its own. The slight but systematic lower level of the fdot estimate compared to the 39 
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Rician floor 𝜎√𝜋2 could be explained by the fact that the Rician correction is adaptive, mainly changing 1 

the signal magnitude at low SNR (high b-values) while the dot compartment acts by design as an 2 

offset to the signal across the entire b-value range. Thus, the fdot estimate is likely lower than the 3 

Rician floor as a compromise in fitting the signal well at both low and high b-values, in an MSE sense. 4 

It is also noteworthy that NEXIRM was the model with the lowest AICc, while a potential error on σ 5 

could have further reduced the performance of the NEXIRM fit, as also shown in the simulations of an 6 

overestimated σ. When comparing between models with or without Rician mean correction, our 7 

results show that the Rician correction is always beneficial, whether a dot compartment is modeled 8 

or not. On top of this result, the better AICc of the models with Rician Mean correction shows that 9 

the a priori input σ value provides a more precise fit. 10 

Overall, our results on both synthetic and experimental data therefore indicate that the NEXIRM 11 

model, that is NEXI corrected for Rician noise, should be preferred for in vivo human cortex. It is 12 

noteworthy that the dot compartment may nonetheless be relevant as a biological compartment of 13 

its own in ex vivo data (Olesen et al., 2022). Furthermore, a soma compartment may be needed to 14 

better account for the signal decay at high b-values, although a model accounting for both soma and 15 

exchange (such as SANDIX) would likely require more datapoints and high SNR to yield reliable fit 16 

estimates, as discussed in the limitations paragraph.   17 

The NEXIRM average estimate of tex in the human cortical ribbon is 42 ms, vs 104 ms for NEXI. The 18 

former matches well with the average 𝑡𝑒𝑥𝐾(𝑡)
 of 30 ms from the time-dependent kurtosis analysis, 19 

which is expected since 𝑡𝑒𝑥𝐾(𝑡)
 is derived from data with b ≤ 2.5 ms/µm2 which have higher SNR and 20 

are thus less impacted by the Rician floor. It is remarkable how different tex estimates are across the 21 

four model variants, with the inclusion of a dot compartment systematically reducing tex. While the 22 

ground truth in vivo is not known, simulations support the experimental ordering in tex estimates 23 

across models, with NEXI yielding the highest (and over-estimating tex in simulations), followed by 24 

NEXIRM (with best accuracy in simulations), and finally NEXIdot and NEXIdot,RM. Indeed, fitting an 25 

experimental signal that does not effectively decay to zero using a model that predicts a signal 26 

decay to zero at high b-values (as NEXI) will result in an overestimated exchange time tex. When the 27 

Rician floor is introduced in the model, a more accurate tex can be estimated. The non-adaptive 28 

offset in NEXIdot results on the contrary in an underestimated tex vs NEXIRM. The difference between 29 

NEXIdot and NEXIdot,RM is more pronounced in experimental data than in simulations, which could be 30 

attributed to partial volume effects or other tissue compartments not accounted for in the models, 31 

and that were absent in the simulations. Overall, these discrepancies reinforce the need to make 32 

informed decisions when selecting the model, as these decisions have a dramatic impact on 33 

ensuing exchange time estimates.  34 

The estimation of other parameters is less variable across models. Extra-neurite diffusivity, De, is 0.9 35 

– 1 µm2/ms, slightly higher than that reported in rats using NEXI (Jelescu et al., 2022). The neurite 36 

fraction, f, is ~0.3 – 0.4, also consistent with what has been reported in rats using NEXI (Jelescu et al., 37 

2022).  However, the obtained neurite volume fraction from histology, approximately 60% in the rat 38 

cortex (Braitenberg and Schüz, 1998; Chklovskii et al., 2002; Ikari and Hayashi, 1981), is much larger. 39 

This discrepancy may be due to a relaxation bias. In WM, T2 is likely shorter in the extra-axonal than 40 
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in the intra-axonal space. In contrast, GM shows the opposite pattern, with less extracellular myelin 1 

and factors like cytoskeleton and neurofilaments possibly shortening intra-neurite T2. Shorter 2 

intracellular T2 relaxation times are illustrated in MR microscopy of human and porcine neurons (Flint 3 

et al., 2012). Such differences in T2 could result in an underestimation of the compartment’s volume 4 

fraction, or to faster exchange processes not captured by tex, that would also result in an 5 

underestimation of the restricted stick population. 6 

However, for all models, the intra-neurite diffusivity measure, Di, is unrealistically high, even above 7 

water diffusion coefficient at the body temperature of 3 µm²/ms, and often hits the upper bound 8 

implemented in the NLS algorithm. Intra-neurite or intra-axonal diffusivity is notoriously challenging 9 

to estimate, particularly in the presence of noise (Howard et al., 2022; Jelescu et al., 2016; Palombo 10 

et al., 2020). One possibility is that larger b-values would be required to estimate Di in the gray matter 11 

(as in the preclinical NEXI implementation, (Jelescu et al., 2022) or in the WM Standard Model 12 

(Howard et al., 2022)), or a combination of linear diffusion encoding with b-tensor encoding and/or 13 

T2 relaxometry, as was the case in white matter(Dhital et al., 2019; Lampinen et al., 2020). 14 

Alternatively, working with real-valued data instead of magnitude data could help eliminate Rician 15 

bias and boost the SNR, thereby improving the Di estimates (Howard et al., 2022). The simulations 16 

also show Di to display the largest error estimation relative to its range of possible values. It is also 17 

possible that a Partial Volume effect (PVE) takes place, where gray matter, white matter and CSF are 18 

captured in each voxel in varying proportions. This would make the model less suitable for our 19 

experimental data, pushing Di estimates towards unphysical values; the issue of PVE is discussed 20 

further below.  21 

Based on the few recent works on gray matter exchange models, there seem to be dramatic 22 

differences in cortical gray matter microstructure features between in vivo and ex vivo tissue. 23 

Reported exchange times ex vivo are much shorter than in vivo, 3 – 14 ms irrespective of the inclusion 24 

or not of a dot compartment,  neurite fractions are much higher 0.7 – 0.8, closer to their histological 25 

estimates (also based on ex vivo tissue) (Hertanu et al., 2023; Jelescu and Uhl, 2022; Olesen et al., 26 

2022), contributions from structural disorder are more pronounced (Jelescu and Uhl, 2022), and Di is 27 

reduced within biologically plausible ranges (Hertanu et al., 2023; Jelescu and Uhl, 2022). However, 28 

other groups have reported very short exchange times (3 – 10 ms) also in perfused viable rat pup 29 

spinal cord (Williamson et al., 2023, 2019), and even in human cortex in vivo (Lee et al., 2022), which 30 

would however translate into higher membrane permeability than ever reported for human neurons 31 

and astrocytes, as previously discussed (Boss et al., 2013; Jelescu et al., 2022). Similarly, previous 32 

works have put forward that structural disorder dominates over exchange in human cortex (Lee et 33 

al., 2020), considering detectable time-dependent diffusion in some ROIs. Here we also report weak 34 

yet detectable time-dependent diffusion when averaging across all voxels in the cortical ribbon and 35 

across subjects, with a significant negative slope. Although this time-dependence could challenge the 36 

assumption of barrier-limited exchange between two Gaussian compartments underlying the Kärger 37 

model and thereby NEXI, this contribution seems limited as compared to the exchange that drives a 38 

pronounced time-dependent kurtosis. Time-dependent diffusion in human cortex may also result 39 

from PVE with subcortical WM, as it was previously unambiguously reported in human WM 40 

(Fieremans et al., 2016), but not in the rat cortex in vivo where PVE with WM could be excluded 41 

(Jelescu et al., 2022). 42 
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We also report NEXI parameter distributions across the surface of the human brain. While the maps 1 

of neurite fraction and exchange time do not fully align with the expected cortical myelin density 2 

mapping (Ali et al., 2022; Van Essen et al., 2018), brain regional differences are still in line with known 3 

variation in cell density and myelination across the cortex. Overall, longer exchange times, higher 4 

neurite densities and faster extracellular diffusivity (suggesting a more coherent alignment of 5 

neuronal processes) were found in motor, somatosensory and visual areas. It should also be 6 

underlined that biophysical models of water diffusion do not provide cell-type specific information, 7 

and astrocyte distributions across the cortex may also impact the NEXI maps in terms of “neurite 8 

density” (which rather mirrors cell process density) and exchange time (assuming astrocytes may be 9 

more permeable than neurons due to the presence of aquaporin-4 channels (Boss et al., 2013; Gleiser 10 

et al., 2016; Halnes et al., 2013)). Variations in neurite orientation coherence between regions may 11 

also challenge the assumption of isotropic extra-neurite diffusivity and may bias the region-specific 12 

estimates based on this. 13 

Finally, NEXIRM estimates display good scan-rescan repeatability while retaining sensitivity to inter-14 

subject differences. These results are promising from the perspective of further clinical translation of 15 

NEXI, and its application to larger populations of healthy subjects and patients. The NEXI 16 

implementation on the Connectom scanner is a steppingstone between preclinical MRI systems and 17 

widespread clinical MRI systems.  The advent of new human scanners featuring gradient amplitudes 18 

of 200 mT/m, such as the Cima.X (Siemens Healthineers) or the MAGNUS (GE Healthcare) (Foo et al., 19 

2020), suggests that the next generation of MRI scanners will increasingly resemble the scanner used 20 

in this study, in terms of gradient amplitude, thereby expanding its scope. The potential of NEXIRM to 21 

estimate cortical microstructure features on a clinical scanner (Uhl et al., 2023) will be strengthened 22 

by the results of the present study, as it highlights the importance of correcting for Rician noise in 23 

the NEXI model to obtain accurate estimates of microstructure parameters in the human cortex. The 24 

Rician mean correction is expected to have even more influence on clinical data with lower SNR (due 25 

to the longer TE driven by weaker gradients up to 80 mT/m). The progress in hardware technology, 26 

exemplified by advancements like Connectom 2.0 (Huang et al., 2021), as well as the aforementioned 27 

new scanners, also holds significant promise for advancing the validation of reproducibility in this 28 

study at higher SNR and facilitating future clinical translation. 29 

Our study has some limitations that should be noted. First, this study was a proof of principle, for 30 

which we sampled four participants. Future studies with larger sample sizes, possibly including 31 

patients, are warranted. Second, several trends suggest that the NEXIRM model, though more 32 

appropriate than the other three variants, may be incomplete to fully characterize cortical GM signal 33 

behavior in (q,t) space. The weak decay of D(t) may indicate that the model assumption of Gaussian 34 

compartments does not hold entirely; this should be further investigated on a larger cohort with a 35 

broader range of diffusion times. However, accounting for structural disorder explicitly in a 36 

biophysical model in combination with exchange is still work in progress for the community (Burcaw 37 

et al., 2015; Novikov et al., 2023, 2014). Furthermore, the soma compartment was neglected from 38 

the model, in light of the more pronounced effect of exchange over restriction signified by decreasing 39 

signal with increasing diffusion time (Jelescu et al., 2022; Olesen et al., 2022), but should represent a 40 

priority for future work. Indeed, quantifying soma at short diffusion times using SANDI has 41 

demonstrated value (Palombo et al., 2020) but is also challenging from the perspective of model 42 

degeneracy when combined with an exchange model as in SANDIX (Olesen et al., 2022). Recent 43 



23 
 

approaches using different gradient waveforms have been proposed to separate the contributions 1 

of exchange (permeability) and restriction (soma) (Chakwizira et al., 2023) but led to much longer 2 

exchange time estimates than with NEXI, rather in line with previous literature using FEXI (Lampinen 3 

et al., 2017) which lacks specificity to biologically-relevant compartments. Structural disorder has 4 

also not been considered in this approach. Residual effects of Rician noise may compromise the intra-5 

neurite diffusivity estimate, which may benefit from working with real-valued vs magnitude data. 6 

Finally, some open choices have been made concerning the algorithms used in our preprocessing and 7 

processing pipelines. We applied MP-PCA denoising in the context of parallel image acquisition and 8 

spatially correlated noise. However, the AdaptiveCombine reconstruction algorithm effectively 9 

preserves noise properties, mitigating issues with correlated noise. The inspection of residuals 10 

revealed no anatomical structure. We also applied Gibbs ringing correction using an algorithm not 11 

well suited for partial Fourier data. However, the resulting corrected images did not reveal dramatic 12 

residual ringing. Given the minimal effect of these steps on our data, we maintain confidence in our 13 

preprocessing approach. However, to further enhance our methodology, future studies will 14 

incorporate advanced techniques like NORDIC (Moeller et al., 2021) or Efficient PCA (Henriques et 15 

al., 2023) for denoising, and adopt a specialized framework for Gibbs ringing correction suggested 16 

for partial Fourier data (Lee et al., 2021). 17 

The inspection of denoising residuals also revealed, as expected, weaker denoising at the edge of the 18 

brain mask, where the denoising kernel is partially populated. This translates into an underestimation 19 

of noise levels at the edges of the mask, potentially bringing the model estimates with and without 20 

Rician noise correction closer together. The impact is somewhat mitigated by the higher SNR in brain 21 

areas which are in close proximity to the receiver coils compared to e.g. the midbrain. We believe 22 

this issue does not significantly affect our results, as all analyses were performed within the cortical 23 

ribbon, uniformly influenced by the edge effect. 24 

We also acknowledge the interest in using the Rician Distribution Maximum Likelihood Estimation 25 

(Sijbers et al., 1998) for NLS fitting instead of correcting our models for the Rician Mean. However, 26 

its high computational demands and incompatibility with our current efficient loss function approach, 27 

accelerated by its Jacobian, led us to not employ it in our experiments and simulations. The analytical 28 

Jacobian further makes the fit convergence more stable, by limiting the impact of noise on the fitting 29 

landscape. This choice was guided by the need for computational efficiency, considering the vast 30 

range of parameter combinations we analyzed. Exploring the comparison of these fitting methods 31 

remains a potential area for future research.  32 

One of the advantages of the NEXI model is that it can be implemented on clinical scanners (Uhl et 33 

al., 2023) and thus enables studies in large cohorts of both healthy and patient populations. Future 34 

research will focus on its optimization on a clinical scanner with more moderate gradient set of 80 35 

mT/m, although the availability of clinical scanners with 200 mT/m gradients can only ease the clinical 36 

translation of NEXI. Optimization avenues include accounting for the actual gradient pulse duration 37 

(as the narrow pulse approximation may not hold, as implemented in (Olesen et al., 2022)), trading 38 

magnitude data for real-valued data, trading NLS for a multi-layer perceptron fit and using 39 

explainable AI to optimize the clinical NEXI acquisition protocol within scanner hardware limits (Uhl 40 

et al., 2023). The main goal is to reduce both the acquisition time, and the estimation error on the 41 



24 
 

two most challenging parameters, namely Di and tex. The development of a framework that enables 1 

joint estimation of soma and neurite permeability is also high priority. 2 

5. Conclusion  3 

We reported the first comprehensive study of NEXI model parameter estimates in the human cortex 4 

in vivo. Our findings indicate that the addition of a dot compartment to the NEXI model is not 5 

necessary and that correcting the Rician floor in the fit is a more appropriate approach to account for 6 

its effects, given that the estimated dot compartment correlated very strongly with the noise floor 7 

estimated independently from MP-PCA denoising on low b-value data. The estimated exchange time, 8 

neurite fraction, and compartment diffusivities are consistent with previous studies conducted in the 9 

rat cortex in vivo, as well as with the exchange time estimate from time-dependent kurtosis. Notably, 10 

we observed that the exchange time is on the order of 30 – 40 ms, an intermediate value as compared 11 

to other similar studies but that signifies exchange cannot be neglected in the human GM at clinical 12 

diffusion times. These estimates displayed good scan-rescan repeatability, while preserving 13 

sensitivity to variations among subjects. However, the parameters Di and tex were the most 14 

challenging to estimate, and future efforts will focus on possible improvements.  15 

Data and code availability 16 

The code used in this study will be available on https://github.com/Mic-map/nexi at the latest upon 17 
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