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Endocytosis is a key cellular pathway required for the internalization of
cellular nutrients, lipids and receptor-bound cargoes. It is also critical for
the recycling of cellular components, cellular trafficking and membrane
dynamics. The endocytic pathway has been consistently implicated in
Alzheimer’s disease (AD) through repeated genome-wide association
studies and the existence of rare coding mutations in endocytic genes.
BIN1 and PICALM are two of the most significant late-onset AD risk
genes after APOE and are both key to clathrin-mediated endocytic biology.
Pathological studies also demonstrate that endocytic dysfunction is an early
characteristic of late-onset AD, being seen in the prodromal phase of the dis-
ease. Different cell types of the brain have specific requirements of the
endocytic pathway. Neurons require efficient recycling of synaptic vesicles
and microglia use the specialized form of endocytosis—phagocytosis—for
their normal function. Therefore, disease-associated changes in endocytic
genes will have varied impacts across different cell types, which remains
to be fully explored. Given the genetic and pathological evidence for endo-
cytic dysfunction in AD, understanding how such changes and the related
cell type-specific vulnerabilities impact normal cellular function and contrib-
ute to disease is vital and could present novel therapeutic opportunities.

This article is part of a discussion meeting issue ‘Understanding the
endo-lysosomal network in neurodegeneration’.
1. Introduction
Alzheimer’s disease (AD) is the most common neurodegenerative disease
affecting 55 million worldwide, with the prevalence expected to more than
double by 2050 [1]. Patients present with progressive memory impairment, con-
fusion, disorientation, deterioration of speech and language and the progressive
loss of executive functions making it increasingly difficult for them to carry out
daily living independently. Familial AD is rare accounting for less than 5% of
cases and it is caused by inheritance of mutations in the presenilin 1
(PSEN1), presenilin 2 (PSEN2) or amyloid precursor protein (APP) genes [2].
However, the remaining more than 95% of AD cases are classed as sporadic
but it is still considered that 58–79% of the risk of developing the sporadic dis-
ease is genetic [3]. The genetic landscape of the sporadic disease is complex and
points to a variety of cellular pathways being involved in its pathogenesis.
These pathways include cholesterol and lipid metabolism, immune response
and amyloid beta (Aβ) processing, which are reviewed in detail elsewhere
[4–7]. This review will concentrate on the role of the endocytic pathway in
the development of AD. Understanding the molecular mechanisms underlying
this sporadic late-onset AD (LOAD) genetic risk represents a gap in our knowl-
edge and is a bottleneck in producing effective therapies.

Genome-wide association studies (GWAS) have now identified over seventy
risk loci associated with LOAD [8–12]. These studies have repeatedly demon-
strated a cluster of genes within the endocytic pathway, including BIN1,
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PICALM,CD2APandSORL1, among others. Single-nucleotide
polymorphisms (SNPs) in these genes are associatedwith clini-
cal phenotypes and rare LOAD-associated coding variants,
further emphasizing their importance [13–15]. In addition to
genetic studies, pathological evidence also highlights endocy-
tic and endosomal dysfunction as key disease mechanisms,
with early endosomal enlargement being observed as one of
the earliest intraneuronal pathologies in LOAD and even
being evidenced in the prodromal phase of disease [16].
Further to this, the neuronal early endosome (EE) is considered
responsible for the primary production and secretion of amy-
loid beta 42 (Aβ42) through its role in APP processing [17].
Importantly, targeting the disruption seen in the endosomal
pathway in LOAD through preclinical trials indicates its ability
to ameliorate fundamental AD pathologies such as Aβ and tau
accumulation and synaptic dysfunction [18–20].

The endocytic pathway is used to internalize extracellular
material such as lipids and nutrients as well as plasma mem-
brane- and receptor-bound material. These cargos are then
trafficked through the endosomal pathway, a set of membrane
bound organelles where it is sorted to its required destination.
These pathways are interlinked and essential for the internaliz-
ing, sorting and recycling of cellular components. The
endosomal pathway comprises the EE, recycling endosome
(RE) and late endosome (LE), which together enable the sort-
ing and recycling of components either back to the cell
membrane or through the LE to the lysosome for degradation.
Therefore, the pathway is also important in membrane compo-
sition and protein turnover. Across the brain different cell
types are heavily reliant on functioning endocytosis and endo-
somal trafficking. Neurons and microglia are two important
cell types in LOAD and in addition to the normal requirements
of endocytic function described above, they have specific uses
of the endocytic system. Neurons are post-mitotic, complex
cells with extensive neuritic arbours to maintain, which
makes correct cellular transport and recycling crucial. In
addition, neurons are constantly releasing and recycling
synaptic vesicles, which requires functional clathrin-mediated
endocytosis (CME) [21]. Microglia have a central role in the
surveillance and preservation of their neuronal surroundings
and are important in maintaining synaptic health. They rely
on endocytosis and endosomal function for antigen
presentation and motility, and they use the specialized form
of endocytosis—phagocytosis—to maintain a healthy brain
environment [22,23]. Unlike CME, which internalizes cargos
of less than 120 nm, phagocytosis is used to clear larger par-
ticles of greater than 500 nm, including pathogenic protein
aggregates such as Aβ plaques, dead neurons and myelin
debris [24]. Therefore, endocytic/endosomal dysfunction is
likely to impact different cell types in specific manners,
making it important to understand how this wider impact
on cellular function can drive LOAD mechanisms.

Together, the genetic and pathological evidence linking
the endocytic pathway and endosomal trafficking to LOAD
and its potential as a novel therapeutic strategy make under-
standing the function of endocytic risk genes and their
impact on different cell types crucial. Throughout this
review, we aim to consider the current evidence for cell
type-specific roles of LOAD endocytic risk genes, including
in neurons, microglia, astrocytes and brain endothelia. To
provide the reader with an overview of the main points in
the review, we have summarized the main findings in
figure 1 and electronic supplementary material, table S1.
2. PICALM
Multiple GWAS studies have identified and replicated
PICALM as one of the most significant LOAD risk genes
after APOE and BIN1 [8–11]. SNPs in PICALM are found in
non-coding regions and are thought to regulate PICALM
expression. Post-mortem and expression quantitative trait
loci (eQTL) studies support this, with PICALM expression
being reduced in LOAD brains whereas protective PICALM
SNPs are considered to increase its expression [25,26]. How-
ever, the impact of SNPs on different isoforms is likely
more nuanced and further work is required in particular to
understand how this impacts cell type-specific expression
patterns [6,27]. For example, PICALM SNPs have been
linked to changes in splicing regulation and PICALM risk
SNPs rs3851179 and rs10792832 are associated with a specific
reduction in the expression of isoform 1 but not isoform 2
[28,29]. Further PICALM SNPs have been associated with
clinical features such as hippocampal atrophy, levels of Aβ
and Tau in cerebrospinal fluid (CSF) and age of onset of dis-
ease [15,30–34]. PICALM is a ubiquitously expressed protein
and is found throughout the brain including in neurons,
microglia, oligodendrocytes and endothelial cells. Although
cell type-specific functions of PICALM have begun to be
investigated, there are still substantial gaps in our knowledge.

PICALM encodes the phosphatidylinositol-binding cla-
thrin assembly protein (PICALM), which is key to CME
and trafficking. PICALM is a highly abundant clathrin assem-
bly protein responsible for sensing membrane curvature as
well as controlling the size, maturation and completion of
clathrin-coated vesicles [35,36]. The protein interacts with
both clathrin and AP-2, bringing them together at the cell
membrane, helping to initiate CME. PICALM has also been
shown to regulate endocytic uptake of certain VAMP proteins
that are key to autophagy, demonstrating that PICALM also
has a role in maintaining functional autophagy [37–39].
(a) Neurons
Unsurprisingly, as a crucial clathrin-interacting protein
PICALM has been shown to have a role in synaptic vesicle
recycling, regulation of synaptic vesicle size and trafficking
of key synaptic proteins (figure 1, part 7). PICALM is
expressed at both the pre- and post-synapse, with immuno-
gold labelling localizing the protein to both synaptic and
clathrin-coated vesicles as well as to endosomes in hippocam-
pal neurons [40,41]. In line with this localization profile,
reduction in PICALM expression in primary rat hippocamal
neurons leads to a reduction in the number of synaptic ves-
icles and synaptic vesicle clusters, as well as causing
enlargement of individual synaptic vesicles [42]. In addition
to PICALM’s role at the synapse, knockdown of PICALM
in primary hippocampal neurons leads to fewer and shorter
neurites giving rise to a less complex dendritic arbour [41].

Through PICALM’s role in endocytic recycling it regu-
lates the localization of VAMP2, an important synaptic
protein required for the proper docking and release of synap-
tic vesicles (figure 1, part 7). In primary hippocampal
neurons, the siRNA knockdown of PICALM causes the
accumulation of VAMP2 at the cell surface, while overexpres-
sion in HEK293 cells reduces VAMP2 levels on the cell
membrane [41,43,44]. Somewhat surprisingly, the authors of
[43] report that this accumulation of VAMP2 at the neuronal
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Figure 1. Pathways to endocytic dysfunction through LOAD endocytic risk genes. The endocytic pathway is required for the internalization of cellular substrates, receptor-
bound cargos and nutrients, but it also has cell type-specific functions. Here we highlight roles of key LOAD-associated endocytic proteins. (1) CME acts as a route of Tau
internalization in neurons. (2) Loss of BIN1 in neurons induces early endosome enlargement. Increased binding of RAB5 and RIN3 has been suggested as a possible
cause. (3) Overexpression (OE) of the human BIN1iso1 in neurons reduces early endosome number. (4) Loss of SORL1 in neurons leads to reduced APP recycling, including
retention of APP inside endosomes and reduction of APP in the Golgi. (5) Loss of BIN1 in neurons disrupts BACE1 recycling in axons. (6) Neurons of BIN1 KO mice harbour
increased reserve pools of presynaptic vesicles of reduced size, and more docked vesicles with decreased release probability. (7) Loss of PICALM in neurons leads to
reduction in the number of presynaptic vesicles and vesicle clusters, enlargement of individual vesicles and cell surface accumulation of the synaptic protein VAMP2. (8)
Loss of CD2AP in neurons prevents sorting of APP for degradation in dendrites. (9) Loss of PICALM in astrocytes leads to decreased lipid uptake from neurons and
decreased lipid droplet formation. (10) Overexpression of PICALM in astrocytes was sufficient to begin to rescue the APOE4-induced early endosome size reduction.
(11) Astrocytes express isoforms of BIN1 containing exon 7, which is associated with both Tau and amyloid pathology and AD-related cognitive decline. (12) Microglia
of BIN1 KO mice exhibit a dampened inflammatory response and downregulation of genes related to the disease-associated microglia (DAM) phenotype. (13) Loss of
PICALM in brain endothelial cells leads to reduced efflux of Aβ42 from the brain across the blood-brain barrier.
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membrane does not perturb neuronal excitability. However,
this was measured using FM4-64 and so could be further
explored using electrophysiological methods. PICALM has
also been reported to alter the localization of VGlut in a
Drosophila model in which expression of lap, the fly homol-
ogue of PICALM, rescued the accumulation of presynaptic
VGlut observed upon Aβ42 expression [45]. Conversely, pre-
vious work in primary rodent hippocampal neurons did not
see VGlut accumulation upon PICALM depletion, suggesting
potential species disparities [43].

As well as PICALM causing changes to normal cellular
functions that likely impact disease mechanisms, it has also
been linked to both Aβ and Tau pathology. In an elegant
study from the Lindquist laboratory, PICALM was found to
be a modifier of Aβ toxicity. Using primary rat hippocampal
neurons, PICALM expression rescued cells from Aβ-induced
cell death in a dose-dependent manner [46]. Since this study,
others have replicated PICALM’s ability to modulate the
toxic effects of Aβ [20,25,45]. PICALM has also been shown
to associate with tau neurofibrillary tangles (NFT) in neurons
of LOAD post-mortem brain samples, with more than 85% of
NFT being colabelled with PICALM. In the same study
PICALM was shown to immunoprecipitate with hyperpho-
sphorylated tau from LOAD post-mortem brain samples
[47]. Work following on from this has shown that Tg30xPi-
calm+/− mice develop significantly more tau-positive
neurofibrillary pathology throughout neurons of the brain
compared to age-matched controls. PICALM has also pre-
viously been shown to modulate Tau levels in both
Drosophila and zebrafish models [38].

Taken together, these data underline a key role for
PICALM in synaptic homeostasis and suggest that changes
in its expression levels impact normal neuronal function,
potentially adding to disease pathogenesis as well as its
participation in the Aβ and tau disease pathways.
(b) Astrocytes
PICALM has been shown to have an important function in
lipid homeostasis in astrocytes. Moulton and colleagues
demonstrated when PICALM levels are reduced in rat pri-
mary astrocytes, but not neurons, there is decreased lipid
droplet formation (figure 1, part 9) [48]. Previous work in
HEK293 cells has also linked PICALM to lipid biology,
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showing that changes in its expression perturb cholesterol
biosynthesis and lipoprotein uptake [49]. Moulton and col-
leagues show that when neuronal lipids were labelled in
rodent primary cocultures in which astrocytes had normal
or reduced PICALM expression, those with reduced
PICALM levels showed a significant reduction in neuronal
lipid uptake. This study demonstrates the importance of
assessing phenotypes in a cell type-specific manner as well
as investigating how changes in endocytic risk genes can
alter cellular interactions.

PICALM is able to rescue APOE4-induced endocytic phe-
notypes in induced pluripotent stem cell (iPSC)-derived
astrocytes [50]. Overexpression of PICALM was sufficient to
rescue deficits in receptor-mediated endocytosis as measured
using transferrin and EGF uptake assays. This overexpression
was also enough to begin to increase early endosome antigen
1 (EEA1)-positive puncta size back towards normal size,
which through APOE4 expression was reduced (figure 1,
part 10). However, the authors noted that overexpression of
PICALM in APOE3 astrocytes impaired endocytosis, demon-
strating the careful balance in protein expression and
endocytic activity required by these cells. This work shows
an interesting interplay in two important LOAD risk genes
and highlights the role of PICALM in orchestrating efficient
endocytosis in human astrocytes.

(c) Brain endothelia
PICALM can influence the clearance of Aβ from the brain
through its function in the cells of the blood–brain barrier
(bbb) (figure 1, §13). Zhao et al. [25] describe a 55–65%
reduction in PICALM expression in cerebral microvessels of
LOAD human post-mortem brain tissue, which correlates
with diminished Aβ clearance and cognitive impairment. In
Picalm+/− mice there was a 61% reduction in Aβ42 efflux
from the brain, whilst in AD-derived human brain endothelial
cells the same group demonstrated a 35% reduction in
PICALM expression and a 50% reduction in Aβ transcytosis,
which could be recovered with adenoviral-mediated
PICALM expression [25]. A recent study by Kisler et al. has
corroborated these results, showing that Picalm+/− 5xFAD
mice have increased Aβ pathology and Aβ42 levels in the
cortex and hippocampus [20]. Intriguingly when these mice
were treated with artesunate, a compound able to increase
PICALM expression, Aβ42 levels and pathology were reduced
in the brain whilst Aβ42 blood serum levels were increased,
suggesting accelerated clearance of Aβ over the bbb. Finally,
specific depletion of endothelial Picalm abolished the effects
of artesunate [20]. Both studies highlight the important role
of PICALM in the role of transcytosis in brain endothelia
and demonstrate the modulation of PICALM levels as a
potential novel therapeutic strategy.
3. BIN1
GWAS studies have repeatedly identified BIN1 as the second
most significant susceptibility locus for LOAD after APOE,
with multiple BIN1 SNPs associating with cognitive decline
and impaired memory [8–10,13,51–57]. The localization of
these SNPs to a non-coding region suggests transcriptional dys-
regulation as a pathological culprit, supported by the presence
of more than ten cell type-specific isoforms [58]. During CME,
the BIN1 protein senses and induces membrane curvature and
binds clathrin, AP-2 and dynamin [59]. BIN1 is expressed ubi-
quitously (BIN1iso9) but also has brain-specific isoforms [58].
All BIN1 isoforms contain the Bin/Amphiphysin/Rvs (BAR)
domain, but the clathrin and AP-2-binding (CLAP) domain is
found only in isoform 1 (BIN1iso1), expressed exclusively by
neurons [60]. For further clarity regarding BIN1 isoform
expression, we refer the reader to table 1.
(a) Neurons
BIN1 has been shown to control EE formation in rat primary
neurons, where BIN1 knockdown (KD) induced enlarged
RAB5-positive endosomes and increased membrane-associ-
ated RAB5, indicative of increased endocytosis (figure 1,
part 2). By contrast, overexpression of human BIN1iso1
resulted in reduced EE number [64]. The authors propose
that this may be explained by the shared interaction of
BIN1 and RAB5 with RIN3, a guanine nucleotide exchange
factor (GEF), which is discussed in detail below.

A recent study reported conflicting results when expres-
sing the human BIN1iso1 in Drosophila photoreceptor
neurons, which normally lack a BIN1 homologue with the
CLAP domain, observing neurodegeneration and accumu-
lation of vesicles positive for early endosomal markers. The
BIN1iso1-induced neurotoxicity was rescued by a dominant
negative form of RAB5. Furthermore, knockout (KO) of
BIN1 in human iPSC-derived neurons decreased EE size,
which was rescuable by re-expressing BIN1iso1 but not
BIN1iso9 [69]. However, both studies still support a role for
BIN1iso1 in control of EE size.

The role of BIN1 in CME may also have implications for
Tau pathology spread. BIN1 silencing exacerbated propa-
gation of phosphorylated Tau between synaptically
connected rat primary neurons, whereas overexpression of
human BIN1iso1, but not BIN1iso9, attenuated this effect.
Tau was found to enter neurons via CME, with increased
BIN1iso1 expression able to reduce Tau uptake [64]. The
authors suggest this could be due to increased BIN1 gather-
ing at sites of membrane curvature and over-recruiting
dynamin, resulting in rigid and long budding necks, stalled
vesicle formation, and consequently, less Tau internalization.
However, one would expect that under conditions of reduced
BIN1 expression there would be a failure to recruit dynamin,
leading to a reduction in CME. Therefore, the mechanism by
which this exacerbates Tau propagation in unclear. Further-
more, neurons of Bin1 KO mice exhibited increased reserve
pools of presynaptic vesicles and more vesicles docked at
the presynaptic terminal with decreased release probability,
alongside impaired learning and memory, indicating faulty
synaptic vesicle recycling in mice lacking Bin1 (figure 1,
part 6) [66]. Altogether, these results suggest that BIN1 nega-
tively regulates endocytic trafficking at the levels of the
clathrin-coated vesicle and EE formation.

Furthermore, BIN1 has been demonstrated to interact with
cytoplasmic Tau via the Src-homology-3 (SH3) domain [70].
Tau PS19 Bin1 KOmice exhibited reduced survival and deficits
in coordination and balance compared to PS19 controls. Anti-
body staining of the PS19 Bin1 KO mice brains revealed
region-specific differences in pathological Tau load, with a
decrease in the hippocampus but an increase in the somato-
sensory cortex [71]. Interestingly, another mouse model
overexpressing both humanTau andBIN1also founddecreased
immunoreactivity against phosphorylated Tau in the



Table 1. BIN1 isoforms and functions.

estimated
molecular
weight a

reported cell type-specific
expressionb function

reported
expression
in AD

isoform 1 ∼80–95 kDa [1–4] neurons [14,60–63] CME via the CLAP domain [64] and exon 7 [65], possibly

associated with tau pathology [58,62], presynaptic vesicle

release dynamics [66]

decreased

[14,60,61]

isoform 2 ∼65–75 kDa astrocytes [58,63] possibly associated with tau pathology via exon 7 [58] unknown

isoform 3 ∼65–75 kDa neurons [58,63] possibly associated with tau pathology via exon 7 [58] unknown

isoform 4 ∼65 kDa muscle [59] non-CNS n.a.

isoform 5 ∼65 kDa neurons, astrocytes [58,63] unknown unknown

isoform 6 ∼65 kDa microglia, neurons, astrocytes

[58,67]

sensing and inducing membrane curvature via the bar

domain [68], microglial pro-inflammatory response [67]

unknown

isoform 7 ∼65 kDa neurons, astrocytes [58,63] unknown unknown

isoform 8 ∼65 kDa muscle [59] non-CNS n.a.

isoform 9 ∼55–60 kDa
[14,61,66,67]

ubiquitous (includes neurons,

astrocytes, microglia and

oligodendrocytes)

[14,61,66]

sensing and inducing membrane curvature via the BAR

domain [68]

increasedc

[14,66]

isoform 10 ∼55–60 kDa microglia, astrocytes [63,67] sensing and inducing membrane curvature via the BAR

domain [68], microglial pro-inflammatory response [67]

unknown

isoform 12 ∼55–60 kDa microglia, neurons, astrocytes sensing and inducing membrane curvature via the BAR

domain [68], microglial pro-inflammatory response [67]

unknown

aCitations are provided only for sizes of the BIN1 neuronal isoform 1 and the ubiquitous isoform 9, which have been confirmed in multiple publications,
whereas estimations for the remaining isoforms are based on their exon content as their exact sizes have not yet been determined.
bPublication-to-publication disparities in reports of which combinations of cell types express which isoforms remain and should be noted.
cIncreased expression in AD is typically reported for ‘short BIN1 isoforms’ and is generally attributed to the ubiquitous isoform 9 and glial isoforms, but isoform-
specific expression changes have not yet been discerned, hence the other short isoforms have been labelled ’unknown’ to avoid generalization.
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hippocampus. However, these animals were protected against
long-term cognitive deficits seen in mice expressing Tau only.
The authors then characterized BIN1’s interaction with Tau by
immunostaining and immunoblotting of primary rat neuronal
cultures. They demonstrated that when phosphorylated, BIN1
takes up an open conformation favouring Tau binding, and
also found an increased ratio of phosphorylated to un-phos-
phorylated BIN1 in extracts from human AD brains [72].

In contrast to the clear link between BIN1 and Tau in AD,
BIN1 involvement in Aβ pathology is less well defined. PET
imaging of subjects carrying the lead BIN1 risk SNP have pro-
duced conflicting results regarding whether this status is
associated with greater Aβ load [13,56]. Moreover, no effect
was seen in Bin1 KO mice or in a human neuroblastoma
cell line following BIN1 silencing or overexpression [61,73].
However, concomitant depletion of BIN1 and CD2AP from
mouse primary neurons increased intracellular Aβ42 accumu-
lation, while BIN1iso1 overexpression in N2A cells decreased
Aβ42 levels but only when co-expressed with RIN3,
suggesting that the role of BIN1 in Aβ pathology may be
dependent on other proteins [74,75].
(b) Microglia
Microglia express BIN1iso6, BIN1iso10, BIN1iso12 alongside
BIN1iso9, which is elevated in human AD brain homogenates
[14,58,61,62,76]. However, bulk tissue measurements are not
enough to account for this increase to microglia. Microglial
BIN1 isoforms lack the CLAP domain, but retain the BAR
domain, suggesting involvement in membrane curvature
dynamics [60].

Recent evidence has underlined the importance of study-
ing the role of BIN1 in microglia as fine mapping of AD
variants revealed that several BIN1 SNPs reside in microglia-
specific regulatory regions upstream of the BIN1 transcription
start site [77–82]. This includes a key microglial enhancer
encompassing the lead BIN1 risk SNP characterized by Nott
and colleagues [77]. Deletion of this region in iPSC resulted
in a drastic reduction in BIN1 expression specifically in iPSC-
derived microglia, but not in astrocytes or neurons [77].

The function of microglial BIN1 has not been well
studied. To investigate BIN1 involvement in the microglial
inflammatory response, Sudwarts and colleagues performed
transcriptomic profiling of BIN1-depleted primary mouse
microglia and microglia isolated from Bin1 KO mice [67].
BIN1 loss led to widespread downregulation of proinflamma-
tory genes, inclusive of genes related to the disease-associated
microglia phenotype, notably including Apoe (figure 1,
part 12). Furthermore, BIN1 loss attenuated the effects of lipo-
polysaccharide (LPS) treatment on proinflammatory gene
expression in Bin1 KO microglia and dampened their ability
to respond to LPS. These microglia retained ramified
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morphology and failed to exhibit increased phagocytosis nor-
mally seen in response to LPS [67]. Taken together, these
findings indicate that under homeostatic conditions, BIN1
positively regulates several proinflammatory genes, in turn
mediating microglial inflammatory responses, which are
involved in AD [83].

(c) Oligodendrocytes
BIN1iso9 is highly expressed by oligodendrocytes, and BIN1
risk variant eQTLs have been recently located to oligodendro-
cyte-specific regulatory regions [60,82]. The role of BIN1 in
oligodendrocytes in uncharacterized, but De Rossi and col-
leagues reported upregulation of BIN1 in postnatal rat
brains at periods of peak myelination, and during the
oligodendrocyte maturation stage [60].

(d) Astrocytes
In addition to short glial BIN1 isoforms, BIN1iso2 and
BIN1iso3—which contain exon 7—have been detected in
astrocytes [58,63]. Exon 7 modulates BIN1’s interaction with
dynamin during CME [60]. Proteomics revealed that
reduction of exon 7-derived peptides correlated with worsen-
ing of AD-related cognitive decline and increased Tau and
amyloid burden. As BIN1iso1 also contains exon 7, neuron
loss is a possible explanation, but Taga and colleagues
argue in support of an astrocyte-specific effect, based on
observations of selective loss of astrocytes expressing exon
7 containing BIN1 in human AD brains versus controls, with-
out differences between groups in the total number of
astrocytes or the number of neurons expressing BIN1 [58].
However, another study failed entirely to detect BIN1 in
astrocytes [60].
4. CD2AP
Despite some instances of deviation across differing popu-
lations (reviewed in [84]), the rs9349407 locus of CD2AP
has been shown to have a genome-wide significant associ-
ation with LOAD risk [8,10,84,85]. CD2AP (CD2-associated
protein) encodes an adaptor protein consisting of three con-
secutive SH3 motifs, a proline-rich region and a carboxy
terminus that acts as an actin-binding domain [86]. This
actin-binding domain highlights the role of CD2AP in the
regulation of the cytoskeleton and thus endocytosis, poten-
tially as an adapter between the actin cytoskeleton and
other cell membrane proteins [87,88].

In neurons, CD2AP displays a conserved role in endocy-
tosis and synaptic transmission demonstrated in humans,
mice and in Drosophila. Using the CD2AP fly orthologue
cindr, Ojelade and colleagues found that cindr was associated
with synaptic proteins and caused impairments in synaptic
endocytosis through a conserved role in the regulation of
the ubiquitin–proteasome system in synaptic proteostasis
[89]. Through shRNA knockdown experiments using
in vitro N2a neuroblastoma cultures transfected with human
APP, it was shown that reduced CD2AP expression results
in a decrease in cell membrane APP, which would suggest
less APP being processed in the endosomes and thus decreas-
ing Aβ release [90]. These findings could not be recapitulated
in vivo using Cd2ap haploinsufficiency PS1APP mice up to 7
months of age, however it should be noted that this is a
relatively young time point thus warranting further study
in aged mice.

CD2AP has been linked to axonal outgrowth through its
colocalization with TrkA and Rab5-labelled EEs, which
suggests a role of CD2AP in long-range nerve growth factor
(NGF) signalling via TrkA endocytosis to activate the AKT
pathway, resulting in the regulation of collateral sprouting [91].

In primary neuronal cultures, CD2AP has been shown to
work in tandem with the well-known endocytic risk gene
BIN1 in the dendrites and axons. BIN1 regulates BACE1 recy-
cling in the axons, and when depleted, results in Aβ
accumulation in the axons. CD2AP plays a similar role in
the dendrites so that when CD2AP levels are reduced, APP
is trapped at the limiting membrane of EE and fails to be
sorted for degradation (figure 1, part 8). This study demon-
strates that these two key AD genetic risk factors work to
differentially polarize Aβ generation during endocytosis [74].

CD2AP has also been shown to play a conditional role in
endosomal enlargement in non-neuronal cells as a Rab4 effec-
tor. Using Chinese hamster ovary (CHO) cells, CD2AP was
shown to specifically interact with Rab4-GTP and c-Cbl,
and co-expression of CD2AP with both resulted in enlarged
EEs morphology suggesting a role in sorting from EEs to
LEs [92].
5. RIN3
Another recently identified candidate AD risk gene that is
associated with vesicle trafficking to EEs is RIN3 (Ras and
Rab interactor 3) [79]. When coupled with other AD endocy-
tic risk genes, particularly BIN1, it has been implicated in
both Aβ and tau pathology.

Rab GTPases play critical roles in endocytosis, but this
role is governed by guanine nucleotide binding modulated
by GEFs. The role of RIN3 in the recruitment of BIN1 to
the EE was first highlighted by Kajiho and colleagues in
2003 [93], where it was shown that RIN3 is in fact a key part-
ner to BIN1 in early endocytosis. This study demonstrated
that the proline-rich N-terminus of RIN3 directly associates
with the BIN1 SH3 domain [93]. They have since further
characterized RIN3 function as a GEF to stimulate and stabil-
ize Rab5 and its subfamily proteins, particularly Rab31 [94].
The RIN3/BIN1 interaction has been further elucidated in
vitro showing RIN3 to selectively recruit the neuronal
CLAP domain-containing BIN1iso1 isoform to Rab5-positive
endosomes. Neuro 2A cells overexpressing both BIN1iso1
and RIN3 displayed markedly reduced Aβ generation
compared to overexpression of BIN1iso1 alone, which
altogether suggests that the neuronal-specific BIN1 effects
on APP endocytosis, both trafficking and processing, are
RIN3-dependent [75].

Overall, characterization of exactly how an increase in
RIN3 expression plays a role in Rab5 activity and conse-
quently, AD pathology is still in its infancy. However, early
endosomal enlargement alongside consistently upregulated
RIN3 mRNA levels has been demonstrated in basal forebrain
cholinergic neurons of APP/PS1 mice. Shen et al. have
demonstrated a role for RIN3 as a regulator of axonal traffick-
ing by acting as a scaffold tethering Rab5 EEs to BIN1 and
CD2AP. They showed that increasing RIN3 expression
resulted in an increase in both βCTFs and pTau levels in
PC12 cells and posited that the RIN3/CD2AP interaction



r

7
results in Aβ pathology, while the RIN3/BIN1 interaction
linked to the tau pathology [95].
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6. SORL1
Sortilin-related receptor 1 (SORL1) is a notable AD gene due to
its association with both early-onset familial AD (through
inherited SORL1 haploinsufficiency) and late-onset AD
(LOAD; when SORL1 was identified as a risk gene in mul-
tiple GWAS) [8,11,96–99]. The full-length transcript of
SORL1 encodes a 250 kDa, membrane-bound protein that
functions as a key endocytic sorting and trafficking receptor
primarily localized in the endosomal and Golgi compart-
ments [100]. The receptor has also been shown to bind
lipoproteins, mediating their uptake via endocytic pathways
[101]. SORL1 has been demonstrated to be important in the
regulation of APP sorting between either the retrome–RE
pathway or the endosome–lysosome pathway, the latter
resulting in APP cleavage and thus, Aβ generation [102].
Mutations in the SORL1 gene can therefore alter the sorting
of the receptor ligands/cargo, ultimately resulting in
increased Aβ production [103].

In LOAD, SORL1 expression is downregulated and has
been shown to lead to early endosomal enlargement in
human iPSC-derived neurons [104–107]. It was shown that
SORL1 depletion results in a decrease of APP localization
within the trans-Golgi network (reduced recycling) and the
retention of APP in the EEs (figure 1, part 4) [108]. The impor-
tance of SORL1 in endocytic sorting is further supported with
reduced trafficking of additional SORL1 cargo, the glutamate
receptor out of the EE to the LE and lysosome [109]. By con-
trast, overexpression of SORL1 displayed enhanced
endosomal recycling through redirection of APP to the
Golgi-network, thus blocking APP processing and reducing
Aβ peptide levels in neuroblastoma, mouse and human
induced pluripotent stem cell (hiPSC)-derived neuronal
models [102,104,109,110].

In addition to APP, SORL1 has additional cargo that
when misdirected can have cell-specific adverse effects,
including dysregulated synaptic transmission. SORL1 has
been associated with glutamate receptor recycling to the
cell surface in iPSC-derived neurons and in the trans-entorh-
inal cortex in mice by interacting with VPS26b, a retromer
subunit [109,111].

In humans, SORL1 is most highly expressed in microglia
[105]. Using BV2 microglia and neuroglioma cells, Chen
and colleagues identified SORL1 as a binding partner
to progranulin [112]. SORL1 ablation has been shown to
rescue neurodegeneration-associated decreases in progranu-
lin (PGRN) binding, suggesting a role for SORL1 in the
regulation of progranulin endocytosis and clearance. Pro-
granulin is a diverse growth factor associated with the
anti-inflammatory control of microglial functions, including
specialized forms of endocytosis such as phagocytosis
and synaptic pruning [113]. In addition to the cell type-
specific roles, the cell-to-cell interaction effects of endocytic
risk genes are interesting, as knocking out SORL1 in
neurons reduces binding and thus endocytosis of micro-
glia-secreted progranulin. This has also been demonstrated
in vivo using heterozygous knockout Pgrn mice models of
frontotemporal lobar degeneration, where SORL1 ablation
rescued the disease-causing PGRN decrease through
reduced endocytosis [114]. However, the induction of the
characteristic early endosomal enlargement through the loss
of SORL1 was shown to be specific to iPSC-derived neurons
but not recapitulated in iPSC-derived microglia [108]. This
further highlights the importance of understanding cell
type-specific effects of endocytic dysfunction.
7. APOE
Apolipoprotein E (APOE) is the primary lipid-transporter
protein in the brain and APOE4 represents the largest genetic
risk factor for developing LOAD. APOE occurs in three
isoforms; APOE2, APOE3 and APOE4, characterized by differ-
ing isoelectric points (IEP) resulting from single nucleotide
polymorphisms at amino acid positions 112 and 158
[115–118]. The different IEPs further lead to differential bind-
ing preferences, with APOE3 and APOE2 favourably binding
high-density lipoproteins (HDL), while APOE4 shows higher
association to very low-density lipoproteins (VLDL) and
low-density lipoproteins (LDL) [119,120]. Within the brain
APOE is predominantly expressed by astrocytes, followed
by microglia, and neurons with low expression. Among the
human isoforms, APOE3 is the most prominent with a neutral
risk-association, whereas the APOE2 isoform results in a 50%
decrease of LOAD risk. Homozygosity of APOE4 gives a 12-
fold increase in risk of developing LOAD, whereas heterozy-
gous carriers have a threefold increased risk [115]. This
universal risk recognition has prompted research to predomi-
nantly focus on APOE’s contribution in disease progression
by looking at comparative phenotypes among isoforms. Such
research has provided important insights into isoform-depen-
dent phenotypes but underlined our lack in understanding of
the mechanisms of APOE in a healthy context. However, more
recent research has started to investigate such mechanistic
differences and, although not traditionally considered a bona
fide endocytic risk gene, found a role of APOE in the endoso-
mal–lysosomal pathway (ELP), specifically as a mediator in
receptor recycling and a contributor in early endosomal enlar-
gement [121]. The roles of APOE in endocytosis in different
cell types are summarized in figure 2.

(a) Astrocytes
Astrocytes are the main producers of APOE, making them
essential in the maintenance of lipid-homeostasis. The
expression of APOE from astrocytes is further dependent
on the APOE-isoforms. iPSC models identified lower APOE
generation in APOE4 compared to APOE3 iPSC-derived
astrocytes, an effect that was accompanied by a decrease in
the number of EEA1 puncta in APOE4 astrocytes and an
increase in the number of EEA1-puncta in APOE4 iPSC-
derived neurons, suggesting a role of APOE within the ELP
[50,122]. Interestingly, APOE4 iPSC-derived astrocytes
showed impaired early endocytosis, with a reduction in
EEA1 protein levels and CME compared to APOE3 astrocytes
[50]. No impact was seen in REs, and only a marginal
decrease of LEs and lysosomes was observed in APOE4 astro-
cytes, strongly suggestive of an early role of APOE within the
early endocytic pathway [122]. However, APOE4-induced
endocytic impairments were abolished through APOE4
knockout lines as well as PICALM overexpression, as dis-
cussed above. The reduction of RAB5- and EEA1 - positive
EEs observed in APOE4 iPSC-derived astrocytes was
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contradictory to findings in APOE4 iPSC-neurons and
APOE4 yeast homologues demonstrating cell type-specific
effects [50,122].

Aside from being the main APOE producers in the brain,
astrocytes alongside microglia are crucial for the uptake and
endocytosis of substrates from the extracellular space includ-
ing Aβ, tau and α-synuclein [123]. Aβ uptake/clearance in
astrocytes is facilitated via lipid-associated endocytic recep-
tors such as LDLR or LRP1 and has been shown to occur
via APOE isoform-dependent complex binding, with
-POE2/Aβ and APOE3/Aβ complexes resulting in faster
clearance than APOE4/Aβ complexes in the mouse brain
[124–126]. Indeed, reduced LRP1 expression and Aβ uptake
in astrocytes was linked to receptor entrapment in the EEs
due to late APOE4 receptor dissociation in the EE, an effect
that was counteracted through inhibition of nuclear histone
deacetylation 4 (figure 2, parts 2–4) [127]. A reduction of
complex-dependent Aβ uptake was further detected in
APOE4 iPSC-derived astrocytes but this was not affected by
LRP1 blockage, opposing Prasad & Rao’s previous findings
[127]. Lin and colleagues likewise detected decreased Aβ42
uptake in APOE4 iPSC-derived astrocytes, accompanied by
a reduction in lysosomal Aβ42 [122]. Again, these findings
show conflicting results to those observed in mouse primary
neurons, where NHE6 inhibition led to restored Apoer2 recy-
cling and restored NMDA activity [117]. Such continuous
incongruity in neuronal and astrocytic findings could
indicate cell type-specific endocytic dysfunction and conse-
quently more research is needed to unfold these
mechanisms and their intercellular complementation.
(b) Microglia
Microglia are consistently reported to be one of the largest
producers of APOE within the brain [129,130]. The influence
of APOE on microglia is commonly reported in the context of
phagocytosis, a specialized form of endocytosis that micro-
glia use to carry out homeostatic functions in clearing
debris [24]. Unlike neurons and astrocytes, limited studies
specifically investigate the mechanistic role of APOE in
microglial endocytic dysfunction.

Transcriptionally, increased expression of APOE is observed
in microglia that have altered expression profiles related to neu-
rodegenerative disease changes and ageing. Such microglia
have been given various names, including disease-associated
microglia (DAM), microglial neurodegenerative phenotype
(MGnD) or activated response microglia (ARMs), which are
all linked to an upregulated phagocytic phenotype [131,132].
Hypotheses that APOE is an opsonizing agent in this context,
inducing phagocytosis in microglia, have been explored.
Higher levels of APOE were bound to dead neurons compared
to healthy neurons, and their uptake by primary mouse
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microglia was increased in the presence of APOE, implying
opsonization [133]. In TREM2-KO primary microglia, for
which APOE is a ligand, phagocytosis was reduced, confirm-
ing that APOE and TREM2 collaborate to facilitate
phagocytosis of dead neurons [133].

In mice, injection of Aβ conjugated to APOE4 lipoproteins
into the cortex caused impairment in Aβ uptake by microglia
at 24 h, compared to APOE3, and APOE expression was
upregulated in phagocytic microglia [134]. In primary micro-
glia, this result was replicated at 1 h using oligomeric Aβ42
[134]. Muth et al. showed, using in vitro murine microglia,
that APOE4 increases apoptotic neuron phagocytosis, but
reduces oligomeric Aβ phagocytosis after 30 min, compared
to APOE3 (figure 2, parts 6–7) [135]. These confirmed results
from Lin et al. in an iPSC-derived microglia model [122]. The
size of Aβ particle is not reported in several of these studies,
therefore limited conclusions can be drawn. Due to size dis-
crimination, fibrillar Aβ would be taken up by phagocytosis
while smaller oligomeric forms would be internalized
through CME [24]. Moreover, several of these conclusions
were drawn from single timepoint experiments and were
based on total intracellular levels of cargo, which may lead
to misinterpreted results. Jiang et al. showed that total Aβ
uptake is not affected by APOE isoform in a murine in vitro
model, but Aβ degradation through the endocytic pathway
is hindered by APOE4 [136]. Contradicting results from
Jiang et al. [136] and Fitz et al. [134] highlight the importance
of experimental design in elucidating true endocytic function
in microglia, which has been reviewed elsewhere [24].

Machlovi et al. [137] performed detailed pHrodo-based
endocytosis assays over several timepoints, in which
myelin, apoptotic cells, zymosan particles and latex beads
are all phagocytosed to a higher extent in APOE4 primary
mouse microglia compared to APOE3. In APOE4 iPSC-
derived microglia, however, a reduction in low-density lipo-
protein uptake by CME was observed at 1 h (figure 2, §8)
[138]. These data highlight the cargo- or species-dependent
nature of endocytic activity in microglia, and that APOE
may have differential effects on distinct endocytic pathways.

Regarding specific mechanistic alterations, in APOE4 pri-
mary mouse microglia, increased RAB5 and RAB7 staining is
observed, along with increased lysosomal mass and
decreased pH [137]. Knock-down of Abca1 depleted the abil-
ity of primary microglia to lipidate APOE and reduced the
degradation of Aβ [136]. Suggesting that increased glial acti-
vation and Aβ-plaque reduction is observed following
sodium/hydrogen exchanger 6 (NHE6) depletion, demon-
strating the IEP hypothesis in microglia, requires further
investigation [117].
(c) Neurons
Despite low neuronal APOE secretion compared to astrocytes
and microglia, cell non-autonomous APOE signalling is
highly important for neuronal function. Indeed, APOE recep-
tor expression is essential for synaptic cholesterol transport
and dependent on accurate receptor recycling within the
ELP [116]. The EE’s slightly acidic environment [6.4 pH],
regulated via the vATPase-dependent proton pump and
the NHE6 proton leak, is essential for receptor–ligand dis-
sociation and consequent sorting into recycling vesicles
[117,127,139]. Recent evidence linked APOE4 to delayed
receptor dissociation, which is possibly caused through its
tendency to form a molten globule when exposed to
acidic environments [140]. Additionally, APOE4 retention
contributes to EE enlargement and accumulation at pre-
symptomatic disease stages [16,122]. Cataldo et al. [16]
found enlarged EEs in neurons of post-mortem samples of
pre-clinical Alzheimer’s patients. This EE enlargement was
accelerated in patients holding one or two copies of the
APOE4 allele [16]. Likewise, Lin et al. [122] detected higher
EEA1 levels in APOE4 iPSC-derived neurons compared to
APOE3. In fact, the pH of the EE is almost equivalent to
the IEP of APOE4, leading to an IEP surface charge reduction
resulting in decreased solubility that slows APOE4 receptor
dissociation and diminishes receptor recycling (figure 2,
part 11) [141]. Loss of surface receptors can subsequently
impact cellular communication and clearance mechanisms.
The Apoer2 receptor, for example, has a dual binding func-
tion with Reelin and APOE. Upon binding to Apoer2,
Reelin activates Src family non-receptor tyrosine kinases
(SFKs), leading to the phosphorylation of GluN2 subunits
and enhancing NMDA activity in combination with long-
term potentiation (LTP) [142]. Reduced APOER2 receptor
recycling accordingly impacts reelin-mediated NMDA
activity and enhances Aβ-mediated NMDA-suppression,
which is counteracted by increasing the IEP differential
between APOE4 and EE through NHE6 inhibition [141,143].
Incubation of primary cortical neurons from APOE huma-
nized mice with recombinant human APOE4 significantly
increased intracellular retention of APOE4 lipoproteins and
reduced cell-surface levels of APOER2, resulting in the abol-
ition of Reelin-induced LTP while also enhancing Aβ-induced
suppression of LTP [142]. This was confirmed by Pohlkamp
et al. [117], who found that NHE6 ablation in vivo enhanced
Apoer2 recycling to the synapse in APOE4 targeted replace-
ment mice (figure 2, §§16–19). Furthermore, the authors
found Aβ-plaque reduction in these animals and in huma-
nized APP mice, suggesting enhanced uptake following
NHE6 depletion regardless of the APOE4 phenotype [117].
The above findings imply a possible mechanism by which
APOE could interrupt synaptic neurotransmission and
speed up synaptic dysfunction in disease.

One of the major receptors responsible for Aβ uptake is
the metabolic APOE receptor LRP1 [116]. APOE and Aβ com-
pete for binding at LRP1-HSPG receptor sites, with HSPG
showing a preference for Aβ [144,145]. Moreover, APOE can
aid neuronal Aβ uptake by forming APOE/Aβ-complexes
whereby APOE3 builds more stable complexes than APOE4
[146,147]. Although LRP1 deletion has been linked to aug-
mented Aβ half-life and enhanced Aβ-amalgamation, a
recent study found that LRP1-knockout APP/PS mice with
humanized APOE4 showed reversal of Aβ-deposition and
increase in soluble APOE4 [148,149]. In the absence of LRP1
Aβ-seeding might be averted through APOE’s association
with the HSPG receptor preventing Aβ binding from causing
less endocytosis of APOE and increased Aβ degradation
[150]. Interestingly, Van Gool et al. [151] found that impaired
LRP1 function in vivo modified APP processing from β-secre-
tase to α-secretase cleavage, which led to diminished Aβ and
Aβ-plaque load. Furthermore, Lin et al. [122] found a 20%
increase of Aβ42 in APOE4 iPSC lines compared to APOE3
lines. In this sense, reduced endocytosed LRP1 receptors
seem to have a strong effect on Aβ production, which
could potentially outweigh the simultaneous reduction of
LRP1-Aβ clearance mechanisms.
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8. Conclusion
The importance of understanding the mechanisms that lead
to the development of LOAD cannot be understated and
will help overcome the current bottleneck to producing effec-
tive treatments. As discussed throughout this review, both
genetics and pathology converge on the importance of endo-
cytic dysfunction in LOAD and as more genetic studies
continue it is likely that further genes will be identified
within this pathway. Endocytic and endosomal dysfunction
are seen across the neurodegenerative spectrum, demonstrat-
ing the essential role of maintaining effective cellular
recycling and trafficking in the brain, particularly in old age.

Across the LOAD endocytic risk genes discussed through-
out this review, it is apparent that there is convergence of
potential pathogenic mechanisms. In all cases changes in
expression of these endocytic genes have been shown to
modulate Aβ and/or tau aggregation, clearance and toxicity
(see electronic supplementary material, table S1 for a sum-
mary). Another commonality is that expression changes in
these genes causes alterations to the size of the EE. Enlarged
EEs are a pathological hallmark of the LOAD brain. Although
it remains unclear what this means more broadly in terms of
EE function, previous work has demonstrated that poor traf-
ficking due to reduced retromer-dependent endosomal
recycling can lead to this endosomal enlargement, as can
dysfunction of APP processing [108,152]. It is likely that the
above-discussed genetic changes alter endosomal size through
similar mechanisms, with evidence already for CD2AP, SORL1
and BIN1 altering APP processing [74,75,90,102,108]. In
addition, these changes in endocytic and endosomal function
have wider cellular impacts leading to cellular dysfunction,
which are often overlooked but important to understand in a
disease context. For example, altered neuronal firing and
synaptic organization, astrocytic lipid homeostasis and micro-
glial inflammatory profiles are all impacted by alterations in
the endocytic genes discussed above [40–42,49,66,67,109]. Pre-
vious work has often concentrated on the neuronal function of
endocytic risk genes, but as is ever apparent other cell types
are also important in LOAD and therefore warrant further
investigation moving forward. It is likely that endocytic and
endosomal changes also impair cellular interactions directly
through changes to membrane receptor compositions and/or
cellular signalling cascades. Impairment of endocytic activity
in one cell type, such as microglia, may be able to begin to
drive pathogenic phenotypes in other cell types in an indirect
manner too. For example, impaired microglial clearance of
pathogenic Aβ leads to its build-up, which in turn is able to
impact neuronal firing properties [153,154]. Such cellular inter-
actions require examination through more complex coculture
systems in future work.

SNPs in these LOAD endocytic risk genes are known to
have small effect size individually. However, when multiple
such genetic risk factors are inherited together converging
on the same pathway it is likely that a threshold for the devel-
opment of LOAD is reached in terms of endocytic/
endosomal impairment. As discussed in this review, some
evidence of how such risk genes may interact to produce a
culminative impact already exists, e.g. BIN1/CD2AP, APOE/
PICALM, BIN1/RIN3, but this is an area that certainly requires
further understanding [50,74,75,95].

Throughout this review, we highlight how endocytic and
endosomal dysfunction impacts different cell types; however,
it is evident that further work is required to gain a broader
and more nuanced insight into how this impacts cell type-
specific function. Importantly, endocytic/endosomal dys-
function appears to be an early mechanism of disease,
likely in part to be independent of other hallmark pathologies
such as Aβ and tau aggregation, and so presents itself as an
attractive target for much needed disease modifying
therapies.
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