Afanc: a Metagenomics Tool for Variant Level Disambiguation of NGS Datasets

Arthur V. Morris^{*1}, Anna Price¹, Tom Connor¹

¹Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK

*Correspondence:

Arthur V. Morris <arthurvmorris@gmail.com>

Abstract

Genomics is amongst the most powerful tools available for mounting a clinical response to infectious disease. The accurate and precise taxonomic evaluation of pathogens is essential when building a picture of pathogenicity, virulence, transmission, and drug resistance. Carrying out such profiling in a high throughput manner necessitates the development of reliable bioinformatic tools. Here we present Afanc, a novel metagenomic profiler which is sensitive down to species and strain level taxa, and capable of elucidating the complex pathogen profile of compound datasets. We compared Afanc against currently available cutting edge profilers using 3 datasets: single species read sets simulated from the full Mycobacteriaceae taxonomic landscape; compound read sets containing multiple Mycobacteriaceae species and variants; and real data covering the majority of the *M. tuberculosis* lineage taxonomic space. Afanc outperformed all profilers, both generic and Mycobacteriaceae species agnostic profiler, we predict that Afanc will be of great utility when carrying out highly specific and sensitive pathogen profiling of clinical datasets. Such analyses are essential in advising both the clinical response to an individual disease case, and in forming the foundation of epidemiological surveys.

1. Background

The need for reliable and robustly tested genomic and metagenomic profilers cannot be understated. Such profilers form the backbone of speciation functionality within many bioinformatic pipelines utilised by medical laboratories and public health agencies. Kraken1 & 2 (Wood and Salzberg, 2014; Wood et al., 2019) and species-level sequence abundance estimation algorithms building upon the Kraken framework, such as Bracken (Lu et al., 2017) and KrakenUniq (Breitwieser et al., 2018) have proven to be effective in the disambiguation of genomic and metagenomic datasets. However, these tools may not be sufficient, on their own, for use in settings where treatment decisions will be dictated by the results they produce. In recent years, Mycobacteriaceae specific profilers such as Mykrobe (Hunt et al., 2019) and TB-Profiler (Napier et al., 2020) have led the way in performing species and lineage level identification of Mycobacteriaceae, aiming to provide more robust speciation, suitable for both research and clinical/public health laboratory use. Sensitive and reliable taxonomic designation is an essential task in the domain of public health, both informing the clinical response to an individual infection, and forming the foundation of epidemiological surveys.

Generally, two approaches are taken to metagenomic species/lineage identification.

- Genomic distance based: the tool assigns a taxonomic ID based on genomic distance from a set of genome assemblies within a database.
- 2) Variant profile based: the tool screens against a set of lineage defining canonical mutations.

Genomic distance based tools, such as Kraken1 & 2, are optimised for identifying species level taxa within complex metagenomic NGS read sets. NGS reads represent only a very small fragment of the overall genome. Their relatively small size, and consequent limited sequence specificity, results in a large number of false positive taxonomic assignments. This results in the reports produced by these tools often being very complex, with a large and diverse range of reported taxa. Simplification of such reports is of primary concern to derivative tools. Bracken achieves this by using Bayes rule to re-estimate the distribution of reads across taxa of a given rank from their children taxa. This gives a

more precise and robust measure of taxonomic abundance within a read set. KrakenUnig utilises k-mer cardinality estimation to reduce false-negative (FN) and false-positive (FP) taxonomic assignment of reads exhibited in Kraken reports, giving a clearer picture of the true genetic space covered by the DNA in the sample. Both of these approaches use the k-mer content of the sequence spaces occupied by each taxonomic rank to optimise read binning, and consequently, improve reporting precision. This approach relies on there being sufficient distance between two discrete taxonomic sequence spaces to identify FP and FN assignments. Where the genomic distance between two taxonomic ranks is very low (such as in the case of TB lineages), the sequence space they occupy may be too small to allow for reliable reclassification. Consequently, such approaches may only be reliable down to species and subspecies level, and alternative approaches must be utilised to perform higher resolution taxonomic identification. Profiling tools such as Mykrobe and TB-Profiler solve this problem by identifying variant defining mutations within a given species sequence. Mykrobe utilises probes, short DNA sequences of length 2k - 1, within which a lineage or species defining mutation is embedded, such that a probe represents a SNP with sequences of kbases flanking it. TB-Profiler identifies key SNPs within a read set and screens them against a profile of known lineage defining SNPs. Both of these approaches are highly sensitive, but require taxonomic ranks to be defined by discriminatory sets of mutations. Construction of these sets may be prohibitively time consuming for large numbers of taxa, where the mutation space is very large.

There are currently just under 200 species of Mycobacteriaceae described. For the purpose of clinical practicality, these are generally divided into two categories: Tuberculous (TB-complex) and Non-Tuberculous Mycobacteriacea (NTM). In 2018, based on core genome phylogenetic analysis, the 188 species comprising the genus Mycobacterium at that time were divided into 5 distinct genera: Mycobacterium, Mycobacteroides, Mycolicibacillus, Mycolicibacter, and Mycolicibacterium (Gupta et al., 2018). *Mycobacterium tuberculosis* itself is divided into lineages, which are defined by the presence of key single nucleotide polymorphisms (SNPs). Lineage specific genomic diversity is known to have influence on virulence, transmissibility, drug resistance, and host response (Napier et al.,

2020). Reliable identification of lineage is therefore a fundamental factor when determining the pathogenic profile of *Mycobacterium tuberculosis* cases.

Bacteria belonging to Mycobacteriaceae are of enormous clinical importance, with over 2000 samples passing through the Wales Centre for Mycobacteria (WCM) alone every year. Prevalence of TB globally is estimated by the WHO to be 10.6 million active cases a year, resulting in 1.6 million deaths (WHO TB report 2022), with an estimated 1.7 billion latent infections (Houben and Dodd, 2016). Furthermore, global incidence and deaths from NTM diseases have been steadily rising. Despite NTMs previously being thought of as exclusively opportunistic pathogens of the immunocompromised, infections in immunocompetent individuals are being reported at an increasing rate. Such infections are often highly drug resistant, and present with complex pathology which resists treatment (Ratnatunga et al., 2020).

Here, we present Afanc, a taxonomic profiler capable of both species and lineage level identification. We solve the issues detailed above by carrying out species and subspecies level profiling using a novel Kraken2 report disambiguation algorithm, and lineage level profiling using a variant profiling approach. We demonstrate that this hybrid approach results in a "best of both worlds" outcome, whereby both researchers and clinical/public health labs can benefit from the speed and reliability of species level identification by genomic distance, and the sensitivity of lineage level identification using variant profiles.

2. Implementation

Afanc consists of 3 discrete sub-tools: get_dataset, autodatabase, and screen. These modules function both as standalone tools, and are designed to integrate to form a single workflow.

2.1 get_dataset

This module downloads a dataset of genome assemblies from Genbank belonging to species defined within a text file. Genome assemblies are downloaded and deposited in a directory structure

consisting of a parent directory containing subdirectories for each species. Subspecies and variants

specified within the text file are deposited in their own subdirectory within their parent species

directory. This directory structure can be used as input for the autodatabase module.

Mycobacterium tuberculosis Mycobacterium tuberculosis variant bovis BCG Mycobacterium avium Mycobacterium simiae

Figure 1. The structure of a text file used as input for the Afanc get_dataset module.

Figure 2. The output directory structure produced by running the Afanc get_dataset module using the text file outlined in fig. 1.

For example, given the text file shown in Figure 1, and the user defined number of assemblies for each ID to download as 3, the structure of the output directory will be that seen in Figure 2.

2.2 autodatabase

The autodatabase module automates the process of quality control and database construction. Naive database creation from sequences downloaded from NCBI often results in the inclusion of poor quality sequences. This module is designed to deal with this problem by performing quality control of input sequences, whilst also allowing users to update databases as new sequences are made available. The autodatabase module takes genome assemblies contained within a directory structure of the form generated by the get_dataset module (see Figure 2). This directory structure must contain directories for each species level taxon, where subdirectories within each species directory pertain to subspecies and variant (here referring to taxa lower than subspecies) level taxa,

or any other taxonomic rank lower than species.

Figure 3. The autodatabase module workflow.

There are 6 primary stages to the workflow of this module, which can be seen in Figure 3. First, the NCBI taxonomy database from the date specified by the user is downloaded (step 1). By default, this will be the database from 2022-05-01. The NCBI taxonomy database is effectively a tree, where each taxonomic rank refers to a node within this tree and is assigned a numeric taxonomy ID. If a taxon named within the input directory structure is not assigned to a node within the NCBI database, Afanc will attempt to assign it a taxonomy ID and create a simulated node. This process will fail if the named taxon cannot be assigned to a known genus. A Mash matrix is constructed from genome assemblies belonging to each specified taxon (step 2) (Ondov et al., 2016, Napier et al., 2020). This Mash matrix is used to select the highest quality assemblies for database construction, by filtering out assemblies which lie outside a given range (by default, this is 0.1) of the mode of the average mash distance for all assemblies within that taxon (step 3). This is to ensure that low quality assemblies are removed, to prevent erroneous screening results. The Mash matrix is defined as follows

$$\mathcal{D} = [D_{nm}], \quad D_{nm} = -\frac{1}{k}ln\frac{2j_{nm}}{1+j_{nm}}$$

where D_{nm} is the pairwise distance between samples n and m, k is the size of the mash sketch and j is the Jaccard estimate.

Parent-child taxon average nucleotide identity (ANI) distances are calculated from the set of high-quality assemblies (step 4). This is achieved by iterating through each taxon and calculating both the intrataxon ANI, and ANI of the assemblies within the taxon and its parent taxon. These results are stored in a JSON file and used to calculate the elastic threshold for each taxon (see Section 2.3.1.1). A Kraken 2 (K2) database is then constructed using these high-quality assemblies (step 5). Finally, a Krona chart is generated for easy visualisation of the database (step 6).

Figure 4. The output directory structure produced by running the Afanc autodatabase module using the directory structure seen in fig 3.

The output directory from this module constitutes the database used for running the Afanc screen module. It consists of a directory containing 5 JSON files, and 6 subdirectories (see figure 4). The K2 database is contained within the krakenBuild_autoDatabase_kraken2Build subdirectory. The Krona chart for visualisation of the assemblies used to construct the K2 database can be found within the krakenBuild_autoDatabase_krona subdirectory.

2.3 screen

The screen module performs a metagenomic survey of a given read set. It takes a database created by running Afanc autodatabase (see figure 4), and a set of reads in FASTQ format. A JSON format report is produced, detailing the metagenomic profile of the input read set.

Figure 5. The screen module workflow.

There are five principal stages to the workflow of this module. First, the input database is checked to ensure it is not malformed (step 1). If this check is passed, Kraken 2 is used to produce a general metagenomic report of the input read set, using the krakenBuild_autoDatabase_kraken2Build input database subdirectory as the K2 database (step 2). The output K2 report is then parsed using a novel algorithm to identify the most likely species and variants within the input read set (step 3). A full explanation for the algorithmic approach to solving this problem can be found in section 2.3.1. The input read set is then subjected to a competitive mapping protocol, where reads are mapped to the repertoire of genome assemblies belonging to identified hits (step 4). Reads are partitioned by genome assembly according to their strongest mapping. If a species with variants defined within the variant profiles file is detected during step 3, then the BAM file containing reads mapped to the specified reference fasta is passed to the variant profiling wing of Afanc screen. The reports from steps 3, 4, and variant profiling are collected and used to create a final report (step 5).

2.3.1 Kraken 2 Report Disambiguation

Kraken 2 produces an extremely complex and potentially ambiguous metagenomic report, which details every possible match for the read set (see Figure 6). Interpreting this report can be extremely

challenging, particularly in instances where the dataset is compound, consisting of multiple species and/or variants. This can be seen in figure 6, where every species which has at least 1 read attributed to it is reported. To solve this problem, a novel algorithm was developed to optimally identify the most likely species and variants present in a read set.

0.05	41	41	U	0	unclassified
99.95	80454	0	R	1	root
99.95	80454	0	R1	131567	cellular organisms
99.95	80454	0	D	2	Bacteria
99.95	80454	0	D1	1783272	Terrabacteria group
99.95	80454	0	Р	201174	Actinobacteria
99.95	80454	0	С	1760	Actinomycetia
99.95	80454	0	0	85007	Corynebacteriales
99.95	80454	27	F	1762	Mycobacteriaceae
99.91	80421	288	G	1763	Mycobacterium
99.51	80099	148	G1	120793	Mycobacterium avium complex (MAC)
99.31	79941	28955	S	1764	Mycobacterium avium
62.78	50541	45478	S1	44282	Mycobacterium avium silvaticum
4.98	4009	4009	S2	1401690	Mycobacterium avium silvaticum Lineage 1
1.31	1054	1054	S2	1401690	Mycobacterium avium silvaticum Lineage 2
1.21	972	0	S1	1770	Mycobacterium avium paratuberculosis
0.49	396	396	S1	439334	Mycobacterium avium hominissuis
0.16	131	131	S1	44454	Mycobacterium avium avium
0.01	7	4	S	1767	Mycobacterium intracellulare
0.00	3	3	S1	487521	Mycobacterium intracellulare Lineage 1
0.02	18	1	G1	2249310	Mycobacterium simiae complex
0.00	1	1	S	33895	Mycobacterium interjectum

Figure 6. An example of a Kraken 2 report.

A Kraken 2 report is a hierarchical tree where nodes refer to individual taxa, topology is determined by taxonomic relations, and node weight is defined by the percentage of reads which were assigned to the taxon rooted at this node. Identifying key nodes within this tree must be carried out in a sensitive manner.

First-pass screening takes place by identifying species level or higher nodes which exceed a user defined global threshold (by default, this is 5.0%). This global threshold represents the minimum percentage of reads which must be attributed to a particular clade to consider it a putative hit. The branches rooted at each of these nodes are then traversed to find the maximally scoring tip nodes. A node is considered a hit if it exceeds a local elastic threshold (see Section 2.3.1.1). The tree is then subjected to the Bayesian Read Redistribution algorithm (see Section 2.3.1.2), and the scoring hit nodes identified in the previous step are reassessed to find the maximally scoring node.

2.3.1.1 Elastic Threshold Calculation

The elastic threshold is calculated using the ANI values found within the variant index. The

calculation is dependent on whether the node has a parent taxon which exists within the variant

index, and therefore the ANI between the child and parent taxa exists.

Consider a node $n \in N$ where N is the set of all species level or lower nodes which exceed the global threshold, and p_n is the parent node of n. Given some similarity function f (which in this case, is the ANI), the ratio between the normalised parent and child ANI is

$$R(n) = \frac{fI(p_n) - fC(p_n)}{fI(n) - fC(n)}$$

Where:

fI(n) = the mean intrataxon ANI of node n

fC(n) = the mean parent-child ANI of node n

The lower bound threshold weight for n is therefore

 $w_n = 1 - R(n)$

And the lower bound read count threshold for node n is therefore

$$E(n) = w_n * Reads(p_n)$$

Where $Reads(p_n)$ is the number of reads assigned to the parent taxon of n.

2.3.1.2 Bayesian Read Redistribution

When constructing a database using a large number of similar taxa, type I error (false-positive error) is very common during read assignment by Kraken2. This necessitates redistribution of reads between nodes within the Kraken2 report tree. This is achieved using a Bayesian approach, utilising the elastic threshold and the ANI between taxa rooted at that node.

Consider a tree *T* as a strict linearly ordered set of nodes, rooted at T_0 . A branch b_n can be defined as a subtree of *T* rooted at node $n \in T$, such that $b \subseteq T$. Given a threshold *u* where $0 \le u \le 1$, the set of all nodes which exceed their upper bound weighted elastic threshold is

$$N_{u} = \{ n \mid Reads(n) \ge uw_{n} * Reads(p_{n}) \}$$

Symmetrically, given a threshold l where $0 \le l < u$, the set of all nodes which fall below their lower bound weighted elastic threshold is

$$N_{l} = \{ n \mid Reads(n) \leq lw_{n} * Reads(p_{n}) \}$$

Reads are commuted from nodes in N_{μ} to nodes in N_{μ} if they satisfy two criteria:

- 1) N_{μ} and N_{μ} are rooted at the same parent node.
- 2) N_{l} and N_{l} are the same taxonomic level.

Figure 7. A hierarchical tree representing a subset of M. tuberculosis taxonomy.

For example, consider the tree in Figure 7. Reads can be commuted between all taxa on level 1 (e.g from M.bovis to M.tb L1/L2) since they share the same parent, but not between taxa on level 2 (e.g. M.b BCG to M. tb L2.1) since they do not share the same parent, and are cousin taxa. However, reads which are redistributed from M.bovis to M.tb L2 are trickled into L2.1 in a number which conserves the proportion of reads from M.tb L2 which were assigned to subtaxa L2.1 prior to commuting. Consequently, monotypic tip level taxa which do not exceed the elastic threshold prior to commuting cannot exceed it after commuting, even if the parent does.

Reads are commuted between taxa in an entirely probabilistic manner, whereby the number of reads commuted to taxon T_i from taxon T_j is determined by their ANI and the percentage of reads assigned to the shared parent taxon which were further assigned to T_i .

Given a tree T where T_i refers to node i within the tree, and a set of reads R. The elastic threshold of T_i is $E(T_i)$, and $Reads(T_i) \subseteq R$ is the set of all reads assigned to T_i . The set of all misassigned reads R_m is considered as the set of all reads assigned to nodes which fall below the lower bound weighted elastic threshold

$$R_m = \{ Reads(n) \mid n \in N_1 \}$$

The probability of a read $r \in R$ being misassigned is therefore

$$P(r \in R_m) = \frac{R_m}{|R|}$$

The ANI between the sequences of nodes T_i and T_j is $f(T_i T_j)$. The probability of a read belonging to sequence T_j is

$$P(T_{i}) = \begin{cases} \frac{Reads(T_{i})}{|R| - |R_{m}|}, & \text{if } T_{i} \in N_{u} \\ \frac{Reads(T_{i})}{|R_{m}|}, & \text{if } T_{i} \in N_{l} \end{cases}$$

Finally, the probability that a read $r \in R_m$ misassigned to taxon at node T_i belongs to the taxon at node T_i is

$$P(T_{j} \mid T_{i}) = P(T_{i}) P(T_{j}) \overline{P}(T_{i} \mid T_{j})$$

where

$$\overline{P}(T_i \mid T_j) = 1 + \left(f(T_i T_j) - \frac{|T|}{\sum_{k=1}^{|T|} f(T_i T_k)} \right)$$

2.3.1.4 Variant Profiling

Variant profiling is achieved by taking a set of reads mapped to a reference genome assembly (in BAM format) and a set of variant definitions (in BED format) and querying the mapping BAM file for mutations found within the variant definitions file. Variants are determined to be present if all variant alleles (mutations) defined within the bed file for a variant are detected with a minimum coverage of 5x and pass a probability threshold. Variant allele probability is calculated as P(v) = d/v where d is the depth of coverage at this position, and v is the variant allele count at this position. The probability threshold is calculated as 0.15 standard deviations from the mean variant allele probability across the set of all alleles used to define each variant.

3. Method

3.1 Databases

The autodatabase module was used to construct a database from an extensive repertoire of Mycobacteriaceae genome assemblies available on GenBank (n=223 across 139 species). The majority of species (n=133) were represented by single genome assemblies. Select species, for which variant level identification was of greater importance (n=6), were represented by multiple genome assemblies of subspecies and variants. This database includes a collection of discrete *Mycobacterium tuberculosis* lineages (covering lineages 1, 2, 3, 4, 5, 6, 7, 9, the majority of their sublineages down to 4th order, and bovis, caprae, and orgis). A full list of genome assemblies used to construct the Mycobacteriaceae database can be found in Supplementary Materials.

A variant catalogue was used to define lineages within *Mycobacterium tuberculosis*. Variant profiles from Napier *et al.* (2020) were used to construct the variant catalogue, with some adjustments made to fine tune the depth of sub-lineage definitions within each lineage. This variant catalogue was used in the variant profiling wing of Afanc screen.

3.2 Simulated Data

Reads were simulated using genome assemblies from the family Mycobacteriaceae using ART (Huang et al., 2011). Three Mycobacteriaceae datasets were used. Dataset M1 consists of 846 read sets simulated from 141 separate Non-Tuberculosis mycobacteria (NTM) species (n=136) and subspecies (n=5) (see Table S1 in the supplementary materials). Each species is represented by 6 read sets covering 1%, 5%, 10%, 20%, 50% and 100% of the genome covered to 10x. Dataset M2 consists of a further 6 read sets, constructed from 8 key species and variants (*Mycobacterium kansasii*, *Mycolicibacterium fortuitum*, *Mycobacterium interjectum*, *Mycobacteroides chelonae*, *Mycobacterium intracellulare* subsp. *chimaera*, *Mycobacterium avium* subsp. *paratuberculosis*, and *Mycobacterium tuberculosis* variant *bovis* BCG), resulting in complex compound datasets. These were simulated using 5%, 20%, 40%, 60%, 80% and 100% of each constituent genome, covered to a depth of 40x (see Table S2 in the supplementary materials).

3.3 Mycobacterium tuberculosis Lineage Profiling

401 *Mycobacterium tuberculosis* paired-end FASTQ readsets, covering all characterised *M. tuberculosis* lineages, many of their sublineages, and variants (bovis, caprae, and orgis) were used to test the variant profiling wing of Afanc screen. A list of accessions and their reported lineage designation can be found in table S3 in the supplementary material.

3.4 Benchmarking

Afanc was benchmarked against Mykrobe v0.12.1, Kraken v2.1.2, Bracken v2.7 and KrakenUniq v0.5.8 using datasets M1-3. For *M. tuberculosis* lineage profiling, Afanc was benchmarked against Mykrobe v0.12.1 and TB-profiler v4.2.0. The standard Mykrobe and TB-profiler databases were used. The variant profile used with Afanc was modified from the standard TB-profiler database to remove instances where sub-lineages were reported in the absence of SNPs present in their parental lineages.

4. Results

Figure 8. The results of running Afanc, Mykrobe, and TBprofiler using dataset M1. PASS = exact species/subspecies match; FAIL = reported species is incorrect. UNDERQUALIFIED = reported species is a parent of Truth; COMPOUND = multiple species/variants reported including Truth.

The results from running Afanc, Mykrobe, Kraken, Bracken, and KrakenUniq on dataset M1 can be seen in Figure 8. Afanc reported the correct species or subspecies in all datasets across all coverage cohorts. Mykrobe fails to identify any species/subspecies correctly when 1% of the genome is covered, and reports only 2 species correctly (*Mycobacterium heidelbergense & Mycobacterium peregrinum*) when 5% of the genome is covered. However, when at least 10% of the genome is covered, Mykrobe performs substantially better, reporting correctly on 71-86% of NTMs. Bracken consistently outperformed KrakenUniq across all cohorts, and there was little difference in the pass rate across each cohort. Bracken reported the correct species in 85% of cases across all coverage cohorts. Likewise, KrakenUniq reported the correct species in 53% of cases across all coverage

cohorts. Bracken has the highest rate of underqualifications across the 5 subspecies. Neither Afanc nor Mykrobe underqualified any subspecies.

Figure 9. The results of running Afanc, Mykrobe, and TBprofiler using dataset M2 across all coverage cohorts. A = Afanc, M = Mykrobe, B = Bracken, K = KrakenUniq. Blue = species/subspecies/variant reported. Grey = species/subspecies/variant not reported. Other = the number of un-listed Mycobacteriaceae reported.

The results of running all tools on dataset M2, containing complex compound datasets with a diverse number of Mycobacteriaceae species and variants can be found in Figure 9. Afanc identified all members of the compound dataset correctly across all datasets. The Afanc variant profiling module successfully identified *M. tuberculosis bovis* BCG to sub lineage level (BCG La1.2) in this dataset down to 20% coverage across the sample genome to a depth of 40x. At 5% genome coverage, the coverage across the *M. tuberculosis* var. *bovis* BCG genome was too low to capture all SNPs necessary to positively identify it. However, Afanc identified BCG within this dataset, particularly where only a fragment of the genome was present. At 100% coverage across each genome (M2.6), Mykrobe was able to identify *M. chelonae*, *M. kansasii*, *M. fortuitum*, *M. chimaera*, *M. avium*, and *M. tuberculosis bovis* BCG correctly. Bracken consistently identified *M. intracellulare*, *M. intracellulare chimaera*, and *M. chelonae* across all datasets. However, it fails to elucidate all constituent species in each dataset. Furthermore, Bracken erroneously reported the presence of *M. haemophilum* and *M. leprae*. KrakenUnig identifies *Mycobacterium intracellulare*, *Mycobacterium intracellulare*, *M. kanae*, *M. kanae*,

Mycobacterium avium, Mycobacterium kansasii, Mycolicibacterium fortuitum, and Mycobacteroides

chelonae in all datasets, but fails to report M. interjectum or M. tuberculosis bovis BCG.

Figure 10. The results of running Afanc, Mykrobe, and TBprofiler using the lineage dataset. PASS = exact lineage match; Overqualified = reported lineage is a sub-lineage of Truth; Underqualified = reported lineage is a parent lineage of Truth; Type 1 FAIL = reported lineage is a cousin lineage to the Truth; Type 2 FAIL = reported lineage is incorrect; Other = run fail or indication of low coverage.

The results of running Afanc, Mykrobe and TBprofiler on the *M. tuberculosis* lineage dataset can be seen in Figure 10 and Table S4. These results indicate a high level of similarity between the lineages reported by Afanc and TBprofiler, with pass rates of 0.925 and 0.895 respectively. Mykrobe has a pass rate of 0.693. Each profiler has a very similar rate of overqualification (0.023-0.038). Overqualifications seem to be very consistent between Afanc and TBprofiler, whereby overqualified lineages are often reported identically. The results from lineage 4 indicate a difference in categorisation between Afanc, TBprofiler, and Mykrobe. Lineages 4.7, 4.8, and 4.9 are reported by Afanc and TBprofiler, however, Mykrobe subsumes these into a compound lineage 4.10. Consequently, Mykrobe cannot distinguish these lineages from each other. Similarly, for lineages 3, 5, and 6, Mykrobe does not perform lower level lineage disambiguation in many cases. Some sub-lineages of 3.1 are reported, but 3.1 and 3.1.3 are classified as lineage 3. Lineages 5 and 6 are not further classified into sub-lineages. The analysis also indicates that the basis for the definition of Lineage 5 is problematic, as all profilers either underqualify or overqualify a substantial portion of it. TB-profiler appears to incorrectly classify lineage 3.2 as lineage 3.1.3, despite the SNPs for parental lineage 3.1 not being present in these samples.

5. Discussion

The challenges associated with extracting DNA from clinical Mycobacteriaceae samples often means that coverage is low and fragmented. Mycobacteriaceae may also be relatively slow growing, meaning that it is imperative that speciation tools for clinical use are able to operate with samples that are of variable quality. The provision of tools that enable reliable identification of Mycobacteriaceae and other pathogen species where there is poor biological signal is therefore essential for the development of clinical and public health genomic services. The comparison of speciation tools tested against dataset M1 demonstrate that the screening algorithm used by Afanc is more powerful both in the identification of NTM species and subspecies than similar approaches used by Bracken and KrakenUniq, and the probe-driven approach used by Mykrobe. Afanc is able to correctly and reliably identify NTMs where only small fragments of the genome are present, down to 1% breadth of coverage, far beyond the limitations of currently available cutting edge tools.

Clinical datasets can consist of multiple species and sub-species populations, enormously increasing the complexity of sample profiling. Results from processing dataset M2 highlights the difficulties associated with *in silico* metagenomic profiling of compound datasets. Afanc performs extremely favourably when compared to other metagenomic profilers across all coverage cohorts, with only KrakenUniq also performing consistently well across all cohorts. However, KrakenUniq required an *ad hoc* 5% threshold applied to the report to filter out large numbers of false-positive taxa. This also resulted in significant over correction, whereby taxa at a level lower than species, which will have

very few reads assigned uniquely to them, were incorrectly filtered out. In the case of KrakenUniq, this resulted in the loss of M. tuberculosis var. bovis BCG within its report, which is a major issue that would preclude the use of this software in a clinical or public health setting. The same is true for Bracken, but with worse overall species detection. Mykrobe consistently and correctly reported the presence of *M. intracellulare chimaera* (reported as *M. chimaera* in accordance with previous taxonomic nomenclature) across all coverage cohorts, and *M. tuberculosis bovis* var. BCG in cohorts where total proportional genomic coverage was 0.8 and 1.0, but failed to report all other species across all cohorts. This dataset highlights the advantages of Afanc in dealing with compound datasets compared to the other tools listed. In particular, the strength of the dual screening methodology (first pass metagenomic screening followed by variant profiling) employed is demonstrated in instances where the biological signal for a species or variant is too low to positively identify all variant defining polymorphisms.

Afanc compares favourably with both TB-profiler and Mykrobe when carrying out TB lineage profiling, with the highest proportion of correctly profiled lineages (0.925), and the lowest type-2 failure rate (0.003). It has a higher underqualification rate (0.01) than TB-profiler (0.003). This is a result of the removal of ambiguity in lineage 5 within the SNP profile. Lineages which were previously classified within the *Mycobacterium africanum* species (5 & 6) are poorly characterised in comparison to other TB lineages, and consequently a conservative approach to reporting these lineages was taken. The results indicate that Mykrobe adopts a similar approach for some lineages. Results of TB lineage profiling from Afanc and TB-profiler have a high degree of concordance. This is undoubtedly due to the fact that they both use a SNP profiling approach, and used a similar set of lineage SNP profiles. All tools perform very similarly on bovis and bovis BCG datasets, with Mykrobe exhibiting a slightly higher Type 2 failure rate when processing BCG samples. There are a number of instances where all three profilers report BCG from datasets which ostensibly belong to bovis, and one instance where Lineage 1.2.2 was concurrently reported by all profilers when processing a BCG dataset. It is likely that this is as a result of datasets being mislabelled on GenBank.

Afanc has been demonstrated to outperform the cutting edge speciations tools at species/subspecies level characterisation, in disambiguating compound samples, and for lineage level disambiguation of Mycobacteriaceae across all testing parameters. Afanc also allows the user to construct their own database from a bespoke set of species and variants, or utilise their own set of variant definitions, ensuring that Afanc can be used for the analysis of any pathogen species, and providing a system for the construction of databases that keep up with the generation of new data. This also ensures that as novel species are defined, and new variants characterised, Afanc can be used to identify them.

Afanc is designed to be run on unix systems via the command line. This allows for seamless integration into bioinformatics workflows and pipelines. Due to the low computational requirements of Afanc, it can be run on a personal computer, obviating the need for HPC or cloud computing platforms. Installation instructions and a list of dependencies are detailed on the github page, which can be found in the Software Availability section of this paper.

Currently, variant profiles must consist of single nucleotide polymorphisms (SNPs). In the future, we intend to expand the functionality of the variant profiler to support other classes of variants.

6. Conclusion

The accurate and reliable species and variant level identification of pathogens within clinical samples is a cornerstone of the work undertaken by medical and public health laboratories. Increasingly, it is also being recognised that tools that provide speciation, must also provide mechanisms to enable the updating and creation of higher quality databases than can be managed by a simple bulk download from the NCBI or EBI. Development of reliable *in silico* bioinformatics approaches and tools to enable the construction of better quality databases, combined with tools to exploit them is therefore of utmost importance. In a thorough analysis of the taxonomic landscape of the Mycobacteriaceae, and the lineages of *M. tuberculosis*, we have demonstrated Afanc to be a robust and highly sensitive tool in performing species, subspecies, and lineage level profiling in even the most complex and low signal multi-species datasets. Afanc outperforms the major contemporary cutting edge

Mycobacteriaceae profilers currently available across all tested fields, allowing for more precise and reliable disambiguation. Furthermore, Afanc is an entirely general and species agnostic profiler, allowing the user to construct bespoke databases and provide their own set of variant definitions, thereby aiding in the future surveillance of pathogens of clinical importance, both extant and emerging. It is our hope that Afanc will be employed by medical and public health laboratories to form the backbone of speciation and variant characterisation workflows when dealing with clinical pathogen NGS data, and that researchers will find its autodatabasing capability to be of significant utility, and enabling better, more accurate speciation for a wide range of species and situations.

Software Availability

Afanc is available at https://github.com/ArthurVM/Afanc.

Author Contributions

T.C., A.M. and A.P. conceived of presented software. A.P. designed and wrote the first version of autoDatabase in nextflow. A.M. designed and wrote Afanc, carried out testing, and wrote the first draft of the manuscript. All authors contributed to editing and adjusting the final manuscript.

Competing Interests

No competing interests to declare.

Funding

This work was funded by the Wellcome Trust (grant ID 215800/Z/19/Z) and CLIMB (grant ID MR/T030062/1).

Correspondence

Correspondence should be directed to A.M.

Acknowledgements

I am grateful to Owen Jones and Tom Whalley, who provided advice and support when carrying out the work presented in this paper.

Bibliography

- Breitwieser, F.P., Baker, D.N., Salzberg, S.L., 2018. KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biology 19. https://doi.org/10.1186/s13059-018-1568-0
- Gupta, R.S., Lo, B., Son, J., 2018. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Frontiers in Microbiology 9. https://doi.org/10.3389/fmicb.2018.00067
- Houben, R.M.G.J., Dodd, P.J., 2016. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. PLOS Medicine 13, e1002152. https://doi.org/10.1371/journal.pmed.1002152
- Huang, W., Li, L., Myers, J.R., Marth, G.T., 2011. ART: a next-generation sequencing read simulator. Bioinformatics 28, 593–594. https://doi.org/10.1093/bioinformatics/btr708
- Hunt, M., Bradley, P., Lapierre, S.G., Heys, S., Thomsit, M., Hall, M.B., Malone, K.M., Wintringer, P.,
 Walker, T.M., Cirillo, D.M., Comas, I., Farhat, M.R., Fowler, P., Gardy, J., Ismail, N., Kohl, T.A.,
 Mathys, V., Merker, M., Niemann, S., Omar, S.V., Sintchenko, V., Smith, G., Soolingen, D. van,
 Supply, P., Tahseen, S., Wilcox, M., Arandjelovic, I., Peto, T.E.A., Crook, D.W., Iqbal, Z., 2019.
 Antibiotic resistance prediction for Mycobacterium tuberculosis from genome sequence data
 with Mykrobe. Wellcome Open Research 4, 191.
 https://doi.org/10.12688/wellcomeopenres.15603.1
- Lu, J., Breitwieser, F.P., Thielen, P., Salzberg, S.L., 2017. Bracken: estimating species abundance in metagenomics data. PeerJ Computer Science 3, e104. https://doi.org/10.7717/peerj-cs.104
- Napier, G., Campino, S., Merid, Y., Abebe, M., Woldeamanuel, Y., Aseffa, A., Hibberd, M.L., Phelan, J.,
 Clark, T.G., 2020. Robust barcoding and identification of Mycobacterium tuberculosis
 lineages for epidemiological and clinical studies. Genome Medicine 12.
 https://doi.org/10.1186/s13073-020-00817-3
- Ondov, B.D., Treangen, T.J., Melsted, P., Mallonee, A.B., Bergman, N.H., Koren, S., Phillippy, A.M., 2016. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biology 17. https://doi.org/10.1186/s13059-016-0997-x

- Ratnatunga, C.N., Lutzky, V.P., Kupz, A., Doolan, D.L., Reid, D.W., Field, M., Bell, S.C., Thomson, R.M., Miles, J.J., 2020. The Rise of Non-Tuberculosis Mycobacterial Lung Disease. Frontiers in Immunology 11. https://doi.org/10.3389/fimmu.2020.00303
- Wood, D.E., Lu, J., Langmead, B., 2019. Improved metagenomic analysis with Kraken 2. Genome Biology 20. https://doi.org/10.1186/s13059-019-1891-0
- Wood, D.E., Salzberg, S.L., 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biology 15. https://doi.org/10.1186/gb-2014-15-3-r46

Appendix

Testing

All testing was carried out on a laptop running Ubuntu v20.04.4 LTS (Focal Fossa), with 32Gb RAM, and an intel i7 6 core CPU.

Supplementary Materials

Species/Variant	Accession	Assembly
Mycolicibacterium insubricum	ASM1073161v1	GCA_010731615.1
Mycolicibacterium conceptionense	ASM210206v1	GCA_002102065.1
Mycolicibacter minnesotensis	ASM1073175v1	GCA_010731755.1
Mycobacterium rutilum	IMG-taxon_2636415969_annotated_assembly	GCA_900108565.1
Mycolicibacter arupensis	ASM837310v1	GCA_008373105.1
Mycobacterium gordonae	ASM2115499v1	GCA_021154995.1
Mycobacterium frederiksbergense	ASM1974517v1	GCA_019745175.1
Mycobacterium crocinum	ASM2237063v1	GCA_022370635.1
Mycobacterium kyorinense	ASM210173v1	GCA_002101735.1
Mycobacterium shinjukuense	ASM1073005v1	GCA_010730055.1
Mycobacterium kansasii	ASM15789v2	GCF_000157895.3
Mycolicibacterium mucogenicum	ASM567068v2	GCA_005670685.2
Mycolicibacter terrae	ASM1072712v1	GCA_010727125.1

Mycobacterium gallinarum	ASM1072676v1	GCA_010726765.1
Mycobacterium triplex	ASM210241v1	GCA_002102415.1
Mycobacterium avium	ASM974144v1	GCF_009741445.1
Mycobacterium avium silvaticum	MAS_49884_version_1	GCA_000504975.1
Mycobacterium avium avium	ASM2118384v1	GCA_021183845.1
Mycobacterium avium hominissius	ASM2217558v1	GCA_022175585.1
Mycobacterium avium paratuberculosis	ASM90912970v2	GCA_909129705.2
Mycobacterium angelicum	ASM208615v1	GCA_002086155.1
Mycolicibacterium bacteremicum	ASM208611v1	GCA_002086115.1
Mycobacterium neglectum	ASM259197v1	GCA_002591975.1
Mycobacterium seoulense	ASM1073159v1	GCA_010731595.1
Mycolicibacterium phlei	ASM1533357v1	GCA_015333575.1
Mycolicibacterium brisbanense	ASM157042v1	GCA_001570425.1
Mycobacterium lentiflavum	ASM2237489v1	GCA_022374895.1
Mycolicibacterium mageritense	ASM2090744v1	GCA_020907445.1
Mycobacterium pyrenivorans	ASM131410v1	GCA_001314105.1
Mycobacterium holsaticum	ASM1964583v1	GCA_019645835.1
Mycobacterium novum	ASM1072650v1	GCA_010726505.1
Mycobacterium parascrofulaceum	ASM16413v1	GCA_000164135.1
Mycolicibacterium phocaicum	ASM2052016v1	GCA_020520165.1
Mycobacterium bohemicum	ASM210202v1	GCA_002102025.1
Mycobacteroides abscessus subsp. abscessus	ASM1718355v1	GCA_017183555.1
Mycobacteroides abscessus subsp. bolletii	ASM44503v1	GCA_000445035.1
Mycobacteroides abscessus subsp. massiliense	ASM27777v2	GCA_000277775.2
Mycobacterium arosiense	ASM208612v1	GCA_002086125.1
Mycobacterium senegalense	ASM1964587v1	GCA_019645875.1
Mycobacterium neworleansense	Mycobacterium_neworleansense_assembly_1	GCA_001245615.1

Mycobacterium paraterrae	ASM2243054v1	GCA_022430545.1
Mycolicibacterium litorale	ASM1421829v1	GCA_014218295.1
Mycobacterium europaeum	ASM210215v1	GCA_002102155.1
Mycobacterium shimoidei	PRJEB26812	GCA_900417275.1
Mycolicibacterium fallax	ASM1072695v1	GCA_010726955.1
Mycolicibacter nonchromogenicus	ASM210177v1	GCA_002101775.1
Mycobacterium intermedium	ASM208627v1	GCA_002086275.1
Mycobacterium pallens	ASM1945667v1	GCA_019456675.1
Mycolicibacterium aurum	50279_F01	GCA_900637195.1
Mycobacterium haemophilum	ASM34043v3	GCA_000340435.3
Mycolicibacterium smegmatis	ASM1334914v1	GCF_013349145.1
Mycobacterium setense	PRJEB23414	GCA_900236745.1
Mycobacterium mantenii	ASM1073177v1	GCA_010731775.1
Mycolicibacterium obuense	ASM1419426v1	GCA_014194265.1
Mycobacteroides immunogenum	ASM210166v1	GCA_002101665.1
Mycolicibacillus koreensis	ASM1073183v1	GCA_010731835.1
Mycobacterium goodii	ASM2237075v1	GCA_022370755.1
Mycolicibacterium monacense	ASM1073157v1	GCA_010731575.1
Mycobacterium florentinum	ASM1073035v1	GCA_010730355.1
Mycolicibacterium llatzerense	ASM2173306v1	GCA_021733065.1
Mycobacterium saskatchewanense	ASM1072910v1	GCA_010729105.1
Mycobacterium genavense	ASM52691v1	GCA_000526915.1
Mycobacterium paraseoulense	ASM1073165v1	GCA_010731655.1
Mycolicibacterium chubuense	52223_C01	GCA_900453455.1
Mycolicibacterium austroafricanum	ASM1988050v1	GCA_019880505.1
Mycolicibacterium fluoranthenivorans	ASM1429543v1	GCA_014295435.1
Mycolicibacterium psychrotolerans	ASM1072930v1	GCA_010729305.1
Mycobacterium simiae	ASM1072760v1	GCA_010727605.1

Mycolicibacterium chitae	ASM1072772v1	GCA_010727725.1
Mycolicibacterium gadium	ASM1072892v1	GCA_010728925.1
Mycobacterium nebraskense	ASM1618537v1	GCA_016185375.1
Mycobacterium montefiorense	ASM311277v1	GCA_003112775.1
Mycolicibacterium novocastrense	ASM157048v1	GCA_001570485.1
Mycolicibacterium aromaticivorans	ASM1620116v1	GCA_016201165.1
Mycolicibacterium poriferae	ASM1072832v1	GCA_010728325.1
Mycobacterium heidelbergense	ASM1073074v1	GCA_010730745.1
Mycolicibacter senuensis	ASM1072322v1	GCA_010723225.1
Mycolicibacter kumamotonensis	ASM1009349v1	GCA_010093495.1
Mycobacterium malmoense	ASM1964585v1	GCA_019645855.1
Mycobacterium porcinum	ASM778643v1	GCA_007786435.1
Mycolicibacterium boenickei	ASM1691932v1	GCA_016919325.1
Mycobacterium branderi	ASM1072872v1	GCA_010728725.1
Mycolicibacterium hippocampi	ASM1339012v1	GCA_013390125.1
Mycobacterium intracellulare	ASM2234005v1	GCA_022340055.1
Mycobacterium sherrisii	ASM210235v1	GCA_002102355.1
Mycolicibacter algericus	ASM1072351v1	GCA_010723515.1
Mycolicibacterium confluentis	ASM1072989v1	GCA_010729895.1
Mycolicibacterium agri	ASM1072291v1	GCA_010722915.1
Mycolicibacterium madagascariense	ASM1072966v1	GCA_010729665.1
Mycolicibacterium rhodesiae	ASM208669v1	GCA_002086695.1
Mycobacterium paraffinicum	ASM190767v1	GCA_001907675.1
Mycobacterium rufum	ASM2237487v1	GCA_022374875.1
Mycobacterium asiaticum	ASM208654v1	GCA_002086545.1
Mycolicibacter hiberniae	ASM1072948v1	GCA_010729485.1
Mycobacterium scrofulaceum	ASM208673v1	GCA_002086735.1
Mycobacterium fortuitum	ASM130754v1	GCF_001307545.1

Mycobacteroides chelonae	ASM435524v1	GCA_004355245.1
Mycobacterium lepromatosis	ASM96635v1	GCF_000966355.1
Mycolicibacterium thermoresistibile	50465_H02	GCF_900187065.1
Mycolicibacterium vaccae	ASM165524v1	GCF_001655245.1
Mycobacterium interjectum	PRJEB13236	GCF_900078675.2
Mycobacterium marinum	ASM1674529v1	GCA_016745295.1
Mycobacterium lacus	ASM1073153v1	GCA_010731535.1
Mycobacterium xenopi	ASM993623v1	GCA_009936235.1
Mycolicibacterium flavescens	49243_D02	GCA_900637135.1
Mycolicibacterium doricum	ASM1072815v1	GCA_010728155.1
Mycobacterium leprae	ASM358472v1	GCA_003584725.1
Mycolicibacterium moriokaense	ASM1072608v1	GCA_010726085.1
Mycolicibacterium septicum	ASM1705269v1	GCA_017052695.1
Mycolicibacterium peregrinum	ASM472103v1	GCA_004721035.1
Mycobacterium hodleri	ASM686468v1	GCA_006864685.1
Mycobacterium vulneris	ASM210476v1	GCA_002104765.1
Mycobacterium marseillense	ASM2021751v1	GCA_020217515.1
Mycobacterium heckeshornense	ASM1686154v1	GCA_016861545.1
Mycobacterium celatum	ASM274216v1	GCA_002742165.1
Mycolicibacterium alvei	ASM1072732v1	GCA_010727325.1
Mycobacterium riyadhense	MR246	GCA_905219555.1
Mycobacterium kubicae	ASM1568917v1	GCA_015689175.1
Mycolicibacterium wolinskyi	ASM210196v1	GCA_002101965.1
Mycolicibacterium duvalii	ASM1072664v1	GCA_010726645.1
Mycolicibacterium sphagni	ASM1333776v1	GCA_013337765.1
Mycolicibacterium elephantis	ASM401480v1	GCA_004014805.1
Mycolicibacterium cosmeticum	ASM1619736v1	GCA_016197365.1
Mycobacterium acapulcensis	PRJEB14254	GCA_900089125.1

Mycobacterium colombiense	ASM328497v1	GCA_003284975.1
Mycobacterium chlorophenolicum	ASM155231v1	GCA_001552315.1
Mycolicibacterium vanbaalenii	ASM2155993v1	GCA_021559935.1
Mycolicibacterium canariasense	ASM210155v1	GCA_002101555.1
Mycobacterium gilvum	49243_C02	GCA_900454025.1
Mycolicibacterium hassiacum	ASM1968611v1	GCA_019686115.1
Mycolicibacterium murale	ASM1072299v1	GCA_010722995.1
Mycolicibacterium brumae	Mbrumae.v1	GCA_004014795.1
Mycolicibacterium neoaurum	ASM2255996v1	GCA_022559965.1
Mycobacterium diernhoferi	ASM1945665v1	GCA_019456655.1
Mycobacterium ulcerans	ASM2237491v1	GCA_022374915.1
Mycolicibacterium tusciae	ASM208679v1	GCA_002086795.1
Mycobacterium heraklionense	ASM1964581v1	GCA_019645815.1
Mycolicibacterium aichiense	ASM1072624v1	GCA_010726245.1
Mycolicibacterium aubagnense	ASM1073095v1	GCA_010730955.1
Mycobacterium szulgai	ASM211663v1	GCA_002116635.1
Mycobacterium palustre	ASM210178v1	GCA_002101785.1
Mycolicibacterium pulveris	ASM1072572v1	GCA_010725725.1
Mycobacterium chimaera	ASM2041242v1	GCA_020412425.1

Table S1. Dataset M1

Dataset	Dataset Contents	Breadth of Coverage	Depth of Coverage
M2.1	7 NTMs + 1 BCG	0.05	40x
M2.2	7 NTMs + 1 BCG	0.2	40x
M2.3	7 NTMs + 1 BCG	0.4	40x
M2.4	7 NTMs + 1 BCG	0.6	40x
M2.5	7 NTMs + 1 BCG	0.8	40x
M2.6	7 NTMs + 1 BCG	1.0	40x

Table S2. Dataset M2.

Sample ID	Truth Value
SRR6152881	Lineage 1

ERR768038	Lineage 1.1
ERR718556	Lineage 1.1
ERR718235	Lineage 1.1
ERR718422	Lineage 1.1
ERR718288	Lineage 1.1
ERR718374	Lineage 1.1
ERR718236	Lineage 1.1
ERR718262	Lineage 1.1
ERR718497	Lineage 1.1
ERR751824	Lineage 1.1.1
ERR767987	Lineage 1.1.1.1
ERR2510366	Lineage 1.1.2
ERR1213947	Lineage 1.1.2
SRR2100430	Lineage 1.1.3
SRR2101252	Lineage 1.1.3.1
ERR2513178	Lineage 1.1.3.2
ERR2512769	Lineage 1.1.3.3
ERR2513144	Lineage 1.1.3.3
ERR553088	Lineage 1.2
ERR2512840	Lineage 1.2
ERR400309	Lineage 1.2
SRR6045034	Lineage 1.2
ERR2517328	Lineage 1.2.1
ERR2510788	Lineage 1.2.2
SRR5067296	Lineage 1.2.2.1
SRR2100241	Lineage 1.3.1
ERR2510255	Lineage 1.3.2
SRR5065560	Lineage 2.1
ERR552761	Lineage 2.1
ERR553373	Lineage 2.1
DRR185119	Lineage 2.1
DRR184642	Lineage 2.1
ERR234216	Lineage 2.1
ERR551044	Lineage 2.1
ERR181316	Lineage 2.1
ERR234252	Lineage 2.1
ERR234248	Lineage 2.1
ERR502912	Lineage 2.2
ERR2510746	Lineage 2.2.1
ERR551871	Lineage 2.2.1.1
ERR2513866	Lineage 2.2.1.2
SRR2024907	Lineage 2.2.2
ERR2514121	Lineage 3
ERR2514707	Lineage 3
ERR550978	Lineage 3
ERR2517625	Lineage 3

ERR2513473	Lineage 3
SRR3675535	Lineage 3
SRR2100827	Lineage 3
ERR2513685	Lineage 3
SRR2100044	Lineage 3
ERR038743	Lineage 3
ERR2513637	Lineage 3.1
ERR2514250	Lineage 3.1
ERR2509882	Lineage 3.1
ERR551397	Lineage 3.1
ERR2513554	Lineage 3.1
SRR2100324	Lineage 3.1
SRR2100981	Lineage 3.1
ERR2510590	Lineage 3.1
ERR2510623	Lineage 3.1
ERR1034589	Lineage 3.1
ERR176577	Lineage 3.1.1
ERR2512807	Lineage 3.1.2
ERR2512825	Lineage 3.1.2.1
SRR2100113	Lineage 3.1.2.2
ERR2200121	Lineage 3.2
ERR551013	Lineage 3.2
ERR552820	Lineage 3.2
SRR6045997	Lineage 3.2
ERR2514230	Lineage 3.2
SRR2100025	Lineage 3.2
SRR2100350	Lineage 3.2
SRR6045966	Lineage 3.2
ERR2512416	Lineage 3.2
ERR2510344	Lineage 3.2
ERR2199860	Lineage 4
ERR2517475	Lineage 4
ERR133897	Lineage 4
ERR2513995	Lineage 4
ERR553346	Lineage 4
ERR2513713	Lineage 4
ERR552272	Lineage 4
ERR2516228	Lineage 4
ERR2514076	Lineage 4
ERR2517519	Lineage 4
ERR144613	Lineage 4.1
ERR2517547	Lineage 4.1
ERR550633	Lineage 4.1
SRR2100687	Lineage 4.1
ERR552879	Lineage 4.1
SRR2100180	Lineage 4.1

ERR2517391	Lineage 4.1
ERR550729	Lineage 4.1
ERR2513673	Lineage 4.1.1
SRR2100933	Lineage 4.1.1.1
ERR2512465	Lineage 4.1.1.2
ERR2512617	Lineage 4.1.1.3
SRR2100001	Lineage 4.1.1.3.1
ERR551893	Lineage 4.1.2
ERR2512744	Lineage 4.1.2.1
ERR757170	Lineage 4.1.2.1.1
ERR552061	Lineage 4.1.4
ERR751942	Lineage 4.2
SRR5818596	Lineage 4.2
SRR6824620	Lineage 4.2
ERR2179736	Lineage 4.2
ERR2179737	Lineage 4.2
ERR2510782	Lineage 4.2.1
ERR2512872	Lineage 4.2.1.1
ERR2514985	Lineage 4.2.2
ERR552483	Lineage 4.2.2.1
ERR038741	Lineage 4.2.2.2
ERR551065	Lineage 4.3
ERR552334	Lineage 4.3
ERR552704	Lineage 4.3
ERR551889	Lineage 4.3
ERR553033	Lineage 4.3
ERR2510180	Lineage 4.3
ERR2516611	Lineage 4.3
ERR2512652	Lineage 4.3
ERR2517279	Lineage 4.3
ERR550620	Lineage 4.3.1
ERR039335	Lineage 4.3.1.1
SRR2101753	Lineage 4.3.2
SRR2101516	Lineage 4.3.2.1
ERR182035	Lineage 4.3.3
ERR1034794	Lineage 4.3.4
ERR1035282	Lineage 4.3.4.1
ERR2514448	Lineage 4.3.4.2
ERR1034816	Lineage 4.3.4.2.1
ERR550965	Lineage 4.4
ERR2514347	Lineage 4.4
SRR2100805	Lineage 4.4
ERR2512723	Lineage 4.4
ERR2514048	Lineage 4.4
ERR2513635	Lineage 4.4
ERR1034693	Lineage 4.4

SRR6045465	Lineage 4.4
ERR1035311	Lineage 4.4.1
ERR2516296	Lineage 4.4.1.1
ERR2512628	Lineage 4.4.1.1.1
ERR2517511	Lineage 4.4.1.2
ERR751963	Lineage 4.4.2
ERR1213839	Lineage 4.5
ERR1213854	Lineage 4.5
SRR2100604	Lineage 4.5
SRR2100720	Lineage 4.5
ERR1213852	Lineage 4.5
ERR751714	Lineage 4.5
SRR671751	Lineage 4.5
ERR2514763	Lineage 4.5
SRR671773	Lineage 4.5
ERR752153	Lineage 4.5
ERR2512610	Lineage 4.6
ERR2517343	Lineage 4.6
SRR2100571	Lineage 4.6
ERR2510770	Lineage 4.6
ERR2510807	Lineage 4.6
ERR551633	Lineage 4.6
ERR2512531	Lineage 4.6
SRR2100592	Lineage 4.6
SRR6046090	Lineage 4.6
ERR1035142	Lineage 4.6
ERR181785	Lineage 4.6.1
ERR553255	Lineage 4.6.1.1
ERR2513458	Lineage 4.6.1.2
ERR190355	Lineage 4.6.2
ERR046838	Lineage 4.6.2.1
ERR2513583	Lineage 4.6.2.2
ERR400522	Lineage 4.6.3
ERR2512590	Lineage 4.6.4
ERR2514126	Lineage 4.6.5
SRR2100310	Lineage 4.7
SRR2100783	Lineage 4.7
SRR2101046	Lineage 4.7
SRR2101621	Lineage 4.7
SRR6045316	Lineage 4.7
ERR551297	Lineage 4.7
ERR2517136	Lineage 4.7
ERR1213922	Lineage 4.7
ERR2513257	Lineage 4.7
ERR2516422	Lineage 4.7
SRR6045004	Lineage 4.8

ERR1035147	Lineage 4.8
ERR551712	Lineage 4.8
ERR550701	Lineage 4.8
ERR550998	Lineage 4.8
ERR552476	Lineage 4.8
ERR400364	Lineage 4.8
ERR400462	Lineage 4.8
ERR2041758	Lineage 4.8
ERR552320	Lineage 4.8.1
SRR2100725	Lineage 4.8.2
ERR552205	Lineage 4.8.3
ERR2199890	Lineage 4.9
ERR2199906	Lineage 4.9
ERR552126	Lineage 4.9
ERR552871	Lineage 4.9
ERR163991	Lineage 4.9
SRR2101462	Lineage 4.9
SRR2101607	Lineage 4.9
SRR2101653	Lineage 4.9
ERR1213837	Lineage 4.9
ERR552644	Lineage 4.9
ERR2515338	Lineage 4.9.1
ERR2516651	Lineage 5
ERR751329	Lineage 5
ERR2383618	Lineage 5
ERR751345	Lineage 5
ERR751338	Lineage 5
ERR1215463	Lineage 5
ERR702416	Lineage 5
ERR502471	Lineage 5
ERR1215464	Lineage 5
ERR751330	Lineage 5
ERR552605	Lineage 5.1
ERR234202	Lineage 5.1
ERR551620	Lineage 5.1
ERR2515090	Lineage 5.1.1
ERR2513646	Lineage 5.1.2
ERR046918	Lineage 5.1.3
ERR2510708	Lineage 5.1.4
ERR552427	Lineage 5.1.5
ERR2516310	Lineage 5.2
ERR2706950	Lineage 5.2
ERR1679637	Lineage 5.3
ERR2514128	Lineage 5.3
SRR2100539	Lineage 6
ERR2512633	Lineage 6

SRR6045496	Lineage 6
ERR2704811	Lineage 6.1
ERR2513326	Lineage 6.1.1
ERR2517594	Lineage 6.1.2
ERR400537	Lineage 6.1.3
ERR3170427	Lineage 6.2.1
ERR2514403	Lineage 6.2.2
ERR2517500	Lineage 6.2.3
ERR2510777	Lineage 6.3.1
ERR551901	Lineage 6.3.2
ERR551070	Lineage 6.3.3
ERR181435	Lineage 7
ERR181314	Lineage 9
ERR551705	Lineage caprae
ERR2510183	Lineage caprae
ERR2199829	Lineage orgis
GCA_000195835.3_ASM19583v2	variant bovis
GCA_000488915.1_MB04303v1	variant bovis
GCA_000488935.1_MBAN5v1	variant bovis
GCA_000649655.1_Myco_bovi_Bz_31150_V1	variant bovis
GCA_000649675.1_Myco_bovi_B2_7505_V1	variant bovis
GCA_000666385.1_Myco_bovi_MAL010093_V1	variant bovis
GCA_000729745.1_ASM72974v1	variant bovis
GCA_000729755.1_ASM72975v1	variant bovis
GCA_000729765.1_ASM72976v1	variant bovis
GCA_000749605.1_ASM74960v1	variant bovis
GCA_000749615.1_ASM74961v1	variant bovis
GCA_000749625.1_ASM74962v1	variant bovis
GCA_000749665.1_ASM74966v1	variant bovis
GCA_000749675.1_ASM74967v1	variant bovis
GCA_000749685.1_ASM74968v1	variant bovis
GCA_000749725.1_ASM74972v1	variant bovis
GCA_000749745.1_ASM74974v1	variant bovis
GCA_000749765.1_ASM74976v1	variant bovis
GCA_000749785.1_ASM74978v1	variant bovis
GCA_000749805.1_ASM74980v1	variant bovis
GCA_000749825.1_ASM74982v1	variant bovis
GCA_000878485.1_ASM87848v1	variant bovis
GCA_000934325.3_ASM93432v3	variant bovis
GCA_000947875.1_Genome_assembly_of_Mycobacterium_bovis_MB1	variant bovis
GCA_000947895.1_Assembly_of_the_genome_MB3	variant bovis
GCA_001078615.1_ASM107861v1	variant bovis
GCA_001184735.1_ASM118473v1	variant bovis
GCA_001293105.1_ASM129310v1	variant bovis
GCA_001369335.1_Assembly_of_Mycobacterium_caprae_MB5_genome	variant bovis
GCA_001455165.1_ASM145516v1	variant bovis

GCA_001483905.1_ASM148390v1	variant bovis
GCA_001544775.1_ASM154477v1	variant bovis
GCA_001726085.1_ASM172608v1	variant bovis
GCA_002026285.1_ASM202628v1	variant bovis
GCA_002026325.1_ASM202632v1	variant bovis
GCA 002026395.1_ASM202639v1	variant bovis
GCA 002148975.1 ASM214897v1	variant bovis
GCA 002149005.1 ASM214900v1	variant bovis
GCA 002504245.2 ASM250424v2	variant bovis
GCA 002703685.1 ASM270368v1	variant bovis
GCA 002703695.1 ASM270369v1	variant bovis
GCA 002703725.1 ASM270372v1	variant bovis
GCA 002703735.1 ASM270373v1	variant bovis
GCA 002703765.1 ASM270376v1	variant bovis
GCA 002703785.1 ASM270378v1	variant bovis
GCA_002703795.1_ASM270379v1	variant bovis
GCA_002703825.1_ASM270382v1	variant bovis
GCA_0027038351_ASM270383v1	variant boyis
GCA_0027038651_ASM270386v1	variant bovis
GCA_002703875_1_ASM270387v1	variant bovis
GCA_002703885_1_ASM270388v1	variant boyis
GCA_002703895_1_ASM270389v1	variant hovis
GCA_002703945_1_ASM270394v1	variant boyis
GCA_002703955_1_ASM270395v1	variant boyis
GCA_002703985.1_ASM270398v1	variant boyis
GCA_0027039951_ASM270399v1	variant hovis
GCA_0027040251_ASM270402v1	variant boyis
GCA_0027040351_ASM270403v1	variant boyis
CCA_0027040551_ASM270405V1	variant boyis
GCA_0027035351_ASM27040371	variant boyis
$GCA_002723535.1_ASM272353V1$	variant boyis
CCA_002075475_1_ASM207547v1	variant boyis
$CCA_0027767051_ASM277679v1$	variant boyis
$CCA_0029762351_ASM29762391$	variant boyis
$GCA_002776355.1_ASW227035V1$	variant boyis
$GCA_002770555.1_ASM22705571$	variant boyis
$GCA_002970575.1$ ASM209705791	variant boyis
$GCA_002007955.2 ASM20078552$	variant boyis
GCA_002027635.2_ASW20276372	Valiant boyis
GCA_0055105251_ASM551052;1	Variant bovis
GCA_0070222.1_ASW702208.1	Variant boyis
GCA_007022903.1_ASW1/9229001	Variant bovis
GCA_007922993.1_ASW1792299V1	Variant boxis
GCA_007989803.1_ASM79898071	Variant bovis
GCA_00/9898/5.1_ASM/9898/V1	variant bovis
GCA_00/989925.1_ASM/98992V1	variant bovis
GCA_007989935.1_ASM798993v1	variant bovis

GCA_007989945.1_ASM798994v1	variant bovis
GCA_007990005.1_ASM799000v1	variant bovis
GCA_007990015.1_ASM799001v1	variant bovis
GCA_007990045.1_ASM799004v1	variant bovis
GCA_007990055.1_ASM799005v1	variant bovis
GCA_007990075.1_ASM799007v1	variant bovis
GCA_007990105.1_ASM799010v1	variant bovis
GCA_008033095.1_ASM803309v1	variant bovis
GCA_011392525.1_ASM1139252v1	variant bovis
GCA_011392565.1_ASM1139256v1	variant bovis
GCA_018305025.1_ASM1830502v1	variant bovis
GCA_018305045.1_ASM1830504v1	variant bovis
GCA_019075565.1_ASM1907556v1	variant bovis
GCA_020536615.1_ASM2053661v1	variant bovis
GCA_020536625.1_ASM2053662v1	variant bovis
GCA_020536635.1_ASM2053663v1	variant bovis
GCA_020536675.1_ASM2053667v1	variant bovis
GCA_902459825.2_MB3601_COMBINED_annotated	variant bovis
GCA_902506635.1_P9981	variant bovis
GCA_902506665.1_P9979	variant bovis
GCA_902506675.1_P9978	variant bovis
GCA_902506725.1_P9980	variant bovis
GCA_902509475.1_Q0209	variant bovis
GCA_903992665.1_Q1128	variant bovis
GCA_903992675.1_Q1134	variant bovis
GCA_903992685.1_Q1139	variant bovis
GCA_903992695.1_Q1129	variant bovis
GCA_903992715.1_Q1142	variant bovis
GCA_903992735.1_Q1133	variant bovis
GCA_903992745.1_Q1132	variant bovis
GCA_903992755.1_Q1131	variant bovis
GCA_903992765.1_Q1141	variant bovis
GCA_903992775.1_Q1140	variant bovis
GCA_903992785.1_Q1138	variant bovis
GCA_026013685.1_ASM2601368v1	variant bovis BCG
GCA_000009445.1_ASM944v1	variant bovis BCG
GCA_000010685.1_ASM1068v1	variant bovis BCG
GCA_000194015.2_ASM19401v2	variant bovis BCG
GCA_000194035.2_ASM19403v2	variant bovis BCG
GCA_000194055.2_ASM19405v2	variant bovis BCG
GCA_000194075.3_ASM19407v3	variant bovis BCG
GCA_000234725.1_ASM23472v1	variant bovis BCG
GCA_000338715.2_ASM33871v2	variant bovis BCG
GCA_000463175.1_BCG_Frappier	variant bovis BCG
GCA_000463195.1_BCG_Glaxo	variant bovis BCG
GCA_000463215.1_BCG_Moreau	variant bovis BCG

GCA_000463235.1_BCG_Phipps	variant bovis BCG
GCA_000463255.1_BCG_Prague	variant bovis BCG
GCA_000463275.1_BCG_Sweden	variant bovis BCG
GCA_000705655.1_ASM70565v1	variant bovis BCG
GCA_000967285.1_ASM96728v1	variant bovis BCG
GCA_001043255.1_ASM104325v1	variant bovis BCG
GCA_001274555.1_ASM127455v1	variant bovis BCG
GCA_001287005.1_bcg_Phipps	variant bovis BCG
GCA_001287045.1_bcg_Moreau	variant bovis BCG
GCA_001287065.1_bcg_Birkhaug	variant bovis BCG
GCA_001287105.1_bcg_Sweden	variant bovis BCG
GCA_001287125.1_bcg_Copenhagen	variant bovis BCG
GCA_001287165.1_bcg_Pasteur	variant bovis BCG
GCA_001287185.1_bcg_Glaxo	variant bovis BCG
GCA_001287205.1_bcg_Russia	variant bovis BCG
GCA_001287225.1_bcg_Prague	variant bovis BCG
GCA_001287245.1_bcg_China	variant bovis BCG
GCA_001287325.1_bcg_Connaught	variant bovis BCG
GCA_001287365.1_bcg_Tice	variant bovis BCG
GCA_001287425.1_bcg_Tokyo	variant bovis BCG
GCA_001287485.1_bcg_Frappier	variant bovis BCG
GCA_001458155.1_S4	variant bovis BCG
GCA_001544735.1_ASM154473v1	variant bovis BCG
GCA_001580385.1_ASM158038v1	variant bovis BCG
GCA_003703995.1_ASM370399v1	variant bovis BCG
GCA_003704015.1_ASM370401v1	variant bovis BCG
GCA_005155785.1_ASM515578v1	variant bovis BCG
GCA_005156105.1_ASM515610v1	variant bovis BCG
GCA_011392515.1_ASM1139251v1	variant bovis BCG
GCA_015482805.1_ASM1548280v1	variant bovis BCG
GCA_902299125.1_PRJEB33814-1	variant bovis BCG
GCA_903992725.1_Q1135	variant bovis BCG

Table S3. TB lineage dataset.

		PASS	Overqualified	Underqualified	Type 1 FAIL	Type 2 FAIL	Other
Ll	Afanc	0.643	0.179	0.000	0.143	0.000	0.036
(11 20)	Tbprofiler	0.643	0.179	0.000	0.143	0.000	0.036
	Mykrobe	0.571	0.143	0.107	0.143	0.036	0.000
L2 (n=15)	Afanc	0.933	0.067	0.000	0.000	0.000	0.000
	Tbprofiler	0.933	0.067	0.000	0.000	0.000	0.000
	Mykrobe	0.733	0.000	0.067	0.200	0.000	0.000

L3	Afanc	1.000	0.000	0.000	0.000	0.000	0.000
(<i>n</i> -54)	Tbprofiler	0.706	0.000	0.000	0.294	0.000	0.000
	Mykrobe	0.412	0.000	0.588	0.000	0.000	0.000
L4 (n=130)	Afanc	0.977	0.008	0.008	0.000	0.000	0.008
(# 150)	Tbprofiler	0.985	0.000	0.000	0.000	0.008	0.008
	Mykrobe	0.592	0.085	0.046	0.277	0.000	0.000
L5 (n=22)	Afanc	0.818	0.045	0.136	0.000	0.000	0.000
(Tbprofiler	0.727	0.273	0.000	0.000	0.000	0.000
	Mykrobe	0.455	0.000	0.545	0.000	0.000	0.000
L6 (n=12)	Afanc	0.917	0.083	0.000	0.000	0.000	0.000
(11 12)	Tbprofiler	0.833	0.083	0.083	0.000	0.000	0.000
	Mykrobe	0.250	0.000	0.750	0.000	0.000	0.000
L7 (n=1)	Afanc	1.000	0.000	0.000	0.000	0.000	0.000
(11)	Tbprofiler	1.000	0.000	0.000	0.000	0.000	0.000
	Mykrobe	1.000	0.000	0.000	0.000	0.000	0.000
L9 (n=1)	Afanc	1.000	0.000	0.000	0.000	0.000	0.000
	Tbprofiler	1.000	0.000	0.000	0.000	0.000	0.000
	Mykrobe	0.000	0.000	0.000	0.000	1.000	0.000
caprae (n=2)	Afanc	1.000	0.000	0.000	0.000	0.000	0.000
(n 2)	Tbprofiler	1.000	0.000	0.000	0.000	0.000	0.000
	Mykrobe	1.000	0.000	0.000	0.000	0.000	0.000
orgis $(n=1)$	Afanc	1.000	0.000	0.000	0.000	0.000	0.000
(n-1)	Tbprofiler	1.000	0.000	0.000	0.000	0.000	0.000
	Mykrobe	0.000	0.000	0.000	0.000	1.000	0.000
bovis $(n=110)$	Afanc	0.909	0.000	0.000	0.073	0.000	0.018
(<i>n</i> -110)	Tbprofiler	0.909	0.000	0.000	0.064	0.027	0.000
	Mykrobe	0.918	0.000	0.000	0.055	0.009	0.018

bovis BCG (n=44)	Afanc	0.977	0.000	0.000	0.000	0.023	0.000
	Tbprofiler	0.977	0.000	0.000	0.000	0.023	0.000
	Mykrobe	0.955	0.000	0.000	0.000	0.045	0.000
Total (n=400)	Afanc	0.925	0.023	0.010	0.030	0.003	0.010
	Tbprofiler	0.895	0.033	0.003	0.053	0.013	0.005
	Mykrobe	0.693	0.038	0.128	0.123	0.015	0.005

Table S4. Result frequency of running the lineage dataset through each profiler.