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ABSTRACT 
Battery storage is one of the key technologies in the 

transition toward net zero. Technology is quickly 
developing toward making energy grids digital. It is 
important to observe the condition of the battery in real 
time. A digital twin of battery storage is a virtual replica 
of a physical battery, which estimates and analyses 
battery operation and its state in real time. A battery 
digital twin consists of data collection, pre-processing, 
parameter estimation, modelling, and forecasting of the 
state of charge and state of health of the battery. This 
paper presents the concept and development of a digital 
twin for a lithium titanium oxide battery using a physics-
based and data-driven model. A physics based Thevenin 
equivalent circuit model was developed. Experimental 
data from a lithium titanium oxide battery was collected 
from a robot application to analyze. Experimental data 
was used in a model-based state estimation approach of 
the Kalman filter for the state of charge estimation of 
battery storage. The state of health of the battery was 
estimated by the estimation of a decrease in total cell 
capacity and an increase in equivalent series resistance. 
The least square method was used to estimate total cell 
capacity. Equivalent series resistance was estimated 
using experimental voltage and current data. The output 
terminal voltage of the model is found to be well 
compared with experimental data. 
 
Keywords: Lithium titanium oxide battery, Kalman filter, 
cell capacity, terminal voltage, cell current 

NOMENCLATURE 

Abbreviations 
 

DT Digital twin 
LTO Lithium titanium oxide 
OCV Open circuit voltage 
SOC State of charge 

SOH State of health 
WLS Weighted least square method 

Symbols 
 

A, B, C, D State space model parameters 
respectively 

i, v Current and voltage respectively 
L Kalman gain 
R, C Resistance and capacitance 
Q Cell capacity 
zp, ze Predicted and estimated SOC 

respectively 
vT,p, vT Predicted and true terminal voltage 

respectively 
∑z, ∑z e Predicted and estimated error 

covariance respectively 
∑p, ∑s process and sensor noise covariance 

respectively 
τ Time constant 
η Coulombic efficiency 
α Forgetting factor 

1. INTRODUCTION 
Battery technology has a crucial role in the 

development of the energy sector. Battery technology 
assists the transition towards net zero using various 
renewable energy technologies such as wind and solar. 
The current state of battery storage for grid applications 
exhibits significant progress, offering grid operators 
valuable tools to manage electricity supply and demand 
effectively. These systems are increasingly adept at 
storing renewable energy, improving grid stability, and 
providing backup power during outages. Nonetheless, 
several limitations persist. There is considerable research 
addressing the limited energy density and relatively high 
costs of advanced battery technologies, along with 
challenges associated with the recycling and disposal of 
battery materials. Additionally, grid integration is 
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necessary to ensure maximize the advantages of grid-
connected batteries. Ongoing research and development 
efforts are essential to address these shortcomings and 
optimize battery storage for grid applications [1–4]. The 
key challenge to using battery technology is to provide 
energy efficiently to various grid applications such as 
frequency response[3–6].  

A Digital twin (DT) is a virtual replica of a physical 
object or system that replicates its dynamic behaviour in 
real-time using physics-based and data-driven models. A 
Battery DT is a digital replica of a physical battery, which 
attempts to replicate battery operation in real-time and 
forecast its state.  

Fig. 1 shows the concept of battery DTs. For a battery 
DT, battery historical data and operational data are 
required, such as cell voltage, electrical current, and 
operating temperature, which need to be measured 
using sensors and stored in a database. Physics-based 
models consist of electrochemical models, equivalent 
circuit models, and thermal models of battery systems. 
Various data-driven models consist of regression, 
machine learning, and artificial intelligence. Database 
links to DT-based physics-based and data-driven models. 
Using DT not only physical batteries will be synchronized 
with the DT function, but it also connects to the various 
external energy-based applications as shown in Fig. 1. 
Updated parameters of the physical battery need to be 
stored in the database and use as input to the DT[4,7–9]. 
In this research work, the preliminary modelling of 
battery storage is discussed using physics-based and 

data-driven least square models[1]. Highlights of this 
research as are follows: 

• An equivalent circuit model (Thevenin model) was 
used to represent the battery system's electrical 
behaviour. Thevenin model is an equivalent circuit 
model of a battery that uses one equivalent series 
resistance (R0) and one parallel RC circuit with 
resistance (R1) and capacitance (C1) to replicate the 
dynamic properties of batteries[1].   

• Experimental current and voltage data of the LTO 
battery were used to estimate parameters for the 
Thevenin model[1]. 

• Model-based state estimation using a Kalman filter 
was used for the SOC estimation of battery 
storage[1].  

• Using the experimental dataset of the LTO battery 
and estimated SOC, weighted least square (WLS) 
regression was used to estimate the total cell capacity 
of the battery[1]. 

• Equivalent series resistance was estimated using LTO 
battery voltage and current data[1].  

• Output terminal voltage was analyzed and validated. 

2. METHODOLOGY 

2.1. Equivalent circuit model of battery storage. 

An equivalent circuit model (Thevenin model) of 
lithium titanium oxide (LTO) battery was used in this 
research work as shown in Fig. 2 This model is used to 
simulate the transient behaviour of an LTO battery cell 

 
Fig. 1. Architecture of Battery digital twin 
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[1,10]. The terminal voltage of the Li-ion cell was defined 
by equation 1 [11]. 

 𝑣(𝑡) = 𝑂𝐶𝑉(𝑧(𝑡)) − 𝑣𝑐1(𝑡) − 𝑖(𝑡). 𝑅0 (1) 

Voltage drops across the R-C parallel circuit are, 
 𝑣𝑐1(𝑡) = 𝑣𝑅1(𝑡) = 𝑅1𝑖𝑅1(𝑡) (2) 

Where v is terminal voltage, OCV is open circuit 
voltage, z is SOC of the cell, 𝑣𝑐1  is voltage drop across 

capacitor C1, i is cell current R0 is equivalent series 
resistance(Internal resistance), 𝑣𝑅1 is the voltage drop 

across the resistor R1 and 𝑖𝑅1is current passing through 

the resistance R1[1,10]. 
 𝑣(𝑡) = 𝑂𝐶𝑉(𝑧(𝑡)) − 𝑅1𝑖𝑅1(𝑡) − 𝑖(𝑡). 𝑅0 (3) 

Resistor current iR1 is calculated by  

2.2. Experimental data from an LTO battery cell 

A DT for battery storage was developed using a large 
dataset of experimental LTO battery operation data from 
a robot application. Data was available per second for 
the period whenever the robot was booted. The battery 
is subjected to a multiple-charge discharge cycle for 32 
hours of operation in 2.5 months. On each robot, LTO 
cells were used [12]. Fig. 2 depicts the cell current for an 
LTO battery cell. The terminal voltage of the cell to the 
corresponding dataset is shown in Fig. 3. Firstly, the 
battery is subject to charge at 4 amperes from 2.15 V to 
2.64 V. Furthermore, the battery is subjected to multiple 
charge-discharge cycles as shown in Fig. 3 and Fig. 4. The 
first 2 discharge-charge cycles are considered to estimate 
equivalent circuit model parameters as shown in Fig. 5. 
Estimation of equivalent series resistance (R0), 
resistance (R1) and capacitance (C1) from RC parallel 
circuit is carried out based on experimental cell voltage 
data based on voltage drop and time constants as 
defined in Fig. 5. Equivalent series resistance was 
estimated by calculating instantaneous voltage drop 
divided by cell current whereas R1 and C1 were 

estimated using tome constant(R1C1) and voltage 
recovery as shown in fig. 5. 

2.3. OCV vs SOC Relation 

For SOC estimation of LTO battery cells, OCV-SOC 
relation plays a crucial role. In the voltage-based method 

 

𝑖𝑅1(𝑡) = 𝑒𝑥𝑝 (
−∆𝑡

𝑅1𝐶1
) 𝑖𝑅1(𝑡)

+ [1 − 𝑒𝑥𝑝 (
−∆𝑡

𝑅1𝐶1
)] 𝑖(𝑡) 

(4) 

 
Fig. 2. Thevenin model proposed for LTO battery 

 

 

 

 
Fig. 1. Experimental data for terminal voltage 

 

 

 
Fig. 5. Parameter estimation 

 

 
Fig. 3. Experimental data for cell current 

 

 
Fig. 6. Open circuit voltage and SOC relation 
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OCV is estimated and using the lookup table for OCV vs. 
SOC, the state of charge needs to be estimated whereas 
this relation is required to get an output equation 
parameter of the Kalman filter as well. Fig. 6 shows the 
relation between OCV and SOC of LTO battery storage 
[11].   

2.4. SOC estimation  

There are several methods used by researchers for 
SOC estimation such as the voltage-based method and 
coulomb counting method[1,9,13,14]. For a more 
accurate estimation of SOC, the Kalman filter is used. The 
Kalman filter is an optimal recursive algorithm that 
combines system dynamics and measurement data to 
estimate the true state of a system while accounting for 
noise and uncertainties. Kalman filtering (KF) is a state 
estimation algorithm based on a prediction-correction 
approach that estimates the SOC of the cell by using the 
state equation and output equation, with the cell's 
current as input and terminal voltage as output. The 
Kalman filter is widely used for SOC measurements, and 
provides an optimal estimate of the true SOC, 
considering noise and uncertainties. Its real-time 
capabilities and adaptability to changing conditions 
make it a popular choice for accurate SOC estimation, 
benefiting battery management and energy storage 
utilization. The SOC of the battery cell was estimated 

using the following equation[1,10,13,14]. 
 

𝑧𝑘2 = 𝑧𝑘1 −
1

𝑄
∑ 𝜂[𝑘]𝑖[𝑘]

𝑘2−1

𝑘=𝑘1

 (5) 

The value of the SOC needs to be initialized first. 
Kalman filter is divided into 2 major steps prediction and 
correction steps. Each step includes 3 sub-steps as 
follows. [1,15] 
Step 1a: SOC prediction time update 

 𝑧𝑝(𝑘) = 𝐴. 𝑧𝑒(𝑘 − 1) + 𝐵. 𝑖(𝑘 − 1) (6) 

Step 1b: Error covariance time update 
 Σ𝑧(𝑘) = 𝐴. 𝑧𝑒(𝑘 − 1). 𝐴𝑇 + Σ𝑝 (7) 

Step 1c: Predict terminal voltage. 
 𝑣𝑇,𝑝(𝑘) = 𝐶. 𝑧𝑝(𝑘) + 𝐷. 𝑖(𝑘) (8) 

Step 2a: estimator (Kalman) gain matrix 
 𝐿(𝑘) = Σ𝑧(𝑘). 𝐶[𝐶. Σ𝑧(𝑘). 𝐶𝑇 + Σ𝑠]

−1 (9) 
Step 2b: SOC estimates measurement update. 

 𝑧𝑒(𝑘) = 𝑧𝑝(𝑘) + 𝐿(𝑘). (𝑣𝑇(𝑘) − 𝑣𝑇,𝑝(𝑘)) (10) 

Step 2c: error-covariance measurement update 
 Σ𝑧𝑒(𝑘) = (𝐼 − 𝐿(𝑘). 𝐶)Σ𝑧(𝑘) (11) 

2.5. SOH Estimation 

Apart from accurate SOC monitoring of SOC, one of 
the key factors to consider for battery DTs is the 

degradation of the battery cells. The battery SOH shows 
battery degradation and residual capacity of the battery 
due to chemical reactions, cycling, and many more 
electrochemical parameters [1,16]. Capacity fade was 
estimated by the following equation. 

 
𝑆𝑂𝐻𝑄 =

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑒𝑙𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑄)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑄0)
 

(12) 

The SOC of the battery cell 
 

𝑧𝑘2 = 𝑧𝑘1 −
1

𝑄
∑ 𝜂[𝑘]𝑖[𝑘]

𝑘2−1

𝑘=𝑘1

 

 
(13) 

 
 

(𝑧𝑘2 − 𝑧𝑘1)𝑄 = − ∑ 𝜂[𝑘]𝑖[𝑘]

𝑘2−1

𝑘=𝑘1

 

 
(14) 

By rearranging the equation, a linear equation of y = 
Qx is formed where with a regression method total cell 
capacity was estimated. To estimate total capacity, Q for 
y =Qx using the need to measure N -vectors of measured 
data xi and yi which links to battery from a cell over time 
interval i, where xi is the change in state-of-charge over 
that interval [1] 

 xi = 𝑧𝑘2 − 𝑧𝑘1 (15) 

yi is the net accumulated ampere hours passing through 
the cell during that period. 

 

yi = ∑ 𝜂[𝑘]𝑖[𝑘]

𝑘2−1

𝑘=𝑘1

 

 
(16) 

Store measured value of (xi,yi) and using the WLS 
method, the total capacity of the cell was estimated. 
Various steps for least square methods are as follows:[1] 
Estimate weighted-least-squares (WLS) cost function. 

 
𝜒𝑊𝐿𝑆
2 =∑

(𝑦𝑖 − 𝑌𝑖)
2

σyi
2 =∑

(𝑦𝑖 − �̂�𝑥𝑖)
2

σyi
2 

𝑁

𝑖=1

𝑁

𝑖=1

 
 
(17) 

minimize weighted-least-squares (WLS) cost function. 
 𝛿𝜒𝑊𝐿𝑆

2

𝛿�̂�
= −2∑

𝑥𝑖(𝑦𝑖 − �̂�𝑥𝑖)

σyi
2  = 0 

𝑁

𝑖=1

 

  

(18) 

 
∑

𝑥𝑖𝑦𝑖
σyi

2 
  

𝑁

𝑖=1

= 𝑄∑
𝑥𝑖

2

σyi
2 

  

𝑁

𝑖=1

 

  

(19) 

Each time a new data pair (xi,yi) is available, compute 
 

𝑐1 =∑
𝑥𝑖

2

σyi
2   

𝑁

𝑖=1

   ;  𝑐2 =∑
𝑥𝑖𝑦𝑖
σyi

2   

𝑁

𝑖=1

 

  

(20) 

Estimate Total cell capacity.  
 �̂� =

𝑐2
𝑐1

 (21) 
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Similarly, Power fade is a decrease in a battery's 
ability to deliver output power due to a rise in internal 
resistance (R0). Discharge power is computed by setting 
the cell terminal voltage to vmin. As internal resistance Rk 
increases over time, output power decreases.[1] 

 
𝑆𝑂𝐻𝑅 =

𝑅𝑝𝑟𝑒𝑠𝑒𝑛𝑡 − 𝑅𝐵𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝑙𝑖𝑓𝑒

𝑅𝐸𝑛𝑑 𝑜𝑓 𝑙𝑖𝑓𝑒 − 𝑅𝐵𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝑙𝑖𝑓𝑒
 

(22) 

The value of R0 at the beginning of life is usually 
available from the manufacturer description whereas R0 
at the end of life is assumed to be 1.5 to 2 times R 0 at 
the beginning of life[1]. To estimate R0 terminal voltage 
was measured and current from the battery. The 
terminal voltage of the cell was estimated by  

 𝑣[𝑘] = 𝑂𝐶𝑉[𝑧(𝑘)] − 𝑖[𝑘]. 𝑅0 
  

(23) 

 𝑣[𝑘 − 1] = 𝑂𝐶𝑉[𝑧(𝑘 − 1)] − 𝑖[𝑘
− 1]. 𝑅0 

(24) 

Subtracting equation 24 from rquation 23 
(Neglecting changes in OCV value because cell SOC zk 
changes relatively slowly compared to how quickly ik 
changes) 

 𝑣[𝑘] − 𝑣[𝑘 − 1] ≈ (𝑖[𝑘 − 1] − 𝑖[𝑘])𝑅0 (25) 
 

𝑅0 ≈
𝑣[𝑘] − 𝑣[𝑘 − 1]

(𝑖[𝑘 − 1] − 𝑖[𝑘])
 

(26) 

R0 estimation of the LTO cell was done using the 
above equation for the LTO current and voltage dataset. 
Furthermore, the estimated equivalent series resistance 
(Internal resistance) signal is filtered using the one-pole 
digital filter. 

 R0,k,filt= α R0,k-1,filt + (1- α)R0,k (27) 

3. RESULTS AND DISCUSSIONS 

3.1 Terminal Voltage 

Physics-based models, Kalman filter and WLS models 
are discussed in previous sections for battery modelling, 
SOC, and SOH estimation. Based on the experimental 
dataset, battery parameters were estimated and used in 
the models. Voltage response to the input current profile 
from Fig. 3 and Fig. 4 is estimated and compared with 

experimental data in Fig. 7. Figure shows model results 
of terminal voltage are found to be compared well with 
experimental LTO battery data. 

3.2 State of charge 

In section 2.3 Kalman filter is discussed for SOC 
estimation of the battery. For the given input current to 
state space model of Kalman filter SOC of LTO is 
estimated as shown in Fig. 8. Battery is operated 
between SOC range of 0 % to 90%. Estimated SOC is 
considered for capacity estimation using the WLS 
method described in section 2.5. 

3.3 Cell Capacity 

WLS regression technique is discussed for total cell 
capacity estimation of LTO cells. Since data collection 
from the robot was random whenever the robot was 
booted, due to lack of battery cycling data, a timestep 
independence study was done by considering various 
sample times for capacity estimation. 

3.4 Equivalent series resistance/ Internal resistance 

As described in section 2.5, the power fade of the 
battery depends on the rise in internal resistance(R0). Fig. 
10 shows the estimated R0 and filtered value of R0 using 
one pole digital filter. During the initial operation of the 
battery, R0 value is around 0.0105Ω. over the operation 
of 32 hours, a slight rise was observed in internal 
resistance to 0.125Ω. Due to noisy data, some rise and 
fall in R0 estimation was observed since the model covers 

Fig. 7. Model results terminal voltage comparison 
with experimental data. 

 

 
Fig. 8. State of charge 

 

 
Fig. 9. Battery cell capacity 
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all major changes in cell current during the charge and 
discharge of the battery. 

In future work, a major focus will be on battery pack 
integration for battery storage and battery management 
systems. In this study, model parameters were estimated 
from real-world data which is a complex task due to 
factors like temperature and battery variations. While 
the Kalman filter method was used for estimating battery 
SOC and the WLS method for SOH estimation, the next 
challenge is to integrate this model for a large-scale 
battery pack for power system applications.  

4. Conclusion  
In this paper, an outline of the battery DT of a LTO 

battery is discussed. A physics-based Thevenin 
equivalent circuit model is developed. The experimental 
dataset of LTO battery storage is analyzed and leads to 
battery cell parameter estimation. Estimated parameters 
were used as input to physics-based models. Kalman 
filter is used for SOC estimation of LTO battery storage. 
The estimated terminal voltage was validated with 
experimental data. The SOH estimation method is 
discussed as the capacity and power fade of the battery 
cell. The WLS method was used for the total cell capacity 
estimation of the battery and internal resistance (R 0) 
was estimated for power fade. This paper defines an 
overview of battery modelling of battery DT. In future 
research, battery models will be coupled together on 
pack level with a battery management system as DT of a 
use case study of a power system application. 
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