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Abstract 

Establishing biomarkers to predict multiple sclerosis diagnosis and prognosis has been challenging using a single 
biomarker approach. We hypothesised that a combination of biomarkers would increase the accuracy of prediction 
models to differentiate multiple sclerosis from other neurological disorders and enhance prognostication for people 
with multiple sclerosis. We measured 24 fluid biomarkers in the blood and cerebrospinal fluid of 77 people with mul-
tiple sclerosis and 80 people with other neurological disorders, using ELISA or Single Molecule Array assays. Primary 
outcomes were multiple sclerosis versus any other diagnosis, time to first relapse, and time to disability milestone 
(Expanded Disability Status Scale 6), adjusted for age and sex. Multivariate prediction models were calculated using 
the area under the curve value for diagnostic prediction, and concordance statistics (the percentage of each pair 
of events that are correctly ordered in time for each of the Cox regression models) for prognostic predictions. Predic-
tions using combinations of biomarkers were considerably better than single biomarker predictions. The combina-
tion of cerebrospinal fluid [chitinase-3-like-1 + TNF-receptor-1 + CD27] and serum [osteopontin + MCP-1] had an area 
under the curve of 0.97 for diagnosis of multiple sclerosis, compared to the best discriminative single marker in blood 
(osteopontin: area under the curve 0.84) and in cerebrospinal fluid (chitinase-3-like-1 area under the curve 0.84). 
Prediction for time to next relapse was optimal with a combination of cerebrospinal fluid[vitamin D binding pro-
tein + Factor I + C1inhibitor] + serum[Factor B + Interleukin-4 + C1inhibitor] (concordance 0.80), and time to Expanded 
Disability Status Scale 6 with cerebrospinal fluid [C9 + Neurofilament-light] + serum[chitinase-3-like-1 + CCL27 + vita-
min D binding protein + C1inhibitor] (concordance 0.98). A combination of fluid biomarkers has a higher accuracy 
to differentiate multiple sclerosis from other neurological disorders and significantly improved the prediction 
of the development of sustained disability in multiple sclerosis. Serum models rivalled those of cerebrospinal fluid, 
holding promise for a non-invasive approach. The utility of our biomarker models can only be established by robust 
validation in different and varied cohorts.
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Introduction
Multiple sclerosis is one of the most common causes of 
neurological disability in young adults and long-term dis-
ease outcomes are highly variable and difficult to predict 
at onset. Since the emergence of disease modifying ther-
apies for multiple sclerosis in the 1990s, more than 15 
treatments with variable efficacy are now available. How-
ever, uncertainty remains over selection and sequencing 
of disease modifying therapies; aggressive suppression of 
early multiple sclerosis activity may improve longer-term 
disease outcomes, but most high-efficacy disease modi-
fying therapies carry risks of serious adverse events [1, 
2]. Therefore, there is an urgent need to identify multi-
ple sclerosis biomarkers than can inform disease progno-
sis, treatment response and potential for adverse events, 
to enable a more personalised approach to therapeutic 
interventions.

The hallmark of multiple sclerosis pathology is inflam-
matory demyelination within the white and grey matter 
of the brain and spinal cord. Foci of acute inflammation 
and demyelination are thought to explain the short-lived 
flare-ups of symptoms (relapses), seen early in multiple 
sclerosis, but a more complex interplay between immune 
cells, glia and neurons is likely to explain accumulation 
of longer-term and/or progressive disability [3, 4]. Recent 
studies supporting the use of the neuronal protein neu-
rofilament light as a prognostic multiple sclerosis bio-
marker have offered some optimism for personalising 
treatment decisions. The prognostic value of neurofila-
ment light in multiple sclerosis is well-established when 
measured in CSF using ELISA-based assays [5], but this 
represents an impractical tissue to sample repeatedly. 
Serum neurofilament light concentrations are an order 
of magnitude lower and poorly detected using ELISA but 
can now be accurately measured using single molecule 
array (SiMoA) assays [6]. Good correlation is observed 
between serum and CSF concentrations of neurofila-
ment light, a feature which has also been demonstrated 
for some other candidate multiple sclerosis biomarkers. 
As a result serum/plasma analysis of selected biomark-
ers suggests promise for a less invasive approach to dis-
ease monitoring [7, 8]. However, group effects observed 
in neurofilament light studies appear to translate to rel-
atively modest individual predictions, especially when 
using a single cross-sectional measurement, raising ques-
tions over its clinical utility [9]. Other proteins including 
glial marker chitinase-3-like-1 [10], and inflammatory 
cytokine osteopontin [11], have also been identified as 
potential candidates for predicting multiple sclerosis 
outcomes, and may offer complementary information 
to neurofilament light. Candidate multiple sclerosis bio-
markers are often studied in isolation, and compar-
ing studies that have used different clinical outcomes is 

challenging [12]. Given the complexity of multiple sclero-
sis biology, a combination of markers may improve pre-
dictions versus any marker in isolation.

In this study, we investigate 31 candidate biomarkers 
for their ability to distinguish people with multiple scle-
rosis from people with other neurological conditions, 
and predict short- and medium-term clinical outcomes 
in those with multiple sclerosis. We use paired CSF and 
serum samples from 157 people to study the optimal 
combination of markers for diagnostic and prognostic 
predictions.

Materials and methods
We identified candidate biomarkers during a literature 
search (conducted in 2018, using PubMed database and 
search terms “multiple sclerosis” and “biomarker” ± “CSF” 
or “serum” or “plasma”). We identified candidate tis-
sue biomarkers which had been shown to differentiate 
between multiple sclerosis and controls, between multi-
ple sclerosis subtypes, or to predict severity of the disease 
(Table  1) [12]. Candidate biomarkers included pro- and 
anti-inflammatory cytokines (e.g. IL-6, IL-18, and IL-10), 
proteins and factors involved in the CNS (such as brain-
derived neurotrophic factor (BDNF), osteopontin and 
glial fibrillary acidic protein (GFAP)), chemokines (such 
as CXCL12 and CXCL13), complement proteins and pro-
teins that are involved in other pathways relevant to mul-
tiple sclerosis (such as Vitamin D binding protein).

Participants
People with multiple sclerosis were recruited as part of 
a long running observational study in South East Wales, 
UK (Ethics REC Ref: 05/ WSE03/111, 19/WA/0289), 
which has been described previously [13]. Briefly, par-
ticipants are invited to annual clinic visits and data are 
collected at each clinical encounter, including measure-
ment of expanded disability status scale (EDSS) [14], 
relapse history, disease subtype and disease modifying 
therapy review. People with new neurological symptoms 
lasting > 24 h in the absence of infection are reviewed by 
clinicians to confirm relapse (in the absence of an alterna-
tive explanation). Annual clinic data are complemented 
by a postal questionnaire, which includes an assessment 
of current disability using a validated self-reported EDSS 
tool [15]. Where possible, blood and CSF samples are 
acquired at the time of diagnostic lumbar puncture and 
archived in a biorepository. We studied paired serum 
and CSF samples from 77 people who were being inves-
tigated for demyelinating disease, all of whom ultimately 
reached a diagnosis of multiple sclerosis according to 
contemporary criteria, and 80 controls who were under-
going CSF examination for reasons other than suspected 
demyelinating disease; none of whom were diagnosed 
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Table 1 Description of candidate biomarkers studied in this cohort

Marker Description Evidence for relevance in multiple sclerosis

CXCL12 Chemokine/cytokine-related Increased in CSF of people with PPMS vs RRMS [48], increased in people with mul-
tiple sclerosis vs controls [49]

CXCL13 Chemokine/cytokine-related Increased in CSF of people with multiple sclerosis and correlated with relapse rate 
[50]

IL-6 Chemokine/cytokine-related Increased in CSF of people with multiple sclerosis, and correlated with disease 
activity in RRMS [51]

IL-10 Chemokine/cytokine-related Decreased in people with CIS who relapsed [52]. In multiple sclerosis, low IL-10 
was associated with higher disability [53], and high IL10 with inactive disease [54]

IL-12/IL-23p40 Chemokine/cytokine-related Found upregulated in multiple sclerosis serum [55] and is higher in people 
with RRMS vs controls [54]

Soluble CD27 Chemokine/cytokine-related Increased levels of the soluble CD27 are found in CSF of people with multiple 
sclerosis, and there is a correlation between IgG index and CD27[32]

CRP Inflammatory marker Serum CRP/albumin ratio are correlated with higher multiple sclerosis disease 
activity and relapses [56], as well multiple sclerosis disease subtype[57], whereas 
serum CRP can predict depressive symptoms in newly diagnosed people 
with multiple sclerosis [58]

GFAP CNS marker CSF GFAP has been found to be higher in people with CIS/RRMS versus con-
trols [59]. GFAP levels in serum and CSF have been linked with disease duration 
and severity, respectively [60]

CHi3L1 CNS marker CSF chitinase-3-like-1 has been found to be predictive of conversion from CIS 
to multiple sclerosis [10]. CSF and serum chitinase-3-like-1 were both increased 
in more advanced multiple sclerosis [61]

Osteopontin Chemokine/cytokine-related Osteopontin levels in CSF have been found to be associated with disease activity 
[11] and disease progression [62], and were found increased in the CSF of people 
with multiple sclerosis vs controls [63]

TGF-β CNS marker CSF levels of TGF-β were higher in people with active multiple sclerosis [64], 
while lower TGF-β was found in the blood of people with multiple sclerosis 
when compared to controls [65]

MCP-1 Chemokine/cytokine-related MCP-1 levels were decreased in the CSF of multiple sclerosis patients when com-
pared to controls [29, 66]

BDNF CNS marker BDNF levels were decreased in the blood of people with multiple sclerosis vs con-
trols, and lower in people with SP multiple sclerosis than RR multiple sclerosis[67]

IL-4 Chemokine/cytokine-related Serum and CSF IL-4 was found to be increased in people with multiple sclerosis vs 
controls [68–70]

CCL27 Chemokine/cytokine-related Serum CCL27 levels were higher in newly diagnosed and acute multiple sclerosis 
cases [30]

IFNγ Chemokine/cytokine-related In multiple sclerosis, blood levels of IFNγ were increased prior to the manifestation 
of symptoms [71]

IL-8 Chemokine/cytokine-related CSF levels of IL-8 were found to be significantly higher in people with multiple 
sclerosis vs controls, but the serum levels were lower in people with multiple 
sclerosis vs controls [72]

TNFr1 (s) Chemokine/cytokine-related CSF levels of soluble TNFr1 were higher in people with multiple sclerosis vs con-
trols, and were also associated with disease burden (lesion volume) [73]

TNFα Chemokine/cytokine-related Serum TNFα levels correlated with disease activity in RRMS [54] and was found 
higher in people with multiple sclerosis versus healthy controls [74]

IL-18 Chemokine/cytokine-related Serum IL-18 was found to be higher in people with multiple sclerosis vs controls, 
higher in SPMS compared to RRMS, and higher during relapses [75]

Vitamin D binding protein Metabolic marker Serum from people with multiple sclerosis had high levels of DBP [76], however 
a different study found the opposite for newly diagnosed patients [37]

LIF Chemokine/cytokine-related CSF and serum LIF levels were higher in people with multiple sclerosis vs controls 
[77]

Complement proteins TCC, iC3b, 
C3, C5, C9, fH, fB, fI, C1inh/C1s 
complex

Immune system Several complement system components and proteins have been found to be 
altered in CIS and multiple sclerosis, e.g. C3, C4, C4a, C1inhibitor and Factor H 
were found increased in the plasma of people with multiple sclerosis, whereas C9 
was found decreased [78]. A study focusing on disease progression and response 
to treatment identified C4a and C3 as potential biomarkers of disease progression 
and subtype [79]. One study found C4b to be elevated in multiple sclerosis [80]
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with multiple sclerosis during follow-up. Control samples 
were obtained from the Welsh Neuroscience Research 
Tissue Bank (WNRTB Ethics Rec Ref: 19/WA/0058). The 
demographic and clinical characteristics of the cohort are 
summarised in Table 2.

Samples
Venous blood samples were collected in a BD vacutainer 
(Gold SST II Advance) between 04/2007 and 01/2020. 
Whole blood and paired CSF samples were immediately 
centrifuged at 4500 rpm for 10min at 4 °C within 2–3 h 
of collection. The resulting supernatant (serum or CSF) 

was subsequently split into 300 μl aliquots and stored at 
– 80 °C until use.

Assays
In-house ELISA assays were used for the measurement 
of complement biomarkers (terminal complement com-
plex (TCC), iC3b, C3, C5, C9, factor H, factor B, factor 
I) in serum and CSF. C1inhibitor/C1s complex (C1inh/
C1s) was measured using a commercially available assay 
donated by Hycult Biotech (Cat No HK399). For all 
other biomarkers commercial assays from R&D were 
used (Additional file  1: Table  S1). Dilutions of serum 
and CSF for all assays are described in Additional file 1: 

Table 1 (continued)

Marker Description Evidence for relevance in multiple sclerosis

Neurofilament-light CNS marker Although less sensitive when measured in blood [81] several studies have found 
neurofilament light to be a predictive and diagnostic biomarker in multiple 
sclerosis (significantly higher in multiple sclerosis vs controls), higher in people 
with progressive vs RRMS, as well as in people with concurrent disease activity vs 
people in remission. Data are summarised in a recent systematic review and meta-
analysis [82]

SiMoA single molecular array assays, CSF cerebrospinal fluid, Ch3L1 chitinase-3-like-1, IL (e.g. IL-6) interleukin, BDNF brain derived neurotrophic factor, CXCLx 
chemokine (C-X-C motif ) ligand x, GFAP glial fibrillary acidic protein, pwMS people with multiple sclerosis, EDSS Expanded Disability Status Scale, TCC  terminal 
complement complex protein, Cx (e.g. C9) complement protein x, C1inh/C1s complex between C1 inhibitor and C1s proteins, fx (e.g. fB) complement factor x, IFNγ 
Interferon gamma, TGFβ transforming growth factor beta, TNFα tumour necrosis factor alpha, BCA bicinchoninic acid, CDx (e.g. CD27) cluster of differentiation protein 
x, iC3b inactivated C3b, CRP C-reactive protein, MCP-1 monocyte chemoattractant protein 1, IL-12/IL-23p40 the p40 subunit of the IL-12 family, CCLx (e.g. CCL27) 
C–C motif chemokine ligand x, TNFr1 (s) Soluble form of the TNFα receptor 1, LIF leukaemia inhibitory factor, RRMS relapsing–remitting multiple sclerosis, S/PPMS 
secondary/primary progressive multiple sclerosis

Table 2 Demographic and clinical characteristics of the cohort

IIH idiopathic intracranial hypertension, FND functional neurological disorder, SPS stiff person syndrome, RRMS relapsing–remitting multiple sclerosis, S/PPMS 
secondary/primary progressive multiple sclerosis. High efficacy disease modifying therapy: monoclonal antibody or cladribine treatment; *Only 2 people with 
multiple sclerosis were exposed to disease modifying therapy at the time of sampling. + 36 experienced their relapse prior to commencing disease modifying therapy 
(prior to censor)

Non-multiple sclerosis (n = 80) Multiple sclerosis (n = 77)

Age at sampling—years—mean (SD) 33.2 (10.2) 41.9 (12.4)

Gender—count (%) Female 72 (90%)
Male 8 (10%)

Female 46 (60%)
Male 31 (40%)

Diagnosis—count IIH 59
Primary headache 10
Sensory disturbance 3
FND 3
Epilepsy 2
SPS 1
Arthritis 1
Viral meningitis 1

RRMS 57
SPMS 10
PPMS 10

Baseline EDSS—median (range) 2.5 (1.0–7.5)

Follow-up duration—mean (SD) – 7.9 (3.5) years

Disease modifying therapy (ever exposed)—count – Yes 46* (High efficacy 27)
No 31

Relapse(s) experienced during follow-up—count (%) – 46+ (60%)

Reached EDSS 6—count (%) – 23 (30%)

Oligoclonal bands in CSF – Unpaired 53 (69%)
Paired 9 (12%)
Negative 15 (19%)
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Table  S1. For the complement assays, Nunc Maxisorp 
(VWR, UK) plates were coated with affinity-purified 
capture antibody overnight at 4  °C. Wells were subse-
quently washed 1 × with phosphate-buffered saline 0.1% 
Tween20 (Sigma Aldrich, Germany) (PBS-T) and blocked 
for 1 h at 37 °C with 1% bovine serum albumin (BSA) in 
PBS-T. After 1 wash, purified protein standards or serum 
samples (in duplicate), optimally diluted in 0.1% BSA in 
PBS-T, 5mM ethylenediaminetetraacetic acid (EDTA), 
were added to wells in duplicate and incubated for 1.5 h 
at 37  °C. Wells were washed 3 × with PBS-T then incu-
bated for 1 h at 37  °C with detection antibody (either 
unlabelled or labelled in-house using horseradish peroxi-
dase (HRP, where EZ-Link Plus Activated Peroxidase Kit 
(ThermoFisher Scientific, #31489, UK)) or biotin for the 
TCC assay (#21327) and washed 3 times with PBS-T. For 
unlabelled detection antibodies, HRP-labelled secondary 
antibody (anti-mouse or anti-rabbit IgG as appropriate 
(Jackson ImmunoResearch #715-035-151, #711-035-152, 
USA), or streptavidin-HRP (R&D systems, #DY995, 
UK) for TCC detection was added to wells, incubated 
and washed as above. Signals were detected using 
3,3’,5,5’-tetramethylbenzidine (TMB) (1-Step™ Ultra 
TMB-ELISA Substrate Solution, Thermofisher Scientific, 
UK) and after the addition of 2M sulfuric acid, absorb-
ance (450nm) was measured. In each plate, protein stand-
ards were included, and samples were randomly assigned 
to eliminate assay bias. A nonlinear regression model was 
used to fit standard curves generated by ELISA. Biomark-
ers levels were automatically calculated by reference to 
the standard curve using GraphPad Prism. To account 
for any difference in the degree of blood–brain barrier 
permeability between people with multiple sclerosis 
and controls, the CSF total protein concentration was 
measured using micro-BCA Protein Assay Kit #23235, 
ThermoFisher Scientific, UK) [16], and CSF biomarker 
concentrations were adjusted accordingly. For the non-
complement assays (Table  2 for details), manufacturer’s 
instructions were followed.

During optimisation, it was found that analytes were 
undetectable in the majority of CSF and serum samples 
using 5 assays (IFNγ, TGFβ, TNFα, IL-6, IL-12), so these 
were not taken forward into the main analysis. Analytes 
from six assays (GFAP, BDNF, IL-10, IL-18, LIF, CCL27, 
CXCL13) were undetectable in the CSF, and were there-
after used only in serum samples. One analyte (IL-8) was 
undetectable in serum, and thereafter only used in CSF. 
For all ELISA assays, intra-assay CVs were less than 10%, 
and inter-assay CVs were under 15%. For values outside 
the standard curve, the samples were re-measured using 
different dilutions. For neat samples, values below the 
standard curve were imputed (see Statistical analysis sec-
tion and Additional file 1: Table S2).

Single molecule array (SiMoA) technology was 
employed to quantify neurofilament light in serum 
samples in view of the known insensitivity of ELISA for 
serum neurofilament light [6]. We used an HD-X ana-
lyser, a fully automated multiplex digital immunoassay 
instrument providing ultra-sensitive measurements (fg/
ml) of proteins of biological interest, over a wide dynamic 
range and with low coefficients of variance. Serum sam-
ples were quantified using the human neurofilament 
light single bead-based advantage assay (Quanterix 
cat#103186), array discs (cat#103347) and assay buffers 
(cat#100488), following the manufacturers protocol.

Statistical analysis
The demographic and clinical characteristics of the 
cohort were presented using descriptive statistics. Due 
to group differences between the multiple sclerosis and 
control cohorts, all analyses were corrected for age and 
sex. The concentration of each biomarker for both serum 
and CSF was individually compared between multiple 
sclerosis and controls using the non-parametric Mann–
Whitney test. The Benjamini–Hochberg correction was 
applied to the p-values to control for the probability of 
type 1 error with repeated tests. Concentration of each 
biomarker (CSF and serum) were individually converted 
to Z-scores to allow all their model coefficients to be 
directly compared. Z-scores were generated by subtract-
ing the mean and dividing by the standard deviation for 
all the valid data for each biomarker. To avoid zero val-
ues, levels for samples which were below the minimum 
detection limit were imputed using a value equal to half 
of the minimum detectable value (using our assays and 
samples). Due to scarce CSF or serum for some patients, 
it was not possible to measure all analytes in all samples. 
The frequency of missing and imputed data is shown in 
Additional file 1: Table S2, but did not differ significantly 
between MS and control cases.

The Z-scores were used to model the utility of single 
and combination biomarkers of predicting disease status 
and clinical outcome(s). For determination of MS versus 
control status, a cross-validation approach was taken to 
avoid over-fitting of a model. The cohort was randomly 
divided into four roughly equally sized and distinct 
groups (Additional file 1: Table S3 and S4). Three of these 
four groups were separately used as “training datasets” 
to produce a model using roughly 75% of the data, which 
was then tested on the remaining approximately 25% of 
the data (the “test dataset”). This was repeated 4 times 
with each of the 4 groups being the test dataset with the 
other 3 producing the model. In investigating the value of 
biomarkers to distinguish multiple sclerosis from control 
categories, receiver operating characteristic curve (ROC) 
curves were produced and the area under the curve 
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(AUC) was used to calculate the ability of single bio-
markers (CSF and serum) and combinations of biomark-
ers, to distinguish multiple sclerosis from control cases. 
After looping through all combinations of biomarkers, 
a mean test AUC was calculated from the AUCs from 
the 4 test cohorts. Mean AUC values were ordered from 
lowest to highest, and the optimum model was selected 
when addition of a further analyte resulted in an AUC 
increase < 0.01 (worked example provided in Additional 
file  1). CSF and serum biomarkers were explored inde-
pendently in models adjusted for age and sex, and finally 
data on both serum and CSF markers were combined in 
a single adjusted model. To explore the reliability of the 
results, we re-ran the models 1000 times on random 
selections of Train and Test data, to generate data on the 
range of AUCs produced.

We performed a sensitivity analysis to explore the pos-
sible association between biomarker concentrations 
with age and sex. We built a linear model of biomark-
ers levels adjusted for age and sex as predictors in the 
control cohort. We used this to generate predicted val-
ues for each biomarker and subtracted those from the 
measured biomarker concentrations in both control and 
MS cohorts, to adjust for any physiological effect of age 
and sex on biomarker concentration, so that only the 
MS effects of the biomarkers would be reflected by the 
model. Using the ‘corrected’ biomarker concentrations, 
we repeated the modelling as above.

To investigate the prognostic value of single and com-
binations of biomarkers, we used Cox regression models. 
We used two different dependent variables (outcomes) 
to reflect different aspects of multiple sclerosis biol-
ogy. Firstly, we studied time from sampling (biomarker 
measurement) to next relapse for all people with multi-
ple sclerosis. To mitigate the effect of disease modifying 
therapy on suppressing relapses, we censored follow-up 
at the time of disease modifying therapy commencement. 
Secondly, we studied time to EDSS 6 (need for unilateral 
assistance to walk 100m), sustained for at least 6 months, 
adjusted according to whether people had ever versus 
never (1 versus 0) received disease modifying therapy 
during follow-up. Only EDSS scores measured > 30 days 
out of relapse were used, to account for temporary fluc-
tuations in disability that are likely to recover. The con-
cordance statistic, i.e. the percentage of each pair of 
events that are correctly ordered in time for each of the 
Cox regression models, was used to rank best fit. After 
looping through all combinations of biomarkers, a mean 
concordance statistic was calculated from the concord-
ance statistics from the 4 test cohorts. Mean concordance 
values were ordered from lowest to highest, and the opti-
mum model was selected when addition of a further ana-
lyte resulted in a concordance increase < 0.01.

All statistical analysis was performed using R version 
4.2.1 (2022-06-23 ucrt), R packages pROC (1.18.0), sur-
vival (3.3-1), survminer (0.4.9), and SPSS 27.

Results
CSF and serum biomarkers in people with multiple 
sclerosis versus controls
Eight markers were found to be significantly differently 
expressed in CSF of multiple sclerosis versus control 
cases: chitinase-3-like-1, soluble CD27 (sCD27), neu-
rofilament light, osteopontin, C5, iC3b, C9 and TCC 
(Additional file 1: Table S4). Those with the highest fold 
difference in CSF between multiple sclerosis and con-
trols were sCD27 (4.1-fold increase in multiple sclerosis 
versus controls), neurofilament light (3.4-fold increase in 
multiple sclerosis) and iC3b (2.6-fold increase in multiple 
sclerosis). Seven markers were found to be significantly 
differently expressed in the serum of multiple sclerosis 
versus controls: osteopontin, Factor B, vitamin D binding 
protein, C5, iC3b, CRP and neurofilament light (Fig.  1, 
Additional file 1: Table S5). Neurofilament-light (1.6-fold 
increase in multiple sclerosis) and osteopontin (1.54-fold 
increase in multiple sclerosis) were the serum biomarkers 
with the highest fold difference.

Statistical models of CSF and serum analytes differentiate 
multiple sclerosis from controls
The AUC for predicting multiple sclerosis versus con-
trol status using age and sex alone was 0.77. sCD27 and 
neurofilament light were the single CSF biomarkers 
that produced highest AUC (adjusted for age and sex) 
to distinguish multiple sclerosis from controls cases 
(sCD27: Test AUC 0.85; neurofilament light: Test AUC 
0.85; Table  3 and Additional file  1: Table  S4). Addi-
tion of further CSF biomarkers to the model incremen-
tally improved the AUC up to a combination of five CSF 
biomarkers: Ch3L1 + Tumour necrosis factor recep-
tor 1 (TNFR1) + sCD27 + C9 + TCC (Train/Test AUC 
0.96/0.94; Table 3 and Additional file 1: Table S6).

Osteopontin and neurofilament light were the sin-
gle serum biomarkers with highest AUC to distinguish 
multiple sclerosis from control cases (osteopontin: 
Test AUC 0.83; neurofilament light: Test AUC 0.80). 
Addition of further serum biomarkers to the model 
incrementally improved AUC up to a combination of 
four serum biomarkers: osteopontin + iC3b + mono-
cyte chemoattractant protein 1 (MCP1) + CCL27 
(Train/Test AUC 0.93/0.91, Table  3 and Additional 
file  1: Table  S6). When combining serum and CSF 
biomarkers in a single model, the AUC plateaued 
at a combination of five markers: CSF[chitinase-3-
like-1 + TNFR1 + sCD27] + serum[osteopontin + MCP1] 
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Fig. 1 Concentrations of CSF and serum biomarkers in multiple sclerosis versus controls. A CSF and B serum samples, values expressed as Z-scores

Table 3 Optimal models to predict clinical multiple sclerosis versus non-multiple sclerosis status

Category Biomarkers N Markers AUC train AUC test

CSF TCC  +  C9  +  Ch3L1  +  TNFR1  +  sCD27 157 5 0.96 0.94

Serum iC3b +  CCL27  +  osteopontin  +  MCP1 148 4 0.93 0.91

CSF/serum CSF[Ch3L1+ TNFR1 + sCD27] + serum[osteopontin 
+ MCP1]

157 5 0.97 0.97
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(Train/Test AUC 0.97/0.95; Table 3 and Additional file 1: 
Table S6 and S7).

Figure  2 illustrates example violin plots and ROC 
curves for the optimum combinations of CSF, serum and 
mixed CSF + serum for their ability to distinguish MS 
from non-MS cases. There were no obvious patterns of 
clinical or demographic characteristics of non-MS cases 
who were misclassified as controls (data not shown). Re-
running modelling for the optimum combinations of bio-
markers in CSF, serum and CSF and serum 1000 times in 
random selections of Train and Test data demonstrated 
mean AUCs > 0.9 for all models (Additional file 1: Fig. S1).

Given the difference in age and sex between control 
and MS cohorts, we performed a sensitivity analysis 
repeating the modelling of AUC using biomarker val-
ues that were corrected for the potential effects of age 
and sex (measured in the controls). This did not lead to 
any substantial difference in outcomes (Additional file 1: 
Table S8).

Cox regression modelling predicts time to next relapse
We used univariate Cox regression, adjusted for age and 
sex and censored for commencement of disease modify-
ing therapy (since disease-modifying therapy is expected 
to mask new relapses). Thirty-six (47%) people with mul-
tiple sclerosis experienced a relapse during follow-up and 
prior to disease modifying therapy commencement. The 
CSF biomarkers with highest concordance for predict-
ing time to next relapse were vitamin D binding protein 
(concordance 0.65, p = 0.083) and neurofilament light 
(concordance 0.61, P = 0.42; Additional file  1: Table  S9). 
The addition of further biomarkers in a multivariate 
model improved concordance up to a combination of 
six biomarkers: vitamin D binding protein + neurofila-
ment light + CXCL12 + Factor B + sCD27 + MCP1 (con-
cordance 0.72; P = 0.075; Table  4 and Additional file  1: 
Table S9).

In univariate analysis adjusted for age and sex, and 
censored for commencement of disease modifying ther-
apy, the serum biomarkers with highest concordance 

for predicting time to next relapse were C5 (concord-
ance 0.61, P = 0.04) and C1inh/C1s (concordance 0.60, 
P = 0.05; Additional file  1: Table  S9). The addition of 
further biomarkers to the model improved concord-
ance up to a combination of six serum markers: C1inh/
C1s + C3 + Factor H + CXCL12 + sCD27 + vitamin D 
binding protein (concordance 0.72, P = 0.02, Table 4 and 
Additional file 1: Table S10). Combining CSF and serum 
markers together in a single model showed concord-
ance for time to next relapse prediction that improved 
up to a combination of six markers: CSF[vitamin D 
binding protein + Factor I + C1inh/C1s] + serum[Factor 
B + IL4 + C1inh/C1s] (concordance 0.80, P < 0.001).

Cox regression modelling predicts time to disability
Four people with multiple sclerosis had already reached 
EDSS 6 by the time of sampling so were excluded from 
the analysis. Nineteen of the remaining 73 (26%) people 
with multiple sclerosis reached EDSS 6 during follow-up. 
In univariate Cox regression, adjusted for age and sex, the 
CSF biomarkers with highest concordance for predict-
ing time to EDSS 6 were neurofilament light (concord-
ance 0.92, P = 0.047) and C1inh/C1s (concordance 0.91, 
P = 0.79; Additional file  1: Table  S11). The addition of 
biomarkers in a multivariate model improved concord-
ance up to a combination of four biomarkers: neurofila-
ment light + TNFR1 + iC3b + CXCL12 (concordance 0.93; 
p < 0.001; Table 4 and Additional file 1: Table S10).

In univariate analysis adjusted for age and sex, the 
serum biomarkers with highest signal for concord-
ance for predicting time to EDSS 6 were C1inh/C1s 
(concordance 0.90, P = 0.91) and sCD27 (concordance 
0.86, P = 0.86). The addition of further biomarkers to 
the model improved concordance up to a combination 
of four serum markers: CCL27 + Factor I + osteopon-
tin + C1inh/C1s (concordance 0.94, P < 0.001; Table  4 
and Additional file  1: Table  S10). Combining CSF and 
serum markers together in a single model showed con-
cordance for EDSS 6 prediction that improved up to a 
combination of six markers: CSF[C9 + neurofilament 

(See figure on next page.)
Fig. 2 Logistic regression model output of multiple sclerosis versus non-multiple sclerosis. Illustration of the model expressed according 
to best combination of A CSF, B serum, and C combined CSF and serum biomarkers. Top left: violin plot illustrating the predicted probability 
of multiple sclerosis (y-axis) by cohort (x-axis), according to the optimum biomarker model adjusted for sex and age. The width of the violin plots 
indicates the relative number of probabilities at the probability. Horizontal dashed line illustrates an arbitrary cut-off value that could be applied 
to distinguish MS from non-MS cases, where red dots above the line indicate false positives and blue dots below the line false negatives. Top right: 
receiver operator curve illustrating performance of the optimum model. Bottom right: regression table indicating the magnitude and direction 
of effect of each variable. Note: a cross-validation approach was taken whereby the cohort was randomly divided into four roughly equally 
sized and distinct groups (see Methods), which were separately used as “training datasets” to produce a model using roughly 75% of the data, 
which was then tested on the remaining approximately 25% of the data (the “test dataset”). This was repeated 4 times to generate a mean test 
AUC to determine the optimum combination of biomarkers. The ROC curve, regression table and AUCs shown here were produced using one 
of the train/test sub-cohorts
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Fig. 2 (See legend on previous page.)
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light] + serum[chitinase-3-like-1 + CCL27 + vitamin 
D binding protein + C1inh/C1s] (concordance 0.98; 
P < 0.001; Fig. 3, Additional file 1: Table S10).

Discussion
Biomarkers hold promise to expedite diagnosis and 
stratify the risk of adverse multiple sclerosis prognosis, 
which would aid personalisation of therapy. Candidate 
multiple sclerosis biomarkers have been proposed but 
are often studied in isolation, and comparing studies 
that have used different clinical outcomes is challenging 
[12]. Given the complexity of multiple sclerosis biology, 
a combination of markers may improve predictions ver-
sus any marker in isolation. Here we have shown that 
combinations of up to six biomarkers measured in CSF 

or serum provide incremental improvements in the 
prediction of diagnosis and prognosis in multiple scle-
rosis (Fig.  2). Importantly, we found that predictions 
using combinations of blood-based biomarkers rivalled 
those using CSF markers, offering promise for less 
invasive approaches to monitoring and personalising 
multiple sclerosis care.

Neurofilament-light is a well-established candidate 
biomarker in multiple sclerosis and in our study was 
among the optimum single biomarkers to distinguish 
multiple sclerosis from control cases in both serum and 
CSF. Meta-analysis and systematic review have both 
highlighted evidence supporting neurofilament light 
as a marker to predict future multiple sclerosis dis-
ease activity, brain atrophy and to monitor treatment 
response to disease modifying therapies [17, 55].  Our 
model confirmed the predictive power of neurofila-
ment light in CSF to distinguish multiple sclerosis from 
control cases  (AUC=0.85). With the addition of further 
CSF markers, CSF NfL did not feature in our final pre-
dictive model (C9, chitinase-3-like-1, TNFR1, sCD27; 
AUC to 0.94) although this may have been affected by the 
relationship of NfL with age, since CSF NfL  did feature 
in a model adjusted for the effects of age and sex within 
controls (Fig. 2, Table 3, Additional file 1: Table S8). The 
limitations of ELISA in detecting low concentrations of 
neurofilament light in blood have been overcome using 
highly sensitive SiMoA technology, and some clinics are 
starting to incorporate neurofilament light into practice 
[8]. In our study, while serum neurofilament light was 
one of the top biomarkers to distinguish multiple sclero-
sis from control cases, it did not feature in the final serum 
model of diagnosis. Some studies have demonstrated 
utility in combining neurofilament light with GFAP [18], 
which can also be measured using SiMoA. We used an 
ELISA assay for GFAP and were unable to adequately 
detect GFAP in CSF; serum GFAP detected using ELISA 
did not feature in any of our predictive models.

Table 4 Optimal models to predict clinical outcomes

Outcome Category Biomarkers Markers N Events Concordance P value

Time to next relapse CSF vitamin D binding protein + CXCL12 + Factor 
B + CD27 + MCP1 + neurofilament light

6 68 34 0.72 0.075

Serum C1inh/C1s + C3 + Factor H + CXCL12 + CD27 + vitamin D binding 
protein

6 67 31 0.72 0.02

Serum/CSF CSF[vitamin D binding protein + Factor I + C1inh/
C1s] + serum[Factor B + IL4 + C1inh/C1s]

6 63 29 0.80  < 0.001

Time to EDSS 6 CSF neurofilament light + TNFR1 + iC3b + CXCL12 4 68 17 0.93  < 0.001

Serum C1inh/C1s + CCL27 + Factor I + osteopontin 4 65 15 0.94  < 0.001

Serum/CSF CSF[C9 + neurofilament light] + serum[chitinase-3-
like-1 + CCL27 + vitamin D binding protein + C1inh/C1s]

6 61 14 0.98  < 0.001

Fig. 3 Plot of the linear risk predictor from the optimum 
combined biomarker model and time to EDSS 6. The optimum 
combined model contained age, sex and CSF[C9 + neurofilament 
light] + serum[chitinase-3-like-1 + CCL27 + vitamin D binding 
protein + C1inh/C1s]
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Chitinase-3-like-1 featured in CSF predictive models 
of multiple sclerosis versus control status in our cohort, 
and also as a serum marker in the combined CSF/serum 
model predicting time to EDSS 6. Chitinase-3-like-1 is 
a marker of macrophage and astrocyte activation and is 
potentially neurotoxic [19]. It has been found to be ele-
vated in other studies of multiple sclerosis CSF [20–22], 
and has shown promise in predicting conversion from 
CIS to multiple sclerosis and future multiple sclerosis 
disease activity [22, 23].  Other markers that predicted 
multiple sclerosis versus control status in our study 
were chemokines/cytokines known to promote a pro-
inflammatory milieu such as osteopontin, MCP1, CCL27, 
TNFR1 and soluble CD27. Osteopontin is a cytokine 
produced by a range of cells including macrophages, 
lymphocytes and dendritic cells, providing cross talk 
between the innate and adaptive immune system. Oste-
opontin regulates the differentiation of pro-inflamma-
tory lymphocytes, inhibits apoptosis of inflammatory 
cells [24], and has a role in microglia-mediated synaptic 
engulfment [25]. CCL27 and MCP1 (CCL2) are both 
chemokines involved in regulating migration of mac-
rophages/monocytes [26]. MCP1 is abundantly expressed 
by microglia located at the active rim of multiple sclero-
sis lesions [27], and is thought to play a role in multiple 
sclerosis pathogenesis [28], although we and others found 
it to be significantly lower in serum and CSF of people 
with multiple sclerosis than controls [29]. CCL27 induces 
the homing of memory T cells to sites of inflammation 
and has been found by others to be elevated in the serum 
of people with multiple sclerosis [30]. Tumour necrosis 
factor alpha (TNFα) is recognised as a key function in 
autoimmune disease, where excessive activation of TNFα 
mediates cytotoxic and pro-inflammatory responses via 
TNFR1 [31]. CD27 is a T-cell activation marker, whose 
soluble form has been shown by others to be significantly 
elevated in people with multiple sclerosis [32], and pre-
dictive of future multiple sclerosis disease activity [33], 
including transition from CIS to multiple sclerosis [34].

CSF biomarkers that combined to predict time to next 
relapse also included neurofilament light and MCP1. 
Vitamin D binding protein, a regulator of the distribu-
tion, stability and bioavailability of vitamin D, was one 
of the markers whose expression differed significantly 
between multiple sclerosis and control cases in serum 
and also featured in the CSF and serum models predict-
ing relapse. There is evidence for an immunomodulatory 
role of vitamin D in multiple sclerosis [35]. Other stud-
ies have demonstrated some utility of vitamin D binding 
protein in distinguishing people with multiple sclero-
sis versus controls [36, 37], or risk of developing multi-
ple sclerosis [38]. Vitamin D binding protein has been 
shown to be expressed on spinal cord neurons, pia mater 

and grey matter within the brains of people with multi-
ple sclerosis, and in an animal model of multiple sclero-
sis, high vitamin D binding protein appeared to mitigate 
beneficial effects of vitamin D3 supplementation and 
inhibit recovery [37]. CXCL12, a chemoattractant protein 
for T cells as well as monocytes appeared in the CSF and 
serum models predicting relapse, and the CSF model pre-
dicting time to EDSS 6. CXCL12 has been found highly 
expressed in active multiple sclerosis lesions and appears 
to play a role in enhancing the inflammatory response in 
multiple sclerosis [39].

Our models also demonstrated evidence of comple-
ment activation and consumption. In our cohort, sig-
nificantly differences in the concentration of several 
complement proteins between the CSF and serum of 
multiple sclerosis versus controls suggested dysregula-
tion of this pathway in multiple sclerosis. The comple-
ment molecules TCC (terminal complement protein) and 
iC3b (activation product) featured in our final model to 
predict multiple sclerosis status. C1inh/C1s complex also 
featured prominently in the prediction of relapses and 
disability in our cohort. This is an indication of activa-
tion of the classical pathway of the complement cascade 
[40], and in line with our earlier work suggesting this is 
relevant to multiple sclerosis biology [16]. C3 and Factor 
H both featured in our serum model predicting relapses. 
We have previously shown both to be present at high lev-
els in multiple sclerosis lesions [41], while others have 
shown these complement proteins to be elevated in the 
blood and CSF of people with multiple sclerosis versus 
controls, and the be relevant in predictions of disability 
outcomes [42, 43]. Overall, our data support previous 
findings that imply ongoing local and systemic comple-
ment dysregulation in multiple sclerosis [16, 44].

Others have explored the potential utility of combin-
ing more than one protein biomarker to predict multiple 
sclerosis diagnosis or prognosis. Lucchini et al. measured 
a panel of 8 protein candidates in the CSF of people with 
multiple sclerosis or controls. They found the combina-
tion of chitinase-3-like-1, CXCL10, CXCL12, CXCL13 
increased the AUC for predicting conversion to clini-
cally definite multiple sclerosis after first attack above 
any single biomarker in isolation [22]. Bielekova et al. [45] 
also found that the combination of CSF IL-12/IL-23p40, 
CXCL13 and IL-8 in CSF was more predictive of multiple 
sclerosis versus control status than any of these markers 
in isolation.

There are some practical considerations around com-
bining biomarkers in clinical practice. Some biomarkers 
were not statistically significant in univariate analyses, 
but still provided a small differential addition to the final 
model. Conversely, some of the biomarkers that were 
most discriminatory in univariate analysis autocorrelated 
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to some extent and therefore did not all appear in final 
combination models. There may be a balance between 
selecting the model that was statistically optimal versus a 
choosing smaller combination of markers that gives simi-
lar predictive value but is simpler to measure in multi-
plex (Additional file 1: Table S7 and S9). While optimum 
models sometimes combined CSF and serum markers, 
there are practical advantages in using a single sample 
type, ideally serum, which can be serially sampled more 
easily than CSF.

The present study is subject to some limitations or 
caveats. Using research operating procedures, we aimed 
for all blood and CSF samples to reach the freezer within 
2 h. Variations in sample handling in routine clinical 
practice may introduce the risk of degradation of small 
molecules such as complement [46]. The demograph-
ics of our multiple sclerosis and control group differed, 
which could affect the results we are observing, even 
though we adjusted for sex and age in all analyses. Body 
mass index (BMI) data were unavailable for this cohort, 
so were not included, despite emerging evidence that 
correction of some biomarkers for BMI improves correla-
tions [47]. Our cohort was too small to explore biomarker 
signatures of different multiple sclerosis subtypes. We 
included all people with multiple sclerosis in the analysis 
of time to relapse, even though people with progressive 
disease are somewhat less likely to experience relapses. 
While over-fitting of statistical models is a potential limi-
tation, our test and train AUCs were very similar which 
suggests this was not the case in our study. However, the 
main caveat to our results is that this represents “discov-
ery” work, which means that conclusions on the potential 
utility of these combinations could only be recognised 
with validation studies in independent cohorts.

In conclusion, using well-optimised assays for 24 candi-
date protein biomarkers in the blood and 20 CSF we have 
demonstrated that combination models showed better 
prediction of multiple sclerosis diagnosis and prognosis 
than single biomarkers. We also demonstrated for the 
first time that combination serum models rivalled those 
of CSF, holding promise for a non-invasive approach. 
This study supports the premise that combining several 
biomarkers in a single test will aid diagnostic and prog-
nostic accuracy in the future. The utility of our biomarker 
models can only be established by robust validation in 
different and varied cohorts.
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