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Diverse Motion In-betweening from Sparse
Keyframes with Dual Posture Stitching

Tianxiang Ren, Jubo Yu, Shihui Guo∗, Ying Ma, Yutao Ouyang, Zijiao Zeng, Yazhan Zhang, Yipeng Qin

Fig. 1: Motion transitions generated by our method. The poses are rendered every ten frames. Black: key frames.
Gray: generated transitions.

Abstract—In-betweening is a technique for generating transitions given start and target character states. The majority of existing works

require multiple (often ≥ 10) frames as input, which are not always available. In addition, they produce results that lack diversity, which

may not fulfill artists’ requirements. Addressing these gaps, our work deals with a focused yet challenging problem: generating diverse

and high-quality transitions given exactly two frames (only the start and target frames). To cope with this challenging scenario, we

propose a bi-directional motion generation and stitching scheme which generates forward and backward transitions from the start and

target frames with two adversarial autoregressive networks, respectively, and stitches them midway between the start and target frames.

In contrast to stitching at the start or target frames, where the ground truth cannot be altered, there is no strict midway ground truth.

Thus, our method can capitalize on this flexibility and generate high-quality and diverse transitions simultaneously. Specifically, we

employ conditional variational autoencoders (CVAEs) to implement our autoregressive networks and propose a novel stitching loss to

stitch the bi-directional generated motions around the midway point.

Extensive experiments demonstrate that our method achieves higher motion quality and more diverse results than existing methods

on the LaFAN1, Human3.6m and AMASS datasets.

Index Terms—Animation, Transition Generation, In-betweening, Deep Learning

✦

1 INTRODUCTION

1 Motion in-betweening, or keyframe interpolation, is a2

technique widely used in film production, video games,3

etc. Thanks to the introduction of deep learning techniques,4

modern motion in-betweening methods [11], [12], [13], [19],5
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[29], [32], [34], [38] have achieved significant improvements 6

in the naturalness and diversity of long-gap interpolation 7

tasks, thereby significantly saving manpower and speeding 8

up the animation production process. 9

Autoregressive models like LSTMs have become a natu- 10

ral choice for motion in-betweening due to their sequence 11

modeling capabilities. However, they face two key chal- 12

lenges that conflict with each other: i) transition ambiguity, 13

as there are infinitely many valid transitions between the 14

start and target frames; and ii) constraints imposed by 15

the target frame, which restrict the output sequence to 16
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a fixed endpoint. Between them, the first challenge can17

be addressed by generative neural sequence models like18

variational autoencoders (VAEs) that can produce diverse19

outputs from the same input. However, increasing diver-20

sity makes restricting the output to a fixed endpoint more21

challenging, resulting in discontinuities that substantially22

degrade the visual quality. Existing solutions address this23

issue in two ways: i) Reduce transition ambiguity by using24

dense start frames (≥10) [19], [29], [32], [34]. Transformers25

are commonly used in these solutions to effectively model26

the global context from the additional input. However, using27

such dense input comes at the cost of limiting diversity in28

the generated transitions. Moreover, acquiring 10 or more29

start frames (usually needs to be created by artists) is30

expensive and often infeasible in real-world applications.31

ii) Introduce post-processing techniques like blending to32

bridge the differences between the generated transitions and33

target poses. However, this post-processing has two key34

problems: Firstly, blending the transitional motion with the35

target motion can alter the original data, which animators36

may wish to preserve. Secondly, artifacts like foot sliding37

and body floating can be introduced, which are unaccept-38

able for high-quality results. These artifacts are challenging39

to completely rectify. In some cases, manual cleanup by40

professional animators is needed to fix these issues, an often41

time-consuming process. To the best of our knowledge,42

there are currently no methods capable of simultaneously43

generating diverse, high-quality transition motions.44

Addressing the gap mentioned above, in this paper, we45

propose a bi-directional motion stitching scheme, which46

relaxes the strict constraint imposed by the target frame47

(fixed endpoint) to a loose one (same connecting motion48

from both sides) at the midway point of the transition.49

Specifically, given sparse input frames (i.e., only one start50

and one target frames), our method first generates forward51

and backward motion sequences from the start and tar-52

get frames respectively, and then stitch them together (i.e.53

“align” them) in the middle of the transition, where there54

is no strict ground truth. A byproduct of our method is the55

zero error at the target frame, yielding exceptionally smooth56

and natural transitions that previous methods have never57

achieved. To implement our bi-directional scheme, we use58

two conditional variational autoencoder (CVAE) networks59

to build the mapping between motion data and their cor-60

responding latent spaces, and generate the forward and61

backward motion sequences by sampling in their respective62

latent space. We argue that CVAE is well-fitted to our bi-63

directional scheme as it diversifies motion generation with64

the randomness in its sampling process, and thus capable of65

successfully modeling the diversity of transition animations.66

We then implement the stitching by identifying a pair of67

latent codes that minimizes a novel stitching loss in the two68

latent spaces of the CVAEs, respectively. In addition, we69

adapt CVAE to our stitching task with several novel tech-70

niques (i.e. Stitching-CVAE), including latent interpolation,71

bi-directional aligning and phase modulation.72

Our contributions are summarized as follows:73

• We propose a novel bi-directional stitching scheme for74

diverse and high-quality motion in-betweening from75

spare keyframes (i.e., one start and one target frame).76

Our method generates highly smooth and natural tran-77

sitions with zero error at the target frame, an achieve- 78

ment not attained by previous methods. 79

• We propose a novel Stitching-CVAE network that 80

adapts CVAE to our stitching task with several 81

novel techniques, including latent interpolation, bi- 82

directional aligning and phase modulation. 83

• Extensive experimental results on the LaFAN1, Hu- 84

man3.6m and AMASS datasets justify the effective- 85

ness of our method in natural and diverse motion in- 86

betweening. 87

2 RELATED WORK 88

2.1 Motion Prediction 89

Motion prediction generates future frames of motion based 90

on the character states in the past few frames. Motion pre- 91

diction tasks can be divided into deterministic and stochas- 92

tic prediction. In deterministic motion prediction, existing 93

works often use recurrent neural network (RNN) or their 94

variants to capture temporal dependencies [16], [27], [45]. 95

Researchers [7] proposed two LSTM-based structures to 96

model temporal patterns and learn feature representations 97

of sequences. Another work proposed structured RNN (S- 98

RNN), a stacked RNN structure incorporating human mo- 99

tion semantic information [16]. S-RNN captures rich human- 100

object interactions and makes significant improvements on 101

human motion modeling. However, the RNN-based meth- 102

ods may cause frame skipping (the last input frame is 103

not continuous with the predicted first frame) and face 104

the problem of model collapse, which leads to average 105

movements when capturing long-term dependencies [4], 106

[8], [40]. PFNN [14] strengthens the control of character 107

animation by introducing the phase feature and abandons 108

traditional RNN-based methods. The phase feature was 109

crafted to indicate the current motion cycle, eliminating 110

motion ambiguity. [35], [36], [37] improved the phase feature 111

and achieved more robust motion prediction. The graph- 112

structure is typically used to represent skeletons. Graph 113

Convolution Network (GCN) [6], [50] is employed to more 114

effectively model the movement spatial relationships among 115

skeleton parts in motion prediction. Mao et al. [25] firstly 116

utilized GCN to exploit motion patterns to predict the 117

future motions. It treats a human pose as a generic graph 118

and designs a new GCN to learn the graph connectivity 119

automatically. It leverages discrete cosine transform (DCT) 120

to encode temporal information. Rather than employing 121

DCT for encoding motion sequences, Ma et al. [23] used two 122

separate GCNs to extract spatial and temporal features. 123

Compared with deterministic motion prediction, the re- 124

sult of stochastic motion prediction is not required to be 125

close to ground truth [3], [10], [13], [20], [22], [39], [44]. It is 126

required to generate diverse results given the same input. 127

CVAE is widely used in stochastic motion prediction for its 128

ability to learn data distribution and generate diverse results 129

by sampling [2], [17], [31], [49]. A recent work [49] used 130

CVAE for stochastic motion prediction, using marker-based 131

locations instead of joint positions as human state repre- 132

sentation and skinned multi-person linear model (SMPL) to 133

generate more realistic human motions. A few works [17], 134

[31] combined transformer with VAE to perform prediction 135

in parallel and achieved an excellent performance. The 136
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introduction of discrete cosine transform (DCT) improves137

the diversity of stochastic motion prediction [17].138

In this work, we follow best practices from previous139

works and employ CVAE to model the diversity of tran-140

sitional motions.141

2.2 Transition Generation142

The goal of transition generation (motion in-betweening) is143

to interpolate between two separate frames or motion clips.144

More priors are given in transition generation task than145

motion prediction, including past few frames and target146

frames information. In general motion prediction, only past147

few frames are provided without the constraints of target148

frames. In earlier research, [33], [42] adopted a physics-149

based strategy to generate motion between keyframes by150

solving an optimization problem with spatio-temporal con-151

straints. Statistical models have also been used for generat-152

ing transition animations, including Maximum A Posteriori153

(MAP) [28], Gaussian Process [41] and Markov models [21].154

Over the past decade, deep neural networks have been155

applied to motion in-betweening. Based on the different156

historical frame lengths used, we categorize the learning157

based methods into single-frame and multi-frame required158

in-betweening methods.159

Single-frame required in-betweening methods. RNN has160

been demonstrated to have excellent performance in time161

series prediction. [48] utilized an RNN conditioned on162

keyframes to generate jumping motions for a 2D model.163

[11] used RNN to generate transitions. As a following work,164

[12] proposed ERD with GAN network to achieve variable-165

length transition generation, with the assistance of time-to-166

arrival and scheduled-target embeddings. [38] proposed a167

new natural motion manifold model and a new transition168

sampler for real-time motion in-betweening. It increases the169

controllability of the in-betweening synthesis, and achieves170

good performance and high motion quality. But it can not171

guarantee tracking of target and its results lack diversity,172

especially of its lower body. RNNs are often used in con-173

junction with an autoregressive approach for motion in-174

betweening. The autoregressive approach can conduct mo-175

tion in-betweening starting with only one historical frame.176

We call it single-frame required methods.177

Multi-frame required in-betweening methods. However,178

the majority of current methods require multiple histori-179

cal frames for better results. Methods in image inpainting180

have been applied to transition generation, considering181

the similarity between two tasks [13], [51]. These methods182

transformed time-series motion data into two-dimensional183

image-like features. Researchers proposed to apply progres-184

sive learning to transition tasks and gradually increase the185

length of transition during training to accelerate it [18].186

However, this conversion of motion sequences into images187

lacks interpretability, and commonly produces artifacts such188

as jittering and foot sliding. Another work [46] only interpo-189

lates the body joint trajectory and generates the correspond-190

ing pose based on the interpolated trajectory. It generates191

animations for hundreds of characters simultaneously. [43]192

used a global and local hierarchical model for transition193

generation. First, it uses the route information to find small194

fragments to fill the gap through motion matching. It then195

generates the transition between each neighboring short 196

sequence. Finally, Bi-LSTM predicts the transition between 197

short sequences, and the prediction results are blended. 198

Recently, Transformer-based methods have proven its 199

effectiveness in in-betweening. [34] use Transformer en- 200

coder and 1D temporal convolution to generate transitions. 201

[29] use a Transformer-based Encoder-Decoder structure 202

to generate transitions in delta mode. The delta means 203

the offset between the spherical linear interpolation (Slerp) 204

between keyframes and ground truth. [32] employs a two- 205

stage generation process. One context transformer performs 206

the first interpolation, followed by a refinement using 207

one detail transformer structure. This approach excels in 208

generating longer transition animations. All Transformer- 209

based methods are trained with multiple (often ≥ 10) past 210

frames as input and can’t handle the extremely sparse cases, 211

where there are only one past frame and one target frame 212

given. However, methods requiring multiple frames exhibit 213

a noticeable performance drop when the available historical 214

frames are reduced. It restricts the use of these methods in 215

practical scenarios. 216

Our work falls under the single-frame required in- 217

betweening methods. Our key idea is to relax the strict 218

constraint imposed by the target frame (fix endpoint) to a 219

loose one (same connecting motion from both sides) at the 220

middle point of the transition, thus generates diverse and 221

high-quality transitions at the same time. 222

3 METHOD 223

3.1 Data Formatting 224

Given one start keyframe f0 and one target keyframe fL, 225

our method generates intermediate transitions {f̂t}
L−1
t=1 . The 226

pose of each keyframe is composed of the 3-dimensional 227

global position of the root joint rt and local quaternion 228

vectors qt for the other joints relative to the root joint. 229

t represents the timestep index. We extract feet contact 230

information as a binary vector ct of 4 dimensions when 231

working with the LaFAN1 dataset. We also calculate the 232

offset vectors ort and oqt containing respectively the global 233

root position’s offset and local-quaternions’ offsets from 234

the target keyframe at time t [12]. The offset vector is the 235

element-wise linear difference between the current pose and 236

the target pose. When using the forward kinematics (FK) 237

loss, we get the global positions of all joints p̂t+1 with 238

predicted global root position r̂t+1 and local quaternions 239

q̂t+1 by performing FK. 240

3.2 Motion Stitching Scheme 241

Figure 2 shows the diagram of our motion stitching scheme. 242

Previous uni-directional methods [11], [12], [38] synthesized 243

the motion sequence from the start frame to the target frame. 244

We propose a new framework that bi-directionally synthe- 245

sizes the motion sequence from both the start and the target 246

frame simultaneously, and blends them in the intermediate 247

region. This is similar to the procedure of stitching in the 248

domain of garment making, in which edges of two clothes 249

are sewn together. 250

As Figure 2 shows, we implement the proposed scheme 251

with two generators: a forward generator Gf (·) synthe- 252

sizing the forward motion sequence from the start frame 253
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Fig. 2: Illustration of our bi-directional motion stitching scheme. We synthesize forward and backward motion sequences
from the start and target frame respectively and stitch them together in the intermediate region. We also employ a pair of
long-short discriminators [12] to improve the naturalness of synthesized motions. The black boxes in the figure mean there
are no frames at these timestamps.

and a backward generator Gb(·) synthesizing the backward254

motion sequence from the target frame. Let L be the frame255

length of the entire transition period, K be the length of the256

synthesis buffers allowing for smoother blending results, we257

first make the two generators synthesize a motion sequence258

of length L/2 + K each and linearly blend the overlap of259

the two sequences at each timestamp. We then concatenate260

the blended results with the remaining parts of both the261

forward and backward sequences to obtain the final motion262

sequence. To improve the naturalness of the synthesized263

motion sequence, we further employ a pair of long-short264

discriminators [12] Dls(·) to enhance the transition details.265

In contrast to uni-directional methods, our bi-directional266

scheme eliminates the necessity of trade-off between nat-267

uralness and fidelity for motion blending by shifting the268

blending operation from the target frame to the middle of269

the transition. Since the middle part of the transition is far270

from the strict motion ground truths at the start and target271

frames, the fidelity requirement is significantly relaxed and272

we only need to ensure that the blended motions are natural273

at the intermediate frames. In other words, our framework274

allows diverse motions to be blended, constituting a large275

and diverse motion space in the middle of the transition.276

The application of the proposed bi-directional scheme is277

non-trivial as it requires efficient exploration of a large and278

diverse motion space, which poses a challenge for the design279

of the motion generators. We tried to build the bi-directional280

scheme with the model proposed in [12]. But the stitching281

result is terrible (shown in section 5.3.3). It’s because the282

method can’t generate diverse results. If generated motion283

sequences in forward and backward directions differ signif-284

icantly in the synthesis buffers, the stitching results will be285

awful. To tackle this, we propose a novel stitching-CVAE286

(S-CVAE) network as described in the following section.287

Forward and backward generators are two independent S-288

CVAE structures and don’t share the same parameters.289

3.3 Stitching-CVAE290

Similar to the vanilla CVAE, stitching-CVAE consists of an291

encoder and a decoder: the encoder encodes the character292

state of the current frame and the target frame, and maps 293

them to a latent code z; the decoder decodes z sampled in 294

the latent space and generates the character state in the next 295

frame. We adapt the vanilla CVAE to our stitching task by 296

re-designing its encoder. 297

Figure 3 shows the architecture of the S-CVAE encoder. 298

In S-CVAE, the encoder involves three inputs: the current 299

frame, the target frame and their offset. We train the model 300

in two stages. Firstly, we concatenate the embeddings of the 301

current frame, the target frame and their offset and feed it 302

into the LSTM. Then, we pass the LSTM output through a 303

fully-connected network to obtain the current latent space 304

distribution N (µ, θ). Then, we replace the current frame 305

with the target frame so that the offset is 0, then recalculate 306

the connection embedding and feed it into the LSTM again. 307

Then, we pass the LSTM output through another fully- 308

connected network to obtain the latent space distribution 309

for the target frame N (µt, θt). Note that this stage indicates 310

the arrival of the current frame at the target frame, thus 311

producing the target latent space distribution. Finally, we 312

perform a latent interpolation operation on the above two 313

latent space distributions. 314

To adapt the encoder to our stitching task, we propose 315

several novel techniques as follows. 316

Fig. 3: Illustration of the encoder of the stitching-CVAE. The
latent interpolation operation linearly blends the distribu-
tions of the current frame and the target frame. Orange:
stage 1; Blue: stage 2.

Latent Interpolation (Figure 3). To facilitate stitching, we 317

design a Latent Interpolation operation to linearly blend 318

the latent distributions of the current frame and the target 319
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frame:320

L(N ,Nt) = (1− γ)N (µ, θ) + γN (µt, θt) (1)

γ =

{
t/⌊L/2⌋, 0 <= t < ⌊L/2⌋

t/(⌊L/2⌋+K), ⌊L/2⌋ <= t <= ⌊L/2⌋+K
(2)

where N (µ, θ) denotes the distribution of the current321

frame and N (µt, θt) denotes the distribution of the target322

frame. γ linearly increases from 0 to 1 (0 at the start of the323

transition(0), 1 at the middle of the transition(⌊L/2⌋)) with324

the latest-of-opposite-generator as the target frame. When325

the target frame switches back to the end-of-transition(L), it326

linearly increases again from a lower value to 1 as illustrated327

in Eq.2. This ensures that reasonable weights are assigned to328

the forward and backward generators at different stitching329

positions.330

Fig. 4: Illustration of bi-directional aligning. Gf/b(·) rep-
resents the forward/backward motion generator. The i⃝
represents the i-th step generation.

Bi-directional Aligning (Figure 4). Starting from the start331

and target frames, we generate new frames in turn using the332

forward and backward generators respectively. The process333

can be described as below:334

fi+1 = Gf (fi|fj)

fj−1 = Gb(fj |fi+1)
(3)

where fi represents the i-th frame. Gf/b(·) represents the335

forward/backward generator. G(a|b) means the generator336

generates the next frame with the a-th frame as current337

frame and the b-th frame as the target frame.338

To facilitate the stitching when the two sequences meet,339

we condition the generation of the current frame with the340

latest frame synthesized by the other generator, thereby341

aligning the generation processes of the forward and back-342

ward motion sequences together. After the current frame343

crosses the current target (middle of the transition), the for-344

ward generator conditions on the last frame of the transition345

instead of the backward generator’s last output. The same346

to the backward generator.347

Stitching Loss. We design a stitching loss as the average348

L1 distance of the overlap of the two generated sequences,349

which regularizes the two sequences to be consistent with350

each other:351

Lstitch =
1

2K

⌊L/2⌋+K∑

t=⌊L/2⌋−K+1

∥∥∥pf
t − p

b
L−t

∥∥∥
1

(4)

where ⌊·⌋ is a floor function, L is the length of sequence 352

generated by each motion generator, pf and p
b represent 353

the global positions of the forward and backward motion 354

generators calculated by forward kinematics (FK). K is 355

the length of the synthesis buffers allowing for smoother 356

blending results. 357

We also adapt the decoder to our stitching task with a 358

novel phase modulation technique. 359

Phase Modulation. Observing the periodicity of many com- 360

mon motions, we propose that the incorporation of phase 361

information can eliminate action ambiguity, improve anima- 362

tion quality, and reduce flutter. Specifically, we use a phase 363

prediction network to extract the phase information from 364

the current frame and use it to modulate the CVAE decoder. 365

The phase prediction network is pre-trained on a dataset 366

labelled using local phase method introduced in [36], in 367

which we can automatically extract phase variables at local 368

level. It takes local rotations in quaternions, the root velocity, 369

foot contact information and the phase value at the current 370

frame as input and outputs the phase updates. The phase 371

value is updated in an auto-regressive manner as in [36]. 372

It indicates which phase of a motion cycle the character is 373

currently in and helps to generate accurate motions. 374

Remark. S-CVAE not only increases the diversity of the 375

results, but also facilitates stitching with its diverse motion 376

space. Specifically, the forward and backward sequences 377

can be smoothly stitched if we can find a pair of matching 378

latent codes in their corresponding motion spaces. The more 379

diverse such motion spaces, the higher likelihood that we 380

can find such a pair of latent codes. 381

3.4 Overall Loss Function 382

In addition to the stitching loss (Eq. 4), we use several 383

other loss functions to constrain the learning process to 384

guarantee the stability of the training and the quality of 385

generated results. Since in our method, the character state 386

is represented by its global root position and local rotations 387

of other joints relative to their parent joints respectively, we 388

denote the local rotations in the form of quaternions as qt, 389

the root joint velocity as vt, the foot contact information 390

extracted using the method provided in LaFAN1 [12] as ct, 391

and define the loss functions as follows. 392

State Loss. State loss represents the reconstruction loss of 393

three different types of character state. It consists of quater- 394

nion loss, root velocity loss, and contact loss. Each loss is a 395

L1 norm between the predicted results and the ground truth. 396

The losses are summarized weighting by β1, β2 and β3, and 397

averaged across all time frames. The state loss function is: 398

Lstate =
1

L

L−1∑

t=0

(β1 ∥q̂t − qt∥1 + β2 ∥v̂t − vt∥1 +

β3 ∥ĉt − ct∥1)

(5)

KL Loss. As common in CVAE, we regularize the poste- 399

rior distribution to normal distribution by optimizing the 400

Kullback-Leibler divergence: 401

Lkl = KLD(q(Z | Xt)||N (0, I)) (6)

where q(· | ·) denotes the inference posterior (encoder). 402
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FK loss. FK loss is proposed in [30] to alleviate the accumu-403

lative errors of rotations in local coordinates. We calculate404

global positions by local quaternions with forward kinemat-405

ics (FK) and get the average L1 norm between the calculated406

positions and real positions. The FK loss function is:407

Lfk =
1

L

L−1∑

t=0

∥FK(r, q̂t)− pt∥1) (7)

where r represents the global root position.408

Adversarial Loss. We use a generator-discriminator archi-409

tecture and employ a pair of long-short discriminators [12]410

to improve the motion quality. The discriminator is in the411

form of Least Square GAN [26]. Each discriminator takes412

different lengths of generated motions and ground truth413

motions as input. The adversarial loss function is defined414

as follows:415

LG =
1

2
EZ∼pZ

[
(D (G (Z))− 1)

2
]

(8)

416

LD =
1

2
EX∼pData

[
(D (X)− 1)

2
]
+

1

2
EZ∼pZ

[
(D (G (Z)))

2
] (9)

where X and Z represent the ground truth frames and sam-417

pled latent codes respectively. G is the transition generator418

network. D is the discriminator network.419

Overall Loss Function. The overall loss is made up of i) the420

average of the forward and backward losses consisting of421

their own state, KL and FK losses respectively ii) a stitching422

loss and an adversarial loss:423

L =Lstate + α1Lkl + α2Lstitch + α3Lfk+

α4LD + α5LG
(10)

Please see Sec. 4.3 for the choices of weights.424

4 IMPLEMENTATION DETAILS425

4.1 Network Details426

Encoder. We use separate encoders to learn from different427

state features, including a state encoder, an offset encoder,428

and a target encoder. All encoders consist of three fully-429

connected layers. The inputs of the encoders are in different430

sizes as described below. The hidden size of all of them is431

512, and the output size is 256. The state encoder encodes432

the character state of the current frame, including local433

rotation information in the form of quaternions, foot contact434

information, and velocity information of the root joint. The435

input size of state encoder is 95 on LAFAN1 datasets. It436

is different when using different datasets, because they437

have various skeletons with different joint numbers. The438

velocity information of the root joint plays an essential439

role in alleviating the mode collapse problem of LSTM440

in our experiments. The offset encoder encodes the local441

quaternion offset and the global root position offset between442

the current frame and the target frame. In the in-betweening443

task, the prior information of the offset between the current444

and target frames is critical [12]. The input size of offset445

encoder is 91. The target encoder encodes the state of the446

target frame, which is taken as the condition signal of CVAE447

to guide the prediction of the generator. The input size of 448

target encoder is 88. To make networks aware of the time 449

until target, we achieve time encoding by introducing the 450

time-to-arrival embedding [12] in our method. The time- 451

to-arrival embedding has 256 dimensions and is added to 452

all input embeddings separately. With the time-to-arrival 453

embeddings, our method is able to gracefully handle transi- 454

tions of variable lengths. It can be defined as: 455

ztta,2i = sin

(
tta

basis 2i/d

)
(11)

456

ztta,2i+1 = cos

(
tta

basis 2i/d

)
(12)

where tta is the timesteps until the target. The second sub- 457

script of the vector ztta, represents the dimension index. d 458

represents the the dimensionality of the input embeddings. 459

basis influences the rate of change in frequencies along the 460

embedding dimensions. We set it to 10,000 as in [12]. 461

All output embeddings of the encoders are concatenated 462

as the input embedding of LSTM, which helps to capture 463

temporal dependencies. The hidden size of LSTM is 768. 464

And then we use two fully-connected layers of width 768 465

and 16 to get the distribution of the current and target frame 466

separately. Finally, the distributions will be blended by the 467

linearly blending operation to form the final latent variable 468

space. 469

Fig. 5: Illustration of S-CVAE decoder.

Decoder. The decoder is composed of LSTM and mixture 470

of experts (MoE [47]) network as illustrated in Fig. 5. 471

Its architecture llustration is shown in the supplementary 472

material. It takes the random latent variable z and the 473

character state of the current frame and the target frame 474

as input to predict character states in the next frame. The 475

predicted character states include the root joint velocity, the 476

quaternion updates of the other joints and the foot contact 477

information. We predict local-quaternion updates and root 478

velocities to prevent the frame skipping problem in RNN 479

as in [27]. The local-quaternion updates are element-wise 480

linear differences of quaternions at frame t and frame t+1. 481

All feature embeddings are concatenated as the input 482

embedding of LSTM of width 528. MoE network includes 483

a gating network and multiple expert networks. We set the 484

number of experts as 4 The gating network generates a set 485

of blending coefficients α suitable for the current motion 486

according to the phase and then blends the weights of 487

multiple expert networks to form the generator. The gating 488

network and expert networks are based on a multi-layer 489

perception (MLP) model. The gating network is a four layers 490

fully-connected networks. The size of each layer is 4, 64, 32 491
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and 4. All expert networks are also all four layers fully-492

connected networks, with sizes of 768, 512, 256 and 88.493

Discriminators. The pair of long-short discriminators are494

two variants of a relatively simple feed-forward architecture495

[12]. Each of the discriminators is comprised of three fully-496

connected layers, with the final layer serving as a 1D linear497

output layer. The long discriminator examines consecutive498

motion frames in sliding windows of 10 frames, while the499

shor one examining in sliding windows of 2 frames. The size500

of each layer is 512 and 256. To generate a single scalar loss,501

we calculate the average of discriminator scores over time.502

4.2 Datasets503

We train and evaluate our model on three public datasets1,504

LAFAN1 [12], Human3.6m [15] and AMASS [24]. The ex-505

periments result on AMASS dataset is shown in the supple-506

mentary material.507

Human3.6m. Human3.6m is a large-scale dataset with di-508

verse action types, often used for motion prediction and509

pose estimation. It contains the data of 7 subjects performing510

15 types of actions, including “Direction”, “Sitting”, “Sitting511

Down”, “Walking”, “Taking Photos”, “Smoking” and “Eat-512

ing”, etc. Following the standard setting in [1], [12], we take513

subject1, subject5, subject6, subject7, and subject8 as training514

sets and subject9 and subject11 as test sets. We refer to the515

experimental setting of RMIB [12] and use data of specific516

action types for training, including walking, walking-dog,517

and walking-together. The other action types are short-term518

ones that are not suitable for long-term motion prediction.519

To adapt the motion sequences to our motion in-betweening520

task, we create the training and test sets by sampling the521

sequences with a window size of 50 and a offset of 20. Our522

resulting training set contains 8,451 motion fragments and523

our test set contains 2,635 fragments.524

LAFAN1. LAFAN1 dataset contains 78 long motion se-525

quences performed by 5 subjects, consisting of 496,672526

frames sampled at 30Hz. Following RMIB [12], we take527

subject1, subject2, subject3, and subject4 as training sets528

and subject5 as the test set. Similar to Human3.6m, we529

create the training and test sets by sampling the sequences530

with a window size of 50 and a offset of 20. Our resulting531

training set contains 20,212 motion fragments and our test532

set contains 2,232 fragments.533

4.3 Training Details534

We conduct experiments on a PC with a Intel i7-7700 CPU535

and a Nvidea TESLA P40 GPU. We implement our method536

with PyTorch. We train our model using an AdamW opti-537

mizer with a learning rate η =0.0001, β1=0.5, β2=0.9, weight538

decay λ =0.00001, and batch size nbatch=32. We set the539

number of expert networks in MoE as 4. We use β1=1.0,540

β2=1.0, β3=0.1 in Eq. 5 and α1 = 1.0, α2 = 0.5, α3 = 0.5,541

α4 = α5 = 0.1 in Eq. 10. To accelerate training, we adopt542

a progressive training strategy: we gradually increase the543

length of the transition by 1 for every 2 epochs, from 5 to 50,544

during training.545

1. Note that we reverse the motion data to train our backward
generator.

5 EXPERIMENTS 546

5.1 Metrics 547

We evaluate motion in-betweening methods from three 548

aspects: diversity, accuracy, and naturalness, using seven 549

metrics. We provide detailed descriptions and equations for 550

all metrics used in the paper in the supplementary material. 551

Average Pairwise Distance (APD): the average L2 distance 552

of global positions of multiple motions generated under the 553

same input and constraints. 554

Accuracy - Average Displacement Error (ADE): the average 555

L2 distance of global positions between the reconstructed 556

motion and the ground truth. 557

Accuracy - L2P: L2P reports average L2 distances of global 558

global positions. 559

Accuracy - L2Q: L2Q reports average L2 distances of global 560

quaternions. 561

Accuracy - Second to Last Displacement Error (SLDE): the 562

average L2 distance of global positions between the second to 563

last frame of the reconstructed motion and the ground truth. 564

Naturalness - Normalized Power Spectrum Similarity 565

(NPSS [9]): the similarity of the distribution of the generated 566

motion and the ground truth. 567

Naturalness - Foot Sliding per Frame (Foot Slide): the 568

average sliding distance of the stance foot, i.e., the ankle 569

and toe joints, per frame. 570

Among them, SLDE complements ADE by highlighting 571

the accuracy of motion reconstruction at the second to last 572

frame where the ground truth requirement is strict; NPSS 573

and Foot Slide show the naturalness of motions from both 574

the statistics distribution and critical events respectively. 575

5.2 Qualitative Experiments 576

Fig. 6: Displacement error along time. Blue shadow: the
displacement error of results generated three times by
RMIB [12]. Red shadow: the displacement error of results
generated three times by our method. The test is conducted
across the entire test set of the LaFAN1 dataset. The solid
lines represent the average displacement error. The bigger
shadow area means that our method can generate more
diverse results.

Diversity of Motion In-betweening. As Fig. 6 shows, our 577

model produces more diverse transitions with the same 578

inputs and constraints, especially at the middle of the tran- 579

sition. Additionally, our method generates more accurate 580
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results. Because the FK loss converges to a lower level with581

the assistance of the stitching loss, the generated transitions582

are more similar to the ground truth transitions. The lack of583

smoothness in the curves is because the entire sequence is584

optimized in segments. The reconstruction loss is applied to585

the entire sequence, whereas the stitching loss only affects586

the intermediate buffer region, precisely corresponding to587

the less smooth part of the curve. The asymmetry in the588

curves is attributed to the different training data used by589

the forward and backward motion generators. Although590

both are trained on the same dataset, the backward motion591

generator uses reversed motion data. We also show the592

visible comparison results in Fig. 7.593

Fig. 7: Fidelity of motions generated at the end (target)
frames by RMIB [12] (top) and our method (bottom).
Blue and red skeletons: generated motions. Gray shading:
ground truth. The numbers at the right-bottom corner of
each sample are their corresponding FDE scores. FDE means
final displacement error. It calculates the L2 distance be-
tween the pose in the last time step of ground truth motion
and the motion from a generated set of K motions that is the
closest to the ground truth.

Fig. 8: Diversity of samples generated by RMIB [12] (top)
and our method (middle) and ground truth transition (bot-
tom). All samples are generated six times repeatedly with
the same constraints and target motions.

Fidelity at the End (Target) Frame. As Fig. 7 shows, the pro-594

posed bi-directional stitching method guarantees a perfect595

fit at the end (target) frame, which resolves a longstanding596

challenge in previous methods [38]. Besides, the Fig. 6 597

shows the displacement error along with time. Our method 598

achieves more diverse results and guarantees a perfect fit at 599

the target frame. 600

5.3 Quantitative Experiments 601

5.3.1 Evaluation on the LaFAN1 dataset 602

As Table 1 shows, we compare our method with the classic 603

interpolation method Slerp2 [5], RMIB method [12], ∆- 604

Interpolator [29], and τdet [32] on three different lengths in- 605

betweening motion generation tasks on the LaFAN1 dataset. 606

∆-Interpolator and τdet both are Transformer-based motion 607

in-betweening methods. τdet reports state-of-the-art motion 608

in-between benchmark results on LAFAN1. It consists of 609

two Transformer Encoder-based networks (Context Trans- 610

former and Detail Transformer) operating in two stages. 611

In the first stage the Context Transformer generates rough 612

transitions based on the context and in the second stage 613

the Detail Transformer is employed to refine motion details. 614

This work proposed two in-between networks (τcon and 615

τdet). τcon only leverages the Context Transformer. τdet 616

leverages both the Context Transformer and Detail Trans- 617

former. The Detail Transformer is independent from the 618

Context Transformer, so we try to involve it in our method 619

(Oursdet) to refine motion details. All methods were trained 620

and tested with exactly two frames given. Among them, 621

the short-term one is considered “resolved” by Slerp as it 622

is relatively simple due to its smaller number of possible 623

motion variations. It can be observed that: i) For the short- 624

term synthesis task, our method is comparable to Slerp 625

in accuracy and naturalness, but with smaller Foot Slide 626

scores, which demonstrate the effectiveness of our method 627

in short-term motion in-betweening synthesis. ii) For the 628

medium-term and long-term synthesis tasks, our method 629

significantly outperforms Slerp and RMIB in accuracy, di- 630

versity and naturalness. Note that our method achieves a 631

much smaller SLDE and a perfect alignment with the target 632

frame. iii) The diversity (APD) of our method increases as 633

the number of frames to be generated, which indicates that 634

our method successfully captures the increasing number of 635

possible motion variations with time. 636

The transformer-based methods can predict multiple 637

missing frames within a single forward propagation. It 638

achieves high speed performance and high quality with 639

multiple past frames as input. However, as shown in Ta- 640

ble 1, the quality drops dramatically when the number of 641

past frames decreases to one. But ours performs well. The 642

distinct difference between the transformer-based methods 643

and ours is that ours address a more challenging but more 644

valuable case where the past frames before the source frame 645

are unavailable. Unlike transformer-based methods that use 646

10 such past frames, ours uses none but achieves compa- 647

rable performances. In addition, our method can generate 648

diverse results but the transformer-based methods can’t. 649

Besides, we compared our methods with ∆-Interpolator 650

[29] and τdet [32], all Transformer-based in-between meth- 651

ods trained with 10 past frames. We show all the comparison 652

results in Table 2, which shows our method is comparable 653

2. In Slerp, We interpolate the root position linearly and the quater-
nions spherically.
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TABLE 1: In-betweening on the LaFAN1 dataset. We use dif-
ferent methods to generate three types of lengths transitions,
given only 1 historical frame as input.

Frames Method APD ↑ L2P ↓ L2Q ↓ ADE ↓ SLDE ↓ NPSS ↓ Foot Slide ↓

10
Slerp 0.000 0.53 0.42 0.030 0.020 0.006 3.689
RMIB 0.537 0.44 0.31 0.043 0.049 0.029 2.221
∆-Interpolator 0.000 0.95 0.83 0.203 0.033 0.041 3.319
τdet 0.000 0.68 0.72 0.141 0.020 0.035 2.936
Ours 1.415 0.37 0.30 0.032 0.012 0.008 2.146
Oursdet 1.407 0.36 0.30 0.032 0.013 0.008 2.231

30
Slerp 0.000 2.32 0.98 0.135 0.029 0.178 4.743
RMIB 14.499 1.28 0.69 0.143 0.053 0.132 0.939
∆-Interpolator 0.000 4.47 3.11 0.793 0.039 0.220 2.343
τdet 0.000 3.58 2.33 0.517 0.023 0.184 1.896
Ours 25.123 1.08 0.60 0.099 0.015 0.121 0.863
Oursdet 24.244 1.06 0.59 0.093 0.013 0.120 0.830

50
Slerp 0.000 4.97 1.98 0.252 0.034 0.739 3.984
RMIB 36.860 2.73 1.21 0.172 0.057 0.432 0.592
∆-Interpolator 0.000 6.27 4.39 0.938 0.036 0.613 2.946
τdet 0.000 5.22 3.96 0.807 0.021 0.557 2.539
Ours 63.269 2.37 1.13 0.123 0.016 0.311 0.468
Oursdet 62.899 2.32 1.13 0.113 0.015 0.310 0.465

to Transformer-based methods even if trained with only one654

past frame, even better than some of them. And our method655

combined with the Detail Transformer [32] gets the best L2P656

and NPSS score.657

TABLE 2: Comparisons of different methods on LaFAN1
dataset. All Transformer-based methods are trained with 10
past frames as input, while RMIB and our method only use
1 historical frame as input.

Frames Method APD ↑ L2P ↓ L2Q ↓ ADE ↓ SLDE ↓ NPSS ↓ Foot Slide ↓

15
RMIB 4.322 0.65 0.42 0.097 0.055 0.0258 2.411
∆-Interpolator 0.000 0.47 0.32 0.073 0.016 0.0217 1.624
τdet 0.000 0.39 0.28 0.070 0.016 0.0188 1.562
Ours 8.153 0.53 0.35 0.076 0.014 0.0223 1.627
Oursdet 8.150 0.45 0.32 0.073 0.014 0.0201 1.601

30
RMIB 14.499 1.28 0.69 0.143 0.053 0.1328 0.939
∆-Interpolator 0.000 1.00 0.57 0.091 0.021 0.1217 0.845
τdet 0.000 0.89 0.54 0.084 0.019 0.1124 0.792
Ours 25.123 1.08 0.60 0.099 0.015 0.1210 0.863
Oursdet 24.244 0.99 0.57 0.093 0.013 0.1196 0.830

45
RMIB 28.773 2.24 0.94 0.158 0.032 0.3311 0.572
∆-Interpolator 0.000 3.23 1.15 0.145 0.024 0.4359 0.531
τdet 0.000 1.68 0.87 0.106 0.018 0.3217 0.427
Ours 55.748 1.81 0.92 0.113 0.015 0.3051 0.468
Oursdet 55.465 1.59 0.92 0.110 0.015 0.3040 0.452

We compared our method with τcon and τdet [32] with658

different input historical frames length. As shown in Fig.9,659

our method always performs better than τcon and is compa-660

rable to τdet when input historical frames decrease to 4.661

Fig. 9: Comparison with τcon and τdet with different input
historical frames length. Our method only uses 1 historical
frame as input.

TABLE 3: In-betweening on the Human3.6m dataset. We
use different methods to generate three types of lengths
transitions, given only 1 historical frame as input.

Frames Method APD ↑ L2P ↓ L2Q ↓ ADE ↓ SLDE ↓ NPSS ↓ Foot Slide ↓

10
Slerp 0.000 0.67 0.41 0.16 0.233 0.0054 3.239
RMIB 0.823 0.48 0.38 0.217 0.598 0.0102 3.557
∆-Interpolator 0.000 1.01 0.97 0.611 0.325 0.0116 8.031
τdet 0.000 0.74 0.69 0.517 0.295 0.0108 7.283
Ours 1.445 0.41 0.32 0.159 0.225 0.0059 3.002
Oursdet 1.449 0.40 0.32 0.154 0.218 0.0059 2.981

30
Slerp 0.000 2.13 1.09 1.232 0.499 0.132 3.887
RMIB 14.879 1.18 0.78 0.654 0.848 0.096 2.865
∆-Interpolator 0.000 4.07 3.52 3.259 0.593 0.192 7.874
τdet 0.000 3.31 2.59 2.547 0.328 0.16 7.084
Ours 26.314 1.07 0.69 0.501 0.273 0.087 2.412
Oursdet 26.423 1.01 0.67 0.494 0.265 0.085 2.395

50
Slerp 0.000 2.55 1.05 1.552 0.532 0.356 2.352
RMIB 36.069 1.68 0.93 0.851 0.904 0.252 1.550
∆-Interpolator 0.000 3.85 3.37 4.543 0.654 0.452 7.428
τdet 0.000 3.20 3.05 3.784 0.382 0.421 7.101
Ours 63.751 1.35 0.91 0.622 0.291 0.229 1.309
Oursdet 63.387 1.31 0.90 0.601 0.273 0.228 1.300

5.3.2 Evaluation on the Human3.6m dataset 662

We evaluate our method on the Human3.6m dataset using 663

the same setups as those on the LaFAN1 dataset. As Ta- 664

ble 3 shows, similar to the results on the LaFAN1 dataset, 665

our method achieves the best scores in APD, ADE, SLDE, 666

NPSS and Foot Slide, which demonstrates that our method 667

outperforms previous methods in all accuracy, diversity and 668

naturalness metrics. 669

As shown in 4, we also tested the performance of the 670

model trained on the LaFAN1 dataset using the Human3.6M 671

test set. To enable the model trained on LaFAN1 dataset to 672

be tested on different datasets, we retargeted the motions 673

from Human3.6m to the LaFAN1 skeleton. The results show 674

that our approach generalizes well across datasets. 675

TABLE 4: Evaluate our method trained on LaFAN1 dataset
(Ours la) on Human3.6m test set.

Frame Method APD ↑ L2P ↓ L2Q ↓ ADE ↓ SLDE ↓ NPSS ↓ Foot Slide ↓

10
Ours la hm 1.033 0.46 0.39 0.045 0.015 0.017 2.336
Ours la la 1.407 0.37 0.30 0.032 0.013 0.008 2.231

30
Ours la hm 23.725 1.97 0.82 0.121 0.030 0.137 1.257
Ours la la 25.123 1.08 0.60 0.099 0.015 0.121 0.863

50
Ours la hm 60.237 3.12 1.55 0.153 0.028 0.351 0.591
Ours la la 63.269 2.37 1.13 0.123 0.016 0.311 0.468

5.3.3 Implementation of Bi-directional Framework 676

We tried to build the bi-directional framework with the 677

model proposed in [12] and our method. As shown in 678

Table 5, the stitching result of the bi-directional scheme 679

with RMIB [12] is terrible. It’s because RMIB can’t generate 680

diverse results. If generated motion sequences in forward 681

and backward directions differ significantly in the synthesis 682

buffers, the stitching results will be awful. But our method 683

can provide much more diverse motion spaces and find such 684

a pair of latent codes to make smooth stitching. 685

TABLE 5: Implement Bi-directional Scheme with different
methods.

Method APD ↑ ADE ↓ SLDE ↓ NPSS ↓ Foot Slide ↓

Bi-directional in RMIB 36.319 0.254 0.019 0.573 1.627
Ours 63.269 0.123 0.016 0.311 0.468
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5.4 Ablation Study686

We perform an ablation study on the LaFAN1 dataset to687

explore the effectiveness of each module. We conduct a 50-688

frame length transition generation on the following base-689

lines:690

• Ours w/o BS (Bi-directional Scheme): directly generate691

the transition only in the forward direction;692

• Ours w/o SL (Stitching Loss): train the network with-693

out the stitching loss.694

• Ours w/o LI (Latent Interpolation): directly sample695

latent code from the latent space of the current frame.696

• Ours w/o BA (Bi-directional Aligning): don’t take the697

opposite generator’s last prediction as target frame.698

Keep the given target frame as the target.699

• Ours w/o PM (Phase Modulation): replace the MoE700

module with MLP.701

• ours w/o D: generate the transition with out discrimi-702

nators;703

• ours w/o LSTM: replace LSTM in the encoder with704

MLP.705

In ablation study, We add a metric, namely Mean Middle706

Pose Error (MMPE), to measure the pose error between the707

two different generated poses at L/2. It is defined as:708

MMPE =
∥∥∥p̂f

L/2 − p̂
b
L/2

∥∥∥
2

(13)

where p̂
f
L/2 and p̂

b
L/2 represent the generated global po-709

sitions at L/2 generated by the forward and backward710

generator.711

TABLE 6: Ablation Study on LAFAN1 dataset.

Method APD ↑ ADE ↓ SLDE ↓ NPSS ↓ Foot Slide ↓ MMPE ↓

Ours (w/o BS) 60.467 0.190 0.237 0.419 0.548 /
Ours (w/o SL) 63.476 0.130 0.018 0.313 0.517 0.0371
Ours (w/o LI) 71.260 0.126 0.017 0.318 0.493 0.0184
Ours (w/o BA) 62.443 0.124 0.018 0.315 0.541 0.0353
Ours (w/o PM) 62.880 0.128 0.016 0.325 0.554 0.0143
Ours (w/o D) 34.647 0.207 0.016 0.453 1.436 0.0154
Ours (w/o LSTM) 60.329 0.154 0.018 0.373 0.627 0.0145

Ours 63.269 0.123 0.016 0.311 0.468 0.0142

The results are shown in Table 6. It can be observed712

that: 1) The bi-directional schema solves the problem of713

generated results not fitting with the target frame. 2) S-714

CVAE increases the diversity of results. The integrated bi-715

directional aligning, stitching loss, and latent interpolate716

operation lead to a smooth stitching result. Additionally,717

latent interpolating contributes to more natural results at718

the expense of harming the diversity of results due to719

its average operation. 3) The phase modulation is benefi-720

cial for improving motion quality. Introducing the phase721

into in-betweening tasks is a good practice. 4) LSTM and722

discriminators are beneficial for improving motion quality723

and discriminators contribute to increasing the diversity724

of results. 5) Though latent interpolation process hurts the725

diversity, we still keep it. Our aim is to increase the diversity726

without hurting quality, which is achieved by the proposed727

latent interpolation. And our method outperforms RMIB728

significantly even when latent interpolation is applied. 6)729

It can be observed that the novel techniques proposed in730

our work effectively reduce MMPE, which suggests that731

they bring the two generated poses closer together at L/2, 732

resulting in better stitching results. 733

6 LIMITATIONS AND FUTURE WORK 734

In this work, we focus on improving the diversity of tran- 735

sition animations rather than how to control the generation 736

process of them. Our method does not allow intuitive con- 737

trol of the generation process due to the random sampling 738

method used in the CVAE latent space. We hope to explore 739

the use of high-level semantic information (e.g. motion styles 740

or action types) to control the generation in future work, 741

which will meet the animators’ wills better. 742

A major limitation of our approach is that it inherits 743

the inherent challenges of data-driven methods and does 744

not generalize well to rare or unseen motions (e.g., turn- 745

ing around and pushing adversaries), a.k.a, the imbalanced 746

dataset problem. 747

Our method is frame rate-sensitive – it can only generate 748

results at the same frame rate as the training set. If we want a 749

model capable of generating results at different frame rates, 750

we have to retrain it on datasets with different frame rates. 751

We demonstrated it through experimentation (included in 752

the supplementary material). We think it may be due to 753

the influence of different frame rates on position encoding. 754

An in-betweening method effective for different frame rates 755

would be worth exploring in future work. 756

Last but not least, in inference, the length of the transi- 757

tion is determined by the user. However, animators can not 758

directly judge how long transition are in real cases. So we 759

need the model to help us to predict lengths of transitions, 760

which is helpful when applying in real cases. 761

7 CONCLUSION 762

In this paper, we propose an in-betweening method. It can 763

generate diverse, high-quality transition motions in extreme 764

cases where only two frames are given (one past frame and 765

one target frame). Our method generates the forward and 766

backward segments, respectively from both ends, and then 767

stitches both segments at the intermediate seam region. This 768

strategy solves the problem that the generated transitions 769

deviate from the target frames. Experiments demonstrate 770

that our method can generate more diverse and higher- 771

quality results than previous work on both long and short 772

sequences. The success of our method is rooted in the 773

elegant design of bi-directional generation and intermediate 774

stitching. Components in this complete recipe are indispens- 775

able in order to satisfy the conflicting requirements of both 776

motion diversity and conformity. 777
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