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Abstract

Although the primate brain contains numerous functionally distinct structures that have experienced diverse genetic changes 
during the course of evolution and development, these changes remain to be explored in detail. Here we utilize two classic 
metrics from evolutionary biology, the evolutionary rate index (ERI) and the transcriptome age index (TAI), to investigate the 
evolutionary alterations that have occurred in each area and developmental stage of the primate brain. We observed a higher 
evolutionary rate for those genes expressed in the non-cortical areas during primate evolution, particularly in human, with the 
highest rate of evolution being exhibited at brain developmental stages between late infancy and early childhood. Further, 
the transcriptome age of the non-cortical areas was lower than that of the cerebral cortex, with the youngest age apparent at 
brain developmental stages between late infancy and early childhood. Our exploration of the evolutionary patterns manifest 
in each brain area and developmental stage provides important reference points for further research into primate brain 
evolution.
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Introduction
Primates, especially humans, are remarkable for their brains, 
behaviors, and cognitive abilities, unique attributes that have 
been acquired over an extended period of evolutionary time. 
Over the last decade, and benefiting from rapid advances in 
comparative genomics, transcriptomics and epigenomics, 
studies across primate species have generated many new 
and fundamental insights into the genetic underpinnings of 
primate brain evolution (Gilad et al. 2006; Lui et al. 2011; 
Bernard et al. 2012; Dehay et al. 2015; Bakken et al. 2016; 
He et al. 2017; Amiri et al. 2018; Kronenberg et al. 
2018; Kanton et al. 2019; Agoglia et al. 2021). However, 
most studies have focused either on the whole brain or the 
neocortex. Precisely how each specific brain region, and in 
particular the non-cortical areas, have evolved is not fully 
understood and remains to be explored in detail. It is there
fore very important to acquire a comprehensive understand
ing of the evolutionary patterns experienced by each 
individual brain region.

The primate brain comprises a number of functionally 
distinct structures, the human brain being the most elabor
ate; different brain structures vary dramatically both within 
and between primate lineages, reflecting the functional 
specialization of the brain over evolutionary time (Sousa 
et al. 2017a; DeCasien and Higham, 2019). There is now 
abundant molecular genetic evidence to support the notion 
of functional specialization of the primate brain; for ex
ample, in terms of gene expression, different human brain 
structures exhibit diverse levels of expression with respect 
to the same groups of genes, and each brain structure 
has its own uniquely specific gene markers (Hawrylycz 
et al. 2012; Bhaduri et al. 2021).

Further, previous studies of the entire primate brain have 
supported the contention that genes involved in brain func
tion evolved more rapidly in primates than in rodents (Dorus 
et al. 2004), particularly those genes linked to brain devel
opment (Dorus et al. 2004). This is reflected in a positive 
correlation between the ratio of non-synonymous to syn
onymous mutations of genes and primate brain evolution. 
Moreover, gene age, namely the estimated time since the 
emergence of the gene according to phylogenetic analyses, 
could reflect the evolutionary trajectory of the primate 
brain (Domazet-Loso and Tautz, 2010). Here, based on pre
vious research (Domazet-Loso et al. 2007; Domazet-Loso 
and Tautz, 2010; Quint et al. 2012), we leveraged genome 

sequence data from the Primate Genome Project, which in
tegrated 50 primate genomes sequenced in our laboratory 
(Shao et al. 2023), utilizing two classic indices—the evolu
tionary rate index (ERI) and the transcriptome age index 
(TAI)—to fully investigate the evolution of each brain area 
in eight major primate ancestral lineages leading to human. 
Our study not only reveals novel and hitherto underappre
ciated evolutionary patterns associated with specific pri
mate brain areas but also, and more broadly, identifies 
the potential genetic underpinnings of primate brain evolu
tion and development.

Results

Diverse Evolutionary Rates of Different Brain Areas 
During Primate Evolution

The functional specialization of primate brain areas implies 
that different areas might be subject to differing levels of 
natural selection. This raises basic questions as to which pri
mate brain areas have evolved at a high rate, and which 
have been relatively conserved over evolutionary time (Lui 
et al. 2011; Dehay et al. 2015; Sousa et al. 2017b). To ad
dress these questions, we deeply investigated the evolu
tionary rates of various brain regions in primates by 
integrating massive transcriptome data and selection sig
nals at the gene sequence level. To explore the evolutionary 
rates, we derived the evolutionary rate index (ERI) by means 
of the formula ERI = ∑[(dN/dS)  ∗ E]/∑E (detailed in 
Materials and Methods), which was referred to previously 
(Quint et al. 2012).

Employing Primate Genome Project data (Shao et al. 
2023), we generated dN/dS (ratio of non-synonymous to 
synonymous substitutions) values of primate orthologous 
genes from large scale comparative genomics analyses to 
reveal the evolutionary genetic patterns exhibited by differ
ent brain areas and/or during specific developmental 
stages. Then, we combined gene expression data from 45 
rhesus macaque brain regions (Li et al. 2019) with the dN/ 
dS values of genes from eight major primate ancestral 
lineages leading to human speciation to generate a meas
ure of the evolutionary rate of each brain area in each pri
mate lineage (Fig. 1A and B, supplementary table S1, 
Supplementary Material online). Unexpectedly, and con
trary to received opinion that contends it was the neocortex 
which experienced the most rapid evolution in primates (Lui 

Significance
Our understanding of how various brain regions, particularly non-cortical areas, evolve in primates is incomplete and 
requires thorough exploration. We performed a comprehensive investigation into the unique evolutionary patterns 
of each primate brain region, uncovering previously unnoticed evolutionary patterns and identifying potential genetic 
foundations for primate brain evolution.
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FIG. 1.—Evolutionary patterns of different brain areas in different primate lineages. (A) Evolutionary rate index of 45 brain areas in different primate 
lineages based on gene expression data of rhesus macaque brain (Li et al. 2019). The terms ascribed to the brain areas are given below and in 
supplementary table S1, Supplementary Material online. (B) Simplified diagram of the phylogenies of the different primate lineages. (C) Evolutionary rate index 
of 12 brain areas in different primate lineages based on human brain gene expression data derived from the Genotype-Tissue Expression (GTEx) project, release 
V8. The terms ascribed to the various brain areas are given below and in supplementary table S2, Supplementary Material online. CN, caudate nucleus; PTM, 
putamen; GP, globus pallidus; AMY, amygdala; HIP, hippocampus; CGS, cingulate sulcus; TH, thalamus; HTH, hypothalamus; SC, superior colliculus; IC, in
ferior colliculus; pons, Pons; CV, cerebellar vermis; HYP, hypophysis; ACB, accumbens nucleus; CC, corpus callosum; VTA, ventral tegmental area; OB, olfactory 
bulb; MED, medulla; PG, pineal gland; SU, superior postcentral dimple; IPS, intraparietal sulcus; LF, lateral fissure; PEC, parietal area; AMG, anterior marginal 
gyrus; AG, angular gyrus; LSTG, lateral superior temporal gyrus; TPG, temporal polar gyrus; DLPFC, dorsolateral prefrontal cortex; VLPFC, ventral lateral pre
frontal cortex; ASPD, anterior supraprincipal dimple; V1C, primary visual cortex; V2C, visual cortex V2; V4C, visual cortex V4; SFG, superior frontal gyrus; CBC, 
cerebellar cortex; VMPFC, ventromedial prefrontal cortex; AIC, anterior insula cortex; PIC, posterior insula cortex; OFC, orbitofrontal cortex; PSPD, posterior 
supraprincipal dimple; SAR, superior arcuate sulcus; PS, principal sulcus; ASD, anterior subcentral dimple; ARSP, arcuate sulcus spur; SPCD, superior precentral 
dimple; FC, frontal cortex; ACC, anterior cingulate cortex; SN, substantia nigra; SPC, spinal cord.
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et al. 2011; Dehay et al. 2015), we found that many non- 
cortical areas, such as the hypophysis (HYP), pineal gland 
(PG), and medulla (MED), displayed significantly higher evo
lutionary rates compared to areas of the cerebral cortex 
(Fig. 1A, Table 1, supplementary table S1, Supplementary 
Material online); these non-cortical areas are key endocrine 
glands with the potential to influence individual develop
ment, cognitive ability and circadian rhythm (Lovick and 
Li, 1989; Phansuwan-Pujito et al. 1999; Sapede and 
Cau, 2013; Alatzoglou et al. 2020; Patel et al. 2020). 
Moreover, the corpus callosum (CC), hypothalamus 
(HTH), inferior colliculus (IC), and superior colliculus (SC) 
also displayed significantly higher evolutionary rates than 
cerebral cortex (Fig. 1A, Table 1, supplementary table S1, 
Supplementary Material online); these non-cortical areas 
are essential for the coordination of activities between 
the two cerebral hemispheres and for the regulation of 
both visceral and endocrine activity, as well as the auditory 
and visual senses (Buckingham, 1977; Wurtz and Albano, 
1980; Paul et al. 2007; Trachtman, 2010; Pickles, 2015; 
Blaauw and Meiners, 2020). Furthermore, combining 
gene expression data derived from 12 human brain areas 
from the GTEx project (release V8) (GTEx Consortium, 
2020) with the dN/dS values of genes in eight major pri
mate ancestral lineages leading to human speciation as a 
means to measure the evolutionary rate of each brain 
area, also yielded similar findings (Fig. 1C, Table 2, 
supplementary table S2, Supplementary Material online). 
Notably, Homo sapiens and the Haplorrhini lineages exhib
ited higher evolutionary rates than other primate lineages, 
suggestive of the rapid evolution of brain areas in these two 
lineages (Fig. 1A and C, supplementary tables S1 and S2, 
Supplementary Material online).

Furthermore, to exclude the effect of a strong negative 
correlation between dN/dS values and transcriptional abun
dance on the calculation of ERI values, we performed 
Pearson correlation analyses (Fig. 2A and B). The results 
showed that, whether they were based on rhesus macaque 
brain expression profiles (Fig. 2A) or human brain expres
sion profiles (Fig. 2B), the negative correlations between 
the dN/dS values and transcriptional abundance were 

weak (−0.1102 to −0.0263), indicating that both dN/dS va
lues and transcriptional abundance could be regarded as 
complementary measures. In particular, there were only a 
few differences in the negative correlation coefficients be
tween the cortical areas and non-cortical areas (Fig. 2A 
and B), indicating that the conclusion that non-cortical 
areas evolved faster than cortical areas was reliable.

Since there were many types of cell in different brain re
gions, it is necessary to further explore the roles of cell type 
differences in reconstructing the evolutionary rates. Thus, 
we utilized the single cell RNA-seq data from six brain re
gions (including cerebellum, mediodorsal thalamic nucleus, 
striatum, amygdala, hippocampus, and dorsolateral pre
frontal cortex) of two E110 (embryonic day 110) rhesus 
macaque brains from previously published research (Zhu 
et al. 2018), combined with dN/dS values from eight major 
primate ancestral lineages leading to human speciation, to 
calculate the ERI values of each cell type from each brain 
region in each primate ancestral node (Fig. 3). The results 
indicated that many cell types in non-cortical areas dis
played higher evolutionary rates compared to that in the 
dorsolateral prefrontal cortex, especially the microglial cells 
(Fig. 3). Since microglia are critically involved in many 
physiological and pathological brain processes, including 
neurodegeneration (Geirsdottir et al. 2020), the rapid evo
lution of microglia may suggest their key role in primate 
brain evolution. These results strongly supported the con
clusion that non-cortical areas evolved faster than cortical 
areas.

The rapid evolution of protein-coding genes related to 
the primate non-cortical areas including limbic system im
plies that brain functions related to emotional expression 
and social cognition have played vital roles during primate 
evolution. This finding contrasts with the traditional view 
that the neural basis of emotional behavior has been evolu
tionarily conserved but is consistent with a previous com
parative anatomy study which reported evolutionary 
specializations of the human limbic system (Barger et al. 
2014). Meanwhile, a previous study has also reported 
that genes expressed in the cortical regions of the brain ex
hibited lower evolutionary rates than genes expressed in 

Table 1 
t-Test results of ERI values between non-cortical regions and cortical 
regions, based on rhesus macaque brain expression data (Li et al. 2019)

Lineages P values

Homo sapiens 0.0005718
Hominini 0.0001137
Homininae 0.0001537
Hominidae 8.10E−05
Hominoidea 3.21E−05
Catarrhini 1.57E−05
Simiiformes 5.40E−07
Haplorrhini 0.000523

Table 2 
t-Test results of ERI values between non-cortical regions and cortical 
regions, based on human brain expression data (Zhu et al. 2018)

Lineages P values

Homo sapiens 0.001676
Hominini 0.000102
Homininae 0.000831
Hominidae 0.002613
Hominoidea 0.000853
Catarrhini 0.02084
Simiiformes 0.04544
Haplorrhini 0.007484
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the non-cortical regions (Tuller et al. 2008), a finding which 
concurred with our conclusions about the evolutionary 
patterns.

Rapid Evolution of Primate Brain Development in Early 
Childhood

We further explored whether different brain regions at dif
ferent developmental stages in various primate lineages 
might also display diverse evolutionary rates. To this end, 
we leveraged a total of 577 human brain development 
transcriptomes from six brain areas, namely cerebellar cor
tex, mediodorsal nucleus of the thalamus, striatum, amyg
dala, hippocampus, and neocortex, and covering a range of 
developmental stages (Zhu et al. 2018), to measure the 
evolutionary rate of each area in each primate lineage dur
ing development (Fig. 4A and B, supplementary table S4, 
Supplementary Material online).

Five of the six brain areas (the exception being cerebellar 
cortex) exhibited a similar mountain-like pattern in terms of 
their evolutionary rates viewed across developmental 
stages (Fig. 4A). In the amygdala (AMY), hippocampus 
(HIP), neocortex (NCX), and mediodorsal nucleus of the 
thalamus (MD), the evolutionary rate trajectory showed a 
trend to increase from stage w5 (35 pcw [post-conception 
weeks] to 0.3 py [post-natal years]) to w6 (0.5 py to 2.5 py) 
(Fig. 4A and B); this stage was also defined as late fetal to 
early childhood, after which the trajectory flattened out 
or even declined. In the striatum (STR), the evolutionary 
rate reached the peak from stage w6 to w7 (2.8 py to 
10.7 py) (Fig. 4A and B), which was also defined as child
hood. However, in the cerebellar cortex (CBC), the trajec
tory showed different developmental trends in different 
primate ancestral nodes (Fig. 4A and B); the evolutionary 
rate in the Haplorrhini and Hominidae lineages reached 
its peak from stage w7 to w8 (13 py to 19 py), that was 
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also defined as adolescence, whereas the evolutionary rate 
in other primate lineages reached its peak from stage w5 to 
w6. The above results suggested that all brain regions in pri
mates evolved rapidly after birth, and reached their peaks 
during infancy, childhood, or adolescence (Fig. 4A and B).

The development of primate brain is a long drawn out 
process that continues well into adulthood. Previous re
search has shown that early childhood, especially the peri
od between term birth and ∼2 yr of age, is crucial for 
human brain development and for the establishment of 
cognitive abilities and behaviors, as well as for influencing 
the subsequent risk of neuropsychiatric disorders such as 
autism and schizophrenia (Gilmore et al. 2018). Further, 
previous research has also indicated that brain develop
ment during childhood and adolescence is essential for 
the maturity of advanced cognitive and behavioral abilities 
in primates (Pelletier and Neuman, 2014; Vijayakumar et al. 
2018). Therefore, the different evolutionary rate trajector
ies of different brain regions in different primate ancestral 
nodes have suggested imbalances in primate brain evolu
tion, and these evolutionary patterns may be related to 
the evolution of specific brain phenotypes in different pri
mate ancestors.

Our findings are consistent with the view that the pri
mate brain has evolved rapidly over the developmental per
iod 0.5 py to 2.5 py (i.e. late infancy to early childhood) (Zhu 
et al. 2018), which probably accounts for much of the rapid 
evolution experienced by primates, particularly in the 
lineages leading to human.

Varied Transcriptome Ages of Different Human Brain 
Regions During Development

Based on comparative genome analyses of metazoan gen
ome sequences, a crucial finding has been that a large num
ber of genes have arisen anew during the evolution of the 
respective lineages (Force et al. 1999; Domazet-Loso and 
Tautz, 2003; Long et al. 2003; Choi and Kim, 2006). The 
emergence of these novel genes has contributed greatly 
to phenotypic evolution, and has also been important for 
primate brain evolution (Chen et al. 2013).

It is possible to trace evolutionary innovations by calcu
lating transcriptome ages for different human brain areas 
during development by employing a combination of gen
ome and transcriptome data (Domazet-Loso et al. 2007; 
Domazet-Loso and Tautz, 2010). Here, relying on the large 
number of primate genomes recently made available 
through the Primate Genome Project (Shao et al. 2023), 
we were able for the first time to ascertain the evolutionary 
gene age (i.e. the estimated time since the emergence of 
the gene according to phylogenetic analyses) of human 
protein-coding genes based on a previous pipeline (Zhang 
et al. 2011; Shao et al. 2019). The expression data for hu
man protein-coding genes were obtained from previously 

published work (Zhu et al. 2018; GTEx Consortium 2020). 
We then applied the genomic phylostratigraphy principle 
(Domazet-Loso et al. 2007; Domazet-Loso and Tautz, 
2010) to calculate the transcriptome age index (TAI) of dif
ferent human brain areas and different developmental 
stages to measure the transcriptome age by means of the 
formula TAI = ∑(A ∗ E)/∑E (detailed in Materials and 
Methods, Fig. 4C and D, supplementary tables S5 and S6, 
Supplementary Material online).

We found that the non-cortical areas, especially the 
cerebellum, tend to exhibit low transcriptome age values 
and to have accumulated more evolutionarily young 
genes as compared with the cerebral cortex (Fig. 4C, 
supplementary table S5, Supplementary Material online), 
concurring with our above finding that the non-cortical 
areas evolved more rapidly than the cerebral cortex. 
Furthermore, consistent with our aforementioned observa
tion on the evolutionary rate trajectory during develop
ment, we found that transcriptome age values also 
displayed a tendency to decrease from developmental 
stage 0.5 py to 2.5 py (Fig. 4B and D, supplementary 
table S6, Supplementary Material online). These findings 
corroborated our earlier conclusion, based on evolutionary 
rate values, that the stage of development from 0.5 py to 
2.5 py evolved particularly rapidly in the lineages leading 
to human (Fig. 4A, B, and D).

Discussion
Primate brain evolution has been characterized by a series 
of distinct genetic changes impacting different brain areas 
in different primate lineages. It was therefore necessary to 
analyze multiple brain regions from diverse primate 
lineages to allow the identification of evolutionary patterns 
and innovations characteristic of each brain area. We paid 
particular attention to the non-cortical areas, which have 
rarely been studied at the genetic level, but which are 
known to have played key roles during the evolution of 
the primate brain. In this study, we utilized two classic indi
ces that could be used to define a specific brain area in 
terms of its evolutionary rate and transcriptome age, with 
a view to identifying the evolutionary patterns and genetic 
changes characteristic of each brain area.

The phylostratigraphy approach has been used to trace 
the evolutionary origin of genes by similarity searches in 
genomes that represent the entire tree of life. The quanti
tative formula developed from this approach was the tran
scriptome age index which combined the phylostratum of a 
given gene with its expression data at a given developmen
tal stage (Domazet-Loso et al. 2007; Domazet-Loso and 
Tautz, 2010). Employing the basic principle of this ap
proach, we further utilized two classic formulae to calculate 
the evolutionary rate index (ERI) (Quint et al. 2012) and 
transcriptome age index (TAI) (Domazet-Loso et al. 2007; 
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Domazet-Loso and Tautz, 2010), thereby providing an ef
fective means to study evolutionary changes in specific 
species.

It is well known that the evolutionary rates experienced 
by different primate brain areas and developmental stages 
are quite diverse. Indeed, previous research has shown that 
the cerebral cortex underwent rapid evolution in the pri
mate lineage (Lui et al. 2011; Dehay et al. 2015). 
However, in this study, we unexpectedly found that the 
non-cortical areas evolved at an even faster rate than the 
cerebral cortex. The non-cortical areas constitute an essen
tial part of the brain, responsible for the performance of 
complex functions and tasks such as emotions, motivation, 
learning, memory, and other advanced neural activities. 
The rapid evolution of the non-cortical areas may thus 
have been closely related to the evolutionary development 
of primate cognition and behavior. However, the evolution 
of the primate non-cortical areas has not been closely inves
tigated. Those non-cortical areas that have evolved particu
larly rapidly, such as the hypophysis and the pineal gland, 
would clearly be worthy of further study.

Further, our results showed that H. sapiens and the 
Haplorrhini lineages exhibited markedly higher evolution
ary rates than other primate lineages, indicating that the 
brains of H. sapiens and the Haplorrhini have undergone 
rapid evolution. Numerous studies have shown that the 
human brain evolved rapidly in terms of its relative volume 
and increased complexity through the expansion of cor
tical areas and an increase in density of cortical networks 
(King and Wilson, 1975; Pollard et al. 2006; Prabhakar 
et al. 2006; Bird et al. 2007; Boyd et al. 2015; Gittelman 
et al. 2015; Reilly et al. 2015; Dong et al. 2016; 
Won et al. 2019; Agoglia et al. 2021). What was unex
pected was evidencing the rapid evolution of the 
Haplorrhini brain. However, previous research showed 
that the relative brain volume increased significantly in 
the Haplorrhini by comparison with the Strepsirrhini 
(Shao et al. 2023), which demonstrated that the cerebral 
cortex of the Haplorrhini brain has expanded rapidly whilst 
the brain volume of the Haplorrhini has significantly in
creased during the course of evolution. Our own research 
has additionally suggested that the Haplorrhini brain ex
perienced rapid evolution, similar to H. sapiens.

We also observed that the evolutionary rates of the main 
brain regions during development display a mountain-like 
pattern reaching a peak during late infancy to early child
hood. Although development continues into adulthood, 
the developmental stage from late infancy to early child
hood is particularly important for the primate brain, since 
the foundations of adult sensory and perceptual systems 
which are essential to language, behavior, and emotion 
are formed at this stage. Our results indicate that the pri
mate brain has experienced rapid evolution in the period 
from late infancy to early childhood; during this stage, 

the proliferation and migration of glial precursors, and 
the differentiation of astrocytes and oligodendrocytes, 
contribute to the functional maturation of the developing 
neural circuitry (Li and Barres, 2018), and hence may 
have promoted the evolution of the primate brain. 
Furthermore, the transcriptome ages of non-cortical areas 
were lower than those of the cerebral cortex, and each 
brain area was at its youngest during late infancy to early 
childhood, supporting the crucial roles of newly originated 
primate genes in brain development (Charrier et al. 2012; 
Dennis et al. 2012; Florio et al. 2015; Ju et al. 2016; Li 
et al. 2016; Liu et al. 2017; Heide et al. 2020).

In summary, our study reveals uneven evolutionary rates 
and transcriptome ages across different primate brain re
gions and developmental stages, indicating that the rewir
ing programs acting on the gene expression networks in 
the non-cortical areas and during infancy/early childhood 
have constituted crucial evolutionary steps toward acquir
ing our uniquely exceptional brain functions. This study 
deepens our understanding of brain evolution in primates, 
and particularly in humans.

Materials and Methods

Evolutionary Rate Index (ERI) Formula

To determine the evolutionary rate index (ERI) of different 
brain regions and developmental stages, we utilized the fol
lowing formula (Quint et al. 2012):

ERI =

􏽐n
i

dN
dS

􏼒 􏼓

i
× Ei

􏽐n
i Ei 

where (dN/dS)i is a value that represents the ratio of non- 
synonymous to synonymous mutations of a given gene i 
in a specific lineage, Ei is the expression value of gene i in 
a specific brain area, and n is the total number of genes 
analyzed. This formula was used to determine the evolu
tionary rate index of a particular brain area in a specific pri
mate lineage. Where a particular tissue or developmental 
stage is described by a high ERI value, this is indicative of 
a high evolutionary rate for that tissue or stage. To ensure 
both the representativeness and accuracy of the results, 
we calculated the ERI index based on gene expression 
data from human and rhesus macaque, separately 
(Fig. 1A and C, supplementary tables S1 and S2, 
Supplementary Material online). A normalized gene expres
sion matrix for human brain was obtained from the GTEx 
project (release V8) (GTEx Consortium 2020), which in
cluded 2,642 samples representing a total of 12 brain 
areas. The raw transcriptomes of rhesus macaque brain 
were obtained from the dataset published by our own la
boratory (Li et al. 2019). The 590 transcriptomes 
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representing 45 brain areas were re-mapped to the refer
ence genome (Macaca mulatta, Mmul_10, Ensembl v99) 
using STAR (Dobin et al. 2013) without providing junction 
annotation; those samples with >10 million uniquely 
mapped reads, and with the proportion of uniquely mapped 
reads being greater than 80%, were retained. Finally, the re
maining 566 transcriptomes were used for downstream ana
lyses (supplementary table S3, Supplementary Material
online). We normalized the expression counts and calculated 
the TPM (transcript per million) for further analyses. The 
dN/dS values of 10,279 orthologous genes of H. sapiens, 
Hominini, Homininae, Hominidae, Hominoidea, Catarrhini, 
Simiiformes, and Haplorrhini were obtained from our la
boratory's previously published paper (Shao et al. 2023); 
the orthologous genes were identified between human 
(H. sapiens, GRCh38), each of the other primate species 
and the outgroup species, the Chinese tree shrew, based 
on criteria including reciprocal best blastp hit (RBH), gene syn
teny and genome synteny (Shao et al. 2023). The evolutionary 
rate index yielded similar results whether based upon the hu
man or the rhesus macaque brain transcriptome, indicating 
that our method was robust (Fig. 1A and C, supplementary 
tables S1 and S2, Supplementary Material online).

In addition, the ERI formula was also used to evaluate the 
evolutionary rates of different brain areas at different devel
opmental stages. Normalized gene expression values of de
veloping human brains were obtained from the previously 
published paper (Zhu et al. 2018); we selected 577 tran
scriptomes from six brain regions employing 8 developmen
tal windows ranging from 12 pcw to 64 py.

Transcriptome Age Index (TAI) Formula

We evaluated the transcriptome age index (TAI) of different 
brain areas and developmental stages using the formula 
(Domazet-Loso and Tautz, 2003; Domazet-Loso et al. 
2007):

TAI =
􏽐n

i Ai × Ei
􏽐n

i Ei 

where Ai is a value that represents the evolutionary age of a 
given gene i, i.e. the estimated time since the emergence of 
that gene according to phylogenetic analysis, Ei is the ex
pression value of gene i within a specific brain area, and n 
is the total number of genes analyzed. When a brain area 
or developmental stage is described by a low TAI value, it 
indicates enrichment of evolutionarily young genes in that 
area or at that stage. We dated the origin of human 
protein-coding genes from the hg38 genome assembly 
based on the previously described pipelines (Zhang et al. 
2011; Shao et al. 2019) from our other paper (Shao et al. 
2023). Normalized gene expression values of adult human 
brains and developing human brains were derived from 

previously published papers (Zhu et al. 2018; GTEx 
Consortium 2020). To calculate more reliable ERI and TAI 
values, we did not set any expression cutoff for the expres
sion data.

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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