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Abstract 

Wave propagation in a class of two-phase phononic structures in which cells are generated 

according to Fibonacci sequences is investigated. The Fibonacci sequence is a one-dimensional 

quasi-crystalline rule. I studied axial waves in quasi-periodic infinite rods and flexural waves 

in quasi-periodic infinite beams. 

In the axial wave case, two-phase phononic rods whose elementary cells are designed adopt 

the quasi-crystalline silver mean Fibonacci substitution rule. The stop/pass-band spectra are 

studied with the aid of a trace-map formalism, which provides a geometrical interpretation of 

the recursive rule governing traces of the relevant transmission matrices: the traces of two 

consecutive elementary cells can be represented as a point on a surface defined by an invariant 

function of the circular frequency, and the recursivity implies the description of an orbit on a 

surface called Kohmoto’s surface. I showed that, for a sub-class of silver mean-generated 

waveguides, the orbits predicted by the trace map at specific frequencies are periodic. The 

configurations for which this occurs, called canonical, are also associated with periodic 

stop/pass-band diagrams along the frequency domain. Several types of periodic orbits exist, 

and each corresponds to a self-similar portion of the dynamic spectra whose scaling law can be 

studied by linearizing the trace map in the neighborhood of the orbit. The obtained results 

provide both a new piece of theory to better understand the behavior of classical two-phase 

composite periodic waveguides and an important advancement towards the design and 

realization of phononic quasi-crystalline-based metamaterials. 

For flexural waves of quasiperiodic infinite beams designed by adopting the quasi-crystalline 

golden mean Fibonacci substitution rule, I investigated the effect of the axial pre-stress on the 

dispersion diagrams. I also investigated the frequency shift of the stop/pass band positions. The 

results show that pre-stress has a clear influence on the width of the pass/stop band, increasing 

or decreasing depending on the type of pre-stress applied. 

This thesis gives a deep understanding of how waves propagate in quasiperiodic structures, 

giving broader options for designers of acoustic devices like waveguides and acoustic filters. 
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1.1 Background and motivation 

Wave propagation in periodic structures has grown to become of essential importance in 

condensed matter physics due to the role that atomic vibrations (and electronic structure) play 

in describing the properties of crystals.  

In eighteenth century, Brillouin started to investigate the physical properties of periodic 

structures. He studied the dynamic properties of these structures to understand the nature of 

wave propagation. Band-gap (BG) phenomenon is one of the most important features wherein 

any periodic structure displays a certain range of frequencies in which wave cannot propagate 

resulting in filtering properties (Brillouin, 1953). It has to be noted that the phenomenon of 

band gap which are also called stop band or attenuation zone is due to the fact that periodic 

structures possess two or more different faces and band gaps associate with the contrast 

between physical and geometrical properties of the different faces. In addition, we can assume 

two different materials to obtain band gap in the related dispersion relation. This type of 

behaviour is common to all periodic structures including mechanical, optical, magnetic, 

electromagnetic etc. where all these structures are periodic composite structures that have band 

gap behaviour. Another interesting feature of the periodic structures is their simplified 

calculation ways where due to the periodicity, analysing one subsystem is sufficient to deduce 

and understand wave propagation in the entire structure. 

A huge number of research and studies about the properties of one-dimensional periodic 

structures have been performed. The simplicity of the geometry and analysis of these type of 

structures as well as their ability of coupling between adjacent cells have attracted many 

researchers (Brillouin, 1953; Mead, 1996; Ruzzene and Baz, 2001; Liuet al, 2020). Ungar 

(1966) has derived an expression describing the vibration of steady state of an infinite beam 

with uniformly supported on impedances. This formula provided ways analysing of the 

structures with fluid loadings. Later, the scientist Gupta was able to present a new analysis for 

periodically-supported beams systems that presented the concepts of unit cell and its transfer 

matrix. In addition, Gupta introduced the parameters' plots of the propagation and attenuation 

that are considered the base for future work of one-dimensional periodic structures (Gupta, 

1970). 

A study on mono-coupled periodic systems has been conducted by Faulkner and Hong. This 

study used analytical and finite element methods analysing the free vibration of mass-spring 

systems (Faulkner and Hong, 1985). In contrast, Mead and Yaman (1991) in their study 

investigated the response of one-dimensional periodic structures under the periodic load. The 

effects of the elastic support characteristics on the pass/stop characteristics of the beam are 

presented in this study. 
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Growing attention has been given in recent years to the investigation of elastic wave 

propagation in the phononic materials. Elastic or acoustic waves cannot propagate inside band 

gaps (BGs) created by Phononic materials which are artificial materials made of two or more 

materials with varying mechanical properties. The diverse physical features of BGs and their 

potential use in the creation of acoustic devices like noise reduction, waveguides, and acoustic 

filters are what have attracted a great attention to them (Yuan et al, 2014). 

Phononic materials distinguish themselves from among other classical materials and 

composites by its unique ability to control acoustic and elastic vibrational waves where this 

material shows band gabs frequency in certain frequency range (Hussein et al, 2014). The 

notion of a “phonon” has emerged in the context of vibrations in a crystal lattice. "Formally 

defined as a quantum of vibrational energy in an elastic medium — which may be interpreted 

as a discrete particle-like quantity of sound in a solid". The term of a phonon has also been 

connected with classical axial waves like vibrations and acoustics, mainly in the field of 

periodic media. It has become normally to indicate to the periodic material, as a “phononic 

material,” or a “phononic structure.” In this thesis, I will study the dynamical properties of the 

phononic structures for axial waves which also called phonon in the field of solids which 

providing a possibility of designing a spectrum and predicting stop/pass band pattern. 

This can be accomplished by arranging the material phases or geometry to take advantage of 

essential wave-material interactions, including resonance and interference. Due to these 

interactions, a phononic material allows the vibrational waves to pass at certain frequency 

bands, and prevents some vibrational waves from passing called here band gaps where wave 

propagation is forbidden. The feature of band gap can be useful to design waveguides, acoustic 

filters, and acoustic devices such as noise reduction. 

 

Figure 1: the transformation from conventional materials to phononic materials (metamaterials is an example) 

(Zheng et al, 2023). 
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According to (Frazier, 2015) resonance and interference are the two important mechanisms by 

which phononic materials exert control over vibrational wave propagation. These wave-

material interactions can be exploited as a means in categorising phononic materials into two 

subsystems phononic crystals and metamaterials which can be created as illustrated in Figure 

1. 

Bragg scattering explains a process by which a light wave, upon passing via a crystal, is 

partially reflected at all planes of atom. Due to the spacing between planes, the reflected 

components may interfere with each other and the incident wave leads to prevent wave 

propagation through the crystal. Similarly, the artificial atoms of phononic crystals (i.e., the 

material/geometrical constituents) interact with vibrational waves.  

Figure 2:Dispersion band diagrams for a one-dimensional (a) phononic crystal with band gaps induced by Bragg 

scattering and (b) metamaterial featuring a resonance-induced gap before those of Bragg scattering (Liu et al, 

2000). 

In this context, the band gaps in the dispersion band diagram of phononic crystals are the result 

of the effect of Bragg scattering as illustrated in the Figure 2(a). Bragg scattering and 

interference have an influence within metamaterials, leading to band gaps in the dispersion 

band diagram. However, for metamaterials, the smallest gaps (sketched in red in figure 2(b)) 

are typically not the result of Bragg scattering, rather the result of a phenomenon of the local 

resonance (Liu et al, 2000). There are some potential applications of metamaterials include 

optical filters, smart solar power, and medical devices. 

Over the past decades, the control of wave propagation in periodic structures has always been 

hotspot of the research. In this context, some typical examples of controlling wave propagation 

can be found such as supported beams, modulated rods, and plates (Liu et al, 2020). 

starting in the early 1990s, the field of wave propagation in periodic structures has experienced 

a new rally with the introduction of phononic crystals (PnCs) which was a field of research of 

many researchers (Sigalas, 1992; Sigalas and Economou1993; Kushwahaet et al,1993; 
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Kushwahaet et al,1994; Vasseur et al,1994). Phononic Crystals (PnCs) are new synthetic 

periodic materials made up of at least two materials as illustrated in Figure 3 that can be used 

to regulate and manipulate the propagation of elastic (or acoustic) waves.  

 

Figure 3: Schematic of periodic materials with different configurations. (a) 3D PC, (a') 2D PC for bulk waves, 

(b) 2D PC for surface waves, (c) PC for Lamb waves (2D) (Assouar et al, 2015). 

The importance of the phononic crystals is the existing of band gabs (filtering property) in their 

structures (see Figure 4) which makes it possible to prevent the mechanical waves (i.e., acoustic 

and elastic waves) to propagate in a certain frequency range (Guillén-Gallegos et al,2019). The 

unique existing connection between both periodic materials and phonon physics has gained a 

substantial upgrade by introducing phononic crystals. An acoustic (or elastic) metamaterial, on 

the other hand, is also (usually) a periodic material with the added advantage of local resonance, 

or possibly other features, that can allow “unusual” dynamical behaviour, such as negative 

refraction or negative group velocity. In addition, metamaterials show an important foundation 

in electromagnetics, and the disciplines of acoustics and electrodynamics have been steering a 

parallel path in the improvement of this highly unique class of materials. 

 

Figure 4: Simulated-phononic-band-structure-for-a-phononic-band-gap-material (Becker and Becher, 2017). 
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Phononic crystals and their optical counterpart, the so-called photonic crystals are now well-

known for their ability to control, guide, and manipulate the propagation of acoustic and optical 

waves. These properties are fundamentally related to the existence of band gaps in their band 

structure which providing the possibility of localised modes and confined acoustic and optical 

waves (Penne and Djafari-Rouhani, 2019). As mentioned earlier, a remarkable feature of 

phononic materials research is the wide interest across disciplines. While research in composite 

materials and periodic structures has become the focus among civilians and mechanicals, the 

concept of artificial periodicity has also been especially attractive in the fields of 

electromagnetism and photonics (Elachi, 1976). The concept of photonic crystal was 

discovered by (Yablonovitch and John,1987) which quickly emerged for acoustic or elastic 

waves, which was subsequently called as a phononic crystal (Yablonovitch and John, 1987). 

  

Figure 5: Fabrication of a simple cubic phononic crystals with 3mm lattice constant consisting of (a) three 

cylindrical holes; (b) rectangular scaffold; and (c) corner balls connected by cylindrical beams (Google image). 

 

Figure 6: (a)Schematics of phononic crystal of different dimensionalities. (b) An example of phonon band 

structure. The orange area marks the forbidden band gap. (c) Examples of phononic crystals efficient at different 

wavelength scales (Zheng, 2017). 
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In the last twenty years, wave propagation in mechanical meta-materials and their applications 

in different areas of structural and mechanical engineering have gained an increasing interest. 

Many different phononic composites and structures have been designed and tested with the aim 

of achieving and controlling several innovative dynamical phenomena, such as frequency 

filtering, negative refraction, and non-reciprocal propagation. 

 Shmuel and Band (2016) showed that the frequency spectrum of two-component elastic 

laminates admits a universal structure, regardless of the particular physical attributes and 

periodic-cell shape. They also referred that we can rigorously derive the maximal width, the 

predicted width, and the density of the band-gaps ranges of frequencies at which waves cannot 

propagate thanks to the structure's compactness as illustrated in Figure 7(d). Specifically, they 

discover that these band-gaps' density is a characteristic shared by all laminate types. Following 

are guidelines for customizing laminates to meet required spectrum attributes. They 

demonstrated that different finitely deformed laminates have the same compact structure in 

their frequency spectrum as well.  

 

Figure 7: (a) A laminate comprising two alternating layers, repeated periodically in direction n. (b) Propagating 

waves.(c) Attenuating waves. (d) Representative band structure of exemplary laminate. Colored regions donate 

band-gabs (Shmuel and Band ,2016). 

Another feature for wave propagation in mechanical meta-materials which is a negative 

refraction has been studied by (Srivastava, 2016). They have shown that it is possible to have 

a purely negatively refracted signal in the laminate that can be used to steer beams over large 

angles for small changes in the incident angles. Morini et al (2019a) also studied negative 

refraction in quasi-crystalline multi-layered metamaterials generated according to Fibonacci 

sequence. They have shown that with a trend that rises monotonically with increasing index, 

Fibonacci laminates can transmit negatively-refracted waves over a larger range of incidence 

angles; in certain circumstances, negative refraction is possible at any incidence angle. 
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Non-reciprocal wave propagation in discretely modulated spatiotemporal plates was studied by 

(Riva et al, 2020). They applied generalized Plane Wave Expansion Method (PWEM) to study 

a spatially discrete and temporally continuous elastic medium which embodies non-reciprocal 

capabilities. They computed group velocity plots and directivity, which are utilised to predict 

directional and non-reciprocal phenomena at specific frequencies. Theoretical solutions have 

been compared to numerical findings, proving that the generalized Plane Wave Expansion 

Method is suitable to describe wave propagation properties of discretely space-time modulated 

systems. 

Recently, elastodynamics of composite beams following a quasi-periodic pattern have gained 

considerable attention (see e.g, Gei (2010); Sorokin (2019); Pal et al (2019); Xia et al (2020)). 

In particular, the non-standard dispersive properties of a class of two-phase periodic structured 

rods whose unit cells are generated according to the Fibonacci substitution rule based on the 

primary sequence commonly known as golden mean (GM) have been presented (Gei, 2010; 

Morini and Gei, 2018; Morini et al., 2019b). This class belongs to the subset of quasi-

crystalline media (Poddubny and Ivchenko, 2010) and portions of Floquet-Bloch frequency 

spectra of its members display a self-similar pattern which scales according to factors linked 

to an invariant function, the so-called Kohmoto’s invariant (Kohmoto and Oono, 1984). 

 All developments in past research in the field of wave propagation in quasi-periodic generated 

phononic structures, especially those related to the presence of frequency band gabs, have made 

it necessary to study the properties of wave propagation in these structures deeply.  In this 

thesis, I will study the dynamical properties of another type of quasi-crystalline-generated 

waveguide, namely, that composed of elementary cells conceived by adopting a generalized 

Fibonacci substitution rule based on the binary sequence commonly known as silver mean 

(SM). Considering harmonic axial wave propagation, I will show that the corresponding 

Floquet-Bloch dynamic spectra can be fully determined by studying the behavior of the traces 

of the transfer matrices of three ‘adjacent’ elementary cells, which are related through recursive 

relationships. These connections allow us to apply the trace-map formalism (Kolar and Ali, 

1989), which provides the geometrical representation of the traces as coordinates of points 

which describe orbits on a surface defined by the Kohmoto’s invariant. Those orbits are studied 

in detail, to find that, for a sub-class of silver-mean (SM) waveguides, they are periodic at 

specific frequencies, called canonical frequencies in analogy to those determined for the 

standard Fibonacci sequence by Gei et al (2020). In particular, there exist three types of 

canonical frequencies and each of them can be associated with a well-defined configuration of 

the elementary cell called, likewise, canonical configuration.  
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Each of the three families of canonical configurations is characterized by self-similar properties 

of the layouts of stop and pass bands, a feature that can be linked to the periodic orbits on the 

invariant surface. By means of a linearization procedure of the trace map, we obtain analytical 

scaling factors governing the different self-similar ranges of the spectra for all three families 

of canonical rods. The scaling factors could be used to predict, design and optimize the unique 

filtering properties of a two-phase silver-mean generated structured rods. 

This thesis also focuses on the effects of the axial pre-stress on the dispersion diagram of quasi-

crystalline-generated waveguide whose elementary cells are built based on generalized 

Fibonacci substitution rule based on the primary sequence commonly known as golden mean 

(GM) by considering the propagation of a flexural wave in pre-stressed quasi-crystalline beam.  

1.2 Aim and objectives 

This project aims to investigate the dynamical properties of one-dimensional phononic quasi-

crystalline structures whose elementary cell are generated according to Fibonacci substitution 

rule. The focus is on infinite two faces bar composed of the repetition of the elementary cells 

designed by adopting generalised Fibonacci substitution rules, some of which represent 

examples of one-dimensional quasi-crystals. Their dispersive features and stop/pass band 

spectra are computed and analysed by imposing Floquet–Bloch conditions and exploiting the 

invariance properties of the trace of the relevant transfer matrices.  

I will demonstrate that an invariant function of the circular frequency, known as the Kohmoto's 

invariant, governs self-similarity (regular pattern of pass/stop band diagrams) and scaling of 

the stop/pass band layout within specified frequency ranges at increasing generation index for 

a family of generalized Fibonacci substitution rules, which correspond to the so-called precious 

means. The existence of specific frequencies, referred to as canonical frequencies, connected 

to closed orbits on the geometric three-dimensional representation of the invariant is also 

explained by the Kohmoto's invariant. 

Morini and Gei studied the propagation of axial wave in one-dimensional bi-phase quasi-

crystalline rods whose elementary cell produced according to Fibonacci Golden Mean (GM) 

sequence. The main focus of this study has been on the characteristics of the stop and pass band 

arrangements that are obtained in the same frequency range for various sequence indices. 

Their research's primary finding illustrates how an invariant function of the circular frequency 

known as the Kohmoto's invariant contributes to the determination of those characteristics. 

Despite a few attempts (Gei, 2010; Morini and Gei, 2018; Zhao et al, 2013) to investigate the 

dispersion properties of elastic Fibonacci generated waveguides, the understanding of these 

scaling phenomena for quasicrystalline and general quasiperiodic structures has not yet been 
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satisfactorily addressed in mechanics. Therefore, research is needed to identify the fundamental 

characteristics of dynamic spectra and offer the essential direction for their potential 

application in the creation of innovative architectural materials with readily controllable stop 

and pass band topology. 

This thesis will focus primarily on the propagation of axial waves in Silver Mean (SM) 

structures. In addition, I will study the flexural waves in multi supported beam generated 

according to the generalised Fibonacci Golden Mean sequence. 

Since this work is a continuation of what (Morini and Gei, 2018) have achieved for axial waves 

in Golden Mean rods and what (Gei, 2010) has done for flexural waves in multi supported 

beam, this work will follow the same pattern that Gei and Morini followed. Therefore, the 

objectives throughout this work are summarized in the following 

• to follow Fibonacci sequences to create quasiperiodic quasi-crystalline structures.  

• to provide a general framework to analyse axial wave propagation of quasi-crystalline 

generalized Fibonacci rods and also for flexural wave of multi supported quasi-crystalline 

beams.  

 • to highlight the role of trace mapping and that of an invariant function, the Kohmoto’s 

invariant, in determining the properties of harmonic dynamics of such structures.  

• to study the scaling properties of the dynamic spectra depending on the features of the 

Kohmoto’s invariant. 

• to investigate the occurrence of ultra wide stop bands occurring in the dynamic spectra whicg 

is can be useful in semiconductors.  

• to introduce a special class of quasi-crystalline structures, named canonical structures, that 

display special conservation properties in the stop/pass band diagram. 

• to introduce some properties at non canonical frequencies. 

• to illustrate the role of the pre-stress on the dispersion diagram and Kohmoto’s invariant for 

flexural waves. 

The results obtained by this work give broader options for designers of acoustic devices like 

waveguides and acoustic filters. 

1.3 Methodology 

To achieve the above objectives, the following methodology was adopted 
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1. Reviewing previous work, with a particular focus on the findings of Gei (2010) and Gei 

and Morini (2018). 

2. Follow Morini and Gei’s approach in finding the dynamical properties of quasi-

crystalline-generated structures as follows  

 Deriving all the equations of axial and flexural waves in one-dimensional quasi-

crystalline rods and beams. 

 Analyse the properties of the trace of the transfer matrix (𝑡𝑟𝑇𝑖) associated with 

Fibonacci silver  mean sequences. 

 Analyse the scaling and self-similarity of the stop/pass band layout for SM rods 

 studying the role of pre-stress in influencing the positions of pass and stop band in 

the dispersion diagram of GM pre-stressed beams 

3. The results which are dispersion diagrams will be achieved using the MATLAB 

software by obtaining the trace of the transfer matrix. 

1.4 Thesis structure 

This thesis is organized as follows:  

Chapter 2 introduces the concept of phononic periodic structure. The Floquet-Bloch theory will 

be presented in this chapter. At the end of this chapter, I will present some examples of 

applications of Floquet-Bloch theory. 

Chapter 3 is about Quasi-crystalline-generated periodic structure. The chapter focuses on the 

Fibonacci sequences (Golden, Silver, and Bronze mean sequence: also called precious means) 

which are a typical examples of a one-dimensional quasi-crystalline pattern. 

Chapter 4 analysis axial wave propagation in silver mean rods, in this chapter, the Floquet-

Bloch theorem is applied to obtain the dispersion diagram for silver mean rod. I also studied 

the properties of trace of the related matrix (𝑡𝑟 𝑇𝑖) and how these features affect the frequency 

spectrum of silver mean rods. A nonlinear map determining the evolution of the auxiliary 

variable  𝑥𝑖 for precious means structures and the so-called Kohmoto’s surface for this map are 

found. The canonical structure which is a class of structure characterized by closed orbit is 

presented. 

Chapter 5 gives a brief comparison of the behaviour of harmonic axial waves in Golden 

structures with their Silver counterpart. 

Chapter 6 describes the effects of the axial pre-stress on dispersion diagrams for flexural 

vibration. The structure in this chapter is a quasiperiodic multi-supported pre-stressed beam 

generated according to the Fibonacci golden sequence. 
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Chapter 7 provides a summary of the entire thesis and gives some suggestions for future 

research. 

 

 

 

Figure 8: Thesis structure. 
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2.1 Overview 

In this chapter, I will introduce the concept of periodic structures and how waves propagate in 

these structures which is very useful in many applications like filters and waveguides. 

 I will then introduce the Floquet-Bloch theory which is a mathematical theory that enables us 

to study elastic wave propagation in periodic structures and as examples of applications of 

Floquet-Bloch theory, we propose different 1-dimensional discrete systems. In details, this 

chapter will show how the periodic structure can be generated and find solution to waves 

propagation in periodic structures. 

 

 

Figure 9: Chapter two key word. 

2.1 Periodic structures 

A periodic structure is a structure that is composed of the repetition of the periodic cell, as 

illustrated in Figure 10, where the periodic cell is sketched in red. The repetition of the periodic 

cell N times will lead to the creation of the entire structure. Reviewing the research carried out 

in the field of wave propagation in periodic structures, (Mead, 1996) defined a periodic 

structure as a structure formed mainly of two or more identical structural components 

connected together to compose a continuous structure. In a periodic structure, analyzing one 

subsystem (elementary cell or unit cell) is sufficient to deduce and understand wave 

propagation in the entire structure. This feature made the periodic structures easy to study their 

dynamical behaviour comparing with other non-periodic structures. 

.  
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Figure 10: 3.D periodic structure, the red colour represents the elementary cell of the entire structure (Collet et 

al, 2011). 

Periodic structures are found in many systems and materials. The regular arrangement of atoms, 

particles, or unit cells (periodic elements) which are connected together end-to-end or side-by-

side in the system as illustrated in Figure 10 will produce a periodic system. The feature of 

controlling wave propagation in these systems has contributed to the growth of photonics and 

phononic fields. In addition, it is the periodic structure that allows interested scientists in 

photonics and semiconductors to take advantage of each other’s preceding work. 

All systems with periodic construction are widely spread in both nature and engineering 

systems around us such as multi-storey buildings, satellite solar panels and aircraft fuselage, 

etc. From the engineering point of view, the major point of these types of structures stems from 

the fact that it is easy to manufacture their structures, their ability to withstand high 

temperatures, high strength-to-weight ratios, and significant impact (Gibson and Ashby, 1999). 

In addition, structures with periodic features provide advantages in wave propagation 

characteristics which is very useful in filters and waveguides as illustrated in Figure 11. Given 

the vital role played by periodic structures, it is important to model and understand wave 

propagation phenomena in these structures (Ruzzene et al., 2003)  

 

Figure: 11 Examples of the periodic structures. 
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In the field of periodic structures, we can have several directions of periodicity, we can have 

1-D (periodic in one dimension such as rods and beams), 2-D (periodic in two dimensions such 

as flat and plates), or even 3-D (periodic in three dimensions such as curved shells) periodic 

structures (Mead, 1996) as illustrated in Figure 12. The structures generated according to 

Fibonacci sequence are one-dimensional structures. Therefore, this thesis will focus on 

mechanical wave propagation in one-dimensional structures which is periodic in one direction.  

 

Figure 12: Periodic structures in several directions of periodicity. 

Periodic materials modeling theories are not just restricted to the engineering area where 

physicists and the like were concerned with wave propagation behaviour in periodic materials. 

All these efforts help in understanding the properties of periodic material (Farzbod, 2010). 

Engineers are primarily interested in the propagation of waves in periodic structures, such as 

sandwich beams and honeycomb panels for airplane fuselages, while physicists study the wave 

phenomena taking place in a microscopic periodic medium such as electron and phonon 

transport in crystals. These two approaches by engineers and physicists developed 

independently and in parallel until fairly recently, have both been referred to as the Bloch 

analysis (Farzbod, 2010). In the physical sciences, wavelike (hyperbolic) partial differential 

equations arise, which are parametrized by one or more periodic coefficients (Brillouin, 1946). 

Generally, these equations have often the form ∇2Ψ(𝑟) + 𝜔2 𝐹(𝑟)Ψ(𝑟) = 0 in which Ψ(𝑟) is 

a field vector at position 𝑟 and 𝐹(𝑟) is a periodic function. Floquet studied this equation when 

stated in one dimension and 𝐹(𝑟) is the cosine function. Bloch also solved a similar equation 

in quantum mechanics. In quantum mechanics, Bloch also solved an equation like this one. 

(Brillouin, 1946) solved the three-dimensional wave equation using the Bloch theorem. Since 

then, Bloch's approach has been applied to engineering problems as well as other physical 

sciences, such as acoustics and the study of sonic crystals (Miyashita, 2005). 
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The first work on a periodic one-dimensional lattice was a result of Newton’s attempt to study 

and derive the formula for the velocity of sound in air.  Since the differential equations at that 

time were not familiar, a natural approach would have consisted in discretising the continuous 

media supporting the propagation of sound into a chain of lumped masses that are connected 

by a lumped spring where 𝜌, 𝐸, and A are the mass density, Young modulus, and cross-section 

area of the system respectively. This process, which is shown in Figure 13, leads to a periodic 

system, which is known to have a more complex wave behaviour than the original continuous 

system (Hussein et al., 2014).  

 

Figure 13: Discretization of a rod into a spring-mass system (Hussein et al, 2014). 

The same system was later investigated by John Bernoulli and his son Daniel, who, in a series 

of studies starting in 1727, demonstrated that a system of N masses is characterized by N modes 

of vibration and associated frequencies, and essentially formulated the principle of 

superposition. Subsequent studies included the estimation of the velocity of wave propagation 

along one axis of a cubic lattice structure as a function of wavelength. Thanks to these efforts, 

wave dispersion has been seen for the first time from the estimation of the phase velocity’s 

dependency on frequency.  

In the field of the periodic structure, the equations of motion can be minimized to the lowest 

number of degrees of freedom utilizing the technique of Floquet–Bloch thus solving the wave 

equation on the boundaries of the unit cell. 

Many scientists have used Floquet–Bloch theory which is a technique to solve wave equations 

and derive dispersion relations. In section 2.2 we will introduce the fundamental basics of 

Floquet–Bloch theory. 

 2.2 Floquet–Bloch theory 

Floquet-Bloch’s (F-B) theorem presents an effective and powerful strategy to analyse the 

behaviour of wave propagation in periodic systems. Floquet develop a theory for 1-D partial 
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differential equations with periodic coefficients obtained by Floquet (1883). Later Bloch 

generalised the results of Floquet to 3-D systems. This generalisation obtained a great 

description of the wave function associated with an electron moving through a periodic crystal 

lattice (Bloch, 1928).  

F-B technique has become widely applied to compute the dispersion properties of periodic 

systems and predict their wave modes. Waves can propagate in any periodic systems (1-D, 2-

D, 3-D, simple, complicated, etc.), but the equations related to waves propagation will be more 

complicated for 2-D and 3-D than 1-D periodic systems where we have to impose more than 

one directions. This thesis relies on Fibonacci sequences which are 1-D sequences in 

constructing the structures in which wave propagation is required to be studied.   

 Floquet–Bloch theory could deal with a representative cell describing the wave dispersion for 

the entire system. The F-B theory reduces the problem to calculations performed in the so-

called unit cell, subject to certain specific boundary conditions derived from the F-B theory 

and elastodynamics (Collet et al, 2011). In this thesis will specify this theory to 1-D periodic 

systems.  

Now I will introduce the basics of F-B theory and show how the concept of periodicity can be 

applied to introduce and derive a dispersion diagram. 

Generally, Floquet-Bloch theory provides a strategy to obtain a set of solutions of a linear 

ordinary equations system of the form 

F(𝑥)= M(𝑥) f (𝑥)                                                                                                                 (1) 

where f (𝑥) is the solution vector, and M is the transfer matrix which give us the transmission 

of the state vector at the cell output as a function of state vector at the input of the cell. 

Let us apply this concept to the analysis of axial wave propagation problems in infinite periodic 

material. To simplify the idea of this theorem, let us consider an infinite continuous rod 

consisting of equidistant atoms as illustrated in Figure 12 where each atom was represented by 

a round point having mass m while the spring constant k represents the wave vector. 

F-B theorem provides an effective way to find a solution to the linear ordinary equations in the 

form 

𝜑(𝑥) = 𝑢𝑘(𝑥)𝑒𝑖𝑘𝑥                                                                                                                 (2) 

Given the symmetricity of the atoms, at any distance 𝜑(𝑥) will be written  as follows.  

 𝜑(𝑥 + 𝑎) = 𝑢𝑘(𝑥)𝑒𝑖𝑘𝑥𝑒𝑖𝑘𝑎 
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Or  

 𝜑(𝑥 + 𝑎) = 𝜑(𝑥)𝑒𝑖𝑘𝑎                                                                                                         (3) 

This equation gives the wave function 𝜑(𝑥)  at any distance where 𝑘 is wave vector and 𝑢𝑘(𝑥) 

is a periodic part of wave function depends on wave vector (𝑘 ) sometimes called Bloch wave. 

The results obtained are dispersion diagrams describing the propagation of the range of 

frequencies corresponding to waves along the structure (pass band). In parallel, these diagrams 

also clarify the width of the stop band called also band gap in which the range of frequencies 

associated with waves cannot propagate along the body (Gei, 2010). 

In order to obtain Floquet–Bloch dispersion relation, we will use transfer matrix method. 

2.3 Transfer Matrix Method 

In this section we present and discuss a mathematical technique for the analysis of the wave 

propagation in one-dimensional structures. The method depends on the transfer matrix and is 

widely known as the transfer matrix method. 

Generally, transfer matrix is a matrix providing us the output vector state as a function of input 

vector state. This matrix can be different according to system used. In other words, to derive 

the transfer matrix for periodic rods, displacement and axial force at the right-hand boundary 

of the elementary cell, respectively 𝑢𝑟 and 𝑁𝑟, have to be identified in terms of those at the 

left-hand boundary, respectively 𝑢𝑙 and 𝑁𝑙. For periodic beams, the transfer matrix depends on 

the rotation and its derivative at the boundaries of the cell. Transfer matrix contains all the 

properties that govern the waves propagation inside each phase of the system. 

Transfer Matrix Method (TMM) is one of the most powerful methods of the contemporary 

theoretical physics. This method offers an accurate solution for the one-dimensional lattice 

(Myshlyavtsev, 2001).  

The beginnings of using transfer matrix were in the early 1960s, as a result to joint effort 

between University of Southampton and Y. K. Lin’s group at the University of Illinois. 

 Lin et al (1969) were pioneers in the field of the application of transfer matrices to the study 

of stiffened plate vibrations and periodic structures, emphasizing that the transfer matrix 

applies strictly to one-dimensional or quasi-one-dimensional systems.  

In the University of Southampton, Mercer and Seavey (1967) confirmed that transfer matrices 

can be used to compute natural frequencies and modes of stiffened plates. 

The Method is applied widely for the dynamic analysis of engineering structures analysis which 

is useful in the treatment of periodic structures. In general, the behaviour of the entire structure 
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can be described through the analysis of a single elementary cell, together with boundary 

conditions (Stephen, 2006). 

The transfer matrix method was used to analysis the wave propagation of quantum particles, 

such as electrons (Kirkman and Pendry, 1984; Mello et al,1988; Ando,1989; Beenakker, 1997; 

Markos, 2006; others) and electromagnetic (Pendry and MacKinnon, 1992) acoustic (Morini 

and Gei, 218) and elastic waves. Once this technique is developed for one type of wave, it can 

easily be applied to any other wave problem.  

2.3.1 Multiplication of Transfer Matrices 

Consider a more complicated which is a unit cell of an infinite structure as illustrated in Figure 

14 where Z donates the longitudinal axis. The general solution Ψ𝑧 of the Schrödinger equation 

for the entire structure will be as follows  

 

Figure 14: Representative of a unit cell of a periodic structure. 

[
Ψ𝑏 (+)

Ψ𝑏 (−)
] = M𝐴 [

Ψ𝑎  (+)

Ψ𝑎  (−)
]                                                                                                   (4) 

and 

[
Ψ𝑐 (+)

Ψ𝑐 (−)
] = M𝐵 [

Ψ𝑏 (+)

Ψ𝑏 (−)
].                                                                                                  (5) 

By combining the Eq. (4) and (5), we will have 

[
Ψ𝑐 (+)

Ψ𝑐 (−)
] = M𝐵M𝐴 [

Ψ𝑎 (+)

Ψ𝑎 (−)
].                                                                                              (6) 

As discussed above, we can express the entire system as represented by the transfer matrix 

M𝐴𝐵=M𝐵M𝐴                                                                                                                         (7) 

Since the matrix M𝐴𝐵 is the transfer matrix of the entire system, its matrix elements determine 

the transmission and the reflection amplitudes for the entire system. This allows us to determine 
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the transmission and the reflection amplitudes of the whole system Figure 15 in terms of 

elements of the transfer matrices of the system’s constituents. 

  

Figure 15: Transmission of electron through the entire system. 

Based on above, the Eq. (6) can be written as follows 

[
Ψ𝑐 (+)

Ψ𝑐 (−)
] = M𝐵𝐴 [

Ψ0 (+)

Ψ0 (−)
]                                                                                                (8) 

 where 𝑎=0                       

The superscripts + (–) indicate to the direction of propagation: + indicates that the electron 

moves from left to right in the positive direction and − means that the electron propagates from 

right to left as illustrated in Figure 16 Thus, Ψ𝐿(z)  is the wave function of the electron left of 

the sample, propagating to the right; 

 

Figure 16: a typical scattering experiment. Incident waves 𝛹𝐿
+(𝑧) and 𝛹𝑅

−(𝑧)  are scattered by the sample. 

Outgoing waves 𝛹𝐿
−(𝑧) and 𝛹𝑅

+(𝑧)  consist of waves transmitted through the sample as well as waves reflected 

from the sample. 

2.3.2 Propagating States 

Consider a system with time-reversal symmetry. Then det 𝑀 = 1 and 𝑡𝑟 (𝑀) is real.  

The two eigenvalues 𝜆1 and 𝜆2 of the transfer matrix are related by  

𝜆2 = 1/𝜆1                                                                                                                         (9) 

We will distinguish two cases. In the first case |𝜆1|=1. Then 𝜆1 can be written as  
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 𝜆1 = 𝑒𝑖𝑞𝑙                                                                                                                          (10) 

Where 𝑞 is the wave vector which can be  being real. As 𝜆2 = 𝑒−𝑖𝑞𝑙 which lead to 𝑡𝑟 (𝑀) =

𝜆1 +
1

𝜆1
= 2 cos 𝑞𝑙 

Note that |𝑡𝑟 (𝑀)| ≤ 2                                                                                                      (11) 

In the second case, we have |𝜆1| ≠ 1. Then we have |𝑡𝑟 (𝑀)| = |𝜆1 + 𝜆1
−1| = 2 cos 𝑞𝑙 > 2. 

Thus, we derive that Eq. (11) represents a sufficient condition for the existence of the 

propagating solution. Condition (11) is very useful in the analysis of complicated long systems. 

Following the Eq. (7), we can calculate the transfer matrix as a product of transfer matrices of 

individual subsystems. Then, Eq. (11) allows us to determine unambiguously if a given solution 

is propagating or not. In this way, we can estimate the entire spectrum of propagating solutions 

of the system. 

The general solution of the infinite system is connected to the Floquet–Bloch as follows 

det [𝑀𝑖 − 𝑒 𝑖𝑘𝐼] = 0                                                                                                           (12) 

where 𝑖 denotes the imaginary unit  and 𝐼  denotes the n × n identity matrix .                                               

The dispersion relation (12) gives the solution of complete Floquet-Bloch spectrum, which 

allows to obtain the stop/pass band distribution of the periodic structure. 

Dispersion diagrams evaluated through the F-B technique are crucial in providing 

pass/stopband diagrams and these are important properties used to control wave propagation 

in periodic structures. According to different 1-D systems, we have a different expression of 

the determinates of the Floquet–Bloch will present them in the following section. In the rest of 

the next section, we will give different one-dimensional discrete systems as examples of the 

application of the Floquet-Bloch theory. 

2.4 One-dimensional discrete structure 

In this section, we will show how we can solve the equation of motion for undamped one-

dimensional discrete systems using the Floquet-Bloch theory.  

2.4.1Undamped monoatomic one-dimensional lattice material  

Let us consider the discretised elastic rod as illustrated in Figure 17 in the form of a non-

dissipative chain of equidistant masses (here, masses represent lattice atoms) linked by linear 

elastic springs. The symbols of 𝑑 and 𝑘𝑠 represent the distance between the masses and spring 

constant respectively and 𝑚  is the mass of the material. 
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By applying Newton’s second law in the case of the absence of an external load to the motion 

of the 𝑛-𝑡ℎ mass, the dynamic behaviour of the resulting spring-mass chain can be expressed 

by the following equation of motion 

𝑚�̈�𝑛 + 2𝑘𝑠𝑢𝑛 − 𝑘𝑠𝑢𝑛−1 − 𝑘𝑠𝑢𝑛+1 = 0                                                                             (13) 

 

Figure 17: Undamped monoatomic lattice material. 

Given the periodicity of the system, the displacement of any two neighbouring masses or cells 

can be described by Floquet-Bloch (F-B) theorem (Brillouin, 1953) in the following form  

𝑢𝑛 =  𝑢𝑛−1 𝑒𝑖𝑘𝑑  or  𝑢𝑛−1 =  𝑢𝑛 𝑒−𝑖𝑘𝑑  and 𝑢𝑛+1 =  𝑢𝑛 𝑒𝑖𝑘𝑑                                      (14)                                                                     

Let us find a solution of the form  

𝑢𝑛 =  𝑢𝑛̅̅ ̅𝑒𝑖𝜔𝑡                                                                                                                  (15) 

This equation represents a traveling wave, in which all the masses vibrate with the same 

frequency 𝜔 at the same amplitude 𝑢𝑛̅̅ ̅ and have wavenumber 𝑘. 

Now substituting Eq. (14) and (15) into Eq. (13), we obtain  

𝑚2 ∗ 𝜔2 𝑢𝑛̅̅ ̅𝑒𝑖𝜔𝑡 = 𝑘𝑠 (2𝑢𝑛̅̅ ̅𝑒𝑖𝜔𝑡 − 𝑢𝑛̅̅ ̅𝑒𝑖𝜔𝑡𝑒−𝑖𝑘𝑑 − 𝑢𝑛̅̅ ̅𝑒𝑖𝜔𝑡 𝑒𝑖𝑘𝑑).                                  (16) 

Eq. (16) can be simplified and alternatively written in the form of 

𝑚 ∗ 𝜔2  = 𝑘𝑠  (2 − 𝑒−𝑖𝑘𝑑 −  𝑒𝑖𝑘𝑑) = 2𝑘𝑠(1 − 𝑐𝑜𝑠 𝑘 𝑑)   

Or  

 𝑚 ∗ 𝜔2  = 4𝑘𝑠(𝑠𝑖𝑛2 𝑘 𝑑

2
)                                                                                                  (17) 

Leading to the final formula of the dispersion relation for the frequency which is as follows 

𝜔 = √
4𝑘𝑠

𝑚
∗ sin (

𝑘 𝑑

2
).                                                                                                         (18) 
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Eq.(18) provides a relation between frequency of vibrations 𝜔 and wavenumber 𝑘, and 

therefore represents the dispersion relation the system illustrated in Figure 17. A non-

dimensional form of the dispersion relation is introduced by defining the non-dimensional 

frequency. The dispersion diagram is a curve that represent the propagation of wave modes. 

The dispersion curve could be presented indifferent domain: frequency vs wave length; 

frequency vs wave number; group velocity vs frequency. 

 Let us introduce a non-dimensional frequency 

 Ω = 
𝜔

𝜔0
, where 𝜔0 = √

𝑘𝑠

𝑚
  

Ω2 = 2 ∗ (1 − 𝑐𝑜𝑠 𝑘 𝑑)                                                                                                         (19) 

The dispersion relation expressed by Eq. (19) has several important properties as follows.  

2.4.1.1 The symmetry of the dispersion relation 

The dispersion diagram is symmetric about 𝑘𝑑=0 and periodic with period of 2π. The behaviour 

of the relation is in the period of  𝑘𝑑 ∈ (−𝜋, +𝜋) . 

 

 

Figure 18: Dispersion relation for the 1D mass/spring system. 

 

The range of wavenumbers determining the period of the dispersion relation, i.e., 𝑘𝑑 ∈ [−π, 

+π], is known as “First Brillouin Zone” (FBZ), which is normally defined by the reciprocal 

lattice (Hussein et al, 2014). Given the symmetry of the dispersion relation, we can fully 

characterise the dispersion properties of the lattice by only studying half of the FBZ, i.e., 𝑘𝑑 ∈ 

[0, +π], which defines the “Irreducible Brillouin Zone” (IBZ). More details can be found in 

(Hussein et al, 2014). 
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2.4.1.2 Propagation and attenuation bands (pass/stop band) 

The dispersion relation solved by frequency against wavenumber provides a solution in a 

limited range, i.e., for Ω ∈ [0, 2]. For Ω > 2, there is no corresponding real-valued wavenumber 

(𝑘), leading to stop propagating of harmonic waves. This means that the range of Ω > 2 

therefore belongs to stop band also known as the attenuation range. In contrast, when Ω located 

between 0 and 2, the wave will propagate without attenuation. 

2.4.2 Undamped diatomic 1D-lattice material 

Now we consider a discretised elastic rod as illustrated in Figure 19 which is one-dimensional 

lattice composed of two different masses 𝑚1 and 𝑚2 (here represent atoms) connected by linear 

elastic spring stiffness 𝑘𝑠  in each unit cell with the distance between two adjacent masses 𝑑. 

It appears that the diatomic lattice possesses important features which is different from the 

monoatomic lattice. 

 

Figure 19: Undamped diatomic 1D lattice material. 

Since we have two different masses in diatomic lattice, we have to derive two equations of 

motion using the similar way as for monoatomic lattice. 

{
𝑚1�̈�𝑛 +  2𝑘𝑠𝑢𝑛 − 𝑘𝑠𝑢𝑛−1 − 𝑘𝑠𝑢𝑛+1 = 0 

𝑚2�̈�𝑛+1 +  2𝑘𝑠𝑢𝑛+1 − 𝑘𝑠𝑢𝑛 − 𝑘𝑠𝑢𝑛+2 = 0   
                                                               (20) 

Floquet-Bloch theorem in periodic system requires 𝑢𝑛+2 =  𝑢𝑛 𝑒𝑖2𝑘𝑑 and 𝑢𝑛+1 =  𝑢𝑛−1 𝑒𝑖2𝑘𝑑                   

Let us find solutions of the form  

 {
𝑢𝑛 =  𝑢1̅̅ ̅𝑒𝑖𝜔𝑡

𝑢𝑛+1 =  𝑢2̅̅ ̅𝑒𝑖𝜔𝑡
            

Through a little algebra, the Eq. (20) can be also written in the matrix form as follows 

[
𝑚1𝜔2 + 2𝑘𝑠 −𝑘𝑠(1 + 𝑒−𝑖2𝑘𝑑)

−𝑘𝑠(1 + 𝑒𝑖2𝑘𝑑) 𝑚2𝜔2 + 2𝑘𝑠

] [
𝑢1̅̅ ̅
𝑢2̅̅ ̅

]=[
0
0

].                                                               (21) 

 We will have a nontrivial solution only if the determinant of the matrix is zero.  
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𝑚1𝑚2𝜔4 + 2𝑘𝑠𝜔2(𝑚1 + 𝑚2) + 4𝑘𝑠
2 - 2𝑘𝑠

2(1 + 𝑐𝑜𝑠 𝑘 2𝑑)=0                                        (22) 

The relation between 𝜔  and  𝑘  which is the dispersion relation of a diatomic one dimensional 

atomic is presented in Figure 20 using MATLAB where the gaps between the red line represent 

the domain where the range of frequency cannot propagate (band gaps).. 

 

Figure 20: band gaps (cut-offs in the horizontal red line) in dispersion curve of 1D diatomic lattice assuming 

𝑚2 = 𝑚1 = 1, 𝑘𝑠 = 1. 

Let us consider a solution depending on the wavevector in the form  

 {
𝑢𝑛 =  𝑢1̅̅ ̅𝑒𝑖𝑞𝑛𝑑 ∗ 𝑒−𝑖𝜔𝑡

𝑢𝑛+1 =  𝑢2̅̅ ̅𝑒𝑖𝑞(𝑛+1)𝑑 ∗ 𝑒−𝑖𝜔𝑡
                                                                                       (23) 

Where 𝑞 is the wavevector and substituting this solution to Eq. (23), we will have this matrix 

[
2𝑘𝑠 − 𝑚1𝜔2 −2𝑘𝑠 cos 𝑞𝑑

−2𝑘𝑠 cos 𝑞𝑑 2𝑘𝑠 − 𝑚2𝜔2] [
𝑢1̅̅ ̅
𝑢2̅̅ ̅

]=[
0
0

]                                                                        (24) 

a nontrivial solution will be satisfied only if the determinant of the matrix is zero.  

(2𝑘𝑠 − 𝑚1𝜔2) ∗ (2𝑘𝑠 − 𝑚2𝜔2) − 4𝑘𝑠
2 𝑐𝑜𝑠2 𝑞𝑑 = 0                                                   (25) 

Solving this quadratic equation to  𝜔2, we will obtain 

𝜔2 = 𝑘𝑠 ∗ (
1

𝑚1
+

1

𝑚2
) ± 2𝑘𝑠√(

1

𝑚1
+

1

𝑚2
)2 −

4∗𝑘𝑠∗ 𝑐𝑜𝑠2 (𝑞𝑑)

𝑚1∗𝑚2
.                                           (26) 

This equation represents the dispersion relation of a diatomic one-dimensional atomic chain 

which has two different solutions corresponding to two different dispersion curves as shown in 

the Figure 21. 

𝜔+
2 = 𝑘𝑠 ∗ (

1

𝑚1
+

1

𝑚2
) + 𝑘𝑠√(

1

𝑚1
+

1

𝑚2
)

2

−
4∗ 𝑠𝑖𝑛2 (𝑞𝑑)

𝑚1∗𝑚2
 .                                              (27)          

  (Referring to optical branch) The boundaries of optical branch are as follows 
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When 𝑞= 0, 𝜔 = √2𝑘𝑠 ∗ (
1

𝑚1
+

1

𝑚2
)

2

 and 𝑞 =
𝜋

2𝑑
, 𝜔 =  √

2𝑘𝑠

𝑚1
                                        

𝜔−
2 = 𝑘𝑠 ∗ (

1

𝑚1
+

1

𝑚2
) − 𝑘𝑠√(

1

𝑚1
+

1

𝑚2
)2 −

4∗ 𝑠𝑖𝑛2 (𝑞𝑑)

𝑚1∗𝑚2
.                                                (28) 

(Referring to acoustic branch) The boundaries of acoustic branch are as follows 

When 𝑞 = 0, 𝜔 = 0 and 𝑞 =
𝜋

2𝑑
, 𝜔 = √

2𝑘𝑠

𝑚2
.       

 

Figure 21: Dispesion curve of 1D diatomic lattice. 

The upper curve is called the optical branch where the frequency directly proportional to the 𝑞 

in a linear relation starting from 𝑞 = 0 up to 𝑞 =
𝜋

2𝑑
. The lower curve represents the acoustic 

branch. The range of wavenumbers determining the period of the dispersion relation, i.e. 

 𝑞𝑑 ∈ [−
𝜋

2𝑑
, +

𝜋

2𝑑
]                                                                                                               

is known as “First Brillouin Zone” (FBZ). The difference between these two branches can be 

easily seen at 𝑞 = 0. 

For the acoustic branch 𝜔 = 0 and 𝑢1̅̅ ̅= 𝑢2̅̅ ̅. This means that the two atoms 𝑚1 and 𝑚2 in the 

elementary cell have the same amplitude and the phase dispersion is linear for small 𝑞.  

Therefore, the molecules vibrate as a rigid body. In contrast, the optical oscillation moves in 

such a way that the centre of mass of an atom remains fixed. The two atoms move in out of 

phase. The frequency of these vibrations occurs in infrared region which is the reason for 

calling this branch as optical. The area between the two dashed blue horizontal lines whose 

boundaries are 𝜔 = ±√
2𝑘𝑠

𝑚1
  and 𝜔 = ±√

2𝑘𝑠

𝑚2
    is  the area where the frequency cannot propagate 

(band gap). A large energy separation between the acoustic and optical modes implies that the 
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ionic bonds between the atoms are very "rigid" and thus "hard" to vibrate leading to band gab 

between the two modes.  

2.4.3 Undamped 1-D diatomic lattice with internal resonator 

Let us consider a diatomic periodic cell in the form of mass-in-mass lattice as illustrated in the 

Figure 22. This lattice consists of two overlapping atoms, let us say primary atoms with 

translational mass 𝑚1  represented as a stiff and rigid ring, and secondary atoms 𝑚2 entered 

inside the primary atoms (rings) in an infinite chain. In addition, the unique degree of freedom 

of the primary atom can be described by displacement 𝑢 of the configurational node 1 while 

displacement 𝑣 is related to the internal inclusion (secondary atom). 𝑘1 represents the elastic 

spring stiffness of the linear interaction between two adjacent cells whereas 𝑘2 is elastic spring 

stiffness that linked the primary atom with secondary atom. This configuration will produce a 

bandgap along the frequency range. 

The bandgaps we have studied for monatomic and standard diatomic lattices in the sections 

above depends on the size of the unit cell. In contrast to that, the internal resonance gaps are 

not related to wavelength, and therefore in principle can be observed at arbitrarily long 

wavelengths / low frequencies. This is the result of interference produced by the interaction of 

scattered and incident waves at the unit cell boundaries, which is the phenomenon often called 

as Bragg scattering. Due to the significant implications of internal resonance bandgaps' 

wavelength independence, numerous investigations have been conducted to put the theory into 

practice. (Liu et al, 2000) have created sonic crystals with spectral gaps that have a lattice 

constant two orders of magnitude less than the relevant wavelength, based on the concept of 

localized resonant structures which lead to applications in seismic wave reflection and 

ultrasonic. Local resonator-based sonic crystals produce significant attenuation bands at 

specific frequencies and perform far better than usual sonic crystals (based only on Bragg's 

scattering) (Hirsekorn et al, 2004).  

 

Figure 22:  Undamped diatomic lattice metamaterial. 
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In the small-amplitude range of oscillations, the secondary atoms play the role of inertial 

resonators, if their linear frequencies are properly tuned with certain wave frequencies of the 

principal atom chain. The equations of motion of the elementary cell in the form of ordinary 

differential equations written as follows  

 

{
𝑚1�̈�𝑛 +  2𝑘1𝑢𝑛 − 𝑘1𝑢𝑛−1 − 𝑘1𝑢𝑛+1 +  𝑘2(𝑢𝑛 − 𝑣𝑛) = 0 

𝑚2�̈�𝑛 +  𝑘2(𝑣𝑛 − 𝑢𝑛) = 0   
                                          (29) 

The free propagation of elastic waves through the 1-D diatomic lattice with internal resonator 

can be described by means of the Floquet-Bloch theory as follows 

𝑢𝑛 =  𝑢𝑛−1 𝑒𝑖𝑘𝑑     and         𝑢𝑛+1 =  𝑢𝑛 𝑒𝑖𝑘𝑑                                                                 (30) 

Let us find a solution of the form    

{
𝑢𝑛 =  𝑢1̅̅ ̅𝑒𝑖𝜔𝑡

𝑣𝑛 =  𝑢2̅̅ ̅𝑒𝑖𝜔𝑡
                                                                                                                  (31) 

Substituting Eq. (30) and (31) into Eq. (31), we will have  

[
𝑚1𝜔2 + 2𝑘1(1 − cos 𝑘𝑑) + 𝑘2 −𝑘2

−𝑘2 𝑚2𝜔2 + 𝑘2

] [
𝑢1̅̅ ̅
𝑢2̅̅ ̅

]=[
0
0

].                                             (32) 

In the case of 𝑘1 = 𝑘2 = 𝑘𝑠 (simple case), a nontrivial solution will be satisfied only if the 

determinant of the matrix is zero. 

2𝑘𝑠
2 − 2𝑘𝑠

2 cos(𝑘𝑑) + 𝑘𝑠𝑚1𝜔2 + 3𝑘𝑠𝑚2𝜔2 + 𝑚1𝑚2𝜔4 − 2𝑘𝑠𝑚2 = 0                             (33) 

Solving this equation allow to obtain a nonlinear dispersion property for resonant lattices. 

𝜔1,2 = ±
(−𝑘𝑠𝑚1−𝑘𝑠(𝑘𝑠𝑚1

2+9𝑘𝑠𝑚2
2+8𝑚1𝑚2−2𝑘𝑠𝑚1𝑚2+8𝑘𝑠𝑚1𝑚2 cos(𝑘𝑑))

0.5

√(2𝑚1𝑚2)
                          (34)  

𝜔3,4 = ±
(−((𝑘𝑠(𝑘𝑠𝑚1

2+9𝑘𝑠𝑚2
2+8𝑚1𝑚2−2𝑘𝑠𝑚1𝑚2+8𝑘𝑠𝑚1𝑚2 cos(𝑘𝑑))

0.5

√(2𝑚1𝑚2)
                        (35) 
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Figure 23: dispersion curve of 1D diatomic lattice with internal resonator. 

The presence of the internal resonators in the unit cell will split the dispersion curve into two 

branches separated by observed bandgap (the straight horizontal blue line in Figure 23). This 

bandgap is centred at the tuning frequency Ω𝑅 (frequency of resonance), over a range which is 

also characterised by the nonzero attenuation parameter (imaginary part of the propagation 

constant). The presence of dissipation in the system will impact the dispersion curve in such a 

way that the two branches to merge into only one curve. 

The frequency of resonance Ω𝑅 can be chosen to obtain attenuation over a certain band, without 

any constraint imposed by wavelength. Indeed, low frequency attenuation requires low 

stiffness and large value of mass, which make a challenge for the implementation of this 

concept. 

2.5 Summary 

This chapter is devoted to introducing periodic structures which can be built in several 

directions. The Floquet-Bloch’s (F-B) theorem is presented which is an effective method to 

analyse the behaviour of wave propagation in periodic systems. The transfer matrix method 

and an example of how to derive it are also presented.  

Two different reasons for having band gabs are presented in three examples of different one-

dimensional discrete systems. The band gaps observed in monatomic and diatomic lattices are 

strictly constrained by the unit-cell dimensions. In contrast, 1-D lattice with internal resonator 

which is a lattice consists of two overlapping atoms which led to a configuration characterized 

by internal resonances centred at the resonant frequency of the oscillators. This produces a 

bandgap in the vicinity of frequency of the oscillators.  
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Chapter 3: Quasicrystalline-generated periodic structure 
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3.1 Overview 

In this chapter I will introduce the term Quasi-crystalline and its presence in nature and other 

fields. Quasicrystals are expected to exhibit unusual properties. Both their elastic and electronic 

behaviour distinguish quasicrystals from other ordinary crystalline metals. Elastic response 

may be studied by measuring the speed of sound waves propagating through the metal. 

Quasicrystalline have many potential applications in several forms. Metallic quasicrystalline 

coatings can be applied by thermal spraying or magnetron sputtering. Quasicrystals can be 

used to develop heat insulation. Quasicrystalline structures can be useful to study the behaviour 

of waves propagation. Generalized Fibonacci sequence (golden ratio, silver ratio, and bronze 

ratio) which is a typical example of Quasi-periodic sequences is presented in detail. One of the 

ways quasicrystals can be created is through these ratios, which can be calculated using 

Fibonacci sequence. 

 

 

Figure 24: Chapter three key word. 

3.2 Quasi-crystalline in nature 

In nature, the spiral of Fibonacci can be used as a guide to place features in art and architecture, 

in order to give a pleasing visual effect where the number of spirals on pineapples, pinecones, 

and several flowers is always a Fibonacci number as illustrated in Figure 25. In biology the 

Fibonacci golden sequence is also seen in the inheritance tree of the human X chromosome, 

the population growth of rabbits as well as in the lineage of a male bee. 

 

Quasiperiodi
c structures

Generalized 
Fibonacci 
Sequence 

Golden 
Mean

Silver Mean

Precious 
Mean

Keyword 

https://en.wikipedia.org/wiki/Thermal_spraying
https://en.wikipedia.org/wiki/Magnetron_sputtering
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Figure 25: The golden spiral in nature. 

In architecture, the golden mean shows an aesthetic glimpse on buildings, especially historical 

ones. Many people assume that the Parthenon in Athens is built using the golden ratio as 

illustrated in the left side of Figure 26. Boussora and Mazouz (2004) indicated the presence the 

golden mean in the design of the great mosque in the city of Kairouan in many parts such as 

the court, and the minaret, and dimensioning of the prayer space. The Great Pyramid of Egypt, 

its base, height, and hypotenuse appear to be built on the base of the golden mean but missing 

the absence of the mention of golden mean in ancient Egyptian history has made it difficult to 

prove using this ratio. In Japan, the application of the golden mean in design is almost non-

existent. According to them, the silver mean creates a more beautiful and calm design than the 

Divine proportion. Because the silver mean yields a smaller proportion, the buildings created 

using it are squarer than those created using the Western proportion. Horyu-ji Temple in 

Ikagura is a well-known example of the utilisation of the silver mean. 

 

Figure 26: Applications of golden and silver ratios in architectures, Parthenon in Athens (golden ratio) Horyu-

ji Temple in Japan (silver ratio) (Google image). 
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In design, according to some sources, the golden ratio is widely employed in everyday design, 

such as postcards, playing cards, posters, wide-screen televisions, pictures, light switch plates, 

and automobiles (Jones, 1971; Tschichold, 1991). Some members of the metallic means like 

golden mean and silver mean appeared already in many ancient civilizations of Turkey, India, 

Egypt and China (Hretcanu and Crasmareanu, 2013). 

In the field of music, the golden mean was used by French composer Erik Satie in several of 

his works. The golden mean can also be seen in Debussy's Reflets dans l'eau (Reflections in 

Water), from Images (1st series, 1905), where "the succession of keys is marked out by the 

intervals 34, 21, 13 and 8, and the primary climax lies at the golden ratio position (Jones, 1971). 

 3.2 Quasi-periodic sequences 

By 2003 more than 22 million different chemical substances were discovered. The crystal 

structure of more than 400,000 substances became available. Although the existence of 

hundreds incommensurately modulated structures and composite structures, there was no 

reason to doubt that he ground state (i.e. the thermodynamic equilibrium state at 0 K) of all 

these compounds and of condensed matter in general is represented by a periodic crystal 

structure (Steurer, 2004). On April, 1982, D. Shechtman discovered a novel phase with 

icosahedral diffraction symmetry in rapidly solidified Al86Mn14 alloy. This was the first 

discovery of quasicrystals, which mainly changed our concept of structural order on atomic 

scale. 

In periodic systems, the impedance mismatch caused by periodic discontinuities in the 

geometry, which acts as a waveguide, and/or in the material, can create destructive wave 

interference phenomena over specified frequency range known as "stop bands" or "band gaps" 

(BG) (Spadoni et al, 2007). However, imperfections (i.e. defects or irregularities) in the 

structure, such as those caused by the manufacturing process or inaccurate reconstructions of 

the boundary conditions, cause the structure to lose its periodicity, which can have a significant 

influence on the vibrational behaviour of elastic structures. This scenario leads to refer to quasi-

periodicity, which is a feature of a structure with irregular periodicity. Repeated substructures 

with asymmetric translations in each direction in Euclidian space can be idealized as a quasi-

periodic structure. It can be thought of as a cross between a periodic and a random elastic 

medium (Velasco and Zarate, 2001). "Quasi-periodic behaviour is thus a pattern of recurrence 

with a component of unpredictability that does not lend itself to a precise measurement". 

A quasicrystal is an example of a natural quasi-periodic structure. Levine and Steinhardt 

(1984) were the first to introduce the term quasicrystal as a non-periodic structure with perfect 

long-ranged order into solid-state physics. At present, it has become clear that, in addition to 

the state of crystalline and random materials, there exists a third state of solids which may help 
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in filling the gap between the two well-defined condensed-matter states. Figure 27 gives an 

idea of the difference between periodic and quasi-periodic structures.   

Moreover, this intermediate category of materials called aperiodic deterministic structures 

includes in addition to Fibonacci sequences, other quasicrystals which can be described by a 

projection onto the m-dimensional space (m=1,2,3). Good examples of such aperiodic 

structures which differ from quasicrystals are Thue–Morse and period-doubling sequences 

(Morini and Gei, 2018; Tamura and Nori, 1989). 

 

Figure 27: Periodic and quasiperiodic arrangement of atoms. a: An example of cubic unit cell in which the 

icosahedron occupies the corner and body-centered positions. Pink balls indicate atoms. b: An example of the 

quasicrystal. c: Fibonacci sequence.  

One-dimensional quasiperiodic systems have been studied experimentally more frequently 

since their manufacturing is easier than that of two and three-dimensional systems. On the other 

hand, they still discover the key fundamental features of light propagation in aperiodic media. 

The simplest realization of one-dimensional quasiperiodic systems is a binary aperiodic chain, 

which is a repetition of the layers made of two phases A and B. The arrangement of layers is 

determined by the rule specifying the particular structure. 

There are three definitions of the quasi-crystalline systems: (a) the incommensurate chains, (b) 

the substitution rules, and (c) the cut-and-project method which is a mean generating 

quasicrystal starting from a higher dimensional lattice (McColm, 2021). The incommensurate 

chains and related structures have been studied since the 1960s, even before the concept of 

quasicrystal was introduced (Azbel, 1964). In the one-dimensional setting, an accurate method 

of classification for the different quasiperiodic patterns was proposed by Kolar (1993). By 

following his criterion, we define a different one-dimensional quasiperiodic chain composed 

of two distinct segments, say A and B, generated according to the generic substitution rule 

A → ς (A) =𝑀𝛼𝛽 (A, B),    B → ς (B) = 𝑁𝛾𝛿 (A, B).                                                          (36)                                 

where the quantity of 𝑀𝛼𝛽 and the quantity of 𝑁𝛾𝛿 are two building blocks containing of a 

certain permutation of 𝛼 + 𝛽 and 𝛾 + 𝛿,  𝛼 and 𝛽 indicate to the number of elements A and B 
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in ς (A), respectively, whereas both parameters 𝛾 and 𝛿 indicate to the number of elements A 

and B in ς (B). The correspondence between the two definitions is established by the relation 

𝑡 = (1 + 𝜆1 − 𝛼)/𝛾 between a value of 𝑡 and indices 𝛼 , 𝛽 , 𝛾 , 𝛿 ,where 𝜆1 = (𝑣√𝑣2 + 4𝑤)/2 

, 𝑣 = 𝛼 + 𝛿  and 𝑤 = 𝛽𝛾 − 𝛼𝛿. It is worth to point out that 𝑤 = ±1 is the condition for having 

a quasi-crystalline system. 

A typical but not the only example of one-dimensional quasi-crystalline pattern is represented 

by the generalized Fibonacci sequences for which 

 𝛼 = 𝛽 = 𝛾 = 1 and 𝛿 = 0.                                                                          

 3.3 Generalized Fibonacci sequence 

Various studies on multi-component systems generated according to the Fibonacci sequences 

for different aims began in the eighties of the last century. Fibonacci sequence is neither 

periodic nor random, but has been described as an intermediate between them (Morini and Gei, 

2018). 

Kolar and Ali (1989b) indicated that the attractors connected to certain volume-non-preserving 

generalized Fibonacci trace maps are the subject of this research. It is demonstrated that several 

pseudo-invariants play a key role in their behaviour. They demonstrate the coexistence of 

regular and Cantor-like excitation spectra based on the existence of these attractors. 

Maciá (1998) investigated light's resonant transmission over multilayers of Fibonacci dielectric 

dielectrics. renormalization via transfer matrix method application. For any given incidence 

angle, we provide closed analytical equations for the transmission coefficient. They examine 

the connection between the quasiperiodic structure of the substrate and the resonant 

wavelengths, indicating that arrays with varying widths of Fibonacci dielectric multilayers 

could be used to create optical microcavities. 

(Gei, 2010; Morini and Gei, 2018; Morini et al, 2019b) studied the propagation of waves in 

systems generated according to Fibonacci sequences. The stop/pass-band spectra are studied 

with the aid of the trace-map formalism. These studies shown that the spectrum of this class of 

structures is characterised by specific self-similar properties, different from those pertaining to 

other quasi-crystalline-generated waveguides. They also indicated that some factors affect the 

propagation of waves, such as pre-stress and the geometry of the structures. 

Very recently, there is a major interest in modern engineering and material science in the 

application of Fibonacci numbers (Falcón and Plaza, 2007). The general Fibonacci elementary 

cell here is denoted by 𝐹𝑖 whereas the general Fibonacci numbers here is denoted by 𝑛𝑖 which 

are the terms of the sequence in which each number is the sum of the two preceding numbers, 
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beginning with the values 𝑛0= 1, and 𝑛1= 1. On the other hand, the ratio of two consecutive 

Fibonacci numbers is very close to the precious means or precious ratios (Golden, Silver and 

Bronze), which can be seen in modern research in many fields from nature (human body), art 

and architecture (pentagon) (Spinadel, 1999; Bolat and Köse, 2010). 

The generalised Fibonacci sequence 𝐹𝑖 is a class of quasi-periodic lattices produced by the 

general substitution rule where two distinct phases, say A and B are arranged in a chain 

according to the generalised Fibonacci sequence (Trabelsi et al., 2009) 

𝐹𝑖 = 𝐹𝑚
𝑖−1𝐹𝑖−2

𝑧 , with 𝑚 and 𝑧 ≥1                                                                                     (37) 

where the parameters 𝑚 and 𝑧 denote the frequency of the previous sequences in following 

sequence, i.e., 𝐴3 = 𝐴𝐴𝐴 ( 𝑚 times). 

with initial conditions 𝐹0 =B and   𝐹1=A    

The structures (supported beams, rods, plates, and 3-D structures) based on generalised 

Fibonacci sequence are quasi-periodic structures. According to the general criterion for the 

classification of the one-dimensional quasiperiodic patterns proposed by Kolar (1993), the 

precious mean arrangement is quasi-crystalline. Quasi-crystalline systems possess unique 

properties that make them an intermediate class between periodic and disordered systems 

(Steurer, 2004; Steurer and Deloudi, 2008).  Previous studies have shown that although quasi-

crystalline systems are not totally periodic, their features can be described theoretically using 

quasiperiodic approximants (Kohmoto et al, 1983; 1987; Kolar and Ali, 1989b). The replication 

of the elementary cell built based on the precious means leads to a global periodicity along the 

axis and then the possibility of applying Floquet-Bloch technique to investigate wave 

propagation in these systems 

3.3.1 Fibonacci Golden Mean Sequence 

By setting the exponent 𝑚 = 1, 𝑧=1 we will have a class of quasi-periodic structure referred 

here as Golden Mean structures (GMs) where its elementary cell obey to the general 

substitution rule illustrated in Eq. (38) as follows 

𝐹2=AB,     𝐹3=ABA   𝐹4=ABAAB   as shown in Figure 28.                                                                                 

We can also express 𝐹4=(ABA)(AB) where the brackets separate the sequences 𝐹3 and 𝐹2. 

The exponents 𝑚 and 𝑧 denote the frequency of the element in the chain i.e., 𝐴𝑚 = AAA (𝑚 =3 

times). 
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Figure 28: Configurations of quasi-periodic structure following a Fibonacci golden sequence. 

The total number of elements 𝑛𝑖  in each sequence 𝐹𝑖 is given by the recurrence relation 

𝑛𝑖 = 𝑚𝑛𝑖−1 + 𝑧𝑛𝑖−2.                                                                                                        (38) 

𝑛𝑖 = 𝑛𝑖−1 + 𝑛𝑖−2,  with initial conditions as mentioned above  𝑛0= 1, and 𝑛1 = 1 

  An example of this relation is  𝑛2= 1+1=2 and      𝑛3 = 2+1=3   𝑛4=3+2=5 

 

Figure 29: Fibonacci golden spiral. 

From the above, the Fibonacci numbers based on Golden Mean (GM) are (1,1,2,3,5,8,13…). 

These numbers can be seen in Fibonacci spiral also called as golden spiral illustrated in the 

Figure 29. 

 The limit 𝜎 of the ratio for 𝑖 → ∞ will be as follows 

𝜎 = 𝑙𝑖𝑚𝑖→∞ 
𝑛𝑖+1

𝑛𝑖
=

𝑚+√𝑚2+4𝑧

2
                                                                                             (39)                                              

where in the golden mean case we have  𝑚 = 1, 𝑧=1. 

As a result, 𝜎𝑔 =
1+√5

2
  which is corresponding to the Golden ratio 1. 618. 
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This means that any number in the Fibonacci sequence divided by the previous has a quotient 

of approximately 1.618. For the first few numbers, this is not the exact approximation, but as 

the number (𝑛) increases, the quotient coincides more exactly with this value. 

3.3.2 Fibonacci Silver Mean Sequence 

Let us assume a different value of the exponents in which  𝑚 = 2, 𝑧=1. Now we have a different 

class of quasi-periodic structure referred here as Silver Mean structures (SMs) where its 

elementary cells obey to the same general substitution rule as follows  

𝐹2=(AAB),  𝐹3=(AABAABA), and 𝐹4= (AABAABAAABAABAAAB) as shown in Figure 30.                                         

We can also express 𝐹4= (AABAABA)(AABAABA)(AAB) where the brackets separate the 

sequences 𝐹3 (two times) and 𝐹2. The total numbers of elements in each sequence 𝐹𝑖 will be as 

follows 

𝑛𝑖 = 2𝑛𝑖−1 + 𝑛𝑖−2                                                                                                               (40) 

with initial conditions  𝑛0= 1, and 𝑛1 = 1, this means that 𝑛2= 2+1=3   and   𝑛3=2*3+1=7.    

The Fibonacci numbers based on Silver Mean (SM) are (1,1,3,7,17,41, 99…...).  

In the silver mean case, we impose (𝑚 = 1, 𝑧=2) leads to 𝜎𝑠 = (1 + √2) which is corresponding 

to the silver ratio 2.414. 

This means that any number in the Fibonacci sequence divided by the previous has a quotient 

of approximately 2.414. For the first few numbers, this is not the exact approximation, but as 

the number (𝑛) increases, the quotient coincides more exactly with this value. 

 

Figure 30: Configurations of quasi-periodic structure following a Fibonacci silver sequence. 

3.3.3 Fibonacci Bronze Mean Sequence 

Assuming an alternative value for the exponents in which 𝑚 = 3, 𝑧=1 we will have a third 

class of quasi-periodic structure referred here as Bronze Mean structures (BMs) whose 

elementary cells follow the same general substitution rule 1. As follows 

𝐹2=AAAB,  𝐹3= AAABAAABAAABA. 
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In the bronze mean case, we impose (𝑚 = 1, 𝑧=3) leads to  𝜎𝑏 =
3+√13

2
  which is corresponding 

to the bronze ratio 3.303. 

This class of quasiperiodic structure called bronze mean structures and the number of elements 

in each sequence can be calculated using the following rule 

𝑛𝑖 = 3𝑛𝑖−1 + 𝑛𝑖−2                                                                                                                  (41)            

𝑛2= 3+1=4      𝑛3=3*4+1=13.                                                                                  

To this end, The Fibonacci numbers based on Bronze Mean (BM) are (1,1,4,13,43,142,469, 

1549…...). 

From the above, all structures built according to the general metallic ratio 𝜎 =
𝑚+√𝑚2+4𝑧

2
 of 

orders 𝑚 (1, 2, and 3) and 𝑧=1 s precisely the Golden ratio, the Silver ratio, and the Bronze 

ratio respectively are quasicrystalline (Sivaraman, 2020). In this thesis, we will refer to these 

metallic ratios (𝜎𝑔, 𝜎𝑠, and  𝜎𝑏) as precious means and their structures as precious means 

structures.  

The copper ratio (𝜎𝑔 = 2) and the nickel ratio (𝜎𝑛 = 2.302) (metallic means as they are 

referred to here) are obtained by setting 𝑤 = 𝑧 = 2 for copper and 𝑤 = 𝑧 = 3 for nickel in the 

relation (36) are non-quasicrystalline, quasiperiodic systems (Morini and Gei, 2018). 

 

Fibonacci 

sequences  𝐹𝑖 

Golden Mean Silver Mean Bronze Mean 

𝐹0 B B B 

𝐹1 A A A 

𝐹2 AB AAB AAAB 

𝐹3 ABA AABAABA AAABAAABAAABA 

𝐹4 ABAAB AABAABAAABAABA AAB AAABAAABAAABAAAABAAABAAABAAAABAAABAAABA

AAAB 

𝐹5 ABAABABA AABAABAAABAABAAABAABAABAAABAABAAAB AAABAAABAAABAAAABAAABAAABAAAABAAABAAABA

AAABAAABAABAAABAAAABAAABAAABAAAABAABAAA

BAAAABAAABAAABAAABAAAABAAABAAABAAAABAAA

BAAABAAAABAAABAAABAAABA 

Table 1: Definition of the six Fibonacci sequences. 

As can be seen from the following table, the number of elements constituting silver cells is 

greater than their golden counterpart which becomes clearer when the indicator 𝑖 increases. To 

this end, we can say that the main reason for the different dynamical behaviour between the 

golden and silver structures is the difference in the composition of the elementary cells. 

 



 

41 
 

 

 

 

 

 

 

 

 

Table 2 : Number of elements in the golden, silver, and bronze elementary cells up to Number of elements in the 

golden, silver, and bronze elementary cells up to 𝐹7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fibonacci sequences  𝐹𝑖 Golden Mean Silver Mean Bronze Mean 

𝐹0 1 1 1 

𝐹1 1 1 1 

𝐹2 2 3 4 

𝐹3 3 7 13 

𝐹4 5 17 43 

𝐹5 8 41 142 

𝐹6 13 99 469 

𝐹7 21 239 1549 
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Chapter 4: Axial waves in one-dimensional generalised 

Fibonacci Silver Mean rods. 
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4 Overview 

Previous research conducted by (Morini and Gei, 2018) focused on the propagation of axial 

waves in golden mean phononic rods, which promoted me to conduct research on silver mean 

phononic rods. The main difference between golden and silver mean sequences is the number 

of elements that make up each unit cell of each sequences. 

In this chapter, I will derive all the equations related to the propagation of axial waves in silver 

mean phononic rods. The transfer matrix and dispersion relation of the rods will be obtained 

by applying the Floquet-Bloch theory. Nonlinear map and Kohmoto’s invariant for silver mean 

rods will be derived. Scaling and self-similarity of the frequency spectra of canonical SM rods 

will be derived and where the scaling is effective in different values of frequency including 

canonical frequency. 

 

Figure 31: Chapter four keyword 

4.1 One-dimensional generalised Fibonacci Silver Mean rods 

I introduce a particular class of infinite, one-dimensional, two-component quasiperiodic 

phononic rods consisting of a repeated elementary cell where two distinct phases, say A and 

B, are arranged in series according to the so-called Silver Mean (SM) sequence as shown in the 

Figure 32. I will study axial wave propagation in this class of rods in order to understand the 

behaviour of axial waves in this system to provide wider options for designers of acoustic 

devices like waveguides and acoustic filters. This will be achieved using tools used in (Morini 

and Gei, 2018) who studied the propagation of axial waves in golden mean rods.  

The repetition of the fundamental cell implies global periodicity along the axis and then the 

possibility of applying Floquet-Bloch technique to investigate propagation of harmonic elastic 

Genrelised 
Febonacci 
Sequence

Silver Mean

Kohmoto’s 
Invariant 
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Canonical 
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Periodic orbit

Keyword 



 

44 
 

waves in these systems. The two-component SM sequence belongs to the family of patterns 

commonly known as one-dimensional generalised Fibonacci tilings (Kolar and Ali, 1989) and 

is based on the following substitution rule as follows 

A ͢→ 𝛿(𝐴) = 𝐴𝑚  𝐵𝑧 ,  B ͢→ 𝛿(𝐵), where in silver mean case 𝑚 = 3 and   𝑧 = 1  as mentioned 

in the previous chapter.                                                                                                       

Or 

A → AAB, B → A                                                                                                                  (42) 

Expression (42) implies that element of 𝑖 − 𝑡ℎ order of the sequence (𝑖 = 0, 1, 2, . . .), here 

denoted by 𝐹𝑖 , obeys the recursive rule 

 𝐹𝑖 = 𝐹𝑖−1
2 𝐹𝑖−2

1 ,                                                                                                                        (43) 

where the initial conditions are 𝐹0 = B and 𝐹1 = A.  

In Figure 32, elementary cells representing 𝐹2, 𝐹3 and 𝐹4 are sketched ( 𝐹0 = B and 𝐹1 = A are 

not included because both of them are initial conditions), where the notation 𝐹𝑖 will also 

indicate from now on the elementary cell of the structured rod. The total number of elements 

of 𝐹𝑖 corresponds to the generalised Fibonacci number 𝑛𝑖 , given by the recursive relation 𝑛𝑖 =

2𝑛𝑖−1 + 1𝑛𝑖−2with 𝑖 ≥ 2 and 𝑛0 = 𝑛1 = 1. The limit 𝑛𝑖+1/𝑛𝑖 for 𝑖 → ∞ corresponds to the silver 

ratio 𝜎𝑠 = (1 + √2) ≅2. 414 

 

Figure 32: Representative elementary cells for periodic silver-mean phononic rods 

Further in the text, we will refer to those structured elements as SM rods. According to the 

general criterion for the classification of the one-dimensional quasiperiodic patterns proposed 

by Kolar (1993), the SM arrangement is quasi-crystalline. Quasi-crystalline structures possess 

specific properties that make them an intermediate periodic crystals and random amorphous 

solids. An example of these interesting and intriguing features is the self-similarity of the 

distribution of stop and pass bands (regular pattern of the pass and stop band diagram) detected 

for phononic waveguides arranged according to several generalised Fibonacci sequences 
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(Morini and Gei, 2018; Gei et al., 2020). In the pass/stop band diagram, the feature of self-

similarity is clear where we can note that the number of pass bands in each area of the diagram. 

The ‘match’ between patterns improves at increasing index 𝑖.  

One of the aims of this project is to the analyse the propagation of harmonic axial wave in SM 

rods. I will show that the spectrum of this class of structures is characterised by specific self-

similar properties, different from those pertaining to other quasi-crystalline-generated 

waveguides. In particular, we will illustrate how these unique features are closely related to the 

properties of the Floquet-Bloch dispersion relationship, reported in this Section. 

Let us introduce the geometrical and physical properties of phases A and B. The lengths of the 

two elements are indicated respectively with 𝑙𝐴 and 𝑙𝐵, while 𝑆𝑋, 𝐸𝑋, and 𝜑𝑋,  X (X ∈ {A, B}) 

denote cross-section area, Young’s modulus and mass density per unit of volume of each 

element, respectively. For both segments, we define the displacement function along the rod 

𝑢(𝑧) and the axial force N(𝑧) = 𝐸𝑆𝑢′(𝑧), where 𝑧 is the longitudinal axis. The governing 

equation of harmonic axial waves in each phase is 

𝑢′′(𝑧) + 𝑄𝜔2𝑢(𝑧) = 0                                                                                                      (44) 

where 𝜔 is the circular frequency (simply the ‘frequency’ in the following) and 𝑄 = 𝜑/𝐸 

corresponds to the reciprocal of the square of the speed of propagation of longitudinal waves 

in material X. The general solution for Eq. (44) assumes the form 

 𝑢𝑋(𝑧) = 𝐶𝑋 𝑠𝑖𝑛(√𝑄𝑋 𝜔𝑧 )  +  𝐷𝑋 𝑐𝑜𝑠(√𝑄𝑋 𝜔𝑧),                                                             (45) 

where CX and DX are integration constants, to be determined by the boundary conditions. To 

obtain the dispersion diagram of the periodic rod, displacement and axial force at the right-

hand boundary of the elementary cell, respectively 𝑢𝑟and 𝑁𝑟, have to be identified in terms of 

those at the left-hand boundary, respectively 𝑢𝑙 and 𝑁𝑙. 

Since the main differences between the transfer matrix of element A and element B are the 

geometrical and physical properties of phases A and B, let us only derive the transfer matrix 

for the phase B as follows 

 

Figure 33: Element B of quasiperiodic phononic rods. 
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 The Eq. (44) can be rewritten for element B as follows 

𝑢𝐵(𝑧) = 𝐶𝐵 𝑠𝑖𝑛(√𝑄𝐵  𝜔𝑧)  + 𝐷𝐵  𝑐𝑜𝑠(√𝑄𝐵  𝜔𝑧),                                                            (46)                                         

and 

𝑢′
𝐵(𝑧) =𝐶𝐵  √𝑄𝐵 𝜔  𝑐𝑜𝑠(√𝑄𝐵  𝜔𝑧) −  𝐷𝐵√𝑄𝐵 𝜔  𝑠𝑖𝑛(√𝑄𝐵 𝜔𝑧),                                  (47)        

The equation  𝑁(𝑧) = 𝐸𝑆𝑢′(𝑧) will take the following form  

𝑁𝐵(𝑧) = 𝐸𝑆 [𝐶𝐵  √𝑄𝐵 𝜔  𝑐𝑜𝑠(√𝑄𝐵  𝜔𝑧) −  𝐷𝐵√𝑄𝐵 𝜔  𝑠𝑖𝑛(√𝑄𝐵 𝜔𝑧)]                         (48)                  

The boundary conditions require that at 𝑙𝐵= 0,    

𝑢𝐵(0)= 𝐷𝐵,                                                                                                                       (49) 

𝑁𝐵(0) = 𝐸𝐵𝑆𝐵𝐶𝐵  √𝑄𝐵 𝜔,                                                                                               (50) 

and at  𝑙 = 𝑙𝐵 , we have                                                                                                                 

𝑢𝐵(𝑙)=(
𝑁𝐵(0)

𝐸𝐵𝑆𝐵 √𝑄𝐵 𝜔
) 𝑠𝑖𝑛(√𝑄𝐵 𝜔𝑙𝐵 + 𝑢𝐵(0) 𝑐𝑜𝑠(√𝑄𝐵  𝜔𝑙𝐵),                                         (51) 

 𝑁𝐵(𝑙) = 𝐸𝐵𝑆𝐵√𝑄𝐵 𝜔 [(
𝑁𝐵(0)

𝐸𝐵𝑆𝐵 √𝑄𝐵 𝜔
) 𝑐𝑜𝑠(√𝑄𝐵  𝜔𝑙𝐵) − 𝑢𝐵(0) 𝑠𝑖𝑛(√𝑄𝐵 𝜔𝑙𝐵)],           (52) 

Now we can have the form of  

        𝑈𝑟= 𝑇𝑖𝑈𝑙,                                                                                                                  (53)      

[
𝑢𝐵(𝑙)

𝑁𝐵(𝑙)
] = [

𝑐𝑜𝑠(√𝑄𝐵  𝜔𝑙𝐵)
𝑠𝑖𝑛(√𝑄𝐵 𝜔𝑙𝐵

𝐸𝐵𝑆𝐵 √𝑄𝐵 𝜔

−𝐸𝐵𝑆𝐵√𝑄𝐵 𝜔𝑠𝑖𝑛(√𝑄𝐵 𝜔𝑙𝐵 𝑐𝑜𝑠(√𝑄𝐵  𝜔𝑙𝐵)
] ∗ [

𝑢𝐵(0)

𝑁𝐵(0)
]                         (54) 

where 𝑈𝑟= [𝑢𝑟 𝑁𝑟 ] whereas 𝑈𝑙= [𝑢𝑙 𝑁𝑙 ], 𝑇𝑖 is the transfer (or transmission) matrix of the cell 

𝐹𝑖 . The latter is the result of the product 𝑇𝑖 = ∏𝑝=1
𝑛𝑖 𝑇𝑋, where 𝑇𝑋 (X ∈ {A, B}) is the transfer 

matrix relating quantities across a single element, given by 

𝑇𝑋= [
𝑐𝑜𝑠(√𝑄𝑋  𝜔𝑙𝑋)

𝑠𝑖𝑛(√𝑄𝑋 𝜔𝑙𝑋

𝐸𝑋𝑆𝑋 √𝑄𝑋 𝜔

−𝐸𝑋𝑆𝑋√𝑄𝑋 𝜔𝑠𝑖𝑛(√𝑄𝑋 𝜔𝑙𝑋) 𝑐𝑜𝑠(√𝑄𝑋  𝜔𝑙𝑋)
]                                                 (55) 

Transfer matrices are unimodular; a unimodular matrix is a square integer matrix having 

determinant +1 or −1, here det = 1, which makes the dispersion relation a function only in the 

trace of the transfer matrix and follows the recursion rule 

 𝑇𝑖+1 = 𝑇𝑖−1𝑇𝑖
2                                                                                                                (56) 
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with  𝑇0=𝑇𝐵 and 𝑇1=𝑇𝐴.                                                                                                

 The Floquet-Bloch condition requires that 𝑈r = 𝑒𝑥𝑝(𝑖𝐾) 𝑈𝑙, so that, by combining this with 

Eq. (53), the dispersion equation takes the form det [𝑇𝑖 − 𝑒 𝑖𝑘𝐼] = 0.                                                                                              

Differently, we can study the dispersion properties of this structure by evaluating the 

eigenvalues of the transfer matrix 𝑇𝑖 as follows  

det[
 𝑇11 − 𝜆 𝑇12

𝑇21 𝑇22 − 𝜆
] = (𝑇11 − 𝜆)(𝑇22 − 𝜆) − (𝑇12)(𝑇21) = 0                               (57) 

where  𝑇11 + 𝑇22 =  𝑡𝑟𝑇𝑖 and (  𝑇11𝑇22 − 𝑇12𝑇21) =  det 𝑇𝑖 = 1, leading to  

𝜆2 − 𝜆 𝑡𝑟𝑇𝑖 + det 𝑇𝑖 = 0                                                       

Or                                        

𝜆2 − 𝜆 𝑡𝑟𝑇𝑖 + 1 = 0                                                                                                      (58) 

Substituting 𝑒 𝑖𝑘 = 𝜆 in Eq. (58) and multiplying it by 𝑒 𝑖𝑘 the condition 𝑒 𝑖𝑘 + 𝑒 −𝑖𝑘= 𝑡𝑟𝑇𝑖 is 

achieved leading to                                                                                                           

𝑘 = 𝑎𝑟𝑐𝑐𝑜𝑠
𝑡𝑟𝑇𝑖

2
                                                                                                      (59) 

The solution of the dispersion relation (59) provides the complete Floquet-Bloch spectrum 

which allows to obtain the mentioned stop-/pass-band pattern of the waveguides at varying 

index 𝑖.  In particular, waves propagate when | 𝑡𝑟𝑇𝑖 | < 2, stop bands correspond to | 𝑡𝑟𝑇𝑖 | > 2, 

whereas | 𝑡𝑟𝑇𝑖 | = 2 is the condition for standing waves (Morini and Gei, 2018). In finite-size 

waveguides composed of a finite number of elementary cells, stop bands (pass bands) are the 

range of frequencies when the reflection (transmission) coefficient approaches one (Lekner, 

1994).  

4.2 Trace map and Kohmoto’s invariant 

This section is devoted to the study of the properties of trace 𝑡𝑟𝑇𝑖 and how these features affect 

the frequency spectrum of SM rods. A nonlinear recursive relationship connecting traces for 

consecutive fundamental cells 𝐹𝑖 is introduced. An invariant function defining a three-

dimensional surface, the so-called Kohmoto’s surface, is found for this map. At any frequency, 

the evolution of the traces corresponds to an orbit on this surface. By means of this analysis, 

we introduce a special sub-class of structures, characterized by closed periodic orbits on the 

Kohmoto’s surface associated with particular values of the frequency. 
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4.2.1 Nonlinear map and Kohmoto’s invariant  

General recursive relations for the traces of unimodular 2×2 transfer matrices of generalised 

Fibonacci chains have been derived by Kolar and Ali (1989) in terms of Chebyshev 

polynomials of first and second kind. Specialising these expressions to the case SM, we derive 

the pair of equations 

{
𝑥𝑖+1 = 𝑥𝑖 𝑡𝑖+1  − 𝑥𝑖−1   with 𝑖 ≥ 2            
𝑡𝑖+1 = 𝑥𝑖𝑥𝑖−1 − 𝑡𝑖        with 𝑖 ≥ 2            

                                                                    (60) 

where 𝑥𝑖 = 𝑡𝑟 𝑇𝑖 and 𝑡𝑖 = 𝑡𝑟(𝑇𝑖−2 𝑇𝑖−1).Through the new set of variables, we have 

 𝑥𝑖
′ = 𝑡𝑖+2 , 𝑦𝑖

′ = 𝑥𝑖+1 ,   𝑧𝑖
′ = 𝑥𝑖                                                                                     (61) 

and its substitution into expression (60), the following nonlinear map determining the evolution 

of 𝑥𝑖 and 𝑡𝑖 is obtained 

  𝑇𝑠(𝑥𝑖
′, 𝑦𝑖

′, 𝑧𝑖
′)= (𝑥𝑖+1

′ , 𝑦𝑖+1
′ , 𝑧𝑖+1

′ ) = (𝑥𝑖
′𝑦𝑖

′2 − 𝑦𝑖
′𝑧𝑖

′ − 𝑥𝑖
′,  𝑥𝑖

′𝑦𝑖
′ − 𝑧𝑖

′, 𝑦𝑖
′)                        (62) 

with the following specific initial conditions 

 𝑧0
′ = 𝑥0 = 2cos (√𝑄𝐵 𝜔 𝑙𝐵)                                                                                         

 𝑦0
′ =  𝑥1 = 2cos (√𝑄𝐴 𝜔 𝑙𝐴)                                                                                        

𝑥0
′ = 𝑡2 =2𝑐𝑜𝑠(√𝑄𝐴 𝜔 𝑙𝐴) 𝑐𝑜𝑠(√𝑄𝐵 𝜔 𝑙𝐵) − 2 β 𝑠𝑖𝑛(√𝑄𝐴 𝜔 𝑙𝐴) 𝑠𝑖𝑛(√𝑄𝐵 𝜔 𝑙𝐵)       (63) 

where the impedance mismatch β takes the form 

β =
𝑆𝐴

2𝐸𝐴
2𝑄𝐴+𝑆𝐵

2𝐸𝐵
2𝑄𝐵

𝑆𝐴𝐸𝐴𝑆𝐵𝐸𝐵√𝑄𝐴𝑄𝐵
                                                                                                           (64) 

Since the nonlinear map (62) is a differentiable map, its jacobian, namely 

𝐽𝑠 =
𝜕(𝑥𝑖+1

′ ,𝑦𝑖+1
′ ,𝑧𝑖+1

′ )

𝜕(x𝑖
′,y𝑖

′,z𝑖
′)

= [
𝑦𝑖

′2 − 1 2𝑦𝑖
′𝑥𝑖

′ − 𝑧𝑖
′ −𝑦𝑖

′

𝑦𝑖
′ 𝑥𝑖

′ −1
0 1 0

]                                                       (65) 

can be evaluated showing that for all the three maps det 𝐽𝑠 = −1. The main use of jacobian 

matrix is found in the transformation of the coordinates. It deals with the concept of 

differentiation with coordinate transformation.  

Through a little algebra we can also demonstrate that, similarly to all precious mean sequences 

(Morini and Gei, 2018), the quantity 

I(ω) = x𝑖
′2 + y𝑖

′2+z𝑖
′2 − x𝑖

′y𝑖
′z𝑖

′ − 4 = (𝛽2 − 4) 𝑠𝑖𝑛2(√𝑄𝐵   𝜔 𝑙𝐵)𝑠𝑖𝑛2(√𝑄𝐴   𝜔 𝑙𝐴)    (66) 

is an invariant of the map illustrated in (62).  
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This means that at a given frequency ω, the value I(ω) is independent of the order 𝑖  of the 

sequence 𝐹𝑖 . In the three-dimensional space spanned by the cartesian coordinate system 𝑂 

𝑥′𝑦′𝑧′, the cubic x𝑖
′2 + y𝑖

′2+z𝑖
′2 − x𝑖

′y𝑖
′z𝑖

′ − 4 = I(ω) is the equation of a two-dimensional 

manifold that was named by the authors Kohmoto’s surface.  

In the case of Golden Mean Structures (GMs), at any value of frequency 𝜔, all the coordinates  

𝑥𝑖
′, 𝑦𝑖

′ and 𝑧𝑖
′ represent the values of three consecutive traces obtained by three successive 

sequences. Differently, for Silver Mean Structures (SMs), only 𝑦𝑖
′ = 𝑥𝑖+1 𝑎𝑛𝑑 𝑧𝑖

′ =  𝑥𝑖 

represent the traces of transfer matrices while 𝑥𝑖
′ = 𝑡𝑖+2 is an auxiliary variable produced by 

the recurrence relationship (60). For a given frequency 𝜔, all points detected by the triad 

𝑅𝑖(𝑥𝑖
′, 𝑦𝑖

′, 𝑧𝑖
′) and generated through (62) can be mapped onto the surface defined by Eq. (66).  

 

Figure 34 Shape of Kohmoto’s surface. 

Visibly, there are two different colours on the surface. The yellow region expresses that all 

(|𝑦𝑖
′|,|𝑧𝑖

′|) <2 . This means that 𝑅𝑖(𝑥𝑖
′, 𝑦𝑖

′, 𝑧𝑖
′) will be on pass band and waves will propagate at 

this frequency along the rods produced by the elementary cells 𝐹𝑖+1 and 𝐹𝑖. On the other hand, 

if at least one of two elementary cells 𝐹𝑖+1 and 𝐹𝑖 (|𝑦𝑖
′|,|𝑧𝑖

′|)>2, the waves will not propagate 

(stop band) and this what the red region represents. 

By taking into account that 𝑦𝑖
′, 𝑧𝑖

′ correspond to real traces (see Eq. (61)), the position of point 

𝑅𝑖(𝑥𝑖
′, 𝑦𝑖

′, 𝑧𝑖
′)  may reveal if, at a given 𝜔, both 𝐹𝑖 and 𝐹𝑖+1are in a pass band, namely if {|𝑥𝑖 |, 

|𝑥𝑖+1|} < 2, both 𝐹𝑖 and 𝐹𝑖+1 in a stop band if {|𝑥𝑖 |, |𝑥𝑖+1|} > 2.  

The four plots in Figure 35 refer to a prototype SM rod whose parameters belong to 𝑄𝐵/𝑄𝐴 =

1, 𝐸𝐵/𝐸𝐴 = 1 , 𝑆𝐵/𝑆𝐴 = 1/2, 𝑙𝐵/𝑙𝐴 = 5 will be further described in the next section, at a 

dimensionless frequency √𝑄𝐴 𝜔 𝑙𝐴= 1.548. 

In Figure 35(a), the Kohmoto’s surface in the 3-dimensional space 𝑂 𝑥′𝑦′𝑧′is represented; the 

yellow domain corresponds to {|𝑥𝑖 |, |𝑥𝑖+1|} < 2 ( traces of the transfer matrix) and three out of 
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the six saddle points possessed by the surface are indicated with a green dot. In Figures  35(b, 

c, d), the same surface is sketched in the subspace 𝑂 𝑦′𝑧′, where the white squares in the center 

of the three panels match, in projection, the yellow sub-surface in part a). Therefore, a point 

𝑅𝑖(𝜔) = (𝑦𝑖
′, 𝑧𝑖

′) = (𝑥𝑖+1 (𝜔), 𝑥𝑖 (𝜔)) belonging to these squares indicates that the circular 

frequency 𝜔 for both 𝐹𝑖 and 𝐹𝑖+1lies in a pass band. 

The trajectories sketched in the three plots of the same figure have parametric equations (𝑥2 

(𝜔), 𝑥1 (𝜔))(b), (𝑥3 (𝜔), 𝑥2 (𝜔)); (c) and (𝑥4 (𝜔), 𝑥3 (𝜔)); (d). All trajectories start at the corner 

of coordinates (2, 2) that corresponds to 𝜔 = 0, then the red line covers the range �̅� = √𝑄𝐴 𝜔 𝑙𝐴 

∈ [0, 𝜋/2] after which the green line follows, reaching �̅� = 𝜋 . The trajectory then continues 

with a pattern that the reader can easily envisage. In b) the represented trajectory describes all 

frequencies �̅� [0, +∞] as the continuation for �̅� ∈ [𝜋, 2 𝜋] corresponds to the same path, but 

travelling in the opposite direction, and so on. Moreover, as expected, |𝑥1| ≤ 2, ∀𝜔, as 𝐹1 is a 

homogeneous waveguide with any stop band in its spectrum. In the same part b), the first three 

low-frequency stop bands (SB) for 𝐹2 are indicated. Parts c) and d) can be similarly interpreted, 

in particular the location of stop bands can be spotted following the curved lines, however the 

complexity increases at increasing index 𝑖 of the sequence. Note, for instance, where is the 

point of transition between red and green lines (i.e., �̅� = 𝜋/2) in Figure 35(d). 

 

 

Figure 35 Kohmoto’s surface for a SM rod whose parameters are 𝑄𝐵/𝑄𝐴 = 1, 𝐸𝐵/𝐸𝐴 = 1 , 𝑆𝐵/𝑆𝐴 = 1/2, 𝑙𝐵/𝑙𝐴 = 5. a) 3-

dimensional representation where three out of six saddle points are indicated. b), c), d) sketches in the plane (𝑦′, 𝑧′), where 

the reported trajectories have parametric equations: b) (𝑥2 (ω), 𝑥1 (𝜔)); c) (𝑥3 (𝜔), 𝑥2 (𝜔)); d) (𝑥4 (ω), 𝑥3 (𝜔)). In all plots 
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of b), c), d) the red line is for �̅� = √𝑄𝐴 𝜔 𝑙𝐴  𝜖  [0, 𝜋/2], the green one is for �̅� 𝜖 [𝜋/2, 𝜋]. SB stands for ‘stop band’: (Farhat 

et al, 2022). 

4.3 Periodic orbits on Kohmoto’s surface and canonical configurations 

By recalling the analyses performed by Morini and Gei (2018) and Gei et al. (2020), there are 

essentially three kinds of orbits which can be followed by points 𝑅𝑖 as a consequence of the 

iteration map (62): (𝑖) periodic orbits, (𝑖𝑖) non-periodic bounded orbits and (𝑖𝑖𝑖) escaping orbits. 

At any frequency 𝜔, corresponding to a determinate Kohmoto’s surface (66), the type of orbit 

is uniquely determined by the initial point 𝑅0(𝑥0
′ , 𝑦0

′ , 𝑧0
′ )whose coordinates are given by 

expressions (63).  

The main difference between the two first kinds (𝑖) and (𝑖𝑖) is that in the case orbit is periodic  

(𝑖) after a specific number N of repetitions the triple (𝑥𝑖
′, 𝑦𝑖

′, 𝑧𝑖
′) will assume the values of the 

initial point 𝑅0(𝑥0
′ , 𝑦0

′ , 𝑧0
′ ) again which lead to repeat the sequence of stop and pass band at 

every N iterations. In contrast, non-periodic bounded orbits (𝑖𝑖) belong to cases where 𝑅𝑖never 

assumes the initial position again at increasing index. That means that the trajectory defined by 

the successive points will be open.  Morini and Gei (2018) in their study illustrated the 

relationship between orbits on the Kohmoto’s surfaces produced by iterating map (66) and the 

stop/pass band diagrams. 

It is worthy to point out that there is a clear difference in terms of using of Kohmoto’s surfaces 

to illustrate the pass/stop band areas between Golden and Silver Mean structures. In the case 

of SM, the coordinate 𝑥𝑖
′ does not indicate to the trace of a transfer matrix as written in the 

Eq.(61). This means that only 𝑦𝑖
′and 𝑧𝑖

′ represent the traces of a transfer matrix, and thus the 

condition |𝑥𝑖
′| ≥ 2 does not belong to the  bandgap of a structure whereas in the case of GM all 

three coordinates are traces of a transfer matrix and thus the conditions |𝑥′| ≥ 2 , |𝑦′| ≥ 2  and 

|𝑧′| ≥ 2 are belong to stop band. 

According to Morini and Gei (2018), there are two types of orbits can be described as 

perturbations of the periodic orbit on the Kohmoto’s surface which are (𝑖𝑖) non-periodic 

bounded orbits and (𝑖𝑖𝑖) escaping orbits at any 𝜔 .This means that the periodic orbit is a 

reference orbit to those orbits noted in the (𝑖𝑖) and ( 𝑖𝑖𝑖) notations. Now we focus our attention 

on periodic orbits and in particular to the investigation of specific configurations for SM 

periodic rods. Guided by the previous work on standard, golden mean (GM) rods, we indicate 

with 𝑃j (j = 1, . . . , 6) the six saddle points of the manifold (66) whose coordinates are 𝑃1,4 = 

(0, 0, ±𝛽1), 𝑃3,6 = (0, ∓𝛽2, 0), 𝑃2,5 = (±𝛽3, 0, 0), where the top sign is associated with the lowest 

index. As anticipated, in Figure 35(a) three out of six saddle points are sketched. We then 
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wonder if any periodic orbit joining those points might exist. The answer can be found by 

imposing, at some frequencies, 

 𝑦0
′ = 𝑧0

′ = 0.                                                                                                                   (67) 

 and 

 𝑥0
′ = 𝑦0

′ = 0, or    𝑥0
′ = 𝑧0

′                                                                                               (68) 

The requirements (67) and (68) can be fulfilled only for particular classes of layouts, namely 

the canonical (SM) layouts, in analogy to the definition proposed by Gei et al (2020) for GM 

sequences. By substituting expressions (63) into condition (67), the following relationship 

between physical and geometrical properties of phases A and B are derived as follows 

2cos (√𝑄𝐵 𝜔 𝐿𝐵) =   2 cos(√𝑄𝐴 𝜔 𝐿𝐴) = 0                                                          

𝑐𝑜𝑠√𝑄𝐵 𝜔 𝑙𝐵 = 0
𝐼𝐹
⇒ √𝑄𝐵 𝜔 𝑙𝐵 = ( 

𝜋

2
 ,

3𝜋

2
,

5𝜋

2
, , , , ) or √𝑄𝐵 𝜔 𝑙𝐵 =

𝜋

2
(2𝑛 + 1),           (69) 

and  

𝑐𝑜𝑠√𝑄𝐴 𝜔 𝑙𝐴 = 0
𝐼𝐹
⇒ √𝑄𝐴 𝜔 𝑙𝐴 = ( 

𝜋

2
 ,

3𝜋

2
,

5𝜋

2
, , , , ) or √𝑄𝐴 𝜔 𝑙𝐴 =

𝜋

2
(2𝑚 + 1).            (70) 

This leads to 

-Family no.1 for canonical structures is 𝐶1 =  
𝑙𝐵

𝑙𝐴
 
√𝑄𝐵

√𝑄
𝐴

=
(2𝑛+1) 

(2𝑚+1)
: 𝐶1 = (1,5 ,7,1/3).       (71) 

By applying the same procedures for the expressions (68), family no.2 and 3 for canonical 

structures will be obtained as follows 

-Family no.2 for canonical structures is 

 𝐶2 =
𝑙𝐵

𝑙𝐴
 
√𝑄𝐵

√𝑄
𝐴

=
(2𝑛+1) 

(2𝑞)
 : 𝐶2 =(

1

2
,

3

2
,

5

6
).                                                                            (72) 

-Family no.3 for canonical structures is 

 𝐶3 =
𝑙𝐵

𝑙𝐴
 
√𝑄𝐵

√𝑄
𝐴

=
(2𝑞) 

(2𝑚+1)
:𝐶3 =(

2

3
, 2,4)                                                                                          (73)                        

where (𝑚 , 𝑛, 𝑞 ∈ 𝑁). 

respectively. 𝐶1, 𝐶2 and 𝐶3 are the canonical ratios. Each of them identifies a family of 

canonical SM rods (no. 1, no. 2, and no. 3, respectively). In turn, the canonical frequencies are 

given by 

𝜔𝑐𝑟𝑛
= 𝜔𝑐𝑟

(1 + 2𝑛),      with (𝑛 ∈ 𝑁), 𝑟 = 1,2,3                                                            (74) 
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𝜔𝑐1
= 𝜔𝑐3

=
𝜋

2𝑙𝐴 √𝑄𝐴
(1 + 2𝑚),      with (𝑚 ∈ 𝑁)                                                            (75) 

𝜔𝑐2
=

𝜋

𝑙𝐴 √𝑄𝐴
𝑞 with  (𝑞 ∈ 𝑁)                                                                                            (76) 

Any arbitrary canonical SM waveguide 𝐹𝑖 displays a periodic stop/pass-band layout whose 

period depends only on the value of the canonical frequency. In particular, periodicity is 

enforced by requirements (67) and (68). The least frequency interval where all traces are 

periodic is [0, 4𝜔𝑐𝑟
 ] (𝑟 = 1, 2, 3), as an inspection of the first two equalities in (63) may reveal. 

As mentioned earlier that for SM only 𝑦i and 𝑧𝑖 are traces of transfer matrix (𝑇𝑖) while 𝑥𝑖 is a 

variable produced by recurrence relation (60), the equation (61), can be written as follows 

 𝑡𝑖+2  = 𝑡𝑟(𝑇𝑖𝑇𝑖+1), 𝑦𝑖
′ = 𝑡𝑟𝑇𝑖+1 , 𝑧𝑖

′ = 𝑡𝑟𝑇𝑖                                                                       (77)                               

an example of this sequence considering 

 𝑖 = 0 ;   𝑡2 =  𝑡𝑟(𝑇0𝑇1), 𝑦𝑖
′ = 𝑡𝑟𝑇1 , 𝑧𝑖

′ = 𝑡𝑟𝑇0.                                                                   

Thus the initial point is  R0(x0
′ , y0

′ , z0
′ ) = (𝑡2, 𝑡𝑟𝑇1 , 𝑡𝑟𝑇0).                                                                               

To identify the periodic orbits of the canonical SM rods that characterize each family, the three 

coordinates of each point detected by the triad 𝑅𝑖(𝑥𝑖
′, 𝑦𝑖

′, 𝑧𝑖
′) are displayed in the following  

figures in next section for two prototype examples belonging to Family no.1 (𝑪𝟏 = 5) and 

Family no.3 (𝑪𝟑 =2/3), respectively. In all cases displayed in these figures, 
𝑄𝐵

𝑄𝐴
= 1, 

𝐸𝐵

𝑄𝐴
= 1, 

𝑆𝐵

𝑆𝐴
= 1/2, so that β = 2.5. Therefore, the chosen length ratio 𝑙𝐵/𝑙𝐴 corresponds to 𝑪. 

4.3.1 Family one periodic orbits 

Since the pass/stop band layout is periodic for all families, the periodic orbits can be found. 

This can help in optimizing the spectrum for this particular class of structures, we do not need 

to evaluate the band gap for a large frequency range but only for one period. Periodic orbit is a 

result of coordinates 𝑥𝑖 (trace of the transfer matrix) and 𝑡𝑖 (an auxiliary variable produced by 

the recurrence relationship (60)) that their evolution can be determined by the nonlinear map 

(63) and therefore explains the behaviour of these coordinates in the form of points that can be 

represented on  Kohmoto’s surface. 

Elements of Family no. 1 possess features that differ from those characterizing the other two 

families that can be studied together. 

𝐶1 =5,  ∴
𝐿𝐵

𝐿𝐴
= 5,    

𝑠𝐴

𝑠𝐵
= 0.5                                                                                             
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The normalized canonical frequency 𝜔𝑐1
= 𝜋/2 and  𝜔𝑐3

= 3𝜋/2 are represented by a red 

vertical line in all figures.   

 

Figure 36: Description of the three coordinates 𝑅0 (𝑥0
′ , 𝑦0

′ , 𝑧0
′ ): 𝑅0 (𝑡𝑟𝑇0𝑇1: 𝑏𝑙𝑢𝑒, 𝑡𝑟𝑇1: 𝑏𝑙𝑎𝑐𝑘, 𝑡𝑟𝑇0: 𝑟𝑒𝑑) for SM 

rods assuming family one 𝐶1 = 5, 𝐸𝐴 = 𝐸𝐵   ,
 𝑄𝐵

𝑄𝐴
= 1,  𝑆𝐵/𝑆𝐴 = 1/2 .The red vertical line is the canonical 

frequency. 

In Figure 36, the coordinate 𝑦0
′  (blue curve) intersects the canonical frequency at the value of 

𝛽 = −2.5  while both 𝑡𝑟𝑇1 and 𝑡𝑟𝑇0 intersect the canonical frequency at zero. This means 

that the first saddle point (starting point) is 𝑃2(−𝛽 , 0, 0)= (−2.5, 0, 0).  

 

Figure 37: Description of the three coordinates 𝑅1(𝑥1
′ , 𝑦1

′ , 𝑧1
′ ) : 𝑅1(𝑡𝑟𝑇1𝑇2: 𝑏𝑙𝑢𝑒, 𝑡𝑟𝑇2: 𝑏𝑙𝑎𝑐𝑘, 𝑡𝑟𝑇1: 𝑟𝑒𝑑) for SM 

rods assuming family one 𝐶1 = 5, 𝐸𝐴 = 𝐸𝐵   ,
 𝑄𝐵

𝑄𝐴
= 1,  𝑆𝐵/𝑆𝐴 = 1/2 .The red vertical line is the canonical 

frequency. 

In Figure 37, the second saddle point is 𝑃5(𝛽, 0, 0)= (2.5, 0, 0). The third saddle point is  

(−2.5, 0, 0) which is the same as the initial point 𝑃2= (−2.5, 0, 0). 

Due to rule (60) and Eq. (67), it turns out that, for Family no. 1, 𝑥2 = 𝑥1𝑡2-𝑥0, an expression 

which leads to 𝑥2= 0 at the canonical frequencies. Therefore, 𝑥𝑖 (𝜔𝑐1𝑛
 ) = 0, ∀𝑖  , implying that 

at these frequencies a waveguide belonging to Family no. 1 always displays a pass band. 

Moreover, a two-point periodic orbit is achieved at 𝜔𝑐1𝑛 , namely 



 

55 
 

𝑃2(−2.5, 0, 0) 
𝒯
→ 𝑃5(2.5, 0, 0)

𝒯
→ 𝑃5, where 𝒯indecate to the cycle transformation         (78)                                                                                 

or, equivalently,  𝑇2
𝑠(𝑃2,5) = 𝑃2,5. The orbit (78) will be denoted henceforth as 𝑇2

𝑠. 

Note that I (𝜔𝑐1) = I (𝜔𝑐1𝑛
) = 𝛽2 − 4 > 0.                                                                      (78.1) 

 

Figure 38 Representation of the two saddle points on the Kohmoto’s surface at canonical frequency 𝜔 = 𝜔𝑐1. 

4.3.2 Family three periodic orbit 

Since family two and three can be studied together (they shows same properties), I will focus 

only on family three.  

𝐶3 = 2/3,  ∴
𝐿𝐵

𝐿𝐴
= 2/3,    

𝑠𝐴

𝑠𝐵
= 0.5, 𝜔𝑐3

= 3𝜋/2.                                                

For Families no. 2 and 3, the invariant evaluated at a canonical frequency always vanishes, i.e., 

𝐼(𝜔𝑐𝑟𝑛
) = 0 (𝑟 = 2, 3). The recursive rule (60) provides a four-point periodic orbit encompassing 

the four saddle points not involved in 𝑇2
𝑠. 

 

Figure 39: Description of the three coordinates (𝑥0
′ , 𝑦0

′ , 𝑧0
′ )  (𝑡𝑟𝑇0𝑇1: 𝑏𝑙𝑢𝑒, 𝑡𝑟𝑇1: 𝑏𝑙𝑎𝑐𝑘, 𝑡𝑟𝑇0: 𝑟𝑒𝑑) for SM rods 

assuming family three 𝐶3 =
2

3
, 𝐸𝐴 = 𝐸𝐵   ,

 𝑄𝐵

𝑄𝐴
= 1,  𝑆𝐵/𝑆𝐴 = 1/2 .The red vertical line is the canonical frequency. 

The black vertical lines at 𝜋 and 2𝜋 are the locus of a 4-point periodic orbit. 
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Figure 40: Description of the three coordinates (𝑥1
′ , 𝑦1

′ , 𝑧1
′ )  (𝑡𝑟𝑇1𝑇2: 𝑏𝑙𝑢𝑒, 𝑡𝑟𝑇2: 𝑏𝑙𝑎𝑐𝑘, 𝑡𝑟𝑇1: 𝑟𝑒𝑑) for SM rods 

assuming family three  𝐶3 = 2/3, 𝐸𝐴 = 𝐸𝐵   ,
 𝑄𝐵

𝑄𝐴
= 1,  𝑆𝐵/𝑆𝐴 = 1/2 .The red vertical line is the canonical 

frequency. The black vertical lines at 𝜋 and 2𝜋 are the locus of a 4-point periodic orbit. 

 

Figure 41: Description of the three coordinates (𝑥2
′ , 𝑦2

′ , 𝑧2
′ )  (𝑡𝑟𝑇2𝑇3: 𝑏𝑙𝑢𝑒, 𝑡𝑟𝑇3: 𝑏𝑙𝑎𝑐𝑘, 𝑡𝑟𝑇2: 𝑟𝑒𝑑) for SM rods 

assuming family three  𝐶3 = 2/3, 𝐸𝐴 = 𝐸𝐵   ,
 𝑄𝐵

𝑄𝐴
= 1,  𝑆𝐵/𝑆𝐴 = 1/2 .The red vertical line is the canonical 

frequency. The black vertical lines at 𝜋 and 2𝜋 are the locus of a 4-point periodic orbit. 

 

Figure 42: Description of the three coordinates (𝑥3
′ , 𝑦3

′ , 𝑧3
′ )  (𝑡𝑟𝑇3𝑇4: 𝑏𝑙𝑢𝑒, 𝑡𝑟𝑇4: 𝑏𝑙𝑎𝑐𝑘, 𝑡𝑟𝑇3: 𝑟𝑒𝑑) for SM rods 

assuming family three  𝐶3 = 2/3, 𝐸𝐴 = 𝐸𝐵   ,
 𝑄𝐵

𝑄𝐴
= 1,  𝑆𝐵/𝑆𝐴 = 1/2 .The red vertical line is the canonical 

frequency. The black vertical lines at 𝜋 and 2𝜋 are the locus of a 4-point periodic orbit. 
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in Figure 39, the coordinate 𝑧0
′  (red curve) intersects the canonical frequency at the value of 

𝛽 = −2 while both coordinates 𝑥0
′  and 𝑦0

′  intersect the canonical frequency at zero. This leads 

to the first saddle point which is 𝑃3(0, 0, −𝛽)= (0, 0, −2). The second, third, and fourth saddle 

points can be extracted from the Figures 40,41, and 42 respectively.  

These four points are connected to periodic orbit through the four-cycle transformations 𝑇𝑠
4as 

follows:  

𝑃4(0, 0, −2) 
𝒯
→ 𝑃6(0, 2, 0)

𝒯
→ 𝑃1 (0, 0, 2) 

𝒯
→ 𝑃3(0, −2, 0).                                                   (79) 

This orbit (79) will be referred from now on as 𝑇4
𝑠. 

The Eq. (78.1) shows how Kohmoto’s invariant relates to pass and stop bands, where the 

coordinate β produced by the traces 𝑦𝑖
′ and 𝑧𝑖

′ depends on this invariant. 

Note that at higher index 𝑖, the dispersion diagrams became unclear as can be seen in the figure 

42.  

 

Figure 43: Representation of the saddle points on the Kohmoto’s surface at canonical frequency 𝜔 = 𝜔𝑐3. 𝑃4 is 

on the hidden part. 

Here the situation is different, as all four points are located in the yellow region. This means 

that the investigated frequency lies on a pass band where the frequency band can propagate. 

Generally, these points (𝑃2, 𝑃5) and (𝑃4, 𝑃6, 𝑃1, 𝑃3) are periodic points of the map (62). Since it 

is a closed and periodic orbit, the starting point in (78) and (79) can be any saddle point. The 

table below gives a comparison between Family no. 1 and Family no. 3 around the canonical 

frequency. 
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Feature Family one : 𝐶1 =5 Family three: 𝐶3 =2/3 

Variable of  xi
′ Always not zero Always  zero 

Traces yi
′  and zi

′ Always vanishes ± 𝛽 or zero 

Kohmoto’s invariant 𝐼(𝜔c) 𝐼(𝜔𝑐1
)  = 2.25 𝐼(𝜔𝑐3

)  = 0 

Periodic points 𝑃2(-𝛽,0,0) 
𝑇𝑠
→ 𝑃5(𝛽,0,0) 

Where 𝛽 = 2.5 

𝑃4(0, 0, − 𝛽) 
𝑇𝑠
→ 𝑃6(0, 𝛽, 0)

𝑇𝑠
→ 𝑃1 (0, 0, 

𝛽) 
𝑇𝑠
→ 𝑃3(0, − 𝛽, 0). 

Scaling 𝑘 𝑘 = −8.127 𝑘 = 33.971 

Table 3: comparison between Family no. 1 and Family no. 3 around the canonical frequency.  

Additional periodic orbits can be found at non-canonical frequencies 𝜔 such that 𝐼(𝜔) =

0.This may occur in a large variety of cases depending on the value of 𝐶 that are however not 

classified here. Nevertheless, the following cases are universal. (i.e., valid for all three Families 

of canonical rods): 

(i) the pair 𝑥0 = 𝑥1 = 2 can be found at the endpoints of the interval where traces are 

periodic, namely at 𝜔 = 0, 4 𝜔𝑐; therefore, 𝑅𝑖 = (2, 2, 2), ∀𝑖, corresponding to a 

fixed-point orbit, i.e. 𝑇𝑠1 (𝑅𝑖) = 𝑅𝑖 ;  (i.e., valid for all three Families of canonical 

rods) 

(ii) In Family no. 1 at 𝜔 =  2𝜔𝑐 , 𝑥0 = 𝑥1 = −2, then 𝑅𝑖 = (2, −2, −2) = the general rule 

for this frequency is that the orbit is fixed-point periodic, i.e., 𝑇𝑠1 (𝑅i) = 𝑅𝑖. In 

Family no .2 and 3 at 𝜔 =  2𝜔𝑐 , 𝑥0 = −𝑥1 = −2, then 𝑅0 = (−2, −2, 2) = 𝑅2 = 𝑅𝐾, 

with 𝐾 even, whereas 𝑅1 = (−2, 2, −2) = 𝑅3 = 𝑅𝑚, with 𝑚 odd; the general rule for 

this frequency is that the orbit is two-point periodic, i.e. 𝑇𝑠2 (𝑅𝑘,𝑚)  = 𝑅𝑘,𝑚. 

To illustrate the features of the dispersion diagram for canonical SM rods, the pass/stop-band 

layouts are displayed in the bottom of Figure 44 and 45. 
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Figure 44: Canonical SM rod with 𝐶1 = 5 (Family no. 1). Top: sketch of the invariant I(ω) in the interval 

[0, 2𝑙𝐴 √𝑄𝐴  𝜔𝑐1 ] the frequencies at which periodic orbits occur are indicated; bottom: stop/pass-band layout in 

the same interval for sequences 𝐹2 to 𝐹4. The dimensionless canonical frequency (red vertical line) is π/2. 

 

Figure 45: Canonical SM rod with 𝐶3 = 2/3 (Family no. 3). interval [0, 2𝑙𝐴 √𝑄𝐴 𝜔𝑐1 ] the frequencies at which 

periodic orbits occur are indicated; bottom: stop/pass-band layout in the same interval for sequences 𝐹2 to 𝐹4. 

The dimensionless canonical frequency (red vertical line) is 3π/2. 

In the top part of Figure 44, the invariant I(𝜔) is sketched in the interval in which the function 

itself , see above – is periodic, namely [0, 2𝑙𝐴 √𝑄𝐴𝜔𝑐1
]. While, on the one hand, it is confirmed 

that, as predicted, 𝐼(𝜔𝑐1
)> 0 (its value is 2.25), on the other hand, in addition to cases classified 

as (i) and (ii) just above, at �̅� = 𝑙𝐴 √𝑄𝐴𝜔 = 𝑝 𝜋 /5(𝑝 = 1, . . . , 4) the function vanishes. There, 

periodic orbits may be found which are all 6-point periodic. However, the orbits produced at 𝑝 

= (1, 4) have the same values of 𝑥𝑖
′ = 𝑡𝑟(𝑇𝑖𝑇𝑖+1) and opposite values of both 𝑦𝑖

′ =

𝑡𝑟𝑇𝑖+1 𝑎𝑛𝑑  𝑧𝑖
′ = 𝑡𝑟𝑇𝑖.This similarity also occurs for values of 𝑝 = (2, 3). 

For �̅� = 𝜋/5, 6-point periodic orbit is 
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 𝑅1(−𝜙, 𝜙, −2) 
𝑇
→ 𝑅2(1/𝜙, −1/𝜙, 𝜙)

𝑇
→ 𝑅3 (1/𝜙, −2, −1/ 𝜙) 

𝑇
→ 𝑅4(1/𝜙, −1/𝜙, −2) 

𝑇
→ 𝑅5(−𝜙, 𝜙, 

−1/ 𝜙)
𝑇
→ 𝑅6 (−𝜙, −2, 𝜙).                                                                             

where 𝜙 is the golden ratio (𝜙 = (√ 5 + 1)/2). 

For �̅� = 4𝜋/5, 6-point periodic orbit is 

𝑅1(−𝜙, −𝜙, 2) 
𝑇
→ 𝑅2(1/𝜙, 1/𝜙, −𝜙)

𝑇
→ 𝑅3 (1/𝜙, 2, 1/ 𝜙) 

𝑇
→ 𝑅4(1/𝜙, 1/𝜙, 2) 

𝑇
→ 𝑅5(−𝜙, −𝜙, 1/ 

𝜙)
𝑇
→ 𝑅6 (−𝜙, 2, −𝜙).                                                                                      

 For �̅� = 2𝜋/5, 6-point periodic orbit is 

𝑅1(1/𝜙, 1/𝜙, 2) 
𝑇
→ 𝑅2(−𝜙, −𝜙, 1/𝜙)

𝑇
→ 𝑅3 (−𝜙, 2, −𝜙) 

𝑇
→ 𝑅4(−𝜙, −𝜙, 2) 

𝑇
→ 𝑅5(1/𝜙 ,1/𝜙,  

− 𝜙)
𝑇
→ 𝑅6 (1/𝜙, 2, 1/𝜙).                                                                                    

For �̅� = 3𝜋/5, 6-point periodic orbit is 

𝑅1(1/𝜙, −1/𝜙, −2) 
𝑇
→ 𝑅2(−𝜙, 𝜙, −1/𝜙)

𝑇
→ 𝑅3 (−𝜙, − 2, 𝜙) 

𝑇
→ 𝑅4(−𝜙, 𝜙, − 2) 

𝑇
→ 𝑅5(1/𝜙, −1/𝜙, 

𝜙)
𝑇
→ 𝑅6 (1/𝜙, −2, −1/𝜙).                                                                                              

In the bottom part of the Figure 44, the layout of stop/pass bands is sketched for sequences 𝐹2  

to 𝐹4 . A higher index 𝑖 could have been studied for the whole interval, but the increasing 

smallness of the widths of the bands in certain frequency ranges would have made the diagram 

illegible. However, a close-up view of the layout for 𝐹4 to 𝐹6 in the neighbourhood of the 

canonical frequency is included to highlight the local self-similar pattern of the spectra, where 

the number of pass bands in each area of the pass/stop diagram is the same.  

It is evident that in the scaled domain, 𝐹4  –𝐹5 –𝐹6 show a sequence of pass bands very similar 

to that pertaining to 𝐹2  –𝐹3 –𝐹4 (sketched in red) in the whole domain. The ‘match’ between 

patterns improves at increasing index 𝑖; the value of the scaling factor will be determined with 

the method developed in section (4.3). 

In Figure 45, the function 𝐼(𝜔) in the same interval (i.e. [0, 2𝑙𝐴 √𝑄𝐴𝜔𝑐3
]) is reported. 

Differently than Figure 44, at the canonical frequency the invariant vanishes, namely 𝐼 (𝜔𝑐3
 ) 

= 0, and this also occurs for �̅�= 𝜋 and 2𝜋. All the three frequencies are loci where 4-point 

periodic orbits are present with initial point being equal to 𝑅0  = (1, −2, −1) for �̅�= 𝜋 and 𝑅0  = 

(−1, 2, −1) for �̅�= 2𝜋. 

The 4-point periodic orbit for �̅�= 𝜋  
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𝑅1(1, −2, −1) 
𝑇
→ 𝑅2(1, −1, −2)

𝑇
→ 𝑅3 (−2, 1, −1) 

𝑇
→ 𝑅4(1, −1, 1).                                       

And for �̅� = 2𝜋  

𝑅1 (−1, 2, −1) 
𝑇
→ 𝑅2(−1, −1, 2)

𝑇
→ 𝑅3 (2, −1, −1) 

𝑇
→ 𝑅4(−1, −1, −1).                              

In order to give the reader an insight into the diagrams illustrated in Figures 44 and 45, we 

consider two finite waveguides composed of six elementary cells 𝐹2  and 𝐹4 , respectively, 

belonging to Family no. 1. They join two semi-infinite, identical outer media whose elastic 

properties match those of phase 𝐴 (Figure 46 (a)). We expect the system to be able to transmit 

(reflect) a signal whose frequency belongs to a pass band (stop band). To this end, transmission 

coefficient 𝑇𝐶  and reflection coefficient 𝑅𝐶  = 1 − 𝑇𝐶  can be calculated following the method 

presented in (Lekner, 1994). The reflection coefficients for the two problems at hand are 

displayed in Figure 46. For 𝐹2 , the whole domain [0, 2𝑙𝐴 √𝑄𝐴𝜔𝑐1
] represented in Figure 44 is 

analyzed in Figure 46 (b), whereas for the elementary cell 𝐹4 , the range 𝑙𝐴 √𝑄𝐴 𝜔 ∈ [1.376, 

1.764] is analyzed in Figure 46 (d). In both diagrams, it is evident that 𝑅𝐶  approaches 1 in the 

stop bands, thus confirming that the model of infinite, periodic waveguide provides an excellent 

estimation of the range of frequencies at which waves cannot propagate. For cell 𝐹2 , the 

reflection coefficient for a domain three times wider than that in Figure 46 (b) is reported in 

Figure 46 (c) to show the periodicity of the response of the finite-size device, confirming once 

again the prediction of the theory of canonical phononic waveguides. 
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Figure 46: Canonical SM rod with 𝐶1= 5 (Family no. 1). (a) Schematic of the finite-size waveguide; (b) plot of 

the reflection coefficient 𝑅𝐶  for elementary cell 𝐹2 for a dimensionless frequency in the interval [0, 2𝑙𝐴 √𝑄𝐴𝜔𝑐1
]; 

(c) same as in (b), but in the domain [0, 6𝑙𝐴 √𝑄𝐴𝜔𝑐1
]; (d) plot of the reflection coefficient 𝑅𝐶  for elementary cell 

𝐹4 in the domain [1.376, 1.764] : (Farhat et al, 2022). 

4.4 Scaling and self-similarity of the frequency spectra of canonical SM rods 

 

In this section, analytical scaling factors which govern the self-similar pattern of stop and pass-

band layouts of canonical SM rods are obtained through the linearization of the map (62) about 

the relevant periodic orbits mentioned in the expressions (78) and (79). 

Let us see what happen around the canonical frequency in each family. 

 Family no. 1, since this family is characterised by two-cycle transformation 𝑇𝑠
2, the 

ratio of pass band width around the canonical frequency called scaling ratio is 
𝜔𝑖

𝜔𝑖+2
=

8.1. This ratio can be comparable with the absolute result of 𝑘𝑠+2
+  which will derive in 

next section. 
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Figure 47: Stop/pass-band layout for canonical SM rod corresponding to elementary cells 𝐹2 to 𝐹6 with 𝐶1 = 5 

(Family no. 1) in the interval [0, 2𝑙𝐴 √𝑄𝐴  𝜔𝑐1 ]. The dimensionless canonical frequency is π/2.

 

Figure 48:stop/pass-band layout for canonical SM rod corresponding to elementary cells 𝐹2 to 𝐹7 with 𝐶3 =

2/3 (Family no. 3) in the interval [0, 2𝑙𝐴 √𝑄𝐴  𝜔𝑐3 ] .The dimensionless canonical frequency is 3π/2. 

. 

 In Family no. 3, The scaling ratio 
𝜔𝑖

𝜔𝑖+4
33.97  shows a great converge to the eigenvalue 

𝑘𝑠+4
+  = 33.971 which will derive in next section especially at high sequences. 

 

4.4.1 Linearization of the trace map about saddle points  

As mentioned earlier, non-periodic bounded and escaping orbits can be studied as a 

perturbation of the periodic trajectory on Kohmoto’s surface given by the two and four-cycle 

transformations defined by Eq. (78) and (79). 

Following the approach proposed by Morini and Gei (2018) and Gei et al (2020), we can study 

non-periodic bounded orbits on the Kohmoto’s surface as linear perturbations of the periodic 

orbits defined in the previous section. Consider a saddle point 𝑃�̅� as a point of a p−periodic 

orbit. Let us assume, for a ‘small’ δ, that �̅�𝑖 = 𝑅𝑖(𝜔 + 𝛿𝜔), where 𝑅𝑖 (𝜔) = 𝑃�̅� . We can then say 
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that �̅�𝑖 is in the neighbourhood of 𝑃�̅�, therefore the modulus of the vector 𝛿𝑟𝑖 (𝛿𝜔) = �̅�𝑖 −𝑃�̅� is 

small with respect to the value of the non-vanishing coordinate of 𝑃�̅�. On the one hand, by 

applying 𝑃 times the transformation T , the exact position of �̅�𝑖+𝑃 = 𝑇𝑃(�̅�𝑖) can be established. 

On the other, due to the smallness of | 𝛿𝑟𝑖 |, a linearisation of the nonlinear map can be 

performed such that the position of point �̅�𝑖+𝑃 can be approximated by 𝑃�̅� +𝛿�́�𝑖+𝑃. From above 

we can say that  

𝛿�́�𝑖+𝑃 = �̅�𝑃 𝛿𝑟𝑖.                                                                                                                     (80) 

For Family no.1 we have  

�̅�𝑖+2 = 𝑇𝑠
2 (�̅�𝑖)                                                                                                                 

 𝛿�́�𝑖+𝑃 = �̅�2 𝛿𝑟𝑖.                                                                                                                    (81) 

For Family no. 2 and 3, we have 

�̅�𝑖+4 = 𝑇𝑠
4 (�̅�𝑖)                                                                                                                 

𝛿�́�𝑖+4 = �̅�4 𝛿𝑟𝑖.                                                                                                                     (82) 

 

Figure 49: Canonical SM rod with 𝐶1 = 5  (Family no. 1). (a) Plot of traces 𝑥2 (𝑘𝜔), 𝑥4(𝜔), 𝑥6 (𝜔/𝑘)  (𝜅 = 

−8.127) in the neighborhood of the canonical frequency (𝑙𝐴 √𝑄𝐴 𝜔𝑐3 = 𝜋/2); (b) plot of traces 𝑥2(𝑘𝜔) and 𝑥8(𝜔)  

(𝜅 = 197.89) in the neighborhood of the point �̅� = = 𝑙𝐴 √𝑄𝐴 𝜔 = 𝜋/5 where a 6-point periodic orbit is detected 

(see Figure. 35): (Farhat et al, 2022). 
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Figure 50: Figure 50: plot of traces 𝑥2(𝑘𝜔) and 𝑥8(𝜔)  (𝜅 = 197.89) in the neighborhood of the point �̅� =  

𝑙𝐴 √𝑄𝐴 𝜔 = 2𝜋/5 where a 6-point periodic orbit is detected (see Figure. 37).                                                         

 

The operator �̅�𝑃 depends on the orbit and examples in this thesis  include 

�̅�2 = 𝐽𝑠(𝑃5)𝐽𝑠(𝑃2)                                                                                                            (83)                              

for 𝑇2
𝑠 [Eq. (78)]                                                                                                     

and 

�̅�4 = 𝐽𝑠(𝑃4)𝐽𝑠(𝑃6) 𝐽𝑠(𝑃1)𝐽𝑠(𝑃3)                                                                                      (84) 

for 𝑇4
𝑠 [Eq. (79)]                                                                                                      

where 𝐽𝑠(𝑃𝐽) is the jacobian matrix (15) evaluated at the saddle point (𝑃𝐽). The jacobian matrix 

can deal with the concept of differentiation with coordinate transformation. In other words, if 

the function is differentiable at a point, its differential is given in coordinates by the jacobian 

matrix. 

Since this class of structures is characterised by two-cycle and four-cycle transformation, we 

will suffice to derive the Jacobian matrix for two-cycle transformation assuming 𝑃2 is the 

starting point, taking advantages from the expression (65).   

 𝐴1 = 𝐽𝑠𝑃2(−𝛽, 0,0) = [
𝑦𝑖

′2 − 1 2𝑦𝑖
′𝑥𝑖

′ − 𝑧𝑖
′ −𝑦𝑖

′

𝑦𝑖
′ 𝑥𝑖

′ −1
0 1 0

] = [
−1 0 0
0 −𝛽 −1
0 1 0

]                                                                 

And  

𝐴2 =  𝐽𝑠𝑃5(𝛽, 0,0) =     [
𝑦𝑖

′2 − 1 2𝑦𝑖
′𝑥𝑖

′ − 𝑧𝑖
′ −𝑦𝑖

′

𝑦𝑖
′ 𝑥𝑖

′ −1
0 1 0

] = [
−1 0 0
0 𝛽 −1
0 1 0

]                                                                              
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By applying Eq. (83) ,the matrix �̅�2 calculated at 𝑃2 as a reference saddle point is  

 �̅�2 = 𝐴2 ∗ 𝐴1 = [
1 0 0
0 −𝛽2 − 1 −𝑎
0 −𝛽 −1

]                                                                                  

The matrix of  �̅�2 can be changed if the reference saddle point changed. However, if we 

consider 𝑃5 was as the reference saddle point, the matrix �̅�2 will be written as 

 �̅�2 = 𝐴1 ∗ 𝐴2 = [
1 0 0
0 −𝛽2 − 1 𝑎
0 𝛽 −1

] .                                                                        

To proceed further, let us focus on the spectral representations of �̅�2 and �̅�4 that are matrices 

whose determinants are both unitary. They both share an eigenvalue equal to one that is 

associated with a unit eigenvector, say 𝑔∗. The linearized transformation (83) possess two 

additional pairs of eigenvalues as illustrated below. 

𝑘2
± = ∓

1

2
[√(4 + 𝐼(𝜔)) ∗ (8 + 𝐼(𝜔)) + (4 + 𝐼(𝜔)) + 2].                                               (85) 

Since 𝐼(𝜔)= 𝛽2 − 4, Eq. (85) can be written as follows                             

𝑘2
± = −1/2[2 + 𝛽2 ± 𝛽√4 + 𝛽2 ]                                                                                    (86) 

Similarly, the linearized transformation (84) possesses the following eigenvalues 

𝑘4
± = [√(3 +  𝐼(𝜔))2 − 1 ± (3 + 𝐼(𝜔))]

2
                                                                       (87) 

Since the 𝐼(𝜔) evaluated at a canonical frequency always vanishes i.e. 𝐼(𝜔𝑐𝑟𝑛
) = 0 (𝑟 = 2, 3). 

𝑘4
± = (2√2 ± 3)2                                                                                                               (88) 

It is worthy to point out that the scaling factor 𝑘2
±or 𝑘4

± can be negative. 

In the next section we will see how the scaling 𝜅 can be changed at non canonical frequency 

and still govern the self-similar pattern of stop and pass-band layouts but in certain area as 

illustrated in Figures 49 and 50. The criterion used to determine the area in which the scaling 

is effective is the extent to which the behavior of the three consecutive traces is similar in that 

area.  

The scaling factor can predict pass and band gab width for different families of canonical 

structures. In silver structure family no.1, we can compare the pass (stop) bands width of 

sequence 𝐹𝑖 and 𝐹𝑖+2 using the scaling factor. For family no. 2,3, which are characterised by 

four-cycle transformations, the comparison will be between 𝐹𝑖 and 𝐹𝑖+4. 
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It has to be noted that 𝑘𝑃
+ =1/𝑘𝑃

− (𝑃 = 2, 4) and 𝑘4
+= 𝜎s

4. We indicate the unit eigenvector related 

to 𝑘𝑃
+ (resp. 𝑘𝑃

−) as 𝑔+ (resp. 𝑔−). 𝑘𝑃
+ is usually much larger than the other two eigenvalues and 

its value will be also indicated from now as 𝑘𝑃, or simply 𝑘, as there is no risk of confusing it 

with another quantity. Imagine now to decompose 𝛿𝑟𝑖 with respect to the basis {𝑔+, 𝑔−, 𝑔∗ } 

as 𝛿𝑟𝑖 =  𝜉+𝑔+  +  𝜉−𝑔−+  𝜉∗𝑔∗ .                                                                                 

 Therefore, by applying Eq. (80), it turns out that: 

 �́�𝑖+𝑃 = �̅�𝑃 𝛿𝑟𝑖 = 𝑘𝑃𝜉+𝑔+ + 𝜉−𝑔−/𝑘𝑃 + 𝜉∗𝑔∗.                                                                  (89) 

Due to the dominance of the highest eigenvalue, we can ignore some parts from the above 

equation and rewrite it as follows 

𝛿�́�𝑖+𝑃 ≈ 𝑘𝑃𝜉+𝑔+ ≈ 𝑘𝑃𝛿𝑟𝑖                                                                                                   (90)  

Note that, due to the fact that we are analysing a saddle point, eigenvector 𝑔∗is orthogonal to 

the tangent plane at 𝑃�̅� whereas the other two eigenvectors span the tangent plane. Therefore, 

vector 𝑘𝑃𝜉+𝑔+ belongs to the tangent plane itself. For periodic orbits other than those 

originating in the neighbourhood of a saddle point, the methodology is similar and based on 

the linearisation about one of the point of the orbit. 

Examples of the interpretation of the linearization of the trace map as a method to explain 

scaling of the frequency spectra of canonical SM rods are reported in Figures 49 and 53, which 

analyse self-similar portions of the stop-/pass-band layouts displayed in Figures 44 and 45, 

respectively. In detail, in Figure 49(a) the neighbourhood of the canonical frequency 

(2𝑙𝐴 √𝑄𝐴 𝜔𝑐1 = 𝜋/2), at which a 2-point periodic orbit occurs, is investigated. With reference 

to the linearisation procedure, the involved saddle point is here 𝑃�̅� = 𝑃2 , where the two 

vanishing coordinates correspond to 𝑥2 and 𝑥3 . To the first order, vector 𝛿𝑟2(𝛿𝜔) = �̅�2 − 𝑃2 

can be written as 

 𝛿𝑟2(𝛿𝜔) = 𝛾(𝛿𝜔),                                                                                                           (91)    

where 𝛾 = 𝑔𝑟𝑎𝑑 𝛿𝑟2 . Approximation (91) lies in the tangent plane spanned by coordinates 𝑥2 

and 𝑥3 , therefore, we can say that, in the neighbourhood of the canonical frequency, 

 𝑥2 ≈ 𝛾2 𝛿𝜔 and 𝑥3 ≈ 𝛾3 𝛿𝜔 , where 𝛾k (𝑘 = 2, 3) are the projections of vector 𝛾 onto axes 𝑥𝑘 

(𝑘 = 2, 3). 

 Focusing on 𝑥2 , it is clear that after a 2-point cycle, Eq.(90) leads to 𝑥4 ≈ 𝑘𝛾2 𝛿𝜔 and, by 

repeating the cycle, 𝑥6 ≈ 𝑘2𝛾2. This is exactly what is reported in Figure 49(a) where traces 

𝑥2 , 𝑥4 , 𝑥6 are scaled accordingly by using the factor 𝑘2
+= −8.127 evaluated for 𝛽 = 2.5); the 
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only difference is that the frequency range reported on the horizontal axis pertains strictly to 

𝑥4 , therefore 𝑥2 is scaled and plotted as 𝑥2 (𝑘𝜔), whereas 𝑥6 is plotted as 𝑥6 (𝜔/𝑘). It is 

evident that within the range comprised within the brace in the Figure 49, the scaling of traces 

explains quantitatively very well their behaviour about the canonical frequency. As a 

consequence, the stop-/pass-band layout can be predicted through scaling about the canonical 

frequency, as shown on top of Figure 49(a). Note that in this case, and for all canonical SM 

rods belonging to Family no. 1, the scaling factor can be negative. For Figure 49(b), similar 

comments can be made, here the focus is the neighborhood of frequency �̅� = 𝜋/5 , where a 6-

point periodic orbit is detected. Therefore, the two represented traces are 𝑥8 (𝜔) and the scaled 

𝑥2 (𝑘𝜔), where this time the multiplicative factor is  𝑘2
+ = 𝜎𝑠

6 = 197.89. 

 

Figure 51: Canonical SM rod with 𝐶3 = 2/3 (Family no. 3). (a) Plot of traces 𝑥2 (𝑘𝜔), 𝑥6 (𝜔), 𝑥10 (𝜔/𝑘) (𝜅 = 

33.971) in the neighbourhood of the canonical frequency [ 2𝑙𝐴 √𝑄𝐴 𝜔𝑐3 = 3𝜋/2 ] (b) plot of traces 𝑥2 (𝑘𝜔) and 

𝑥6 (𝜔) (𝜅 = 33.971) in the neighbourhood of the point �̅� = = 2𝑙𝐴 √𝑄𝐴 𝜔 = 2𝜋 where a 4-point periodic orbit is 

detected (see Figure 36): (Farhat et al, 2022). 

The Figures 52 and 53 below show the behaviour of the traces without and with the scaling 

factor. It is clear that the scaling is effective in the period �̅� from 0 to 2.9.  
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Figure 52: Canonical SM rod with 𝐶1 = 5  (Family no. 1): plot of traces 𝑥3 (𝜔), 𝑥4(𝜔), 𝑥5 (𝜔),𝑎𝑛𝑑  𝑥6(𝜔) in the 

neighbourhood of 𝜔 =0 where a fixed-point orbit, 𝑅0 = (2, 2, 2) is present. plots of 𝑥5 and 𝑥6 are almost 

indistinguishable. 

 

 

Figure 53: Canonical SM rod with 𝐶1 = 5  (Family no. 1): plot of traces 𝑥3 (𝜔), 𝑥4(𝜔/𝑘), 𝑥5(𝜔/𝑘2),  𝑥6(𝜔/𝑘3) 

(𝑘 = 𝜎𝑠)   in the neighborhood of 𝜔 = 0  where a fixed-point orbit, 𝑅0 = (2, 2, 2) is present. The plots of 𝑥5 and 

𝑥6 are almost indistinguishable: (Farhat et al, 2022). 

Figure 51(a) covers the case belonging to Family no. 3 reported in Figure 45, where the 

canonical frequency (2𝑙𝐴 √𝑄𝐴 𝜔𝑐3 = 3𝜋/2) is the locus of a 4-point periodic orbit. Therefore, 

the represented traces are 𝑥6 (𝜔), 𝑥2 (𝑘𝜔) and 𝑥10 (𝜔/𝑘) with 𝑘 =  𝜎𝑠
4 = 33.971 ( Eq. (88)). 

The feature that distinguishes this example from that in Figure 49(a) is that the function 𝑥2 

evaluated at 𝜔𝑐3 is not null. I will show however that the scaling factor between the chosen 

three traces is still 𝜅 despite the fact that they are not linear functions of circular frequency in 

the vicinity of 𝜔𝑐3. The involved saddle point is now 𝑃1 that should be better seen as the point 

of Kohmoto’s surface whose coordinates are (𝑡4 , 𝑥3 , 𝑥2 )|ω=𝜔𝑐3
 = (0, 0, 2). On the one hand, 

following the argument presented before, about the canonical frequency, 𝑡4 and 𝑥3 are linear 

in the frequency, then 𝑡4 = 𝜂4 𝛿𝜔 and 𝑥3 = 𝛾3 𝛿𝜔 ; on the other hand, at the lowest order, 𝑥2 

can be approximated as 𝑥2 ≈ 2 − 𝜁2𝛿𝜔2 and the invariant as 𝐼 ≈ 𝛿𝜔2 as it can be easy inferred 

with a Taylor expansion of (66).  

The use of the above approximations still in (66) yields, to the leading (second) order, 

𝛿𝜔2 = (𝜂4 𝛿𝜔)2 + (𝛾3 𝛿𝜔)2 − 4𝜁2𝛿𝜔2 − 2𝜂4𝛾3𝛿𝜔2,                                                      (92)  

and, finally, 

4𝜁2 = (𝜂4 − 𝛾3)2 − 1 ,                                                                                                     (93) 

which is a consequence of the recursive relationships between adjacent traces.  
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Let us turn now our attention to the same saddle point, but evaluated after a cycle of four 

applications of the trace map, i.e. (𝑡8 , 𝑥7 , 𝑥6 )|ω=𝜔𝑐3
 = (0, 0, 2). By following the same 

argument, we can write  

𝑡8 = 𝜂8 𝛿𝜔 , 𝑥7 = 𝛾7 𝛿𝜔 and 𝑥6 ≈ 2 − 𝜁6𝛿𝜔2                                                                    

where 

 𝜂8 = 𝑘𝜂4 and 𝛾7 = 𝑘𝛾3                                                                                                  (94)  

and the overbar will be added to the independent variable because we need to consider a scaled 

domain. Our goal is to find the connection between 𝜁2 and 𝜁6 through the factor 𝜅.  

In particular, note that in analogy to the case illustrated in Figure 49(a),  𝑥7 (resp. 𝑡8 ) matches 

 𝑥3 (resp. 𝑡4 ) if 𝛿𝜔 = 𝛿𝜔/𝑘. Therefore, we can again consider Eq. (92) and substitute the 

terms of the r.h.s. with those expressed as a function of 𝛿𝜔̅̅ ̅̅ , i.e. 

𝛿𝜔̅̅ ̅̅ 2=(𝜂8𝛿𝜔̅̅ ̅̅ )2+ (𝛾7𝛿𝜔̅̅ ̅̅ )2 − 4𝜁6𝛿𝜔̅̅ ̅̅ 2 − 2𝜂8𝜁7𝛿𝜔̅̅ ̅̅ 2.                                                         (95)  

Updating the l.h.s. of Eq. (95) using 𝛿𝜔 = 𝑘𝛿𝜔̅̅ ̅̅   and employing (94) yields 

 𝑘2 [(𝜂4 − 𝛾3 )2]/4 = 𝜁6,                                                                                               (96) 

which transforms to 𝑘2𝜁2 = 𝜁6 with the help of Eq. (93). Therefore, we have proofed our 

conjecture; 𝑘 enters as a square as it is associated with a second-order term in the Taylor 

expansion. Note that for the parameters selected in Fig. (51a), 𝜁6 = 8867.11 and 𝜁2 = 7.778 

whose ratio has square root equal to 33.76, a value very close to 𝑘. In Fig (51b), the 

neighbourhood of �̅� = 2𝜋  is analysed. As at this frequency a 4-point periodic orbit takes place, 

trace 𝑥6 (𝜔) and the scaled one 𝑥2 (𝑘𝜔)  are sketched where 𝑘 = 33.971 is still the scaling 

factor obtained from the linearisation of the trace map.  

Figure 53 illustrates the effectiveness of the presented method to explain scaling by sketching 

the plots of the functions of four scaled traces (𝑥3 to 𝑥6, the represented domain is that of the 

function 𝑥3 (𝜔)) at the origin (𝜔 = 0) where a fixed-point orbit is present (see case 𝑖) in section 

4.3. The scaling factor is now 𝑘 = 𝜎𝑠. 
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 4.5 Summary 

I investigated propagation of harmonic axial waves in particular class of periodic two-phase 

phononic rods whose elementary cells are generated adopting the quasi-crystalline silver mean 

Fibonacci substitution rule. The stop-/pass-band spectra of this family are studied with the aid 

of a trace map formalism which provides a geometrical interpretation of the recursive rule 

governing traces of the relevant transfer matrices: the traces of two consecutive elementary 

cells can be represented as a point on a surface defined by an invariant function of the circular 

frequency, and the recursivity implies the description of an orbit on the surface. I illustrated 

that, for a sub-class of silver mean-generated waveguides, the orbits predicted by the trace map 

at specific frequencies are periodic for all families. The configurations for which this occurs, 

called canonical, are also associated with periodic stop-/pass-band diagrams along the 

frequency domain. Several types of periodic orbits can be found and each corresponds to a self-

similar portion of the dynamic spectra whose scaling law can be studied by linearising the trace 

map in the neighbourhood of the orbit. The scaling factor can be negative and changed at non 

canonical frequency and still govern the self-similar pattern of stop and pass-band layouts but 

in certain area.  
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Chapter 5: Comparative analysis between Golden and Silver mean rods. 
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5.1 Overview 

In this chapter, I will compare the propagation of harmonic axial waves in a class of periodic 

two-phase phononic rods whose elementary cells are built adopting the Fibonacci golden 

sequence with their silver counterpart for canonical structure using the same tools used in 

Chapter Four, related to the propagation of waves in silver rods, which were also used by 

Morini and Gei in their research related to the propagation of waves in golden rods. The 

stop/pass band spectra of these structures are studied with the aid of a trace-map formalism 

which provides a geometrical interpretation of the recursive rule governing traces of the 

relevant transfer matrices. I will show that silver mean rods show a greater number of band 

gabs than golden mean rods. 

5.2 One-dimensional generalised Fibonacci Golden (Silver) Mean rods 

The elementary cells of Fibonacci golden mean sequence obey to the general substitution rule 

𝐹𝑖 = 𝐹𝑖−1𝐹𝑖−2.  

𝐹2=AB,     𝐹3=ABA   𝐹4=ABAAB  

 

Figure 54: Representative elementary cells for periodic Golden-mean phononic rods. 

In contrast, the elementary cells of Fibonacci silver mean sequence obey to the general 

substitution rule: 𝐹𝑖 = 𝐹2
𝑖−1𝐹𝑖−2. 

𝐹2=AAB,  𝐹3=AABAABA,   𝐹4= AABAABAAABAABAAAB. 
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Figure 55:Representative elementary cells for periodic silver-mean phononic rods. 

 

The following Figures refer to the traces of the transfer matrix obtained for both GM and SM 

rods whose parameters belong to 𝑄𝐵/𝑄𝐴 = 1, 𝐸𝐵/𝐸𝐴 = 1 , 𝑆𝐵/𝑆𝐴 = 1/2, 𝑙𝐵/𝑙𝐴 = 𝐶1 (𝐶1 = 1,3) 

 

Figure 56: Traces (curves) and pass/ stop band( dashed lines)of the sequence   𝐹2 for GM rods assuming family 

one ( 𝐶1 = 1, blue colour, 𝐶1 = 3 black colour)   𝐸𝐴 = 𝐸𝐵   ,
 𝑄𝐵

𝑄𝐴
= 1,  𝑆𝐵/𝑆𝐴 = 1/2 .The red vertical line is the 

canonical frequency. 
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Figure 57: Traces (curves) and pass/ stop band( dashed lines) of sequence 𝐹3 for GM rods assuming family one 

( 𝐶1 = 1, blue colour, 𝐶1 = 3 black colour)   𝐸𝐴 = 𝐸𝐵   ,
 𝑄𝐵

𝑄𝐴
= 1,  𝑆𝐵/𝑆𝐴 = 1/2 .The red vertical line at �̅� = 𝜋/2  

is the canonical frequency and the red vertical line at �̅� = 𝜋 indicates the half interval. 

 

For GMSs and SMSs, the analysed sequences in Figure 58 are 𝐹2 to 𝐹6. Here, we show that the 

group of stop/pass band diagrams exhibit a self-similar pattern for all sequences, where the 

pattern of the spectra is similar for each area of pass stop diagram. In other words, the number 

of pass bands in each area of the diagram is equal, for example the number of pass bands for 

Golden or Silver around the canonical frequency is the same number of pass band in area left 

or right the canonical frequency. However, the ‘match’ between patterns improves at increasing 

index 𝑖. In addition, the distribution of pass/ stop band is divided into two equal halves at the 

canonical frequency which is located in the middle of the interval (have interval) for the 

sequences 𝐹2,5,8 (𝐹3,4,6,7). Moreover, not all GM sequences have the same periodicity, as we 

find that the sequences 𝐹2,5,8 that are characterized by stop band around the canonical frequency 

have a periodicity ends at 𝜋, while the sequences 𝐹3,4,6,7 that are characterized by pass band 

around the canonical frequency have a periodicity ends at 2𝜋.  

In addition, each pass band will split into a number of smaller pass bands in the subsequent 

row to create additional stop band that obey the recursive rule of Fibonacci numbers, 𝑛𝑖, i.e. 

1, 1, 2, 3, 5,8, . . .  for golden and 𝑛𝑖, i.e. 1, 1, 3, 7, 17,41,. . . for silver as illustrated in table 

(4). Moreover, the number of pass bands for a generic sequence 𝐹𝑖 is equal to 𝑛𝑖, and the 

number of band gaps equals 𝑛𝑖 − 1. Note that the value of 𝐼(𝜔)= 2.25. 
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Figure 58: Kohmoto’s invariant (top sketch) and Pass/Stop band diagram corresponding to elementary cells 

𝐹2 𝑡𝑜 𝐹6 for golden sequences (black horizontal cut-off lines) and silver sequences (blue horizontal cut-off lines) 

assuming family one 𝐶1 =3, 𝐸𝐴 = 𝐸𝐵  ,  𝜌𝐴 = 𝜌𝐵  ,   𝐴𝐴/𝐴𝐵 = 0.5 , the red vertical line is the  canonical frequency. 

The table below shows the regular number of pass band in each area of the pass stop band 

diagram obtained in Figure 58. The regular pattern of pass/stop diagram can be explained by 

the regular number of the pass band. However, this regular patter is clear for GM sequences, 

but for Silver Mean sequences, it will be also clear at increasing index 𝑖 with very small interval 

of 𝜔 to allow very small pass/stop bands to be seen.  

𝐹𝑖 Golden: (Pass band number) Silver: (Pass band number) 

𝐹2 1 1 

𝐹3 1 1 

𝐹4 2 3 

𝐹5 3 7 

𝐹6 5 17 

Table 4: The number of Pass band in Golden and Silver mean structures assuming family one 𝐶1 =3, 𝐸𝐴 =
𝐸𝐵  ,  𝜌𝐴 = 𝜌𝐵  ,   𝐴𝐴/𝐴𝐵 = 0.5. 

5.3 Scaling and self-similarity of the frequency spectra of canonical GM (SM) rods and 

periodic orbit 

The scaling factor is useful in predicting the width of pass and stop band for different families 

of canonical structures. For golden structures, we can compare the pass or band gab width of 

sequence  𝐹𝑖 with sequence 𝐹𝑖+6 using the scaling factor. In silver structure, the comparison is 

between  𝐹𝑖 and  𝐹𝑖+2 (family no.1) as illustrated in the table (5). This comparison can be at any 

frequency range not only at the canonical frequency. In other words, for high sequence  𝐹𝑖, we 

can predict the width of pass or stop band using the scaling factor.  

Here we will compare the accuracy of the scaling of the frequency spectra of GM rods against 

SM counterpart assuming family one 𝐶1 =3. 
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According to Farhat et al (2021) and Morini and Gei (2018), the scaling factor of GM  

𝑘𝑔
± =

1

4
[√4 + (4 + 𝐼(𝜔))2 ± (4 + 𝐼(𝜔))]

2
                                                                  

Or  

𝑘𝑔
+= 

1

4
[√4 + (4 + 𝐼(𝜔))2 + (4 + 𝐼(𝜔))]

2
= 41                                                             

And for SM rods is  

𝑘𝑠
± = ∓

1

2
[√(4 + 𝐼(𝜔)) ∗ (8 + 𝐼(𝜔)) + (4 + 𝐼(𝜔)) + 2]                                            

Or  

𝑘𝑠
+ = −

1

2
[√(4 + 𝐼(𝜔)) ∗ (8 + 𝐼(𝜔)) + (4 + 𝐼(𝜔)) + 2] = −8.127                    

GM scaling ratio: 
∆𝜔𝑖

𝑔

∆𝜔
𝑖+6
𝑔  SM scaling ratio: 

∆𝜔𝑖
𝑠

∆𝜔𝑖+2
𝑆  Error(∆𝑠)=|𝑘𝑠

+| −
∆𝜔𝑖

𝑠

∆𝜔𝑖+2
𝑠  

∆𝜔3
𝑔

∆𝜔9
𝑔 = 45 

∆𝜔2
𝑠

∆𝜔4
𝑠 = 8.8 

0.67 

∆𝜔4
𝑔

∆𝜔10
𝑔 = 42.9 

∆𝜔3
𝑠

∆𝜔5
𝑠 = 8.4 

0.273 

∆𝜔6
𝑔

∆𝜔12
𝑔 = 42.2 

∆𝜔4
𝑠

∆𝜔6
𝑠 = 8.1 

0.027 

Table 5: The scaling ratios of  GM and SM sequences at the canonical frequency assuming family one 𝐶1 = 3 , 

𝐸𝐴 = 𝐸𝐵   ,
 𝑄𝐵

𝑄𝐴
= 1,  𝑆𝐵/𝑆𝐴 = 1/2. 

As we mentioned earlier that GM rods are characterized by six-cycle transformation and SM 

rods (Family no.1) are characterized by two-cycle transformation, the table above gives a 

comparison of the accuracy of the scaling ratio for pass band lengths at the canonical frequency 

between GM and SM rods. In addition, the scaling ratio of GM sequences which is  
∆𝜔𝑖

𝐺

∆𝜔𝑖+6
𝐺  is very 

close to the eigenvalue 𝑘𝑔
+ = 41 especially at high indices of 𝑖, while the scaling ratio of SM 

sequences which is  
∆𝜔𝑖

𝑠

∆𝜔𝑖+2
𝑠  is also very close to the absolute value |𝑘𝑠

+|. 

In contrast, the scaling ratios of SM rods gave high accuracy as the index 𝑖 increases, for 

instance the scaling ratio at the third cycle  ∆𝜔4
𝑠

∆𝜔6
𝑠 = 8.1, which is 99.7% of 8.127, while the 

scaling ratios of GM rods shown less accuracy which is 97% at the same cycle. The reason for 

this, as mentioned previously, is that the number of elements in silver sequences is greater than 

their golden counterparts which makes that the third sequence, for example, in silver almost 
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represents an advanced sequence in its golden counterpart. However, both structures give high 

accuracy in terms of scaling ratios compared to the eigenvalues. 

 

Figure 59: Silver mean scaling ratios VS. Error. 

5.3.1Periodic orbits 

 

In this section, we will show the periodic orbits of Golden and Silver mean rods separately, 

then we will mention the common orbits between them. 

i. Golden mean rods periodic orbits 

At the canonical frequency, 6-point periodic orbit is 

𝑃5(0, 0, 2.5) 
𝑇𝑠
→ 𝑃6(0, 2.5, 0)

𝑇𝑠
→ 𝑃1 (0, 0, 2.5) 

𝑇𝑠
→ 𝑃2( −2.5, 0, 0) 

𝑇𝑠
→ 𝑃3 ( 0, −2.5, 0) 

𝑇𝑠
→ 𝑃4(0, 0, 

−2.5).                                      

At non-canonical frequencies 𝜔 such that 𝐼(𝜔) = 0, there are additional periodic orbits can be 

found. This may occur in a large variety of cases depending on the value of 𝐶 that are however 

not classified here. 

At �̅� = 2𝜋/3, 4-point periodic orbit is 

𝑅1(−1, −1, 2) 
𝑇
→ 𝑅2(−1, −1, −1)

𝑇
→ 𝑅3 (2, −1, −1) 

𝑇
→ 𝑅4(−1, 2, −1).                     

ii. Silver mean rods periodic orbits 

At the canonical frequency, 6-point periodic orbit is 

𝑃2(−2.5, 0, 0) 
𝑇𝑠
→ 𝑃5(2.5, 0, 0)

𝑇𝑠
→ 𝑃5.                                                                           

Additional periodic orbit for SM rods were classified in the chapter 4, at �̅� = 𝑝 𝜋 /5: (𝑝 = 1, . . 

. , 4) as the function 𝐼(𝜔𝑐1
)=0 which are all 6-point periodic 

The following cases are universal (valid for GM and SM rods). 
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the pair 𝑥0 = 𝑥1 = 2 can be found at the endpoints of the interval where traces are periodic, 

namely at 𝜔 = 0, 4 𝜔𝑐; therefore, 𝑅𝑖 = (2, 2, 2), ∀𝑖, corresponding to a fixed-point orbit, i.e. 

𝑇𝑔,𝑠1 (𝑅𝑖) = 𝑅𝑖 ;  (i.e., valid for all three Families of canonical GM (SM) rods) 

Other periodic orbits can be found for family .1 at 𝜔 =  2𝜔𝑐 , 𝑥0 = 𝑥1 = −2, then 𝑅𝑖 = (2, −2, 

−2) corresponding to a fixed-point which is fixed-point orbit, i.e., 𝑇𝑔,𝑠1 (𝑅i) = 𝑅𝑖.  

5.4 Summery 

 

Comparative analysis between Golden and Silver mean rods for axial waves has been done.  

The number of band gabs in silver mean rods is greater than its golden counterpart, which can 

be useful in several applications such as wave filters. 

I have shown the distribution of pass bands follows a self-similar law when the index 𝑖 of the 

generation sequence 𝐹𝑖 increases. This property can be recognized at the area around the 

canonical frequency and other areas left or right the canonical frequency. Since the number of 

elements in SM sequences  is greater than their GM counterpart, the scaling ratios of SM rods 

gave high accuracy as the index 𝑖 increases than its GM counterpart. This Comparative analysis 

between Golden and Silver mean rods gives the designers of acoustic devices boarder options 

in choosing the best sequence that achieve the desired results.  
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Chapter 6: Effects of pre-stress on dispersive properties of 

flexural waves in multi-supported beam 
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6.1 Overview 

 The widespread use of phononic systems with periodic structures such as rods, plates and 

beams is due to the filtrations properties presented by these materials that can be exploited in 

many applications such as design of filters, waveguides and resonators (Brun et al, 2010; 

Shmuel and Band, 2016; Trainiti et al, 2019). The feature of stop band or so called band gap in 

periodic structures has been studied and exploited by many researchers starting from Cremer 

and Leilich in the year of 1953.  

Mead in his work focused mainly on methods developed at the University of Southampton to 

analyse and predict the free and forced wave propagation in continuous periodic engineering 

structures (Mead,1996). Research conducted recently by (Morini and Gei, 2018) studied the 

features of self-similarity of the distribution of stop/pass bands in periodic structures. 

According to previous studies on the effect of pre-stress on the dispersion properties of Bloch–

Floquet elastic waves in the periodic structures, including (Gei et al, 2009; Gei, 2010), the 

presence of pre-stress has a noticeable effect, especially on the dynamic properties. One of 

these affected properties is the changes in the width of band gaps. However, the effect of pre-

stress on the filtering properties for both pass and band gaps need to be studied deeply. In this 

chapter, we will focus in more details on the effect of pre-stress on the dispersion diagram, 

taking the advantages of the preliminary results achieved by Gei (2010).  

 

Figure 60: Chapter five keyword.. 

 

 

 

Pre-stress

Golden Mean 
Sequence

Refrence 
Frequency

Pass/Stop 
band 

Length 

The invariant 
I(ω) 

Periodic 
orbit

Keyword 



 

82 
 

6.2 Multi-supported beam generated according to Fibonacci Golden Mean rule 

I now investigate the role of the pre-stress in changing the dispersion diagrams for flexural 

waves of quasiperiodic Multi-supported beam. The structure is created by the repetition of the 

elementary cell produced adopting the Fibonacci sequence, based on the primary sequence 

commonly known as Golden mean. In this section, we will focus in details on the effect of pre-

stress on the width of pass/stop band by assuming a different value of pre-stress (tensile, null, 

compressive).  

6.3 Mathematical Model of the quasiperiodic beam 

Consider a particular class of infinite, one-dimensional, two-component quasiperiodic 

phononic beam consisting of a repeated elementary cell based on a particular position of 

supports as illustrated in the Figure 61 where two distinct phases, say A and B, are arranged in 

series according to the so-called Golden Mean (GM) sequence. We can also create this structure 

using Silver Mean (SM) sequence.    

Based on the following substitution rule, the prototype structure represented in Figure 61 has 

been obtained and its elements are as mentioned above A and B. 

A → AB, B → A.                                                                                                            (97) 

Expression (97) implies that element of 𝑖 − 𝑡ℎ order of the sequence (𝑖 = 0, 1, 2, . . .), here 

denoted by 𝐹𝑖, obeys the recursive rule 

  𝐹𝑖 = 𝐹1
𝑖−1𝐹𝑖−2

1                                                                                                                (98) 

with initial conditions  𝐹0 = 𝐵   and 𝐹1 = 𝐴. This means that for any index (𝑖), the 

corresponding Fibonacci cell will be easy formed. An example is: 

𝐹2 = 𝐴𝐵 , 𝐹3 = 𝐴𝐵𝐴.                                                                                                      

 where the notation 𝐹𝑖 will also indicate from now on the elementary cell of the structured 

beam. The total number of elements of 𝐹𝑖 corresponds to the generalised Fibonacci number 𝑛𝑖  

given by the recursive relation 𝑛𝑖 = 𝑛𝑖−1 + 𝑛𝑖−2, with 𝑖 ≥ 2 and 𝑛0 = 𝑛1 = 1. The limit 𝜎 =

𝑙𝑖𝑚𝑖→∞
𝑛𝑖+1

𝑛𝑖
 corresponds to the Golden mean ratio 𝜎𝑔 =

1+√5

2
  that is corresponding to the 

golden ratio 𝜎𝑔=1. 618. 
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Figure 61: flexural vibrations of a quasiperiodic beam: elementary cell for the sequence 𝐹3. Symbols r and l 

denote right and left-hand boundaries of the elementary cell. 

The structure which is a homogeneous beam is subjected to pre-stress and bending stiffness 

donated by N and S respectively where the variations in these important parameters affect the 

dispersion diagrams. The pre-stress is associated with the switch of the spectrum and an initial 

band gap. If the pre-stress is compressive the spectrum will move in one direction whereas the 

tensile load will move the spectrum in the opposite direction. The quasi-periodicity is given 

now by the specific position of supports along the beam axis. The two-component GM 

sequence belongs to the family of patterns commonly known as one dimensional generalized 

Fibonacci tilings (Kolar and Ali, 1989).  

The physical and geometrical properties of phases A and B  are 𝑙𝐴 and 𝑙𝐵 represent the lengths 

of the elements A and B respectively while mass density per unit length of each element for 

beam segments is donated by 𝜌. The variation of the mass density of the two phases will affect 

the pass stop band diagram. 

 The governing equation of flexural waves along the longitudinal axis 𝒵  in each phase of beam 

is as follows: 

𝑆𝑣′′′′ − 𝑁𝑣′′ − 𝜌𝜔2𝑣 = 0                                                                                                  (99) 

where 𝜔 is the circular frequency and 𝑣  is the vertical displacement while 𝑟 is the radius of 

gyration of the cross section of the beam and thus the following dimensionless parameters  can 

be written as follows  

�̅� =
𝑁𝑟2

𝑆
 ,  𝑃 =

𝜌𝑟4

𝑆
                                                                                                             (100) 

The general solution for Eq. (99) yields the form  

(𝑘𝑟)4 − �̅�(𝑘𝑟)2 − 𝑃𝜔2 = 0                                                                                              (101) 
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Four solution can be derived for the variable 𝑘 from the Eq. (101) as follows     

𝑘1,2 = ±
1

𝑟
[ − 

�̅�

2
+ √

�̅�2

4
+ 𝑃𝜔2 ]

1
2⁄                                                                                     

𝑘3,4 = ±
1

𝑟
[ − 

�̅�

2
− √

�̅�2

4
+ 𝑃𝜔2 ]

1
2⁄                                                                                   (102)  

I will follow the same procedure as (Gei, 2010) to obtain the dispersion diagram of the flexural 

beam. To this end, the transmission  matrix 𝑀𝑖 of the cell of the sequence 𝐹𝑖  can be derived if 

rotation ϕ(𝒵) and its derivative ϕ′(𝒵) at each constrained point are known. 

Now we have     

ϕ𝑙
′ = 𝑘1

2A+𝑘1
2B+𝑘3

2C+𝑘3
2D                                                                                           (103)   

ϕ𝑟
′ = 𝑘1

2 𝑒 𝑖𝑘1
2
 A+𝑘1

2 𝑒 −𝑖𝑘1
2
 B+𝑘3

2𝑒 𝑖𝑘3
2
 C+𝑘3

2 𝑒 −𝑖𝑘3
2
 D                                                  (104) 

By substituting A, B, C and D and applying Floquet-Bloch theory, we will have  

 [
ϕ𝑙

′

ϕ𝑟
′ ] = 𝑀 [

ϕ𝑙

ϕ𝑟
]                                                                                                             (105) 

[
ϕ𝑙

ϕ𝑟
] = Ψ [

ϕ𝑙
′

ϕ𝑟
′ ]  where Ψ = 𝑀−1 = [

Ψ𝐴𝐴 Ψ𝐴𝐵

Ψ𝐵𝐴 Ψ𝐵𝐵
]                                                         (106)     

The following quantities depends on the circular frequency and pre-stress through 𝑘1 and 𝑘3 

that are given by Eq. (102) through the sign + as follows. 

 

Ψ𝐴𝐴
𝑋 =

𝒌𝟏 cot(𝒌𝟏𝒍𝑿)−𝒌𝟏 cot(𝒌𝟑𝒍𝑿)

𝐾3
2−𝐾1

2                                                                       

Ψ𝐵𝐵
𝑋 =

𝒌𝟏 cot(𝒌𝟏𝒍𝑿)−𝒌𝟑 cot(𝒌𝟑𝒍𝑿)

𝐾1
2−𝐾3

2                                                                      

Ψ𝐴𝐵
𝑋 =

𝒌𝟏 csc(𝒌𝟏𝒍𝑿)−𝒌𝟏 csc(𝒌𝟑𝒍𝑿)

𝐾1
2−𝐾3

2                                                                           

Ψ𝐵𝐴
𝑋 =

𝒌𝟏 csc(𝒌𝟏𝒍𝑿)−𝒌𝟏 csc(𝒌𝟑𝒍𝑿)

𝐾3
2−𝐾1

2                                                                                      (107) 

and then 

ϕ𝑙 = Ψ𝐴𝐴
𝑋 ∗ ϕ𝑙

′ + Ψ𝐴𝐵
𝑋 ∗ ϕ𝑟

′ ⇒  ϕ𝑟
′ =

ϕ𝑙

Ψ𝐴𝐵
𝑋 −

Ψ𝐴𝐴
𝑋

Ψ𝐴𝐵
𝑋  ϕ𝑙

′                                                

ϕ0 = Ψ𝐵𝐴
𝑋 ∗ ϕ𝑙

′ + Ψ𝐵𝐵
𝑋 ∗ ϕ𝑟

′                                                                                             



 

85 
 

ϕ𝑟
′ *Ψ𝐴𝐵

𝑋 = ϕ𝑙 − Ψ𝐴𝐴
𝑋 ∗ ϕ𝑙

′ ⇒ ϕ𝑟 =
Ψ𝐵𝐵

𝑋

Ψ𝐴𝐵
𝑋 ϕ𝑙 + (Ψ𝐵𝐴

𝑋 −
Ψ𝐵𝐵

𝑋 Ψ𝐴𝐴
𝑋

Ψ𝐴𝐵
𝑋 )ϕ𝑟

′                                   

From all above we can write the following equations as follows 

 ϕ𝑙 =
Ψ𝐵𝐵

𝑋

Ψ𝐴𝐵
𝑋 ϕ0 + (Ψ𝐵𝐴

𝑋 −
Ψ𝐵𝐵

𝑋 Ψ𝐴𝐴
𝑋

Ψ𝐴𝐵
𝑋 )ϕ𝑙

′                                                                     

 ϕ𝑟
′ =

1

Ψ𝐴𝐵
𝑋 ϕ𝑙 −

Ψ𝐴𝐴
𝑋

Ψ𝐴𝐵
𝑋  ϕ𝑙

′                                                                                             

Now we can write  

[
ϕ𝑟

ϕ𝑟
′ ] = [

Ψ𝐵𝐵
𝑋

Ψ𝐴𝐵
𝑋 Ψ𝐵𝐴 −

Ψ𝐵𝐵
𝑋 Ψ𝐴𝐴

𝑋

Ψ𝐴𝐵
𝑋

1

Ψ𝐴𝐵
𝑋

Ψ𝐴𝐴
𝑋

Ψ𝐴𝐵
𝑋

] [
ϕ𝑙

ϕ𝑙
′] ⇒ [

ϕ𝑟

ϕ𝑟
′ ] = 𝑀𝑋 [

ϕ𝑙

ϕ𝑙
′]                                         (108)               

 where 𝑀𝑋 = [

Ψ𝐵𝐵
𝑋

Ψ𝐴𝐵
𝑋 Ψ𝐵𝐴

𝑋 −
Ψ𝐵𝐵

𝑋  Ψ𝐴𝐴
𝑋

Ψ𝐴𝐵
𝑋

1

Ψ𝐴𝐵
𝑋            −

Ψ𝐴𝐴
𝑋

Ψ𝐴𝐵
𝑋

]                                                                             

𝑈𝑙 = 𝑀𝑖𝑈0                                                                                                                 (109)  

Where 𝑈𝑗 = [ϕ𝑗  ϕ𝑗
′ ]𝑇 and the matrix 𝑀𝑖 which is the result of the product 

 𝑀𝑖 = ∏ 𝑀𝑋𝑛𝑖
𝑝=1  where 𝑀𝑋: 𝑋 ∈ (𝐴 , 𝐵) is the receptances matrix of a simply supported beam  

of each element in the cell. 

The matrix 𝑀𝑖 is unimodular where the  det 𝑀𝑖 =1, and obey the following recursion rule 

𝑀𝑖+1 = 𝑀𝑖−1 𝑀𝑖 , with initial conditions 𝑀0 = 𝑀𝐵 and 𝑀1 = 𝑀𝐴 

An example to this relation 𝑀2 = 𝐵𝐴, 𝑀3 = 𝐴𝐵𝐴 

det [𝑀𝑖 − 𝑒𝑖𝑘𝐼 ] = 0,                                                                                       

or 

𝑘 =
arccos (tr 𝑀𝑖)

2
.                                                                                     (110)  

The solution of Eq. (110) presents the complete Floquet-Bloch spectrum and allows to obtain 

the mentioned stop-/pass-band pattern of the waveguides at varying index 𝑖. In particular, 

waves propagate when  |tr 𝑀𝑖| < 2 is satisfied. Conversely, whereas  stop bands comply with 

|tr 𝑀𝑖| > 2,  

It is worthy to point out that Floquet-Bloch spectrum is not periodic as we had in the axial 

waves reported in the chapter. 4. In other words, in this case we are dealing with flexural waves 
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assuming pre-stress and bending stiffness as illustrated in the fourth order equation numbered 

which has two parts, periodic part and non-periodic part. This mean that we can not have 

periodicity as in the case of axial rods but we can still apply the Fibonacci recursion rule and 

Kohmoto’s invariant. 

6.4 Cyclic transformation of Golden Mean beams and Kohmoto’s invariant 

General recursive relations for the traces of unimodular 2 × 2 receptance matrices of GM 

generalised Fibonacci chains in terms of Chebyshev polynomialsh have been derived by Kolar 

and Ali (1989) as follows  

𝑥𝑖+1 = 𝑥𝑖−1𝑥𝑖 −  𝑥𝑖−2     with 𝑖 ≥ 2                                                                                 (111)                                                                                                                                                             

where 𝑥𝑖 = 𝑡𝑟 𝑀𝑖 with initial conditions; 

 𝑥0 = 𝑡𝑟𝑀𝐵 =
𝑀𝑏𝑏

𝐵

𝑀𝑎𝑏
𝐵 −

𝑀𝑎𝑎
𝐵

𝑀𝑎𝑏
𝐵            (element B                                                                                                

  𝑥1 = 𝑡𝑟𝑀𝐴 =
𝑀𝑏𝑏

𝐴

𝑀𝑎𝑏
𝐴 −

𝑀𝑎𝑎
𝐴

𝑀𝑎𝑏
𝐴                                                                                                                

 𝑥2 = 𝑡𝑟(𝑀𝐵𝑀𝐴).                                                                                                         (112) 

Let us introduce the set of new variables 

𝑥𝑖
′ = 𝑡𝑖+2 , 𝑦𝑖

′ = 𝑥𝑖+1 ,   𝑧𝑖
′ = 𝑥𝑖 .                                                                                     (113)                                                                   

By substituting coordinates (112) into Eq.(111), a nonlinear trace map for Golden Mean 

Structures (SMSs), defining the evolution of  𝑥𝑖 can be obtained 

 𝑇𝐺(𝑥𝑖
′, 𝑦𝑖

′, 𝑧𝑖
′)= (𝑥𝑖+

′ , 𝑦𝑖+1
′ , 𝑧𝑖+1

′ ) = (𝑥𝑖
′𝑦𝑖

′ − 𝑧𝑖
′,  𝑥𝑖

′, 𝑦𝑖
′).                                                 (114) 

The nonlinear map determined by the Eq. (10) is differentiable map, its Jacobian as follows; 

𝐽𝑠 =
𝜕(𝑥𝑖+1

′ ,𝑦𝑖+1
′ ,𝑧𝑖+1

′ )

𝜕(xi
′,yi

′,zi
′)

= [
𝑦𝑖

′2 − 1 2𝑦𝑖
′𝑥𝑖

′ − 𝑧𝑖
′ −𝑦𝑖

′

𝑦𝑖
′ 𝑥𝑖

′ −1
0 1 0

]                                                    (115) 

From all above, an invariant Kohmoto’s invariant I(ω) can be written as follow 

I(ω) = x𝑖
′2 + y𝑖

′2+z𝑖
′2 − x𝑖

′y𝑖
′z𝑖

′ − 4.                                                                              (116) 

This  invariant is independent of  the order (𝑖) of the sequence 𝐹𝑖 and depends only on the 

frequency (ω). This means that this invariant is valid for all precious mean structures GMSs, 

SMSs and BMSs. 
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In the case of Golden Mean structures (GMs), at any value of frequency ω, all the coordinates  

𝑥𝑖
′, 𝑦𝑖

′ and  𝑧𝑖
′  represent the values of  three consecutive traces obtained by three successive 

sequences can be can be mapped onto the surface defined by Eq.(116). Differently, for Silver 

Mean structures (SMs), only 𝑦𝑖
′ = 𝑥𝑖+1 𝑎𝑛𝑑 𝑧𝑖

′ =  𝑥𝑖 represent the values traces of transfer 

matrices whereas 𝑥𝑖
′ = 𝑡𝑟(𝑀𝑖𝑀𝑖+1) is an auxiliary variable produced by the recurrence 

relationship corresponding to the SMSs, see (Morini and Gei, 2018). 

 

Figure 62: Kohmoto’s invariant for a GM beam assuming family.1 whose parameters are  𝐿𝐴/𝐿𝐵 = 0.5555, 

𝑁 =0. The normalized circular frequency �̅� = √𝑃𝑎* 𝜔. 

All points singled out by the three coordinates 𝑅𝑖(𝑥𝑖
′, 𝑦𝑖

′, 𝑧𝑖
′) produced by the map (114) are 

confined on the surface obtained by representing equation (116) in the three-dimensional space 

𝑂𝑥𝑖
′ 𝑦𝑖

′ z𝑖
′ and can be mapped on this surface. Visibly, there are two different colours on the 

surface. The yellow region expresses that all (|𝑥𝑖
′|,|𝑦𝑖

′|,|𝑧𝑖
′|) ≤2 . This means that 𝑅𝑖(𝑥𝑖

′, 𝑦𝑖
′, 𝑧𝑖

′) 

will be on pass band and waves will propagate at this frequency along the two rods produced 

by the elementary cells 𝐹𝑖+2, 𝐹𝑖+1 and 𝐹𝑖. On the other hand, if at least one of two elementary 

cells 𝐹𝑖+2, 𝐹𝑖+1 and 𝐹𝑖 |𝑥𝑖
′|,|𝑦𝑖

′|,|𝑧𝑖
′|) ≥2, the waves therefore will not propagate (stop band) and 

this what the red region represents. 

6.5 Configuration of GM beams (ratios and frequency) and Periodic orbits 

The sets of points generated by the iterating map represented by Eq. (114) define confined orbit 

on surface determined by the Eq. (113). As mentioned in the previous chapter, Kohmoto and 

Oono (1984) were the first who introduced this surface and thus we will name this surface as 

Kohmoto’s surface. 

According to Morini and Gei (2018), each surface I(𝜔) = 0 has six saddle points (𝑃1, 𝑃2. . ., 

𝑃6). In Golden Mean maps (GMMs), these six saddle points are connected to the periodic orbit 

through the six-cycle transformations. 

𝑃1(0, 0, a) 
𝑇𝑔
→ 𝑃2 (−a, 0, 0) 

𝑇𝑔
→ 𝑃3(0, −a, 0)

𝑇𝑔
→ 𝑃4 (,0, 0, −a)

𝑇𝑔
→ 𝑃5 (a, 0, 0)

𝑇𝑔
→ 𝑃6(0, a, 0)

𝑇𝑔
→ 𝑃1          (117) 
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The orbit (14) will be denoted henceforth as  𝑇𝑔
6 where a = √4 + 𝐼(𝜔) . Since it is a closed and 

periodic orbit, the starting point in (117) can be any saddle point. In real structures, in order to 

follow six-cycle transformations introduced by Eq. (117), three conditions must be satisfied at 

any value of 𝜔.  

 𝑥0 ′ = 0,  𝑦0 ′ = 0                                                                                                             (118) 

 𝑥0 ′ = a,  𝑦0 ′ = 0, or  𝑥0 ′ = 0,  𝑦0 ′ = a.                                                                          (119)                     

The requirements (118) and (119) can be fulfilled only for particular classes of layouts, namely  

𝐶 =  𝑙𝐵/𝑙𝐴 . By substituting expressions (113) into conditions (118) and (119), the following 

relationships are derived, i.e. 𝐶 =  𝑙𝐵/𝑙𝐴 respectively.  𝐶1 ,  𝐶2 and  𝐶3 which are non-canonical 

ratios.  

Each of the three ratios  𝐶1 ,  𝐶2 and  𝐶3 identifies a family of GM beams but not canonical (no. 

1, no. 2 and no. 3, respectively) as follows   

 𝐶1 =
 𝑙𝐵

𝑙𝐴
= 0.5555                                                                                     

 𝐶2 =
 𝑙𝐵

𝑙𝐴
= 0.7755                                                                                      

 𝐶3 =
 𝑙𝐵

𝑙𝐴
= 0.8178                                                                                         

Family no. 1 possesses different properties from the Families no. 2 and 3, which can be studied 

together. These ratios are calculated at normalized frequency  �̅�𝑟𝑛
= 0.02  with 𝑛 = 1, 2,3. 

The main difference between canonical and non-canonical frequencies is that canonical 

frequency repeats itself in each period of the spectrum, while non-canonical frequency is not 

related to the periodicity of the spectrum.  

Henceforth, we will call this frequency the reference frequency. 

The results obtained in the following figures belong to  family no.1 (𝐶1) and family no.3 (𝐶3 ) 

for sequence  𝐹3 are obtained at different value of pre-stress �̅� (0, 0.002, -0.002).  
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Figure 63: GM beams with 𝐶1 =
 𝐿𝐵

𝐿𝐴
= 0.5555 (Family no. 1). Top: sketch of the invariant 𝐼(𝜔) in the interval 

[0, 1.11 ] for different values of pre-stress (𝑁 = 0 𝑏𝑙𝑢𝑒 𝑐𝑢𝑟𝑣𝑒, 𝑁 = 0.002 𝑏𝑙𝑎𝑐𝑘 𝑐𝑢𝑟𝑣𝑒, 𝑁 =

−0.002 𝑟𝑒𝑑 𝑐𝑢𝑟𝑣𝑒) (; bottom: stop/pass-band layout in the same values of pre-stress for sequence 𝐹3. The 

dimensionless reference frequency is 0.02 (red vertical line). 

 

Figure 64: Description of the three coordinates (𝑥0
′ , 𝑦0

′ , 𝑧0
′ ) (𝑡𝑟𝑀2: 𝑟𝑒𝑑, 𝑡𝑟𝑀1: 𝑏𝑙𝑢𝑒, 𝑡𝑟𝑀0: 𝑏𝑙𝑎𝑐𝑘) for GM beam 

whose parameters 𝐶1 = 
 𝐿𝐴

𝐿𝐵
= 0.5555, 𝑁 = 0. 

 

Figure 65: Description of the three coordinates (𝑥1
′ , 𝑦1

′ , 𝑧1
′ ) (𝑡𝑟𝑀3: 𝑟𝑒𝑑, 𝑡𝑟𝑀2: 𝑏𝑙𝑢𝑒, 𝑡𝑟𝑀1: 𝑏𝑙𝑎𝑐𝑘) for GM beam 

whose parameter  𝐶1 =
 𝐿𝐴

𝐿𝐵
= 0.5555, 𝑁 = 0. 
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Figure 66: GM beams with 𝐶3 =
 𝐿𝐵

𝐿𝐴
= 0.8178 (Family no. 3). Top: sketch of the invariant 𝐼(𝜔) in the interval 

[0, 1.11 ] for different values of pre-stress (𝑁 = 0 𝑏𝑙𝑢𝑒 𝑐𝑢𝑟𝑣𝑒, 𝑁 = 0.002 𝑏𝑙𝑎𝑐𝑘 𝑐𝑢𝑟𝑣𝑒, 𝑁 =

−0.002 𝑟𝑒𝑑 𝑐𝑢𝑟𝑣𝑒); bottom: stop/pass-band layout in the same values of pre-stress for sequence 𝐹3. The 

dimensionless reference frequency is 0.02 (red vertical line). 

 

Figure 67: Description of the three coordinates (𝑥0
′ , 𝑦0

′ , 𝑧0
′ ) (𝑡𝑟𝑀2: 𝑟𝑒𝑑 , 𝑡𝑟𝑀1: 𝑏𝑙𝑢𝑒, 𝑡𝑟𝑀0: 𝑏𝑙𝑎𝑐𝑘) for GM beam 

assuming family no .3 whose parameters 𝐶3 =
 𝐿𝐴

𝐿𝐵
= 0.8178, 𝑁 = 0. The red vertical line at 0.02 is the 

dimensionless reference frequency. 

The invariant I(𝜔)  and the stop/pass band distribution of a GM beam generated by sequence 

 𝐹3  as functions of the axial pre-stress �̅� (Null (�̅� = 0), Tensile(�̅� = +) , Compressive (�̅� =

−) is reported. It is clear that a tensile stress pushes the band (pass/stop) towards higher 

frequencies almost in a linear fashion (note that �̅� = 0 is the reference case between tensile 

and compressive load ) as shown in Figure 69.  In contrast, the compression stress shifts the 

band towards lower frequencies. The reason for that is that tensile load tends to increase the 

length of the material, while compressive load causes a decrease in the length of the material. 

The effect of the axial per-stress on the pass and stop band is calculated in the tables below. 

For family no.1, at the reference frequency �̅�𝑟1
= 0.02, the invariant vanishes for all values of 

pre-stress, namely 𝐼(𝜔𝐶1
) = 0. The significant effect of the pre-stress on 𝐼(𝜔𝐶1

) can be clearly 
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observed in the period between  �̅� = 0 and  0.02, while the effect of the pre-stress is almost 

non-existent in the interval after �̅� =0.02 to the end of interval. 

In details, around the reference frequency �̅�𝑟1
where the band is characterized by pass band, the 

length of the pass band is 0.0042 for the  cases of the pre-stress �̅� = (0, −0.002), but at �̅� =

+0.002, a decrease in the length was recorded which is 0.0041. The significant influence of 

the pre-stress is very clear between �̅� = 0 and 0.02 where the width of first pass band at �̅� = 0 

is 0.000636 while at �̅� = (0.002, −0.002) is 0.000477 and 0.000716 respectively. This means 

that the negative pre-stress (compressive stress) increases the width of the pass band whereas 

the positive pre-stress (tensile stress) decreases it. The stop band was also effected by the pre-

stress where the width of the stop band immediately before and after �̅�𝑟1
= 0.02 was effected 

by the difference in the applied pre-stress, as the width of the stop band immediately before 

�̅�𝑟1
= 0.02 was not affected by the compressive stress, but its width increased by the tensile 

stress. In addition, the width of the stop band immediately after the reference frequency �̅�𝑟1
 =

0.02 was increased by the compressive stress from 0.000875 at �̅� = 0 to 0.001035 and was 

not affected by the tensile stress.  

The following readings in the width of the stop band for the first and second ultra wide stop 

band at �̅� = (0,0.002, −0.002)  are  (0.011698 ,0.11937, 0.011381) and (0.01321, 0.01337, 

0.01305) respectively. 

   

Figure 68: Family no. 3 (𝐶1 = 𝐿𝐵 𝐿𝐴 = 0.5555):Effect of compressive stresses on dispersion diagrams close to 

buckling , 𝑁𝑏 = −0.00285 for flexural waves of a multi-supported quasiperiodic beam generated by sequence 

 𝐹3. 

 

 

 

Band gap 
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Table 6: Family no. 1 (𝐶1 =
 𝐿𝐵

𝐿𝐴
= 0.5555):Effect of pre-stress on the pass band for flexural waves of a multi-

supported quasiperiodic beam generated by sequences 𝐹2 to 𝐹5. 

 

𝐹𝑖 𝑁𝑏 Family no. 1 Stop band width  

 

𝑁0(Reference) 𝑁𝐶 = −0.002 𝑁𝑇 = 0.002 

𝐹0 -0.01282    

𝐹1 -0.00395    

𝐹2 -0.00655 0.1368 0.01360 0.01392 

𝐹3 -0.00529 0.01321 0.01305 0.01337 

𝐹4 -0.00557 0.01297 0.01289 0.01321 

𝐹5 -0.00543 0.01297 0.01289 0.01313 

Table 7 :Family no. 1 (𝐶1 =
 𝐿𝐵

𝐿𝐴
= 0.5555):effect of the pre-stress on the stop band for flexural waves of a 

multi-supported quasiperiodic beam generated by sequences 𝐹2 to 𝐹5. 

 

Figure 69: Family no. 1 (𝐶1 =
 𝐿𝐵

𝐿𝐴
= 0.5555):influence of 𝑁 on pass-band width. The orange dashed line is the 

trend line. 

For the ultra-wide stop band, the width of the stop band is slightly affected due to the pre-stress, 

as the width increased with the tensile load and decreased with the compressive load. If we 

consider that the case of non-pre-stress is the reference between tensile and compressive load, 

as illustrated in Figure 70 below, Ultra-wide stop band is important for some applications; for 

𝐹𝑖 𝑁𝑏 Family no.1 Pass band  width  

 

𝑁0(Reference) 𝑁𝐶 = −0.002 𝑁𝑇 = 0.002 

𝐹0 -0.01282    

𝐹1 -0.00395    

𝐹2 -0.00655 0.00883 0.00891 0.00867 

𝐹3 -0.00528 0.00350 0.00358 0.00342 

𝐹4 -0.00557 0.00262 0.00270 0.00254 

𝐹5 -0.00543 0.001191 0.00127 0.00119 
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instance, semiconductors with ultra-wide bandgap permit devices to operate at much higher 

voltages, frequencies, and temperatures than conventional semiconductor materials.  

 

Figure 70:  Family no. 1 (𝐶1 =
 𝐿𝐵

𝐿𝐴
= 0.5555):influence of 𝑁 on ultra wide  stop-band width . The orange 

dashed line is the trend line. 

For Family no. 3, at the reference frequency �̅�𝑟3
= 0.02, 𝐼(𝜔𝑐3

) > 0 for all values of pre-

stress. The significant effect of the pre-stress on 𝐼(𝜔𝑐3
) can be clearly observed in the period 

between  �̅� = 0 and  0.04, while the effect of the pre-stress is almost non-existent in the interval 

from 0.04 to the end of interval. 

Generally, the widths of the pass (stop) band close to the reference frequency �̅�𝑟3
= 0.02 for 

the three cases of pre-stress (null , tensile , compressive ) influenced by the inclusion of the 

pre-stress. The tensile stress reduces the width of the pass band while the compressive stress 

increases their width. The widths of the stop bands increase (reduce) their widths when a tensile 

(compressive) stress is applied. The tables below show the changes in the widths of the 

pass/stop bands at frequency far from the reference frequency. 

 

Figure 71: Family no. 3 (𝐶3 =
 𝐿𝐵

𝐿𝐴
= 0.8178):Effect of compressive stresses on dispersion diagrams close to 

buckling 𝑁𝑏 = −0.00285 for flexural waves of a multi-supported quasiperiodic beam generated by sequence 𝐹3. 
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𝐹𝑖 𝑁𝑏 Family no. 3 Pass band width  

 

𝑁0(Reference) 𝑁𝐶 = −0.002 𝑁𝑇 = 0.002 

𝐹0 -0.00394    

𝐹1 -0.00263    

𝐹2 -0.00317 0.00421 0.00437 0.00413 

𝐹3 -0.00296 0.00310 0.00318 0.00302 

𝐹4 -0.00304 0.00127 0.00135 0.00119 

𝐹5 -0.00302 0.00063 0.00063 0.00055 

Table 8: Family no. 3 (𝐶3 =
 𝐿𝐵

𝐿𝐴
= 0.8178):Effect of the pre-stress on the pass band for flexural waves of a 

multi-supported quasiperiodic beam generated by sequences 𝐹2 to 𝐹5. 

 

𝐹𝑖 𝑁𝑏 Family no. 3 Stop band width  

 

𝑁0(Reference) 𝑁𝐶 = −0.002 𝑁𝑇 = 0.002 

𝐹0 -0.00394    

𝐹1 -0.00263    

𝐹2 -0.00317 0.00875 0.00851 0.00883 

𝐹3 -0.00296 0.00374 0.00366 0.00374 

𝐹4 -0.00304 0.00358 0.00350 0.00366 

𝐹5 -0.00302 0.00350 0.00342 0.00358 

Table 9: Family no. 3 (𝐶3 =
 𝐿𝐵

𝐿𝐴
= 0.8178):Effect of the pre-stress on the stop band for flexural waves of a 

multi-supported quasiperiodic beam generated by sequences 𝐹2 to 𝐹5. 

Now we turn to the periodic orbit obtained from these families. For Family no. 1, at the 

reference frequency 0.02 implying that at this frequency a waveguide belonging to Family no. 

1 always displays a pass band. Moreover, a six-point periodic orbit is obtained at �̅�𝑟1
= 0.02.  

As shown in the  Figures 64 and 65, the coordinate 𝑥0
′  (red curve) intersects the normalized 

reference frequency at 2 which is the value of "a" while both coordinates 𝑦0
′ = 𝑡𝑟𝑇1 and 𝑧0

′ =

𝑡𝑟𝑇0  intersect the canonical frequency at zero. This leads to the first saddle point (starting 

point) namely 𝑃5(a, 0,0)= (2,0,0). In the same way the rest of the points of the periodic orbit 

can be identified. 

For Family no.1, the six-point periodic orbit is  

 𝑃5(2,0,0) 
𝑇𝑔
→ 𝑃6 (0,2,0) 

𝑇𝑔
→ 𝑃1(0,0,2)

𝑇𝑔
→ 𝑃2 (-2,0,0)

𝑇𝑔
→ 𝑃3 (0,-2,0)

𝑇𝑔
→ 𝑃4(0,0,-2)

𝑇𝑔
→ 𝑃5          (120) 

However, for family no. 3, at the reference frequency, 𝐼(𝜔𝑐3
) > 0, and therefore we find that 

𝑥i > |2|. This means that Family no. 3 always displays a stop band. Moreover, a six-point 

periodic orbit is obtained at �̅�𝐶3
 as family no. 1 with different starting point namely. 
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𝑃3(0,-2.82,0)
𝑇𝑔
→ 𝑃4(0,0,-2.82) 𝑃5(2.82,0,0)

𝑇𝑔
→ 𝑃6(0,2.82,0)𝑃1(0,0,2.82)

𝑇𝑔
→ 𝑃2(-2.82,0,0)

𝑇𝑔
→ 𝑃3     (121)  

The orbits  (120) and (121) will be denoted henceforth 𝑇𝑔
6. 

Additional periodic orbits can be found at non-reference frequency such that 𝐼(𝜔) = 0. This 

may occur in different values of 𝜔. 

 In family no .1 at 𝜔 =  4�̅�𝑟1
, 3-point periodic orbits are present as follows 

𝑅1(2, −2, −2) 
𝑇
→ 𝑅2(−2, 2, −2)

𝑇
→ 𝑅3 (−2, −2, 2)                 

 For family no .2 and 3 at 𝜔 =  4�̅�𝑟2,3
, the periodic orbits are also 3-point periodic orbit 

with different starting point  

𝑅2(−2, 2, −2) 
𝑇
→ 𝑅3(−2, −2, 2)

𝑇
→ 𝑅1 (2, −2, −2).                             

Nevertheless, following case is universal (i.e., valid for all three families GM beams): 

 at 𝜔 = 16 �̅�𝐶1,2,3
, 3-point periodic orbits are as follows 

𝑅1(2, −2, −2) 
𝑇
→ 𝑅2(−2, 2, −2)

𝑇
→ 𝑅3 (−2, −2, 2).  

6.6 summery 

The filtering properties of a multi-supported quasiperiodic beam with elementary cells 

generated according to Fibonacci golden sequence have been investigated for three non-

canonical families namely, 𝐶1, 𝐶2, and 𝐶3 by determining the position of pass/stop bands in the 

relevant dispersion diagrams. This system does not give us a periodicity as we had in the axial 

waves reported in the chapter no. 4. I have shown that, for cells generated by different 

Fibonacci golden sequences that the pre-stress can be applied to tune the properties of these 

systems for flexural waves. The pass/stop bands can be shifted towards higher (lower) 

frequencies when tensile (compressive) stress is applied. The widths of pass (stop) band are 

also influenced by the pre-stress. In other words, tensile stress reduces the width of the pass 

band but increases the stop band width. On the other hand, compressive stress increases the 

width of the pass band but reduces the stop band width. It has to be noted that the effect of the 

pre-stress in some frequencies bands is weak, especially in the short stop (pass) bands. The 

main result from above is that the pre-stress can be applied to modify and tune the dynamic 

properties of a periodic beam and other structures. 

Six point periodic orbit for all three families can be found at the reference frequency �̅�𝑟1,2,3
=

0.02 with different starting point. Other periodic orbits can be found at non-reference 

frequencies �̇� such that 𝐼(𝜔) = 0. This occurred at �̇� = 4�̅�𝑟1,2,3
 and �̇� = 16 �̅�𝑟1,2,3

. 
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Chapter7: Conclusion and future work. 
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7.1 Conclusion 

This thesis focused on three core aims, the first of which is how to control harmonic axial wave 

propagation in Fibonacci Silver mean phononic rods, and the second is the comparison between 

golden and silver mean rods for axial waves, and finally I studied the effect of the pre-stress 

on the position of pass and stop band in multi-supported beams constructed according to 

Fibonacci golden mean sequence. The contribution made by this thesis is to give broader 

options to designers of acoustic devices like waveguides and acoustic filters. 

 

7.1.1 Axial waves in Silver mean phononic rods 

 

 I studied the propagation of harmonic axial waves in silver mean phononic rods constructed 

by collecting a two-face elementary cells. I detect a self-similar behaviour depends on 

Kohmoto’s invariant, that is an invariant of the set and depends only on the wave frequency 

and obtained analytical scaling factor to control the self-similar behaviour. The rational values 

between the geometrical and physical properties of the phases 𝐴 and 𝐵 in order to have periodic 

spectrum have been obtained. 

One of the goals of this thesis is to find the existence of similar canonical arrangements for 

silver-mean Fibonacci phononic waveguides that are based on one of the possible 

generalisation of the standard Fibonacci chain. I give a positive answer to the initial objective 

and the outcomes of the present research can be listed as follows:  

 The dispersive properties of harmonic axial waves in SM rods are fully determined by 

studying the variation of the traces of the transmission matrices as a function of the 

angular frequency. For any value of the frequency, the traces corresponding to three 

arbitrary subsequent elementary cells are related through a recursive relationship that 

is different from that ruling standard, or golden-mean, structures, but characterised by 

the same Kohmoto’s invariant. This allows us to represent geometrically the traces as 

coordinates of points which describe orbits on the 3D surface defined by the invariant; 

 We found ratios between the geometrical and the physical properties of the two faces 

A and B which correspondence to periodic spectrum and we call this type of structure 

canonical structure. These ratios represented three families. However, Family no. 1 

displays a two-point periodic orbit on the Kohmoto’s surface, whereas for Families no. 

2 and 3 periodic orbits involve four saddle points;  
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 In general, there exist some frequencies at which additional periodic orbits are present. 

For all these frequencies ω, the Kohmoto’s invariant vanishes. This could be detected 

in several cases depending on the value of the ratio 𝐶 which determines the modulation 

of the invariant with respect to 𝜔.  

 A self-similar layout of the stop-/pass-band diagram is observed for canonical SM rods. 

Analytical scaling factors capturing this pattern are derived through the linearisation of 

the trace map about the relevant periodic orbits. Depending on the number of points 𝑝 

composing the orbits, portions of the spectra corresponding to elementary cells of the 

order 𝑖 and 𝑖 + 𝑝 are related by means of these factors. A detailed analysis of the 

frequency ranges where the scaling is effective is performed;  

 

 I finally propose a different way to represent the sequence of pass bands and stop bands 

by following the trajectories of points at varying frequency on a 2D projection of the 

Kohmoto’s surface. The exceptional self-similar properties of the spectrum of two-

phase canonical silver-mean rods here illustrated could be applied to realize phononic 

waveguides possessing stop and pass bands of tuneable width centered at a selected 

frequency. The filtering properties of these devices can be predicted and optimised by 

means of the novel analytical approach introduced in the project. 

7.1.2 Comparison between golden and silver mean rods for axial waves 

 

A comparative analysis between golden and silver mean rods has been done for axial waves. 

This comparison clearly showed the differences between the two structures in some aspects as 

follows:  

 The number of pass/stop bands in silver mean rods is greater than their golden 

counterpart, and this is because the number of elements in Fibonacci silver mean 

sequence is greater than golden counterparts. 

 The analytical scaling ratios of GM and SM sequences is very close to the eigenvalues. 

However, according to our numerical calculations, silver mean scaling is more accurate 

than golden mean scaling which lead to better accuracy of pass and stop band width at 

higher Fibonacci sequences. 

 

7.1.3 Flexural waves in multi-supported quasiperiodic beam 
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I studied a different system which is a multi-supported beam where the distances between the 

supports are modulated according to the lengths of the elements A and B which provide a band 

gap effect. I studied the band gap effect where we detect the same band gap structure, self-

similar behaviour, and scaling factor. This system has a different type of dispersion relation 

which is not periodic because the receptances matrix has non-periodic parts in its components. 

In addition, this system does not give a periodicity for the spectrum but we still have the 

Kohmoto’s invariant, scaling factor, and self-similarity behaviour.  

The filtering properties of a multi-supported quasiperiodic beam with elementary cells 

generated according to Fibonacci golden sequence have been investigated for three non-

canonical families namely by determining the positions of pass/stop bands in the relevant 

dispersion diagrams. We have shown that, for cells generated by different Fibonacci golden 

sequences that the pre-stress can be applied to tune the properties of these systems for flexural 

waves. The pass/stop bands can be shifted towards higher (lower) frequencies when tensile 

(compressive) stress is applied. The width of pass (stop) band are also influenced by the pre-

stress. In other words, tensile stress reduces the length of the pass band but increases the stop 

band length. On the other hand, compressive stress increases the length of the pass band but 

reduces the stop band length. It has to be noted that the effect of the pre-stress in some 

frequencies bands is weak, especially in the short stop (pass) bands. This means the pre-stress 

can be used to tune the properties of these structures for flexural waves. 

The periodic orbit can be found in various frequencies, for example, six point periodic orbit for 

all three families can be found at the reference frequency �̅�𝑟1,2,3
with different starting point. 

Other periodic orbits can be found at non-reference frequencies �̇�.  

 

7.2 limitations 

 

The first limitation is that at higher index 𝑖, the dispersion diagrams are illegible, which is why 

I considered the primary sequences in the thesis. In addition, the layout of stop/pass bands 

could have been studied for the whole interval, but the increasing smallness of the widths of 

the bands in certain frequency ranges would have made the diagram illegible. 

In the case of pre-stress, if the elastic limit is exceeded or we apply a load higher than the 

buckling load, the results will be inaccurate because in the plastic region, permanent 

deformation of the material occurs.  
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7.3 Future work 

 These general mathematical tools we have used in this thesis can be useful in order to 

design smart waveguides which are able to provide a very thin and localized band gap 

depends on the desired application such as narrow–band filter by choosing the proper 

sequence among all Fibonacci sequences. These tools can be also used to control sounds 

and vibrations propagating in the structures. 

 

 Two materials with different density can be used to provide a very accurate band gap. 

The changes in contrast between the two martials of the structure can be useful to tune 

the width of the band gap because the position of the pass/stop band depends only on 

the ratio between the geometrical and physical properties of the phases A and B.   

 The pre-stress can be used to shift the position of a certain band gap at a given 

frequency. 

 The experiments can be designed in order to provide waveguides which give us a very 

narrow band gap.   

 These results can be extended not only to mechanics but also to eclectic and electronics 

fields.   

The findings achieved in this thesis provide the necessary insight to start a research 

programme in quasicrystalline meta-materials. The established methodology could be 

extended to investigate the dynamics of quasicrystalline plates and composite materials.  
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