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1. INTRODUCTION

Quantifying microstructure features of the human cortex 
in vivo has the potential to significantly improve our 
understanding and management of neurological and 
psychiatric diseases, which are associated with cogni-
tive, motor, and behavioral deficits ( Illán- Gala  et al.,  2022; 

 Nürnberger  et al.,  2017;  Spotorno  et al.,  2022;  Voldsbekk 
 et al.,  2022). Early diagnosis and effective treatment of 
these diseases remain a challenge, as their pathophysiol-
ogy is not fully understood. Identifying the associated 
changes in the cortex microstructure could lead to a bet-
ter understanding of the disease progression, earlier 
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diagnoses and access to treatment, and help develop 
targeted therapies.

Diffusion- weighted magnetic resonance imaging 
(dMRI) can provide such an insight into the microstruc-
ture of the brain, by exploiting the sensitivity of the signal 
to the motion of water molecules within tissue. In partic-
ular, biophysical modeling of the dMRI signal aims to 
characterize the tissue microstructure by fitting an analyt-
ical model of the tissue described by its most relevant 
geometric and diffusion features ( Alexander  et al.,  2019; 
 Jelescu  et al.,  2020;  Novikov  et al.,  2019,  2018;  Stanisz 
 et al.,  1997) to the measured signals.

There is already a wide variety of biophysical models 
of white matter, based on what is now commonly referred 
to as the “Standard Model” ( Novikov  et al.,  2019) of non- 
exchanging compartments within which the diffusion 
displacement profile is Gaussian. However, recent stud-
ies indicate that the Standard Model does not hold in 
gray matter. At high b- values, the deviation of the direc-
tionally averaged signal in gray matter from the imper-
meable stick power- law S ∝ b−1/2 ( McKinnon  et al.,  2017; 
 Veraart,  Fieremans,  et al.,  2016) prompted the hypothe-
ses that other features such as the cell body or “soma” 
( Palombo  et al.,  2020,  2018), inter- compartment exchange 
( Jelescu  et al.,  2022;  Olesen  et al.,  2022;  Veraart  et al., 
 2018), and non- Gaussian diffusion within a compartment 
resulting from structural disorder ( Henriques  et al.,  2019; 
 Lee  et al.,  2020) should be accounted for. Indeed, in the 
cortex, most neurites are unmyelinated, so that the 
exchange of water between the intracellular and extra-
cellular compartments may be significant for diffusion 
times that are longer than 20 ms (typical of the minimal 
diffusion time achievable on human MRI scanners). 
Additionally, the assumption of Gaussian diffusion within 
a given compartment may not hold in the presence of 
irregularities on length scales that are similar to the diffu-
sion length, such as dendritic spines and neurite beading. 
Furthermore, the volume occupied by soma, in the gray 
matter, is approximately 10- 20%, but negligible in white 
matter and therefore not currently included in white mat-
ter models.

As an extension of the Standard Model, the Soma And 
Neurite Density Imaging (SANDI) model ( Palombo  et al., 
 2020) incorporated the soma size and signal fraction in 
addition to neurite signal fraction, thereby enabling their 
joint estimation. However, as it does not account for 
inter- compartment exchange, the SANDI model is cur-
rently only applicable to data acquired within diffusion 
times shorter than 20 ms, for which the assumption of 
impermeable compartments is valid ( Jelescu  et al.,  2020). 
As noted above, such diffusion times can only be 
achieved for very high b- values (up to 10  ms/μm²), on 
systems with ultra- strong gradients, such as preclinical 

scanners or human scanners with dedicated gradient 
sets (such as the Connectom scanner, 300 mT/m gradi-
ent amplitude) ( Huang  et  al.,  2021;  Jones  et  al.,  2018; 
 Setsompop  et al.,  2013).

The Neurite Exchange Imaging (NEXI) model ( Jelescu 
 et al.,  2022)— proposed in parallel by  Olesen  et al.  (2022) 
as SMEX (Standard Model with EXchange)— was intro-
duced recently to recognize and quantify water exchange 
across the neurite membrane. As such, NEXI is applica-
ble on clinical- grade scanners because it does not nec-
essarily require short diffusion times. NEXI models the 
neurites as a collection of randomly- oriented sticks— 
occupying a relative signal fraction f— where the intra- 
neurite diffusion is uniaxial with diffusivity Di,!. Moreover, 
given the quasi- uniform orientation- distribution of neur-
ites in gray matter, the extra- neurite compartment is 
considered to be Gaussian isotropic with characteristic 
diffusivity De. The two compartments exchange with a 
characteristic time tex. NEXI models the total orientation- 
averaged signal as the sum of these two exchanging 
compartments. They are assumed to have the same 
transverse relaxation time, or T2. The soma are not 
explicitly modeled and the signal contribution arising 
from this compartment is most likely pooled with the 
signal contribution from the extra- cellular space in NEXI 
( Jelescu  et  al.,  2022). Importantly, the experimental 
observation of decreasing signal with increasing diffu-
sion times supports exchange as a dominant contribu-
tor to signal features over a soma compartment with 
restricted diffusion ( Jelescu  et al.,  2022;  Olesen  et al., 
 2022), although accounting for soma improves the fit of 
the signal tail (highest b- values). Thus, if the available 
diffusion MRI data do not allow fitting a model with 
enough parameters to account for both exchange and 
soma, modeling exchange while neglecting soma can 
be justified for diffusion times td longer than 20 ms. On 
the other hand, an extension of SMEX which also mod-
els the soma as a separate compartment (SANDIX— 
SANDI with eXchange) has been proposed and applied 
to ex- vivo preclinical data ( Olesen  et al.,  2022). The sta-
bility of fitting such a large number of model parameters 
on human in- vivo data remains to be established.

The NEXI signal equation is a spherical mean of the 
kernel 𝒦, the anisotropic extension of the Kärger model 
of two well- mixed exchanging compartments in a barrier- 
limited regime ( Fieremans  et  al.,  2010;  Jelescu  et  al., 
 2022;  Kärger,  1985):

 
SNEXI p;q, td( ) = 

0

1

∫ K q, g, td;p,n( )d g.n( )2
 

(1)

where p = [tex , Di,!, De, f ]  are the microstructure param-
eters to fit, n are the neurite orientations, and q is the 
wave vector along direction g.
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The assumption of the barrier- limited regime is sup-
ported if the characteristic time tc to reach the long- 
time diffusion limit in each compartment is shorter than 
the characteristic exchange time between compart-
ments. In the case of infinitely long cylinders modeling 
the  neurites, the radial plane is relevant for exchange 
across the membrane. In the case of neurites with a 
diameter d ~ 1 µm, the characteristic time in the intra- 

neurite space tc,i = d2

2Di
≈ 0.25 ms and extra- neurite space 

tc,e = d2

2De

π
f ≈ 7.5 ms at most— assuming the lower bound 

of f~0.3 ( Fieremans  et  al.,  2010). Both timescales are 
shorter than the exchange time reported in previous 
studies tex > 5 ms. We note that the Kärger model 
assumption implies diffusion should be time- independent, 
while some time- dependence has been reported in a pre-
vious in vivo study of the human cortex ( Lee  et al.,  2020), 
D(t) was weak and the long- time limit was reached for 
td > 20 ms, which agrees with the experimental setting in 
the present study.

The aim of this study was to evaluate the feasibility 
and value of using the NEXI model and some of its vari-
ants for quantifying microstructural parameters in the 
human cortex in vivo.

To achieve this, we acquired multi- shell multi- 
diffusion time dMRI data in healthy human volunteers on 
a Connectom MRI system equipped with very strong 
(300 mT/m) gradients. The Connectom scanners are an 
important steppingstone in terms of hardware capabili-
ties between preclinical MRI systems (with gradients 
>600 mT/m), and clinical MRI systems (with gradients  
≤ 80 mT/m). They provide the opportunity for an initial 
translation of NEXI in human subjects by enabling the 
acquisition of the necessary broad range of b- values  
(0 – 7.5 ms/µm²) at diffusion times 20 – 49 ms, that are 
short enough to capture exchange processes with 
tex  =  10 -  50  ms, as previously reported for the brain 
cortex in vivo ( Jelescu  et al.,  2022;  Lee  et al.,  2020).

Here, we compared NEXI- derived estimates in the 
human cortex to those obtained from its three- 

compartment variant, allowing for an extra “dot” com-
partment, filled with stationary water. This NEXI extension, 
referred to here as NEXIdot, has been proposed previously 
( Olesen  et al.,  2022) to explain the non- zero signal asymp-
tote at high b- value ex vivo (Fig. 1). In the cerebellum, the 
presence of such a compartment has been shown in vivo 
( Tax  et al.,  2020), but its existence in the cortex remains 
unclear. This compartment’s stationary water signal does 
not decay with diffusion- weighting, thus yielding the 
NEXIdot signal attenuation equation:

 SNEXIdot p;q, td( ) = 1− fdot( ).SNEXI p;q, td( )+ fdot  (2)

where fdot is the stationary water fraction.
At high b- values, high spatial resolution, and moderate 

field strength, the diffusion- weighted signal magnitude is 
heavily affected by the Rician noise floor. The effect of 
this noise floor can be accounted for by considering the 
expectation value of the signal SNEXI p;q, td( ) given the 

normalized Rician noise level σ =
σSignal

Sb=0
. The NEXI signal 

equation corrected for the Rician Mean (RM) is:

 

SNEXIRM p;q, td,σ( ) = π
2
.σ.L1/2 − 1

2
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σ
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(3)

where L1/2 x( ) = 1F1 − 1
2 , 1, x( ) is the generalized Laguerre 

polynomial, expressed in terms of the confluent hyper-
geometric function of the first kind. This correction 
behaves like the identity function in cases where 
SNEXI ≫ σ  and converges to π

2σ, the Rician noise floor, 
for cases where SNEXI ≤ σ .

Similarly, the signal equation for the NEXIdot,RM model is:

 SNEXIdot,RM p;q, td,σ( ) = π
2
.σ.L1/2 − 1

2
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(4)

Fig. 1. Sketch of relevant features and parameters in the NEXIdot model, the three- compartment variant of NEXI. The 
latter can be obtained by removing the dot compartment (in yellow) from the sketch.
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We therefore compared NEXI and NEXIdot estimates to 
their respective RM- corrected counterparts.

Furthermore, we compared the estimates of tex from 
the different model variants with the one from the Kärger 
model time- dependent kurtosis ( Fieremans  et al.,  2010; 
 Jelescu  et al.,  2022;  Jensen  &  Helpern,  2010):

 

KKM td( ) = 2
tex
td

1− tex
td

1− e
td
tex
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(5)

Finally, we estimated the repeatability and sensitivity of 
NEXI cortex microstructure estimates by comparing their 
intra- subject (scan- rescan) to inter- subject variability. 
Parameter spatial distribution across different brain 
regions was also evaluated in comparison with known 
distribution maps from postmortem histological staining.

2. METHODS

2.1. Experimental

2.1.1. Participants

The study was approved by the School of Psychology 
Ethics Committee at Cardiff University. Written informed 
consent was obtained from all participants. Data were 
acquired in four healthy adults (Age: 30.5 +/-  3.8 years; 
2 M / 2F). Three participants were rescanned 2 days after 
the first scan.

2.1.2. Data acquisition

All data were acquired on a Connectom MRI scanner, a 
modified 3 T MAGNETOM Skyra system fitted with a gra-
dient coil capable of 300  mT/m (Siemens Healthcare, 
Erlangen, Germany). An anatomical reference was acquired 
using an MP- RAGE sequence (1- mm isotropic resolution, 
FOV = 256 x 256 mm2, 192 slices, TI/TR = 857/2300 ms). 
Diffusion- weighted images were acquired using a Pulsed 
Gradient Spin Echo Echo- Planar Imaging (PGSE EPI) 
sequence with b- values of 1 (13 directions), 2.5 (25 dir.), 
4 (25 dir.), 6 (32 dir.), and 7.5 ms/µm² (65 dir.), at each of 
four diffusion times Δ = 20, 29, 39, and 49 ms, in addition 
to 15 b = 0 ms/µm² images per Δ. Other parameters were 
fixed: δ = 9 ms, TE/TR = 76 ms/3.7 s, FOV= 216 x 216 mm2, 
matrix: 120 x 120, 66 slices, 1.8- mm isotropic resolution, 
partial Fourier = 0.75, GRAPPA = 2, multiband = 2. The 
total dMRI scan time was 45 min.

2.1.3. Data preprocessing

While each diffusion time was acquired in a separate scan, 
all multi- shell multi- diffusion time data (N = 700 volumes) 

were pooled together for pre- processing. Pre- processing 
included Marchenko- Pastur principal component analy-
sis (MP- PCA) magnitude denoising ( Veraart,  Novikov, 
 et al.,  2016), Gibbs ringing correction ( Kellner  et al.,  2016), 
distortion, and eddy current correction ( Andersson  & 
 Sotiropoulos,  2016). A separate MP- PCA denoising of 
b = 0 and b = 1 ms/µm² images (N = 112 volumes) was 
used to extract an unbiased noisemap, σ, from high SNR 
data, to be used in the Rician mean correction (Eq. 3- 4). 
For NEXI, data were averaged over directions (powder- 
average, using the arithmetic mean) and normalized by 
the mean value of the b = 0 ms/µm² volumes.

2.1.4. Time- dependent kurtosis

DKI fitting ( Jensen  et al.,  2005) was performed using a 
weighted linear least- squares algorithm implemented in 
Matlab ( Veraart  et  al.,  2013) to extract Mean Diffusivity 
(MD) and Mean Kurtosis (MK) for each diffusion time 
using b- values up to 2.5 ms/µm². KKM(t) (Eq. 5) was then 
fit to MK to yield an alternative estimation of tex.

2.1.5. ROI parcellation

Grey matter region of interests (ROIs) from the Desikan- 
Killiany- Tourville (DKT) atlas ( Klein  &  Tourville,  2012) 
were segmented on the anatomical MPRAGE image 
using FastSurfer ( Henschel  et al.,  2020) and transformed 
into diffusion native space using linear registration of 
distortion- corrected b = 0 ms/µm² images to MPRAGE 
images. The cortical ribbon was segmented by merging 
the gray matter ROIs obtained with the DKT atlas.

2.2. Simulations

Three separate datasets were generated. Dataset 1: 
Synthetic NEXI signals were generated using Eq. 1 and 
the same diffusion times and b- values as the experimen-
tal acquisition. The ground truth parameters of each sig-
nal were randomly chosen within the following bounds 
with uniform probability distribution: [1 -  150] ms for tex, 
[0.1 -  3.5] µm²/ms for the two diffusivities and [0.1 -  0.9] 
the fraction f, with the constraint that Di > De ( Dhital  et al., 
 2019;  Howard  et  al.,  2022;  Kunz  et  al.,  2018). Twenty 
Rician noise realizations were generated for each ground 
truth, assuming SNR = 34 at b = 0 ms/µm² (as estimated 
from our in vivo data), and then averaged to mimic 
powder- averaging of magnitude images, which increases 
the SNR but does not lower the Rician floor. A dataset of 
10,000 ground truth combinations was generated in this 
way. Dataset 2: A similar synthetic dataset was pro-
duced using bounds derived from the experimental data 
estimates, [1 -  110] ms for tex, [2.5 -  3.5] µm²/ms for Di, 
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[0.5 -  1.5] µm²/ms for De and [0.3 -  0.5] the fraction f. For 
each ground truth, the noise realization followed an SNR 
that was randomly picked from the SNR distribution of the 
experimental data. In order to assess the performance of 
NEXI and NEXIRM in the presence of a dot compartment, 
we built Dataset 3 in the same way as Dataset 2, but 
using NEXIdot as ground truth with fdot within [0 -  0.1].

2.3. Comparison between NEXI model variants

The four NEXI model variants (Eq. 1- 4) were fit to the syn-
thetic and experimental data by Nonlinear Least Squares 
(NLS) using the L- BFGS- B algorithm and minimize func-
tion from the package scipy.optimize ( Virtanen  et  al., 
 2020), with a tolerance of 1e- 14. The bounds specified 
for the optimization were the same as those described 
above for the simulations. For the models with a dot 
compartment, we fitted fdot as an additional parameter, 
with bounds of [0.0001 0.3]. For the models with Rician 
mean correction, σ was fixed to the noise level estimated 
in 2.1.3 for experimental data, and to the noise level set 
in the simulations for synthetic data. To assess the impact 
of a misestimation of σ in MP- PCA on the performance of 
NEXIRM, σ was also fixed to a value overestimated by 
10%, 20%, and 50% of the actual noise level set in the 
simulations on Dataset 1. The metric used for the optimi-
zation was the Mean Square Error (MSE) of the estimated 
signals against the measured or simulated signals. An 
initial grid search was applied before the NLS to find an 
optimal starting point.

2.3.1. Performance in synthetic data

The comparison of the model performance was based on 
the Median Absolute Error (MedAE) between ground truth 
and estimation of each model, on the four parameters of 
interest. This metric was chosen to observe both the real 
performance of the model and the variance of this perfor-
mance. The MedAE is more robust to outliers and thus 
more representative of the performance of the model 
than Root Mean Square Error (RMSE).

2.3.2. Performance in experimental data

To compare the fit of the four models on our experimental 
data, one of the criteria used was the corrected Akaike 
Information Criterion (AICc) ( Akaike,  1973). The AICc is a 
measure used in statistical modeling to assess the good-
ness of fit of a model while penalizing for its complexity, 
aiming to balance the trade- off between model accuracy 
and simplicity.

Furthermore, since both the dot compartment and the 
Rician noise floor account for the diffusion signal not 

decaying asymptotically to zero, the dot compartment 
estimation fdot in NEXIdot was compared to the Rician floor 
derived from the noise standard deviation in each ROI, 
estimated using MP- PCA and used as an input to NEXIRM.

2.3.3. Repeatability and brain region- specific 
patterns

Intra- subject versus inter- subject variability was assessed 
on average GM median ROI estimates obtained by the 
NEXIRM model using Bland- Altman plots ( Altman  &  Bland, 
 1983).

The spatial distribution of GM microstructure features 
quantified using NEXIRM was also examined using inflated 
brain surfaces obtained using Connectome Workbench 
( Marcus  et al.,  2011) and compared to distribution pat-
terns of neurite density and myelination from the Glasser 
MRI atlas ( Glasser  et al.,  2022).

3. RESULTS

3.1. Simulations

Given the broad parameter ranges spanned by the syn-
thetic Dataset 1 ground truths, we provide a binned 
representation of estimation error (Fig. 2). For parame-
ters with the highest estimation uncertainty, tex and Di, 
the upper and lower bounds on the estimation yielded 
very asymmetric distributions for bins with ground truth 
values near those bounds (e.g., for tex target ~140 ms or 
Di target ~ 3.0 µm2/ms).

The neurite fraction f and extra- cellular diffusivity De 
estimates benefit from good to excellent accuracy and 
precision with any model variant. For the two parameters 
with higher bias and uncertainty (tex and Di): The accuracy 
on tex and Di was markedly reduced using NEXI, NEXIdot 
and NEXIdot,RM as compared to NEXIRM, as well as the pre-
cision on tex using NEXIdot and NEXIdot,RM.

For a 50% overestimation of σ in Dataset 1, the NEXIRM 
errors are comparable to those of the other models 
(Table 1 and Supplementary Fig. S1). This indicates that 
some error in the σ estimation from MP- PCA can be tol-
erated within the NEXIRM model. Releasing σ as a free 
model parameter in NEXIRM yielded either similar values 
to MP- PCA, or a convergence of σ to zero and poorer 
AICc (data not shown).

Estimation errors on synthetic Dataset 2 (Table  2A) 
show the NEXIRM model yields tex estimates with an over 
50% lower MedAE compared to all the other model vari-
ants. The estimates of neurite fraction f and extracellular 
diffusivity De are also substantially improved using the 
NEXIRM model, lowering the MedAE by at least 25% and 
40%, respectively. Remarkably, estimation errors on 
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Fig. 2. Boxplots (median and interquartile range) of parameter estimates by each of the four model variants on synthetic 
Dataset 1 with random Rician noise (σ = 0.03). The error is defined as the difference between the estimation and the target 
value. The upper and lower limits of the grey dashed box represent the maximum and minimum error of the estimator, in 
the given bin, due to lower and upper bounds in the NLS algorithm.

Table 1. MedAE of NEXIRM using the true and overestimated 
σ, on synthetic Dataset 1 with random Rician noise (true 
σ = 0.03).

MedAE of  
NEXIRM using:

tex  
(ms)

Di  
(µm²/ms)

De  
(µm²/ms) f

Ground truth σ 22.2 0.393 0.060 0.044
110% σ 22.8 0.389 0.065 0.045
120% σ 24.6 0.389 0.073 0.047
150% σ 31.1 0.413 0.099 0.055

Note the synthetic data spanned broad parameter ranges of 
ground truths, thus these summary statistics are only partially 
informative.

synthetic Dataset 3 (Table 2B) show the NEXIdot,RM model 
yields the lowest errors, closely followed by NEXIdot. The 
errors using NEXIRM are double those of NEXIdot and 
NEXIdot,RM, which suggests that the Rician mean correc-
tion is not able to substitute for the dot compartment.

Since the synthetic Datasets 1 and 2 were generated 
assuming a model of two exchanging compartments, it 
is expected that NEXIRM variants perform better than 
NEXIdot variants. However, the simulations underline that 
failing to account for the Rician floor in the NEXI fit, when 
Rician noise is present in the data, results in a drastic 
deterioration of the quality of estimates (NEXI vs NEXIRM). 
They also reveal that the dot compartment fails to miti-
gate the error due to Rician noise. Introducing a dot 
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compartment in the model when it is not present in the 
data results in a deterioration of estimates for all other 
model parameters, in particular for the exchange time 
(NEXIdot and NEXIdot,RM vs NEXIRM). Conversely, ignoring 
the dot compartment in the model when it is present in 
the data results in a deterioration of estimates for NEXI 
and NEXIRM.

3.2. Experimental

Based on the DKT parcellation, median values across 
GM ROIs for each of the model variants are presented in 
Table  3. The four model variants give very different 
exchange time estimates. Notably, tex estimates are 
ordered as NEXI > NEXIRM > NEXIdot. All these estimates 
are also much longer than 3- 5  ms, as reported using 
NEXIdot,RM (though the latter was comparable to NEXIdot in 
the simulations) and previously in ex vivo data ( Jelescu  & 
 Uhl,  2022;  Olesen  et al.,  2022). The extra- neurite diffusiv-
ity estimates are comparable across methods. Three of 
the four models give an intra- neurite diffusivity very close 
to the upper limit, indicating that the model often hit the 

bounds, and it may be missing a component to explain 
experimental data well. The first three methods seem to 
agree for an average f around 0.35 while NEXIdot,RM places 
it higher, at 0.47. In terms of goodness of fit, NEXIRM dis-
plays the lowest AICc of all models. When comparing 
between models with and between models without Rician 
mean correction, NEXIdot has a better corrected AICc 
than NEXI, but the opposite happens when we add the 
Rician correction, NEXIRM outperforms NEXIdot,RM.

The mean fitted powder- average signal in the whole 
cortical ribbon by the four model variants is shown in 
Figure  3. The quality of fit shows that at high b- value 
and high diffusion time, NEXI performs poorly compared 
to the other models. However, there is limited agree-
ment between the mean signal and all the models mean 
fitting curves at high b- value. This is due to the trade- off 
of fitting the signal across the entire b- value range (Sup-
plementary Fig.  S2). Furthermore, the lower quality of 
the average fit is due to voxels in the cortical ribbon with 
high AICc, which likely correspond to voxels with sub-
stantial partial volume effect, where the model is not 
performing well.

Furthermore, the dot fraction fdot estimated using 
NEXIdot was perfectly correlated with the Rician expec-
tation value π

2σ in each ROI (Fig. 4). The Kolmogorov- 
Smirnov (KS) test reveals that fdot and σ  distributions are 
similar (p = 0.1967). This suggests that the dot compart-
ment in NEXIdot is fitting the Rician floor with a system-
atic offset, casting doubt on an actual dot compartment 
being relevant for cortical GM in vivo, in agreement with 
( Tax  et  al.,  2020) and that the NEXIRM model should 
therefore be preferred.

Based on this model variant comparison which favors 
the use of NEXIRM in vivo, we report NEXI gray matter 
microstructure estimates in the human brain (Fig.  5). 
Using the NEXIRM implementation, quantitative maps 
show, as expected, tex estimates in the range 20 – 50 ms 
in the cortex, and much longer in the white matter, where 
the diffusion time range does not allow a reliable esti-
mation. The De map shows lower values in the cortex 
compared to sub- cortical WM. This aligns with the idea 
that the high cellular abundance and random neurite ori-
entations in GM slow down extra- cellular diffusion. In 

Table 2. MedAE of the different model variants on synthetic 
dataset generated with NEXI (A.) and NEXIdot (B.) with Rician 
noise.

A.

MedAE on  
NEXI data

tex  
(ms)

Di  
(µm²/ms)

De  
(µm²/ms) f

NEXI 28.3 0.63 0.05 0.04
NEXIRM 11.7 0.34 0.03 0.03
NEXIdot 26.1 0.52 0.05 0.07
NEXIdot,RM 25.1 0.44 0.06 0.06

B.

MedAE 
on NEXIdot 
data

tex  
(ms)

Di  
(µm²/ms)

De  
(µm²/ms) f fdot

NEXI 61.1 1.41 0.13 0.14 - 
NEXIRM 53.3 1.26 0.11 0.13 - 
NEXIdot 24.7 0.60 0.05 0.06 0.014
NEXIdot,RM 24.2 0.57 0.05 0.06 0.012

The smallest errors are shown in bold.

Table 3. Mean estimates and 95% confidence intervals of the median in every ROI of the DKT atlas using NEXI, NEXIdot, 
corrected for rice mean (RM) or not.

tex (ms) Di (µm²/ms) De (µm²/ms) f fdot AICc

NEXI 103.9 [100.3, 107.5] 2.79 [2.71, 2.88] 0.95 [0.94, 0.96] 0.32 [0.318, 0.325] - - 139.3 ± 15.0
NEXIdot 14.3 [12.2, 16.3] 3.36 [3.32, 3.40] 1.00 [0.99, 1.01] 0.36 [0.35, 0.37] 0.03 [0.033, 0.037] - 140.8 ± 15.6
NEXIRM 42.3 [40.0, 44.7] 3.35 [3.32, 3.38] 0.92 [0.91, 0.93] 0.38 [0.379, 0.389] - - 143.0 ± 16.0
NEXIdot, RM 2.90 [2.71, 3.09] 3.36 [3.34, 3.39] 1.03 [1.01, 1.04] 0.47 [0.47, 0.48] 0.01 [0.009, 0.010] - 141.6 ± 16.7

Mean estimates are shown in bold. 
The last column shows the mean corrected Akaike Information Criterion (AICc) for each model; lower AICc indicates a better fit.
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contrast, WM experiences less hindrance to diffusion, 
especially along axons. The De contrast may also be 
consistent with the soma compartment being absorbed 
into the extra- cellular compartment in NEXI, thereby 
reducing its apparent diffusion in GM by the inclusion of 
restricted components. The neurite density fraction map 
reveals expected WM/GM contrast, with much higher 
fraction in WM; the cortical neurite fraction is estimated 
at ~40%. It should be noted that NEXI is not designed 
for WM, where the assumption of randomly oriented 
sticks and isotropic extra- neurite diffusivity is not 
expected to hold. This could have affected estimates in 
single- fiber WM population voxels versus crossing fiber 
WM areas, for example.

These parametric maps, averaged within each DKT 
ROI, projected onto a study- average inflated cortical 
 surface and averaged at the cortical thickness level 
voxel- wise after a multivariate template registration (Fig. 6), 
reveal remarkable patterns across the healthy human brain. 
First, there is an expected level of symmetry between left 
and right hemispheres, although their estimates are com-
pletely independent, which suggests that spatial patterns 
are not casual.

Figure 6 shows that the longest exchange time was 
found in the occipital lobe, in the posterior part of the 
parietal lobe, and in the ventral parts of the temporal 
lobe, possibly indicating correlation with cortical myelin-
ation. Di estimates reach the upper bound in most of the 

Fig. 3. Mean estimated signal in the cortical ribbon by the four NEXI model variants at high b- value (b > 4 ms/µm²) 
compared to the mean measured signal, represented by plus signs. Each color represents a different diffusion time.
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regions of interest, limiting interpretation. However, a 
decrease in Di is observed in the rostral and ventral parts 
of the temporal lobe. De revealed spatial patterns of faster 
extra- cellular diffusivity along the somatosensory cortex, 
as opposed to the occipital lobe and caudal part of the 
temporal lobe which have the slowest De. In the insula, De 
is also considerably faster; however, the level of partial 
volume effects might be higher, biasing the estimates 
upwards. As suggested above, De is likely impacted by 
cellular density (extra- cellular tortuosity and high soma 
density) which reduces its estimate, or by fiber alignment 
that increases its estimate. Lastly, the neurite fraction f 
follows a pattern of highest density in the occipital lobe 
and in the caudal part of the parietal lobe, comparable to 
tex pattern possibly linked with myelination, but with mod-

erate to lower densities in the ventral part of the temporal 
lobe. Supplementary Figure S3 presents a comprehen-
sive depiction of these results, showcasing the paramet-
ric medians per region of interest.

3.2.1. Agreement with time- dependent diffusion 
and kurtosis

Mean Diffusivity was almost independent of the dif-
fusion time, with a weak yet measurable slope of 
−7.5x10−4  µm2/ms2 (p  =  0.01) (Fig.  7A). This diffusion 
time- dependence, albeit weak, potentially calls into ques-
tion the assumption of Gaussian compartments in our 
models. This would be consistent with a minor degree of 
structural disorder, encapsulating the subtle heterogene-

Fig. 4. Agreement between fdot estimate of NEXIdot and the Rician floor expectation value, derived from the noise 
standard deviation (σ) obtained by denoising small b- values during preprocessing. (A) Overlay of fdot and σ√(π/2) value 
distributions across DKT atlas ROIs. (B) Correlation between these two quantities. Each point represents the average in an 
ROI of the DKT atlas.

Fig. 5. Axial slice of NEXIRM parametric maps, averaged across sessions and subjects (N = 7). tex and De are consistent 
throughout the cortex, but tex is presumably longer in the WM and cannot be reliably estimated using available diffusion 
times. f displays the expected anatomical pattern in white versus gray matter. Di shows large variability across voxels, 
while hitting its upper bound frequently.
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Fig. 6. Projection onto cortical surface of NEXIRM maps averaged across subjects and sessions. We find some of the 
expected pattern of a larger fraction of neurites in the occipital lobe (white arrow). This pattern can also be seen in the 
exchange time, which is also longer in the temporal lobe (white arrows). A higher extracellular diffusivity is also observed in 
the somatosensory cortex (white arrow).

Fig. 7. (A) Time- dependent Mean Diffusivity and Mean Kurtosis in the cortex, averaged over voxels in the cortical ribbon 
and across the seven datasets (subjects and sessions). (B) Distribution of tex

K t( )  values estimated voxel wise across the 
cortex, averaged across subjects (first session).
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ities within the compartments ( Lee  et al.,  2020), potentially 
impacting the model's precision. Mean Kurtosis decreased 
more markedly with time, which is consistent with previous 
studies ( Jelescu  et  al.,  2022;  Lee  et  al.,  2020). We find 
good agreement between tex

KM obtained from MK(t) analy-
sis and the one obtained from the NEXIRM fit. This agree-
ment is expected as MK(t) in Eq (5) uses low b- value data 
that are less affected by Rician floor than the full NEXI 
model (Eqs. (1) and (3)).

3.2.2. Inter-  versus intra- subject variability

To assess intra- subject variability, we compared the first 
and second sessions of the three subjects who were 

scanned twice. To assess inter- subject variability, we 
compared the first session of the four subjects between 
them. Below, we compared NEXIRM results (Figs. 8 and 9); 
for the other models, the plots are provided in Supple-
mentary Figure S4.

The difference in median tex over each ROI between 
different sessions is approximately 3.0 ms, while the dif-
ference in tex across subjects is more than 2.5  times 
larger, at 7.70 ms (Fig. 8). It is also noteworthy that the tex 
do not display a broad range across the ROIs, with most 
values concentrated between 40 – 60 ms.

In terms of neurite fraction f, the mean difference 
increases from 0.0040 for the inter- session compari-
sons to 0.01770 for the inter- subject comparisons 

Fig. 8. Bland- Altman plots of the tex estimations from NEXIRM model. Each row and column refer to the same subject. 
On the diagonal, the two sessions of each subject are compared. In the upper triangle, the results of the first session of 
each subject are compared to those of another subject. The colors reflect the density of points on the plot, each of them 
representing the mean value in a given DKT ROI.
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(Fig. 9), that is, intra- subject variability is over four times 
larger than scan- rescan variability, a difference even 
more pronounced than for tex. The variance is also higher 
in the inter- subject versus intra- subject comparisons. 
Unlike the exchange time tex, neurite fraction values 
cover a broader range across DKT ROIs, showing brain 
regional specificity of this parameter.

This suggests that NEXIRM estimates are sufficiently rep-
roducible to retain sensitivity to inter- subject differences.

For comparison, the Bland- Altman plots for tex and f 
of the other models can be found in Supplementary 
Figure S4. Additionally, the Bland- Altman plots for the 
two diffusivities of NEXIRM are available in Supplemen-
tary Figure S5.

4. DISCUSSION

In this study, we compared different variants of the NEXI 
model in order to quantify microstructure features in the 
human cortex. We thus compared NEXI estimates, imple-
mented as a two- compartment model with exchange as 
in  Jelescu  et  al.  (2022), to those from its three- 
compartment variant NEXIdot, also accounting for a dot 
compartment as proposed in  Olesen  et al.  (2022) for ex 
vivo data, as well as two new versions that correct for the 
Rician bias in the signal at high b- values: NEXIRM and 
NEXIdot,RM. By examining these four model variants, the 
goal was to investigate the pertinence of a dot compart-
ment to model human cortical gray matter, similar to the 
one identified in the cerebellum ( Tax  et al.,  2020), and to 

Fig. 9. Bland- Altman plots of the f estimations from NEXIRM model. Each row and column refers to the same subject. 
On the diagonal, the two sessions of each subject are compared. In the upper triangle, the results of the first session of 
each subject are compared to those of another subject. The colors reflect the density of points on the plot, each of them 
representing the value in a given DKT ROI.
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study the effect of the Rician noise correction on these 
two models, given the lower SNR of clinical dMRI data as 
compared with preclinical data.

In the case where the ground truth is a two- 
compartment model with exchange and the standard 
deviation of the noise is known, the simulation results 
clearly show that the NEXIRM model is to be preferred 
against the other models and that the dot compartment 
is not able to substitute the Rician noise correction effi-
ciently. Similarly, adding both a dot compartment and a 
Rician noise correction seems to disturb the model in the 
estimation of the main parameters, likely by the addition 
of an unnecessary free parameter (fdot). The bias in NEXI 
estimates when the Rician floor is not accounted for is 
also very marked, although this bias is expected to be 
dependent on the SNR of the data. Simulations show 
that the performance of NEXIRM is equivalent to the per-
formance of the other models in the case where the esti-
mation of the noise level input into the Rician mean 
correction is overestimated by 50%.

While the RM correction is clearly beneficial, the per-
formance of the three- compartment NEXIdot model on 
synthetic data generated using the two- compartment 
NEXI model is challenging to interpret. On the one hand, 
it is obvious that a non- zero dot compartment will be esti-
mated, even when it is absent in the ground truth. On the 
other hand, if a dot compartment is present in the ground 
truth, NEXIRM is not able to account for that as it uses the 
realistic σ value for the Rician floor as would be typically 
obtained from MP- PCA denoising. It is important to 
underline that the existence of the dot compartment in 
healthy in vivo cerebrum tissue is not highly supported by 
histological evidence or previous experiments using 
spherical diffusion tensor encoding ( Tax  et al.,  2020). Fur-
thermore, NEXIRM and NEXIdot fits on experimental data 
show that NEXIdot essentially captures the Rician noise 
floor as a dot compartment, rather than the latter having 
a biological relevance as a compartment of its own. The 
slight but systematic lower level of the fdot estimate com-
pared to the Rician floor σ π

2  could be explained by the 
fact that the Rician correction is adaptive, mainly chang-
ing the signal magnitude at low SNR (high b- values) while 
the dot compartment acts by design as an offset to the 
signal across the entire b- value range. Thus, the fdot esti-
mate is likely lower than the Rician floor as a compromise 
in fitting the signal well at both low and high b- values, in 
an MSE sense.

It is also noteworthy that NEXIRM was the model with 
the lowest AICc, while a potential error on σ could have 
further reduced the performance of the NEXIRM fit, as also 
shown in the simulations of an overestimated σ. When 
comparing between models with or without Rician mean 
correction, our results show that the Rician correction is 

always beneficial, whether a dot compartment is mod-
eled or not. On top of this result, the better AICc of the 
models with Rician Mean correction shows that the a pri-
ori input σ value provides a more precise fit.

Overall, our results on both synthetic and experimen-
tal data therefore indicate that the NEXIRM model, that is 
NEXI corrected for Rician noise, should be preferred for 
in vivo human cortex. It is noteworthy that the dot com-
partment may nonetheless be relevant as a biological 
compartment of its own in ex vivo data ( Olesen  et  al., 
 2022). Furthermore, a soma compartment may be needed 
to better account for the signal decay at high b- values, 
although a model accounting for both soma and exchange 
(such as SANDIX) would likely require more datapoints 
and high SNR to yield reliable fit estimates, as discussed 
in the limitations paragraph.

The NEXIRM average estimate of tex in the human corti-
cal ribbon is 42 ms, versus 104 ms for NEXI. The former 
matches well with the average tex

K t( ) of 30  ms from the 
time- dependent kurtosis analysis, which is expected 
since tex

K t( ) is derived from data with b ≤ 2.5 ms/µm2 which 
have higher SNR and are thus less impacted by the Rician 
floor. It is remarkable how different tex estimates are 
across the four model variants, with the inclusion of a dot 
compartment systematically reducing tex. While the 
ground truth in vivo is not known, simulations support the 
experimental ordering in tex estimates across models, 
with NEXI yielding the highest (and over- estimating tex in 
simulations), followed by NEXIRM (with best accuracy in 
simulations), and finally NEXIdot and NEXIdot,RM. Indeed, 
fitting an experimental signal that does not effectively 
decay to zero using a model that predicts a signal decay 
to zero at high b- values (as NEXI) will result in an overes-
timated exchange time tex. When the Rician floor is intro-
duced in the model, a more accurate tex can be estimated. 
The non- adaptive offset in NEXIdot results on the contrary 
in an underestimated tex vs NEXIRM. The difference between 
NEXIdot and NEXIdot,RM is more pronounced in experimen-
tal data than in simulations, which could be attributed to 
partial volume effects or other tissue compartments not 
accounted for in the models, and that were absent in the 
simulations. Overall, these discrepancies reinforce the 
need to make informed decisions when selecting the 
model, as these decisions have a dramatic impact on 
ensuing exchange time estimates.

The estimation of other parameters is less variable 
across models. Extra- neurite diffusivity, De, is 0.9 – 1 µm2/
ms, slightly higher than that reported in rats using NEXI 
( Jelescu  et al.,  2022). The neurite fraction, f, is ~0.3 – 0.4, 
also consistent with what has been reported in rats using 
NEXI ( Jelescu  et al.,  2022). However, the obtained neur-
ite volume fraction from histology, approximately 60% in 
the rat cortex ( Braitenberg  &  Schüz,  1998;  Chklovskii 
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 et al.,  2002;  Ikari  &  Hayashi,  1981), is much larger. This 
discrepancy may be due to a relaxation bias. In WM, T2 
is likely shorter in the extra- axonal than in the intra- 
axonal space. In contrast, GM shows the opposite pat-
tern, with less extracellular myelin and factors like 
cytoskeleton and neurofilaments possibly shortening 
intra- neurite T2. Shorter intracellular T2 relaxation times 
are illustrated in MR microscopy of human and porcine 
neurons ( Flint  et al.,  2012). Such differences in T2 could 
result in an underestimation of the compartment’s volume 
fraction, or to faster exchange processes not captured 
by tex, that would also result in an underestimation of the 
restricted stick population.

However, for all models, the intra- neurite diffusivity 
measure, Di, is unrealistically high, even above water dif-
fusion coefficient at the body temperature of 3 µm²/ms, 
and often hits the upper bound implemented in the NLS 
algorithm. Intra- neurite or intra- axonal diffusivity is noto-
riously challenging to estimate, particularly in the pres-
ence of noise ( Howard  et al.,  2022;  Jelescu  et al.,  2016; 
 Palombo  et al.,  2020). One possibility is that larger b- val-
ues would be required to estimate Di in the gray matter 
(as in the preclinical NEXI implementation ( Jelescu  et al., 
 2022) or in the WM Standard Model ( Howard  et al.,  2022)), 
or a combination of linear diffusion encoding with b- ten-
sor encoding and/or T2 relaxometry, as was the case in 
white matter ( Dhital  et al.,  2019;  Lampinen  et al.,  2020). 
Alternatively, working with real- valued data instead of 
magnitude data could help eliminate Rician bias and 
boost the SNR, thereby improving the Di estimates 
( Howard  et  al.,  2022). The simulations also show Di to 
display the largest error estimation relative to its range of 
possible values. It is also possible that a Partial Volume 
effect (PVE) takes place, where gray matter, white matter, 
and CSF are captured in each voxel in varying propor-
tions. This would make the model less suitable for our 
experimental data, pushing Di estimates towards unphys-
ical values; the issue of PVE is discussed further below.

Based on the few recent works on gray matter 
exchange models, there seem to be dramatic differences 
in cortical gray matter microstructure features between in 
vivo and ex vivo tissue. Reported exchange times ex vivo 
are much shorter than in vivo, 3 – 14 ms irrespective of 
the inclusion or not of a dot compartment, neurite frac-
tions are much higher 0.7 – 0.8, closer to their histological 
estimates (also based on ex vivo tissue) ( Hertanu  et al., 
 2023;  Jelescu  &  Uhl,  2022;  Olesen  et al.,  2022), contribu-
tions from structural disorder are more pronounced 
( Jelescu  &  Uhl,  2022), and Di is reduced within biologi-
cally plausible ranges ( Hertanu  et  al.,  2023;  Jelescu  & 
 Uhl,  2022). However, other groups have reported very 
short exchange times (3 – 10 ms) also in perfused viable 
rat pup spinal cord ( Williamson  et al.,  2023,  2019), and 

even in human cortex in vivo ( Lee  et  al.,  2022), which 
would however translate into higher membrane permea-
bility than ever reported for human neurons and astro-
cytes, as previously discussed ( Boss  et al.,  2013;  Jelescu 
 et al.,  2022). Similarly, previous works have put forward 
that structural disorder dominates over exchange in 
human cortex ( Lee  et al.,  2020), considering detectable 
time- dependent diffusion in some ROIs. Here, we also 
report weak yet detectable time- dependent diffusion 
when averaging across all voxels in the cortical ribbon 
and across subjects, with a significant negative slope. 
Although this time- dependence could challenge the 
assumption of barrier- limited exchange between two 
Gaussian compartments underlying the Kärger model 
and thereby NEXI, this contribution seems limited as 
compared to the exchange that drives a pronounced 
time- dependent kurtosis. Time- dependent diffusion in 
the human cortex may also result from PVE with subcor-
tical WM, as it was previously unambiguously reported in 
human WM ( Fieremans  et al.,  2016), but not in the rat cor-
tex in vivo where PVE with WM could be excluded 
( Jelescu  et al.,  2022).

We also report NEXI parameter distributions across 
the surface of the human brain. While the maps of neurite 
fraction and exchange time do not fully align with the 
expected cortical myelin density mapping ( Ali  et al.,  2022; 
 Van  Essen  et al.,  2018), brain regional differences are still 
in line with known variation in cell density and myelination 
across the cortex. Overall, longer exchange times, higher 
neurite densities, and faster extracellular diffusivity (sug-
gesting a more coherent alignment of neuronal pro-
cesses) were found in motor, somatosensory, and visual 
areas. It should also be underlined that biophysical mod-
els of water diffusion do not provide cell- type specific 
information, and astrocyte distributions across the cortex 
may also impact the NEXI maps in terms of “neurite den-
sity” (which rather mirrors cell process density) and 
exchange time (assuming astrocytes may be more per-
meable than neurons due to the presence of aquaporin- 4 
channels ( Boss  et al.,  2013;  Gleiser  et al.,  2016;  Halnes 
 et al.,  2013)). Variations in neurite orientation coherence 
between regions may also challenge the assumption of 
isotropic extra- neurite diffusivity and may bias the region- 
specific estimates based on this.

Finally, NEXI
RM estimates display good scan- rescan 

repeatability while retaining sensitivity to inter- subject dif-
ferences. These results are promising from the perspec-
tive of further clinical translation of NEXI, and its 
application to larger populations of healthy subjects and 
patients. The NEXI implementation on the Connectom 
scanner is a steppingstone between preclinical MRI sys-
tems and widespread clinical MRI systems. The advent 
of new human scanners featuring gradient amplitudes of 
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200 mT/m, such as the Cima.X (Siemens Healthineers) 
or the MAGNUS (GE Healthcare) ( Foo  et al.,  2020), sug-
gests that the next generation of MRI scanners will 
increasingly resemble the scanner used in this study, in 
terms of gradient amplitude, thereby expanding its 
scope. The potential of NEXIRM to estimate cortical 
microstructure features on a clinical scanner ( Uhl  et al., 
 2023) will be strengthened by the results of the present 
study, as it highlights the importance of correcting for 
Rician noise in the NEXI model to obtain accurate esti-
mates of microstructure parameters in the human cor-
tex. The Rician mean correction is expected to have 
even more influence on clinical data with lower SNR 
(due to the longer TE driven by weaker gradients up to 
80 mT/m). The progress in hardware technology, exem-
plified by advancements like Connectom 2.0 ( Huang 
 et al.,  2021), as well as the aforementioned new scan-
ners, also holds significant promise for advancing the 
validation of reproducibility in this study at higher SNR 
and facilitating future clinical translation.

Our study has some limitations that should be noted. 
First, this study was a proof of principle, for which we 
sampled four participants. Future studies with larger 
sample sizes, possibly including patients, are warranted. 
Second, several trends suggest that the NEXIRM model, 
though more appropriate than the other three variants, 
may be incomplete to fully characterize cortical GM sig-
nal behavior in (q,t) space. The weak decay of D(t) may 
indicate that the model assumption of Gaussian com-
partments does not hold entirely; this should be further 
investigated on a larger cohort with a broader range of 
diffusion times. However, accounting for structural disor-
der explicitly in a biophysical model in combination with 
exchange is still work in progress for the community 
( Burcaw  et al.,  2015;  Novikov  et al.,  2023,  2014). Further-
more, the soma compartment was neglected from the 
model, in light of the more pronounced effect of 
exchange over restriction signified by decreasing signal 
with increasing diffusion time ( Jelescu  et al.,  2022;  Olesen 
 et  al.,  2022), but should represent a priority for future 
work. Indeed, quantifying soma at short diffusion times 
using SANDI has demonstrated value ( Palombo  et  al., 
 2020) but is also challenging from the perspective of 
model degeneracy when combined with an exchange 
model as in SANDIX ( Olesen  et  al.,  2022). Recent 
approaches using different gradient waveforms have 
been proposed to separate the contributions of exchange 
(permeability) and restriction (soma) ( Chakwizira  et  al., 
 2023) but led to much longer exchange time estimates 
than with NEXI, rather in line with previous literature using 
FEXI ( Lampinen  et  al.,  2017) which lacks specificity to 
biologically- relevant compartments. Structural disorder 
has also not been considered in this approach. Residual 

effects of Rician noise may compromise the intra- neurite 
diffusivity estimate, which may benefit from working with 
real- valued vs magnitude data.

Finally, some open choices have been made concern-
ing the algorithms used in our preprocessing and pro-
cessing pipelines. We applied MP- PCA denoising in the 
context of parallel image acquisition and spatially cor-
related noise. However, the AdaptiveCombine recon-
struction algorithm effectively preserves noise properties, 
mitigating issues with correlated noise. The inspection of 
residuals revealed no anatomical structure. We also 
applied Gibbs ringing correction using an algorithm  
not well suited for partial Fourier data. However, the 
resulting corrected images did not reveal dramatic resid-
ual ringing. Given the minimal effect of these steps on our 
data, we maintain confidence in our preprocessing 
approach. However, to further enhance our methodology, 
future studies will incorporate advanced techniques like 
NORDIC ( Moeller  et al.,  2021) or Efficient PCA ( Henriques 
 et al.,  2023) for denoising, and adopt a specialized frame-
work for Gibbs ringing correction suggested for partial 
Fourier data ( Lee  et al.,  2021).

The inspection of denoising residuals also revealed, as 
expected, weaker denoising at the edge of the brain 
mask, where the denoising kernel is partially populated. 
This translates into an underestimation of noise levels at 
the edges of the mask, potentially bringing the model 
estimates with and without Rician noise correction closer 
together. The impact is somewhat mitigated by the higher 
SNR in brain areas which are in close proximity to the 
receiver coils compared to, for example, the midbrain. 
We believe this issue does not significantly affect our 
results, as all analyses were performed within the cortical 
ribbon, uniformly influenced by the edge effect.

We also acknowledge the interest in using the Rician 
Distribution Maximum Likelihood Estimation ( Sijbers 
 et al.,  1998) for NLS fitting instead of correcting our mod-
els for the Rician Mean. However, its high computational 
demands and incompatibility with our current efficient 
loss function approach, accelerated by its Jacobian, led 
us to not employ it in our experiments and simulations. 
The analytical Jacobian further makes the fit conver-
gence more stable, by limiting the impact of noise on the 
fitting landscape. This choice was guided by the need for 
computational efficiency, considering the vast range of 
parameter combinations we analyzed. Exploring the 
comparison of these fitting methods remains a potential 
area for future research.

One of the advantages of the NEXI model is that it can 
be implemented on clinical scanners ( Uhl  et  al.,  2023) 
and thus enables studies in large cohorts of both healthy 
and patient populations. Future research will focus on its 
optimization on a clinical scanner with more moderate 
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gradient set of 80 mT/m, although the availability of clini-
cal scanners with 200 mT/m gradients can only ease the 
clinical translation of NEXI. Optimization avenues include 
accounting for the actual gradient pulse duration (as the 
narrow pulse approximation may not hold, as imple-
mented in  Olesen  et al.  (2022)), trading magnitude data 
for real- valued data, trading NLS for a multi- layer percep-
tron fit, and using explainable AI to optimize the clinical 
NEXI acquisition protocol within scanner hardware limits 
( Uhl  et  al.,  2023). The main goal is to reduce both the 
acquisition time, and the estimation error on the two most 
challenging parameters, namely Di and tex. The develop-
ment of a framework that enables joint estimation of 
soma and neurite permeability is also high priority.

5. CONCLUSION

We reported the first comprehensive study of NEXI 
model parameter estimates in the human cortex in vivo. 
Our findings indicate that the addition of a dot com-
partment to the NEXI model is not necessary and that 
correcting the Rician floor in the fit is a more appropri-
ate approach to account for its effects, given that the 
estimated dot compartment correlated very strongly 
with the noise floor estimated independently from MP- 
PCA denoising on low b- value data. The estimated 
exchange time, neurite fraction, and compartment dif-
fusivities are consistent with previous studies conducted 
in the rat cortex in vivo, as well as with the exchange 
time estimate from time- dependent kurtosis. Notably, 
we observed that the exchange time is on the order of 
30 – 40 ms, an intermediate value as compared to other 
similar studies but that signifies exchange cannot be 
neglected in the human GM at clinical diffusion times. 
These estimates displayed good scan- rescan repeat-
ability, while preserving sensitivity to variations among 
subjects. However, the parameters Di and tex were the 
most challenging to estimate, and future efforts will 
focus on possible improvements.
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