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Summary of thesis

The advancing sensitivity of gravitational wave detectors not only broadens
our knowledge of the universe but also calls for the refinement of the waveform
models. The focus of this thesis is the study of the impact that the absence
of the multipole asymmetry from the waveform models has on the measured
binary black hole parameters and the development of more accurate Phenom

waveform models by modelling this missing physics.
We conduct a systematics study to investigate the impact of the absence of

this asymmetry using two versions of NRSur7dq4 [1], the original NRSur7dq4
and a “symmetric” NRSur7dq4, where the asymmetry is removed. Moreover,
we show how the introduced biases are affected by the recoil velocity and
other parameters. We also consider the highly precessing GW200129 signal [2,
3]. This study shows that the absence of the multipole asymmetry from the
waveform models leads to significant biases in the spin measurements in the
case of strongly precessing systems with high signal-to-noise ratio (SNR).

Based on these results, the inclusion of the multipole asymmetry in the
waveform models will be essential for the correct measurement of these pa-
rameters in the next observational runs when we expect to observe similar to
these events. Therefore, we developed the first phenomenological multipole
asymmetry model. Our model is implemented into PhenomPNR [4] and will be
available in O4. The amplitude and the phase of the asymmetry are modelled
in the frequency-domain co-precessing frame. To model the amplitude, we use
post-Newtonian (PN) expressions to compute a ratio of the anti-symmetric
amplitude over the symmetric amplitude. This PN ratio is our starting point
for the modelling of the corresponding numerical relativity ratio. The asym-
metry amplitude model is obtained by multiplying this ratio model with one of
the existing symmetrized waveform models. To model the phase, we construct
the asymmetry phase derivative using the phase derivative of the symmetric
phase and the derivative of the precession angle, α. During the inspiral, the
asymmetry phase derivative is equivalent to the sum of these terms while closer
to the merger it becomes equal to the derivative of the symmetric phase.
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• In Chapter 2, we introduce the BAM catalogue that consists of 80 numer-
ical relativity simulations that are used to tune the multipole asymmetry
model. The catalogue was developed by members of the Cardiff wave-
form group including myself. This work has been published in [5]. I
contributed to the development of 6 of these simulations and I have also
developed 4 additional double-spin simulations using the BAM code,
which are not included in this catalogue.

• Chapter 3 presents collaborative work with Mark Hannam and Jonathan
Thompson. Jonathan Thompson created the symmetric version of the
surrogate, assisted me when I was setting up the runs and provided the
“de-glitched” data. I conducted the parameter estimation analysis and
additional preparations described in the chapter. A publication based
on this work is currently in preparation.

• Chapter 4 presents collaborative work with Shrobana Ghosh and Mark
Hannam. From the work presented in this chapter, I was responsible for
the development of the anti-symmetric amplitude model and Shrobana
Ghosh developed the model of the anti-symmetric phase. Therefore, this
chapter focuses on the work I did for the development of the amplitude
model providing only a brief overview of the phase model. A publication
based on this work is currently in preparation.



Acknowledgements

I would like to thank my supervisor, Mark, for giving me the opportunity to
work on such an amazing topic, for his support throughout my PhD and his
encouragement during these last months when I was writing my thesis. I would
also like to thank all the people I was lucky to work with for their support,
guidance, and always being willing to listen and answer my questions. I am
also grateful to all the outstanding PhD students and postdocs I met during
my PhD, who made many days more joyful and entertaining with exciting
discussions and by sharing laughs.

I am deeply grateful to all the amazing people in my life who have con-
tributed to this journey. I want to express my deepest appreciation to my
mum, Stella, for her invaluable support and encouragement. Thank you for al-
ways being just a phone call away. I would also like to thank my partner Aris.
Your support has sustained me through the highs and lows of this endeavour.
Thank you for being my best friend. Lastly, I want to acknowledge my friends
back home for all the joy and support I have received from them over the
years, as well as the amazing friends I was very lucky to make while being in
Cardiff and in Durham whose friendship, kindness, and encouragement have
made this journey richer.

To all those mentioned and those not mentioned, thank you from the bot-
tom of my heart for being part of this journey.



Contents

List of Figures vi

List of Tables xiii

1 Introduction 1

2 Setting the stage: The fundamentals of gravitational wave as-
tronomy 3

2.1 An introduction to general relativity . . . . . . . . . . . . . . . 3

2.2 Gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Linearised gravity . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Gravitational wave sources . . . . . . . . . . . . . . . . . 9

2.3 Gravitational wave detectors . . . . . . . . . . . . . . . . . . . . 11

2.4 Post-Newtonian waveforms . . . . . . . . . . . . . . . . . . . . . 14

2.5 Binary black hole waveforms . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Precessing binaries . . . . . . . . . . . . . . . . . . . . . 16

2.5.2 Co-precessing frame . . . . . . . . . . . . . . . . . . . . . 18

2.5.3 Multipole asymmetry . . . . . . . . . . . . . . . . . . . . 20

2.6 Waveform models . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 Surrogate models . . . . . . . . . . . . . . . . . . . . . . 25

2.6.2 Systematic errors . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Numerical relativity waveforms . . . . . . . . . . . . . . . . . . 31

2.8.1 BAM Code . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8.2 BAM catalogue . . . . . . . . . . . . . . . . . . . . . . . 33

3 Multipole asymmetries and parameter biases 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Waveform model . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Parameter estimation analysis . . . . . . . . . . . . . . . . . . . 38

3.3.1 NRSur7dq4 theoretical waveforms . . . . . . . . . . . . . 41

3.3.2 GW200129 gravitational wave signal . . . . . . . . . . . 44

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 The impact of the anti-symmetric contribution . . . . . . 46



Contents v

3.4.2 Dependence on inclination, recoil, spin magnitude and
mass ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.3 GW200129 signal . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 A phenomenological model of the multipole asymmetry 68
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Structure of the model . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Motivation for the multipole asymmetry model . . . . . 69
4.2.2 NR data conditioning for modelling . . . . . . . . . . . . 74
4.2.3 Symmetric and anti-symmetric contributions in PN theory 77
4.2.4 Hybrids and amplitude ratio . . . . . . . . . . . . . . . . 80

4.3 Amplitude model . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4 Surface fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5 Phase model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6 Model accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Conclusions and Future Directions 104

Bibliography 107



List of Figures

2.1 Orbital decay of the Hulse-Taylor binary PSR B1913+16. The
observed data (red) perfectly match the theoretical curve (blue)
predicted by general relativity. The image was taken from [6]. . 6

2.2 Diagram of the LIGO’s interferometers. The gravitational wave
is reaching the detector from directly above it. The image was
taken from [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Amplitude spectral density of aLIGO (top) and AdVirgo (bot-
tom) for the O1-O5 observing runs taken from [8]. Some of
the anticipated sensitivities are shown as bands due to the un-
certainty regarding the impact of the scheduled improvements.
Note that the presented ranges correspond to the achieved ranges
during the first three observing runs and the anticipated ranges
during the next ones, for an orientation-averaged, 1.4M⊙ +
1.4M⊙ binary neutron star merger. . . . . . . . . . . . . . . . . 13

3.1 Amplitude spectral density of the three interferometers’ strain
sensitivity: LIGO Livingston, LIGO Hanford, Virgo. The sensi-
tivity curves were computed in O3b and used in LVK GWTC-3
analyses [9] and the analysis of GW200129 in Ref. [3]. The
square of the amplitude spectral density gives the power spec-
tral density of the detectors. . . . . . . . . . . . . . . . . . . . . 39

3.2 The minimum (blue) and maximum (red) recoil velocity values
and the corresponding in-plane spin direction angles that were
selected for this study. . . . . . . . . . . . . . . . . . . . . . . . 43



List of Figures vii

3.3 Magnitude and direction of each spin, a1/m1 and a2/m2, for
minimum recoil (q = 2, a1/m1 = 0.7, θLS = 90◦) configuration
at inclination ι = 30◦ as they were measured by the NRSur7dq4
(blue) and NRSur7dq4 sym (red) models. The results indicate
that the absence of the multipole asymmetry introduces biases
in the measurement of the spins magnitudes and tilt angles.
(a) The measured dimensionless magnitude, a1/m1, and tilt an-
gle, θLS1 , of the primary black hole. The true value is 0.7 for
the magnitude and 90o for the tilt angle. The two parame-
ters are recovered well with NRSur7dq4. However, the measure-
ments with the symmetric surrogate fail to recover correctly the
same parameters. In this case, the results indicate that the pri-
mary black hole has a higher spin magnitude and tilt angle. (b)
The measured dimensionless magnitude, a2/m2, and tilt angle,
θLS2 , of the secondary black hole. This is a single-spin system.
The two parameters are recovered well with the full surrogate.
However, the measurements with NRSur7dq4 sym fail to recover
them correctly. In this case, the results indicate that the sec-
ondary black hole is spinning. . . . . . . . . . . . . . . . . . . . 51

3.4 Magnitude and direction of each spin, a1/m1 and a2/m2, for
maximum recoil (q = 2, a1/m1 = 0.7, θLS = 90◦) configuration
at inclination ι = 30◦ as they were measured by the NRSur7dq4
(blue) and NRSur7dq4 sym (red) models. The results indicate
that the absence of the multipole asymmetry introduces biases
in the measurement of the spins magnitudes and tilt angles.
Comparing these results to the ones presented in Fig. 3.3, we
observe that the introduced biases are not significantly affected
by the in-plane spin direction. (a) The measured dimension-
less magnitude, a1/m1, and tilt angle, θLS1 , of the primary
black hole. The true value is 0.7 for the magnitude and 90o

for the tilt angle. The two parameters are recovered well with
the full surrogate. However, the measurements with the sym-
metric surrogate fail to recover correctly the same parameters.
In this second case, the results indicate that the primary black
hole has a slightly higher spin magnitude and tilt angle. (b)
The measured dimensionless magnitude, a2/m2, and tilt angle,
θLS2 , of the secondary black hole. This is a single-spin system.
The two parameters are recovered well with the full surrogate.
However, the measurements with NRSur7dq4 sym fail to recover
them correctly. In this second case, the results indicate that the
secondary black hole has a high spin magnitude. . . . . . . . . . 55



viii List of Figures

3.5 Magnitude and direction of each spin, a1/m1 and a2/m2, for
maximum recoil (q = 2, a1/m1 = 0.7, θLS = 90◦) configuration
at inclination ι = 90◦ as they were measured by the NRSur7dq4
(blue) and NRSur7dq4 sym (red) models. The results indicate
that the absence of the multipole asymmetry introduces biases
in the measurement of the spins magnitudes and tilt angles.
Comparing these results to the ones presented in Fig. 3.3, we
observe no significant dependency between the introduced bi-
ases and the inclination of the binary black hole system. (a) The
measured dimensionless magnitude, a1, and tilt angle, θ1, of the
primary black hole. The true value is 0.7 for the magnitude and
90o for the tilt angle. The two parameters are recovered well
with NRSur7dq4. However, the measurements with the sym-
metric surrogate fail to recover correctly the same parameters.
In this case, the results indicate that the primary black hole
has a higher spin magnitude. (b) The measured dimensionless
magnitude, a2, and tilt angle, θ2, of the secondary black hole.
This is a single-spin system. The two parameters are recovered
well with the full surrogate. However, the measurements with
NRSur7dq4 sym fail to recover them correctly. In this case, the
results indicate that the secondary black hole has a high spin
magnitude and tilt angle. . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Magnitude and direction of each spin, a1/m1 and a2/m2, for
maximum recoil (q = 2, a1/m1 = 0.4, θLS = 90◦) configuration
at inclination ι = 60◦ as they were measured by the NRSur7dq4
(blue) and NRSur7dq4 sym (red) models. The results indicate
that the absence of the multipole asymmetry introduces some
biases in the measurement of the spins magnitudes and tilt an-
gles. (a) The measured dimensionless magnitude, a1, and tilt
angle, θ1, of the primary black hole. The true value is 0.4 for the
magnitude and 90o for the tilt angle. The two parameters are
recovered well with both models and the measurements with the
symmetric surrogate are only slightly shifted. (b) The measured
dimensionless magnitude, a2, and tilt angle, θ2, of the secondary
black hole. This is a single-spin system. The two parameters
are recovered well with the full surrogate. However, the mea-
surements with NRSur7dq4 sym fail to recover them correctly.
In this case, the results indicate that the secondary black hole
is spinning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



List of Figures ix

3.7 Magnitude and direction of each spin, a1/m1 and a2/m2, for
maximum recoil (q = 4, a1/m1 = 0.8, θLS = 90◦) configuration
at inclination ι = 60◦ as they were measured by the NRSur7dq4
(blue) and NRSur7dq4 sym (red) models. The results indicate
that the absence of the multipole asymmetry introduces some
biases in the measurement of the spins magnitudes and tilt an-
gles. (a) The measured dimensionless magnitude, a1, and tilt
angle, θ1, of the primary black hole. The true value is 0.8 for
the magnitude and 90o for the tilt angle. The two parameters
are recovered relatively well with both models and the measure-
ments with the symmetric surrogate are only slightly shifted.
(b) The measured dimensionless magnitude, a2, and tilt angle,
θ2, of the secondary black hole. This is a single-spin system. The
two parameters are recovered well with NRSur7dq4. However,
the measurements with NRSur7dq4 sym fail to recover them cor-
rectly. In this case, the results indicate that the secondary black
hole has a high spin that reaches the Kerr limit and a high tilt
angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Comparison between the results from the full surro-
gate model and those from the symmetric surrogate.
One-dimensional posterior distributions for the mass ratio of
the binary black hole system. . . . . . . . . . . . . . . . . . . . 59

3.9 Comparison between the results from the full surro-
gate model and those from the symmetric surrogate.
One-dimensional posterior distributions for the total mass of
the binary black hole system. . . . . . . . . . . . . . . . . . . . 60

3.10 Comparison between the results from the full surrogate
model and those from the symmetric surrogate. One-
dimensional posterior distributions for the χeff of the binary
black hole system. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.11 Comparison between the results from the full surrogate
model and those from the symmetric surrogate. One-
dimensional posterior distributions for the primary black hole’s
dimensionless spin a1/m1. . . . . . . . . . . . . . . . . . . . . . 62

3.12 Comparison between the results from the full surro-
gate model and those from the symmetric surrogate.
One-dimensional posterior distributions for the secondary black
hole’s dimensionless spin a2/m2. . . . . . . . . . . . . . . . . . . 63

3.13 Comparison between the results from the full surrogate
model and those from the symmetric surrogate. One-
dimensional posterior distributions for tilt angle of the primary
black hole’s spin. . . . . . . . . . . . . . . . . . . . . . . . . . . 64



x List of Figures

3.14 Comparison between the results from the full surro-
gate model and those from the symmetric surrogate.
One-dimensional posterior distributions for tilt angle of the sec-
ondary black hole’s spin. . . . . . . . . . . . . . . . . . . . . . . 65

3.15 Comparison between the results from the full surrogate
model and those from the symmetric surrogate. One-
dimensional posterior distributions for the log likelihood. . . . . 66

3.16 One-dimensional posterior distributions for the mass ratio, χeff ,
primary spin magnitude and tilt angle, for the NRSur7dq4 (blue)
and NRSur7dq4 sym (red) recovery of GW200129. . . . . . . . . 67

4.1 The (ℓ = 2, |m| = 2) and (ℓ = 3, |m| = 3) multipole asymmetry
amplitudes in the frequency domain co-precessing frame against
the (ℓ = 2,m = 2) and higher multipoles for the (q = 2, χ =
0.8, θSL = 90o). The amplitude of the (ℓ = 2, |m| = 2) anti-
symmetric component, h̃22a , is comparable to the amplitude of
the (ℓ = 3,m = 3) multipole, h̃33. However, since the (ℓ =
3,m = 3) multipole extends to higher frequencies, overall the
power in the (ℓ = 3,m = 3) multipole is higher than for the
(ℓ = 2, |m| = 2) multipole asymmetry. The (ℓ = 3, |m| = 3)
anti-symmetric component, h̃33a , is weaker and comparable to
the (ℓ = 5,m = 5) multipole, h̃55. . . . . . . . . . . . . . . . . . 71

4.2 The two panels show the amplitude and the phase derivative
of the (ℓ = 2,m = 2) symmetric and anti-symmetric waveform
components in the frequency-domain QA frame. The symmetric
and anti-symmetric waveforms are computed for the (q = 1, χ =
0.4, θLS = 60o) NR simulation. . . . . . . . . . . . . . . . . . . . 75

4.3 The anti-symmetric contribution of the hybrid waveform (or-
ange) plotted against the anti-symmetric contribution of the NR
waveform of the (q = 2, χ = 0.7, θLS = 90o) configuration in the
time-domain. The waveforms have been aligned at the merger
and at early times the asymmetry of the hybrid is oscillating. . . 83

4.4 The two panels show the amplitude and the phase derivative
of the (ℓ = 2,m = 2) multipole asymmetry in the frequency-
domain QA frame. The PN-NR hybridised waveform of the
(q = 2, χ = 0.7, θLS = 90o) configuration is compare against the
corresponding NR simulation. . . . . . . . . . . . . . . . . . . . 84

4.5 The ratios of the (ℓ = 2,m = 2) anti-symmetric over the sym-
metric amplitude of the (q = 2, χ = 0.7, θLS = 90o) signal. The
PN ratio, κPN(f), calculated in a co-precessing frame is com-
pared against the hybrid ratio, κhyb(f), and NR ratio, κNR(f),
computed in the frequency-domain QA frame. . . . . . . . . . . 86



List of Figures xi

4.6 The NR ratio, κNR(f), of the (ℓ = 2,m = 2) anti-symmetric
over the symmetric amplitude of the (q = 1, χ = 0.4, θLS =
60o) NR waveform against the PN ratio, κPN(f), and some of
the tested ratio models. The considered ansatzes of the ratio
model are computed by applying a correction to the PN ratio,
κPN(f), to increase its accuracy at higher frequencies. The ratio
model, κ(f), performs better compared to the other considered
corrections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 The two panels show the ratio and the multipole asymmetry
amplitude model in the frequency-domain QA frame for the (q =
1, χ = 0.4, θLS = 60o) waveform. The initial fit performs well in
this case up to the ringdown frequency fRD. A correction has
been applied to the final model (orange) to ensure its accuracy
at frequencies f ≥ fRD. . . . . . . . . . . . . . . . . . . . . . . 90

4.8 The two panels show the performance of the ratio and the mul-
tipole asymmetry amplitude model in the presence of large os-
cillations in the anti-symmetric amplitude for the (q = 1, χ =
0.8, θLS = 30o) waveform. The ratio and the amplitude model
go through these oscillations. The ratio of the NR data is in-
creasing at frequencies f ≥ fRD instead of reaching a plateau.
This is corrected in the final ratio model (orange) to ensure the
model’s accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.9 The two panels show the performance of the ratio and the mul-
tipole asymmetry amplitude model in the presence of small os-
cillations in the anti-symmetric amplitude for the (q = 2, χ =
0.8, θLS = 60o) waveform. The ratio and the amplitude model
go through these oscillations. The ratio of the NR data is in-
creasing at frequencies f ≥ fRD rather than reaching a plateau.
This is corrected in the final ratio model (orange) to ensure the
model’s accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.10 The two panels show the performance of the ratio and the mul-
tipole asymmetry amplitude model in a case where the ampli-
tudes of the anti-symmetric and the symmetric NR (q = 2, χ =
0.4, θLS = 90o) waveform have different decay rates. In this
case, the amplitude’s ratio is increasing at frequencies f ≥ fRD.
This feature appears in some of the NR data and is corrected
by applying a correction to the final model (orange). . . . . . . 93

4.11 The b coefficient as a function of the symmetric mass ratio,
ν, for a selected angle θLS = 90o and all the available spin
values, χ = [0.2, 0.4, 0.6, 0.8]. The grey line shows the surface
fit, b(ν, 90◦) from Eq. (4.39). . . . . . . . . . . . . . . . . . . . 94

4.12 Surface b(ν, θLS) = b0 + b1ν + b2θLS + b3νθLS fit of the model’s
coefficient, b, to the two-dimensional parameter space ν, θLS.
The red points denote the 80 computed b coefficients of the
multipole asymmetry amplitude model. . . . . . . . . . . . . . 95



xii List of Figures

4.13 The anti-symmetric amplitude model computed from the sur-
face fit given by Eq. 4.39 (purple) against the NR anti-symmetric
amplitude (blue) and the amplitude model Eq. 4.38 before (green)
and following (orange) the decay rate correction for the (q =
1, χ = 0.4, θLS = 60o) waveform. The amplitude model com-
puted from the surface fit is in excellent agreement with the NR
amplitude and the amplitude model following the decay rate
correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.14 The performance of the final amplitude model in the presence of
large oscillations for the (q = 1, χ = 0.8, θLS = 30o) waveform.
A detailed description of the presented quantities is given in
Fig. 4.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.15 The performance of the final amplitude model in the presence of
small oscillations for the (q = 2, χ = 0.8, θLS = 60o) waveform.
A detailed description of the presented quantities is given in
Fig. 4.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.16 The performance of the final amplitude model for the (q =
2, χ = 0.4, θLS = 90o) waveform where the symmetric and anti-
symmetric decay rates differ. A detailed description of the pre-
sented quantities is given in Fig. 4.13. . . . . . . . . . . . . . . 97

4.17 Mismatches of the anti-symmetric waveform model in the co-
precessing frame with NR data. The black triangles show the
mismatches for the combined amplitude and phase model while
the magenta squares (cyan circles) show the mismatches for just
the amplitude (phase) model with the phase (amplitude) con-
structed from NR data. The dashed magenta and cyan lines
show the average mismatch for the amplitude and phase model,
respectively; on average they are of comparable accuracy. The
black solid line shows the average mismatch for the overall
model. The x-axis denotes the case index of the NR simulation
as usual i.e., five different θLS for each spin magnitude shown in
figure, for q = 1,2,4 and 8. . . . . . . . . . . . . . . . . . . . . . 100

4.18 Mismatches (same as Fig. 4.17) showing comparison of the am-
plitude model constructed using the spin magnitude-independent
surface fit of Eq. 4.35 (blue squares) with the amplitude model
constructed from the true fit coefficients (green circles). . . . . . 101



List of Tables

3.1 The recovered parameters for the de-glitched GW200129 data
with their 90% credible intervals. The results were recovered
using the NRSur7dq4 and NRSur7dq4 sym models. . . . . . . . . 53



xiv List of Tables



Chapter 1

Introduction

The LIGO-Virgo-KAGRA collaboration has made more than 90 observations

since the first gravitational wave detection in 2015 [10, 11, 12, 13, 9]. The

majority of these detections have been binary black holes and we expect this

to continue to be the case during the next observing runs. The continuous

improvement of the gravitational wave detectors enhances their sensitivity. As

a result, in the future, we expect to detect a wider range of signals from a

variety of binary black hole systems that can provide new insights into the

nature of these compact objects.

Following the detection of the first strongly precessing system [3, 2] in O3,

the detection of more precessing systems is anticipated in the upcoming O4

observing run. The improved sensitivity of the detector will also allow the

detection of signals with stronger SNR. Therefore, we expect it to become

more common that we can measure precession and the individual spins of the

black holes.

However, the significance of these detections would be diminished without

accurate waveform models. The waveform models are an essential tool that

extracts valuable information from the detected signals about the nature of

their sources. Thus, it is vital to ensure the accuracy of these models. In

the next observing runs, due to the detection of louder precessing signals,

systematic errors associated with these models will pose a new obstacle.

The modelling of the binary black hole systems is a challenging task and

several approximations are employed to simplify the process of constructing the

models, or to reduce the number and accuracy of the numerical relativity (NR)

waveforms that must be used. One such approximation is the assumption that

the gravitational wave energy is emitted symmetrically above and below the



2

orbital plane even in systems where this symmetry is broken by the precession

of the orbital plane.

The main focus of this thesis is the study of the impact that the absence

of the multipole asymmetry from the waveform models has on the measured

binary black hole parameters and the development of more accurate Phenom

waveform models by modelling this missing physics. In Chapter 2, we provide a

basic description of the concepts relevant to this thesis that set the stage for the

next chapters. In Chapter 3, we present the results of an extended systematics

study that we performed using the NRSur7dq4 model to investigate the effects

that the absence of the multipole asymmetry has on the measurement of the

source parameters. In Chapter 4, we present the first phenomenological model

of multipole asymmetry. The main outcomes of this work and possible future

directions are discussed in Chapter 5.



Chapter 2

Setting the stage: The

fundamentals of gravitational

wave astronomy

2.1 An introduction to general relativity

The theory of general relativity that was developed by Albert Einstein [14, 15],

transformed our perception of gravity and spacetime. In this theory, gravity is

described as the outcome of the curvature of spacetime caused by the presence

of mass and energy. Here we will provide a brief description of the most impor-

tant equations of general relativity to help the reader navigate the upcoming

sections. For an in-depth description of the theory, we refer the reader to the

textbooks [16, 17].

The spacetime is a 4-dimensional differentiable manifold M equipped with

a Lorenzian metric g. The metric specifies the geometry and causal structure

of spacetime. As a result, it is used to determine the line element

ds2 = gαβdx
αdxβ (2.1)

that denotes the distance between two points on M . In general relativity,

the concept of a straight line is extended to accommodate the curvature.

In a curved spacetime, freely moving or falling particles move always along

geodesics which are paths that extremise the proper time. The geodesic equa-
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tions can be expressed mathematically as

d2xα

dτ 2
= −Γα

βγ

dxβ

dτ

dxγ

dτ
. (2.2)

The Christoffel symbols Γα
βγ represent the connection coefficients in a curved

spacetime and are defined in terms of the metric as

gαδΓ
δ
βγ =

1

2

(
∂gαβ
∂xγ

+
∂gαγ
∂xβ

− ∂gβγ
∂xα

)
. (2.3)

The curvature of the spacetime is denoted by the Riemann tensor that encodes

the failure of initially parallel geodesics to remain parallel due to the curvature

of spacetime and is defined as

Rα
βγδ =

∂Γα
βδ

∂xγ
−
∂Γα

βγ

∂xδ
+ Γα

γϵΓ
ϵ
βδ − Γα

δϵΓ
ϵ
βγ. (2.4)

The relationship between the curvature of spacetime and the distribution

of matter is described by the Einstein field equations or Einstein’s equations

Gαβ = 8πGTαβ. (2.5)

In Eq. 2.5 Tαβ is the stress-energy tensor representing the source of curvature

and Gαβ is the Einstein tensor defined as

Gαβ = Rαβ −
1

2
gαβR, (2.6)

where Rαβ is the Ricci tensor or Ricci curvature defined as Rαβ ≡ Rγ
αγβ and

R is the scalar curvature defined as the trace of the Ricci tensor R = gαβRαβ.

From its definition and Eq. 2.4, the Ricci curvature can be expressed in terms

of the Christoffel symbols as

Rαβ =
∂Γγ

αβ

∂xγ
− ∂Γγ

αγ

∂xβ
+ Γγ

αβΓ
δ
γδ − Γγ

αδΓ
δ
βγ. (2.7)

The Einstein field equations consist of ten coupled, non-linear, 2nd-order par-

tial differential equations. We note that in the study of general relativity, it

is common practice the use of geometrized units where the gravitational con-

stant, G, and the speed of light, c, are set to unity (c = G = 1). In this

thesis, we employ geometrized units by default, with explicit inclusion of con-
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stants when necessary for clarity. Having discussed some of the fundamental

concepts of general relativity, we can now shift our focus to acquire a deeper

understanding of gravitational waves.

2.2 Gravitational waves

The existence of gravitational waves was predicted by Albert Einstein, who

first introduced them in his theory of general relativity in 1916 [14, 15]. A

fundamental principle arising from general relativity is that mass causes the

curvature of spacetime. Accelerated matter creates ripples in the curvature of

spacetime, which we refer to as gravitational waves. These waves propagate

outward, extending in all directions at the speed of light. Although gravita-

tional waves carry significant amounts of energy away from a radiating system,

their detection posed a significant challenge due to the inherent weakness of

gravitational interaction.

The first indirect evidence for the existence of gravitational waves was

observed by Hulse and Taylor in 1974 [18]. They monitored a binary system

composed of a neutron star and a pulsar—a rapidly rotating neutron star with

high magnetization that emits beams of electromagnetic radiation from its

magnetic poles. Similar to black holes and white dwarfs, depending on the

mass of the star, neutron stars are a type of stellar remnants formed after a

massive star exhausts its nuclear fuel and undergoes gravitational collapse. In

the context of general relativity, we refer to this type of binary systems as

compact binary systems. Compact objects are stellar remnants characterised

by high mass density and strong gravitational fields such as neutron stars,

black holes and white dwarfs and their study is crucial in understanding and

testing the predictions of general relativity. For a more in-depth discussion

of stellar evolution and stellar remnants, the reader is encouraged to consult

Ref. [19].

Hulse and Taylor observed that the orbital period of the binary system was

decreasing in the rate that was predicted by the general theory of relativity

[14, 15, 20]. The theory of general relativity asserts that in compact binary

systems there is a loss of gravitational binding energy through gravitational

wave emission leading to a gradual reduction in their orbital separation. Due

to this orbital decay, the orbital period of the system is expected to change

over time. Fig. 2.1 shows the remarkable agreement between the observed data
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and the theoretical predictions of general relativity. This observation verified

the emission of gravitational waves by the binary.

Figure 2.1: Orbital decay of the Hulse-Taylor binary PSR B1913+16. The
observed data (red) perfectly match the theoretical curve (blue) predicted by
general relativity. The image was taken from [6].

The first direct detection of gravitational waves took place many years

later on September 14, 2015 [21]. This was the result of decades of work to

construct highly sensitive detectors by a global scientific collaboration. The

LIGO-Virgo collaboration detected for the first time, a gravitational wave sig-

nal, GW150914, generated from the merging of a binary black hole system [21].

This detection was followed by many more in the following years and marked

the dawn of a new era in gravitational wave astronomy. The detection of grav-

itational waves offers us the unique opportunity to measure the properties of

their sources and gain new valuable insights into these objects.

2.2.1 Linearised gravity

Linearised gravity serves as a useful tool for gaining insight into gravitational

waves and studying their propagation and their effects on test particles. The
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linearised approximation can be applied to weak gravitational fields and small

perturbations on a flat spacetime significantly simplifying the solution of the

Einstein equations. As a result, this is an excellent approximation for the

study of gravitational waves originating from distant sources that reach Earth

as subtle disturbances in the spacetime.

Assuming that the effects of gravity are small enough that they can be

treated as a small deviation from a flat Minkowski spacetime, we can introduce

weak metric perturbations |hαβ| ≪ 1 to the flat spacetime metric gαβ = ηαβ.

Introducing these metric perturbations, if δ denotes the linear perturbation of

a quantity, then hαβ ≡ δgαβ and the metric takes the form

gαβ = ηαβ + hαβ (2.8)

where ηαβ = diag(−1, 1, 1, 1) is the Minkowski metric and hαβ are weak per-

turbations.

Assuming that Tαβ ̸= 0 and that the curvature produced by Tαβ is weak

enough for the linearised approximation to hold, we introduce the trace-reversed

amplitude

h̄αβ = hαβ −
1

2
ηαβh. (2.9)

If we then define the Lorenz gauge condition

h̄αβ,β = 0, (2.10)

we can use it to simplify Eq. 2.5. The linearised field equations for weak sources

can then be rewritten as

□h̄αβ = −16πGTαβ (2.11)

where □ is the d’Alembertian operator. From Eq. 2.5, we note that in this

gauge the linearised Einstein equations become wave equations for each com-

ponent of h̄αβ.

To unravel the attributes of the gravitational waves, we will study the

solution of the Einstein equations outside the source. In vacuum, Tαβ = 0 and

the Einstein equations given in Eq. 2.5 take the form Rαβ = 0. Substituting

Eq. 2.8 in Rαβ = 0 we can obtain the linearized vacuum Einstein equations

δRαβ = 0 (2.12)
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Expressing the Ricci tensor in terms of the Christoffel symbols the linearised

Einstein equations in vacuum become

δRαβ =
1

2
[−□hαβ + Vβ,α + Vα,β] = 0 (2.13)

where

Vα = hγα,γ −
1

2
hγγ,α. (2.14)

If we then introduce the Lorenz gauge condition

Vα = hγα,γ −
1

2
hγγ,α = 0 (2.15)

we can simplify Eq. 2.13 significantly and the latter becomes

δRαβ = −1

2
□hαβ (2.16)

Then, by substituting Eq. 2.12, Eq. 2.16 takes the form of the wave equation

□hαβ = 0. (2.17)

The general solution of Eq. 2.17 is the plane-wave solution

hαβ = ααβe
iηαβk

αχβ

(2.18)

where ααβ are the different amplitudes and kα = (ω,k) is the wave vector with

kαkα = 0 and ω = |k|. Furthermore, from the plane-wave solution, we find

that the waves are propagating with the speed of light c = 1. To simplify the

matrix ααβ, we can introduce two more conditions

h0i = 0 (2.19)

hββ = 0 (2.20)

where i = 1, 2, 3. From these two conditions and the Lorenz condition given

in Eq. 2.15 we find that

α00 = 0 (2.21)

kjαij = 0. (2.22)

The last equation yields that the gravitational waves are transverse. Eqs. 2.15, 2.19
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and 2.20 define the transverse-traceless gauge (TT) where the plane-wave so-

lutions given in Eq. 2.18 can be rewritten as

hTT
αβ = Aαβe

iηαβk
αχβ

(2.23)

where Aαβ is the polarisation vector. Assuming that the wave propagation is

along the z-axis, the general solution of the linearised Einstein equations in

the TT gauge becomes

hTT
αβ =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 eiω(z−t) (2.24)

where h+ and hx represent the amplitudes of the gravitational waves in the two

gravitational wave polarisations and the common factor eiω(z−t) represents the

time and space dependence of the wave, emphasizing the common oscillatory

behaviour of the two polarizations.

The metric perturbations hαβ cause no change in the distance between

two particles along the z-axis. However, as the gravitational wave propagates,

the transverse separations between two particles change with time. We can

then define the complex strain h from the cross and plus gravitational wave

polarisations

h = h+ − ih×. (2.25)

To sum-up from the solutions of the linearised Einstein equations, we have

found that the gravitational waves propagate at the speed of light, are trans-

verse and have two independent polarisations. Furthermore, we have discussed

how they interact with test particles.

2.2.2 Gravitational wave sources

The universe is replete with numerous sources of gravitational waves. Grav-

itational waves can be produced by any non spherically or cylindrically sym-

metrical acceleration. This can be better understood if we consider the mass

quadrupole moment. According to general relativity, the quadrupole moment

is the lowest order moment that can produce gravitational radiation. The

lower monopole moment representing the total mass of a system that remains
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conserved due to the mass conservation, is unable to radiate gravitationally.

Similarly, the dipole moment and its first derivative represent the center of

mass and the linear momentum of the system, respectively, and due to the

conservation of momentum, it is also unable to generate gravitational waves.

While the dipole measures the mass distribution away from the center of mass

in a specific direction, the mass quadrupole moment signifies the stretching of

mass along an axis i.e. a sphere will have zero quadrupole. To rephrase now

the statement at the start of this paragraph, gravitational waves are produced

by time-varying mass quadrupole moments. For a more in-depth discussion

of the mass moments and gravitational radiation, the reader is encouraged to

consult Refs. [22, 23].

In the universe, supernova explosions, binary systems, non-spherical spin-

ning stars, the big bang, are just some examples of gravitational wave sources [24,

25]. The gravitational wave signals emitted by these sources can be classified

in three categories in terms of the nature of these signals [26, 27]. Transient

signals can be defined with respect to the sensitivity of the employed detector

as the product of events characterised by brevity in time or events of longer

duration such as the coalescence of compact binaries that have been the pri-

mary focus of gravitational waves astronomy and can be detected during the

final stages. Another type of signal are the continuous signals. The signals

in this category have a significantly longer duration increasing in theory the

likelihood of observing them. However, their inherent weakness poses a con-

siderable obstacle postponing their detection. The final category is stochastic

signals. This term is used to describe a collection of multiple, weak signals

rather than isolated individual ones. The signals comprising this sum origi-

nate from numerous different sources at various points in time.

The gravitational waves of these sources are emitted across a large range of

frequencies and their detection depends on the sensitivity band of the gravita-

tional wave detectors. Current ground based detectors are sensitive to gravita-

tional wave signals within the high-frequency band, spanning from 1 Hz to 104

Hz [28, 29, 30, 31]. Some of the sources that can possibly be detected by these

interferometers are the compact stellar-mass binaries, core-collapse supernovae

and stochastic backgrounds. During the first three observing runs, these de-

tectors identified a large population of binary black hole mergers alongside

a smaller number of binary neutron star and neutron star-black hole merg-

ers [11, 12, 13, 9]. Future detectors are expected to make detections at dif-
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ferent frequency ranges allowing the detection of gravitational waves emitted

from new sources like supermassive black holes that we expect to detect with

LISA [32]. In this thesis we will focus on gravitational wave signals emitted

from compact binary systems and more specifically binary black hole systems.

The dynamical evolution of a compact binary system is characterised by

three distinct phases: the inspiral, merger and ringdown of the system. During

these three phases the system emits gravitational radiation and loses energy

and angular momentum. At the start of their coalescence, the two compact

objects are gravitationally bound, but widely separated exhibiting a quasi-

spherical inspiral motion. During this phase, the emission of gravitational

waves causes the gradual reduction of the separation between the two objects.

The duration of the inspiral phase in the detectors’ sensitivity band is

dictated by the masses of the two companions. Objects with greater mass, such

as black holes, emit significantly shorter gravitational wave signals compared to

lighter objects like neutron stars. During the last orbits of the binary, while the

separation between the two objects decreases faster, the emitted gravitational

waves become stronger and carry away from the system significant amounts of

energy. At the point of merger, the two objects merge into a single remnant

black hole. Then during the final phase of the coalescence the produced Kerr

black hole goes through damped perturbations and the emitted gravitational

radiation is in the form of quasinormal modes.

2.3 Gravitational wave detectors

Gravitational wave detectors utilize the principle of interferometry to detect

passing gravitational waves. During the first three observing runs O1 − O3,

three gravitational wave detectors, the LIGO Livingston, LIGO Hanford and

Virgo detectors, were in operation and built a catalogue of close to 100 detec-

tions of compact binary mergers. These detectors are in the form of ground

based, L-shaped interferometers that take advantage of the quadrupolar de-

formations that are produced by a passing gravitational wave. They closely

resemble a Michelson-Morley interferometer, but they are significantly more

complex and larger with arm length of 4 km for LIGO and 3 km for Virgo.

The detectors use a highly sensitive laser beam that is split in two equal

beams that each is directed along one of the orthogonal arms of the detector.

The beams travel multiple times back and forth the arms reflected by the
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mirrors that are placed at the end of the arms and close to the beam splitter

before they recombine at the beam splitter. In the absence of detections,

the two beams are designed to remain out of phase when travelling the same

distance, causing their destructive interference. A passing gravitational wave

causes the deformation of space by simultaneously stretching it in one direction

and shrinking it in a perpendicular direction. Therefore, the length of each

arm increases and decreases alternately as gravitational waves pass and the two

beams stop being out of phase. This causes the formation of an interference

pattern at the output of the detector.

Figure 2.2: Diagram of the LIGO’s interferometers. The gravitational wave is
reaching the detector from directly above it. The image was taken from [7].

These large interferometers are capable of detecting binary mergers occur-

ring at large extragalactic distances. However, the sensitivity of the detector

is limited by the presence of noise. There are three main noise sources: quan-

tum noise that consists of shot noise and radiation pressure, thermal noise and

seismic noise [33, 34]. The sum of all the noise sources determines the sensi-

tivity of the detector that is characterised by the frequency dependent power

spectral density
1

2
Sh(f) =< |ñ(f)|2 > ∆f (2.26)

or the amplitude spectral density S
1/2
h (f), where ñ(f) is the combination of

all the noise sources in the detector in the Fourier domain and the operation

<> denotes an average over multiple noise realizations [35].

The sensitivities of the advanced LIGO and advanced Virgo detectors dur-
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Figure 2.3: Amplitude spectral density of aLIGO (top) and AdVirgo (bottom)
for the O1-O5 observing runs taken from [8]. Some of the anticipated sen-
sitivities are shown as bands due to the uncertainty regarding the impact of
the scheduled improvements. Note that the presented ranges correspond to
the achieved ranges during the first three observing runs and the anticipated
ranges during the next ones, for an orientation-averaged, 1.4M⊙ + 1.4M⊙ bi-
nary neutron star merger.

ing the first three observing runs as well as their anticipated values during the

O4 and O5 observing runs [8] are shown in Fig. 2.3. The frequency-dependent

strain sensitivity of each detector is limited at low frequencies by a superposi-

tion of several noise sources and by the photon shot noise at high frequencies.

As can be seen from the sensitivity curves of the detectors, in O4 it is antic-

ipated to have better sensitivity indicating more frequent detections. In the

forthcoming chapters of this thesis, we use sensitivity curves of the LIGO Liv-

ingston, LIGO Hanford and Virgo detectors that were computed in O3b and
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used in LVK GWTC-3 analyses [9].

2.4 Post-Newtonian waveforms

In general relativity, the solution of the Einstein field equations is significantly

simplified with the use of the post-Newtonian (PN) approximation. In Sec-

tion 2.2.1, we showed that the linearised theory can offer a valuable insight

into gravitational waves assuming weak gravitational fields. In linearised grav-

ity, the curvature of the spacetime and the velocity of the gravitational wave

source are regarded as independent entities. The gravitational waves are then

studied as small perturbations on the flat spacetime allowing the study of their

source using Newtonian physics [36, 16, 17].

However, this approximation proves inadequate in the case of relativistic

systems bound together by gravitational forces. From the virial theorem, for

weakly self-gravitating systems such as binaries with large separation, we have

(v/c)2 ∼ Rs/d (2.27)

where v is the relative velocity in the system, Rs = 2Gm/c2 is the Schwarzschild

radius, m the total mass of the system and d the orbital separation. In the case

of weakly self-gravitating, slowly moving sources, the curvature and the motion

of the source cannot be considered independent and the post-Newtonian (PN)

formalism emerges as a well-suited approach for the study and modelling of

gravitational waves emitted by binary black hole systems allowing the compu-

tation of the waveform emitted by an inspiralling binary system. The basis of

the PN theory is the introduction of relativistic corrections in (v/c) terms to

the results of linearised theory. In the PN formalism, the equations of motion

and gravitational field are expanded in terms of (v/c).

Separate PN results exist for the conservative dynamics, the radiation re-

action, and the gravitational-wave strain. In Chapter 4, we make use of the

results in Ref. [37], which give the gravitational wave strain up to 1.5PN order

given the dynamics of a binary system. The reader can find a more detailed in-

troduction to the PN formalism in Ref. [36]. Alternatively, Ref. [38] provides an

in-depth presentation of the applications of PN theory in gravitational waves

astronomy.
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2.5 Binary black hole waveforms

In Section 2.2.1, we showed that the gravitational wave signal can be written

as

h = h+ − ih×. (2.28)

The complex polarisation is frequently decomposed with respect to an or-

thonormal basis of spin-weighted s = 2 spherical harmonics Y −s
lm (θ, ϕ) that are

defined on a 2-sphere where θ and ϕ are the polar and azimuthal angles. The

weighted spin harmonics Y −s
lm are defined in Ref. [39] and are given by

Y −s
lm (θ, ϕ) = (−1)s

√
2l + 1

4π
dlsm (θ) eimϕ, (2.29)

with

dlsm(θ) =

C2∑
t=C1

(−1)t [(l +m)!(l −m)!(l + s)!(l − s)!]1/2

(l +m− t)!(l − s− t)!t!(t+ s−m)!

×
(
cos

θ

2

)2l+m−s−2t

×
(
sin

θ

2

)2t+s−m

,

(2.30)

where the range of the summation is from C1 = max (0,m− s) to C2 =

min (l +m, l − s) and t takes integer values within this range [40]. The grav-

itational wave strain can then be written in the form

h (θ, ϕ) =
+∞∑
l=2

l∑
m=−l

hlm(t)Y
−2
lm (θ, ϕ) . (2.31)

The gravitational wave multipoles hlm can then be obtained from the surface

integral

hlm =

∫
dΩh (θ, ϕ)Y −2∗

lm (θ, ϕ) (2.32)

where dΩ = sin θdθdϕ [37]. The hlm multipoles are complex quantities that

can be written as the product of their time or frequency dependent amplitude

Alm and phase ϕlm

hlm = Alme
iϕlm . (2.33)

In the NR simulations, we often instead calculate the Weyl scalar ψ4 that

is given by

ψ4 = −Rαβγδn
αm̄βnγm̄δ, (2.34)
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where Rαβγδ is the Riemann tensor and n, m̄ are part of a null-tetrad basis [40].

The ψlm
4 multipoles of the scalar are given from its projection on the spin weight

−2 spherical harmonics

ψ4 (t) =
∑
l,m

Y −2
lm (θ, ϕ)ψlm

4 (t) . (2.35)

In the Bondi gauge, ψ4 is related to the strain h by the relation [41]

ψ4 = ḧ. (2.36)

However, computing the strain from Eq. 2.36 can contaminate the sub-dominant

multipoles with unphysical artefacts due to the amplification of numerical

noise. As we will see in Chapter 4, this calculation can be done with a more

preferable method.

2.5.1 Precessing binaries

The presence and the direction of the black holes’ spins have a significant

impact on the characteristics of the detected waveforms. With respect to their

spins, the binary black hole systems can be classified into three distinct types:

non-spinning, aligned-spin and precessing binaries.

In the case of non-spinning binaries, the two black holes of the system have

zero spin and the direction of the orbital angular momentum, L̂, is preserved

while the system’s orbital plane remains fixed. However, in the presence of

spinning black holes the dynamics of the system depend on the direction of

the spin vectors with respect to the direction of the orbital angular momentum

vector. In the special case of aligned-spin binaries, both black holes have spins

that are aligned or anti-aligned to the orbital angular momentum L̂. Due to

the presence of the aligned or anti-aligned spins, the length of the observed

waveform and consequently the total time to merger increases or decreases,

respectively, compared to that of the non-spinning binaries. Similar to the

non-spinning binaries, the direction of the orbital angular momentum, L̂, of

the aligned-spin binaries remains fixed over time resulting in a fixed, time-

independent orbital plane throughout the binary black hole coalescence. In

these cases, the majority of the gravitational energy that the system emits is

found in the dominant (ℓ = 2, |m| = 2) multipoles [42].

In more generic cases where the spins are misaligned with the orbital an-
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gular momentum L̂, the systems exhibit precession. The arbitrary orientation

of the spins results in the coupling of the orbital angular momentum with the

spins and the spins with each other. Due to these couplings, the direction of

the orbital angular momentum L and the total spin vector

S = S1 + S2 (2.37)

become time dependent causing the precession of the orbital plane of the sys-

tem [43, 44, 45]. The total spin vector precesses around the orbital angular

momentum and both these vectors precess about the total angular momentum

of the system given as

J(t) = L(t) + S(t) (2.38)

that maintains an approximately fixed direction over time. This type of pre-

cession is called simple precession. Assuming a binary with infinite separation,

the total angular momentum vector is not fixed, but precesses around its av-

erage direction called asymptotic total angular momentum direction. However,

the shift of its direction with time is small compared to the precession cones

of the spins and the orbital angular momentum and can often be neglected

[46, 42].

The precession of the orbital plane and the spins is reflected on the emitted

radiation. The precession introduces modulations in the amplitude of the

emitted waveforms and secular and oscillatory modifications in the phase of the

binary. Additionally, the power that is distributed in the waveform multipoles

is also affected by precession. Although in the non-precessing systems the

signal’s power is mostly contained in the dominant (ℓ = 2, |m| = 2) multipoles,

in the presence of precession the power is redistributed and transferred to sub-

dominant multipoles [47].

During the binary black hole coalescence, the primary gravitational energy

emission occurs along the direction of orbital angular momentum L̂(t). Since

the orbital angular momentum L(t) precesses around the average direction of

the total angular momentum Ĵ(t), the major portion of the gravitational energy

is also discharged in the direction of Ĵ(t) [48]. As a result, the strength of the

precession effects on the detected waveforms depends on the inclination of the

orbital plane with respect to the observer. The precession of the same system

would be perceived differently by two static observers at different positions with

respect to the initial direction of the total angular momentum. An observer
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aligned with the direction of the initial total angular momentum will detect

a waveform with small modulations, however, an observer positioned in an

arbitrary position with respect to Ĵ(t) will observe stronger effects of precession

on the emitted signal since while the orbital plane precesses, their position with

respect to L̂(t) will alter with time [42, 49].

Simple precession is the most common, but not the only type of precession.

In the special case that a system reaches a moment during the binary black

hole coalescence where the total spin and orbital angular momentum have ap-

proximately the same amplitude and opposite directions, L ≈ −S, the system

undergoes a different type of precession called transitional precession [50]. It

is important for the two vectors to only be approximately anti-aligned since

there is no precession in an anti-aligned-spin binary.

For a simple precessing system to reach this epoch, the orbital angular

momentum of the binary has to be initially larger than the total spin of the

system. As the system evolves during the inspiral, it loses orbital angular

momentum and the magnitude of L(t) decreases while the magnitude of the

spin vector S(t) remains approximately the same. As a result, if the binary

reaches a point where L ≈ −S, the type of precession shifts from simple to

transitional. The system continues in this new phase of precession for most of

the inspiral phase.

Contrary to simple precession, in transitional precession, the total angular

momentum J(t) of the system has a small amplitude and its direction is no

longer approximately fixed during the inspiral. Let the orbital plane being in

the x-y plane of a Cartesian coordinate system, Ĵ(t) changes rapidly with time

crossing the x-y plane and taking negative values. This introduces significant

distortions in the emitted waveforms. However, the likelihood of detecting

transitional waveforms using ground based detectors is anticipated to be very

low [42]. For a more detailed description of simple and transitional precession,

we direct the reader to Refs. [50, 42]. In this work, we will only be considering

cases of simple precession.

2.5.2 Co-precessing frame

In an inertial frame, the presence of strong modulations in the precessing

waveforms can complicate their study and the production of accurate waveform

models. However, the effects of precession can be significantly minimised with

the use of the appropriate frame of reference that can track the precession of
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the orbital plane. A co-precessing frame is a non-inertial coordinate system

whose z-axis tracks the direction along which the majority of gravitational

energy emission occurs [47, 51, 52, 53]. The definition of the co-precessing

frame does not correspond to a single frame and there are different methods

to track the precession of the orbital plane.

The direction of quadrupole alignment corresponds to the direction along

which the (ℓ = 2, |m| = 2) multipoles are maximised [47]. This is accomplished

by finding the direction that maximises the function |ψ4,22|2 + |ψ4,2−2|2. We

should note that this calculation can also be done with the gravitational wave

strain h instead of the Weyl scalar ψ4 leading to slightly different co-precessing

frames. The non-inertial quadrupole aligned (QA) frame tracks throughout

the binary black hole coalescence this direction of maximum emission which is

approximately along the direction of the orbital angular momentum L̂(t). The

frame rotates to keep L̂(t) parallel to the z-axis while the x-y plane tracks the

orbital plane. In this co-rotating frame, the system is not precessing closely

resembling a non-precessing system.

The QA frame is described by three Euler angles (α, β, γ) that represent

the rotation of the precessing waveforms from the inertial frame to the co-

precessing frame. The three Euler angles (α, β, γ) constitute the precession

angles. The fundamental concept of this rotation revolves around the selection

of three distinct axes and expressing the rotation as a combination of three

rotations aligned with those axes.

In the first definitions of the QA frame in Refs. [47, 51] it is shown that

two rotation angles are sufficient for the rotation to the co-precessing frame.

However, as it is shown in Ref. [52], in the complete definition of the QA

frame a third angle, γ, is also employed to adjust the phase introducing the

minimal-rotation condition leading to a uniquely defined frame aligned with

the radiation axis that remains invariant under the rotation of the inertial

frame. The minimal-rotation condition leads to the expression

γ̇ = −α̇ cos β (2.39)

that allows the calculation of γ from the other two precession angles.

The rotation to the QA frame is performed by applying a time dependent

rotation to the inertial frame using the z-y-z convention. As a result, the

R(αβγ) rotation is performed in three steps: a rotation by α about the z-axis,

followed by a rotation by β about the new y-axis and a final rotation by γ
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about the z-axis. The multipoles in the QA frame ψQA
4,lm and the inertial frame

ψ4,lm′ obey the transformation law

ψQA
4,lm =

l∑
m′=−l

eim
′αdlm′m(β)e

imγψ4,lm′ (2.40)

where dlm′m are the Wigner d-matricies described in Ref. [39] and given by

Eq. 2.30. Similarly, we can follow the same procedure with the precession

angles (−γ,−β,−α) to rotate the QA frame back to the original precessing

inertial frame.

2.5.3 Multipole asymmetry

In non-spinning and align-spin binaries, the direction of the orbital angular

momentum L̂ remains fixed along the z-axis at all times. This results in the

symmetrical emission of gravitational energy along the negative and positive

directions of the z-axis. This symmetrical radiation of energy can be expressed

as a symmetry between opposite waveform multipoles leading to the expression

hlm(t) = (−1)lh∗l−m(t) (2.41)

that is valid for non-precessing systems.

On the other hand, in misaligned-spin binaries, the direction of the orbital

angular momentum L̂ changes with time leading to the precession of the orbital

plane and the gravitational radiation is beamed approximately along the time

dependent L̂. In these systems, the gravitational energy is no longer emitted

symmetrically and the symmetry between the positive hlm and negative hl−m

multipoles is broken. Due to this introduced multipole asymmetry, Eq. 2.41 no

longer holds and the relation between opposite waveform multipoles is given

by the PN expression that is introduced in Ref. [37]

ĥl−m(Φ) = (−1)lĥlm(Φ + π) (2.42)

where Φ is the orbital phase and ĥlm is the PN hlm normalised by its leading

order PN term; see Chapter 4 for more details. Eq. 2.42 denotes the depen-

dency of the multipole asymmetry on the phase of the system. From this arises

that when hlm is independent of Φ, Eq. 2.41 holds and there is no multipole

asymmetry (see relative discussion in Ref. [37]).
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In the co-precessing frame as it is explained in Section 2.5.2, the frame

tracks the precession of the orbital plane reducing the effects of precession on

the gravitational wave signal. However, the multipole asymmetry continues

to be present and Eq. 2.41 does not apply. In this frame, the majority of the

energy is radiated along the z-axis, however, there is an imbalance between

positive and negative multipoles meaning that the gravitational energy emitted

above and below the orbital plane differs. This difference in energy emission

is the result of the multipole asymmetry.

The hlm and hl−m waveforms are complex quantities that can be written

as the sum of their symmetric and anti-symmetric contributions,

hlm = Ase
iϕs + Aae

iϕa , (2.43)

hl−m = (−1)l(Ase
−iϕs − Aae

−iϕa), (2.44)

where As and Aa denote the symmetric and anti-symmetric amplitude, respec-

tively, and ϕa and ϕs are the symmetric and anti-symmetric phase. We should

note that the above quantities depend on time, or on frequency in the case

where the signal is in the Fourier domain. As a result, these expressions are

valid in both the frequency and time domains. Then, in a co-precessing frame,

the symmetric and the anti-symmetric contributions of the (ℓ, |m|) multipoles

are defined as the complex quantities

hslm =
hlm + (−1)lh∗l−m

2
, (2.45)

halm =
hlm − (−1)lh∗l−m

2
, (2.46)

respectively, where ∗ denotes the conjugate of the complex hl−m waveform that

takes the form

h∗l−m = (−1)l(Ase
iϕs − Aae

iϕa). (2.47)

Recoil velocity

The physical implication of the presence of multipole asymmetry is quite severe

for the binary system. In binaries where the black hole spins are misaligned

with the orbital angular momentum, the presence of multipole asymmetry

leads to the recoil of the binary that is also known as the rocket effect [54, 55,

56, 57]. This kick that the black hole receives can be of thousands of km/s
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and arises from the conservation of momentum.

Throughout the inspiral and merger, the emission of gravitational radiation

leads to the loss of angular and linear momentum. Due to the anisotropic

emission of gravitational radiation, the loss of linear momentum exhibits a

preferential direction. This loss of linear momentum can be calculated from

Ψ4 by

dPi

dt
= lim

r→∞

[
r2

16π

∫
Ω

ℓi

∣∣∣∣∫ t

−∞
Ψ4dt̃

∣∣∣∣2 dΩ
]

(2.48)

where ℓi is the radial unit vector ℓi = (sin θ cosϕ, sin θ sinϕ, cos θ) [58, 55] and

due to the conservation of momentum at merger the newly formed black hole

obtains recoil velocity. The mass and the spins of the two black holes as well

as the dynamics of the system closer to the merger determine the value of the

recoil velocity. Therefore, at merger the system receives a kick that removes

it from its initial centre of mass.

In cases where the recoil velocity is significant, the merged black hole

can be completely removed from its surrounded environment or even its host

galaxy [59, 60, 61]. This leads to a slowly increasing population of interstellar

and intergalactic black holes. Furthermore, the rocket effect can also have a

severe effect on the evolution and formation of the host galaxies if we consider

the presence of massive black holes in the galactic center that could undergo

this process.

Superkick binaries

The out-of-plane recoil arises primarily due to the presence of the multipole

asymmetry in misaligned binaries. This can be better understood if we consider

a superkick configuration where the recoil velocity is large [62, 63]. In the

special case of a binary system with two equal-mass black holes and in-plane

spins with equal magnitude and opposite directions, S1 = −S2, the two spins

cancel out and the total spin of the binary is S = 0. As a result, similar to the

non-spinning binaries, these systems do not exhibit precession and the majority

of the emitted gravitational energy is in the (ℓ = 2, |m| = 2) multipoles.

The superkick systems display π symmetry as they remain unaltered when

subjected to a 180 degrees rotation around the initial z-axis or any axis per-

pendicular to the orbital plane. Due to this symmetry, the linear momentum

of the system is radiated solely along the direction of the z-axis. Since there is

no loss of linear momentum along the x and y axes, the center of mass of the
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system moves only along the z-axis while its position in the x-y plane remains

the same.

Although the orbital plane of the superkick binaries exhibits no precession,

the asymmetry between the opposite multipoles is present and the linear mo-

mentum loss is uneven [63]. Consequently, the superkick configuration offers

an insight into the effects of the multipole asymmetry while isolating them

from the precession effects on the gravitational wave signal. In Ref. [63], it

is found that the recoil velocity of the merged black hole increases with the

energy emission difference between the opposite multipoles. Furthermore, it

also concluded that there is a sinusoidal dependence of the recoil velocity and

consequently of the multipole asymmetry on the initial direction of the black

hole spins. These conclusions will be revisited and utilised in the forthcoming

chapters.

2.6 Waveform models

The detection of gravitational waves and the extraction of information about

their sources depend on the accuracy of waveform models that cover fully the

inspiral-merger-ringdown (IMR) phases of the binary black hole coalescence.

The development of more accurate waveform models is a continuous effort to

ensure that as the sensitivities of the detectors are improved, uncertainties

in the measurements that arise from approximations and missing physics will

remain small facilitating the accurate estimation of the source parameters.

A large population of binary black hole mergers has been detected during

the first three observing runs as described in Section 2.2.2. The waveform

models that have been used by the LIGO-Virgo-KAGRA collaboration over

this period for the measurement of the properties of the black holes and the

location of the detected systems belong to three distinct families of waveform

models. The Phenom [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 4] and

SEOBNR [76, 77, 78, 79, 80, 81, 82] models are the most commonly used models

in the analysis of detected signals and a third family, the surrogate [83, 84, 85,

1, 86] models has also been used over the last years.

The Phenom and SEOBNR waveform models employ results from the PN

theory, the effective-one-body (EOB) approximation and numerical relativity

to model the waveforms of non-precessing binaries. The EOB formalism is an

analytical approach that is used in waveform modelling to describe the motion



24 2.6. Waveform models

and radiation of binary systems. EOB employs high-order PN results, but

instead of using them in their Taylor-expanded form, it employs a resummation

of these results. A detailed description of this formalism can be found in

Refs. [87, 88]. The EOB theory and the PN formalism introduced in Section 2.4

are two approaches to the two-body problem that possess distinct advantages

and limitations.

The EOB theory has been found to be accurate in the late inspiral and the

merger where the PN formalism that is accurate in the early inspiral cannot

be used. In addition, the successful generation of numerical relativity (NR)

simulations in 2005 [89, 90, 91] opened the way to the generation of accurate

waveform models throughout the IMR. A combination of PN and EOB results

has proved sufficient for the accurate modelling of the inspiral while the NR

simulations are employed to tune the Phenom and SEOBNR models at the late

inspiral and merger.

These approaches were first applied in the modelling of aligned-spin bina-

ries, where there is no precession to produce aligned-spin Phenom and SEOBNR

models [65, 66, 73, 72, 75, 70, 76, 79]. In misaligned-spin binaries, the pres-

ence of precession introduces modulations to the amplitude and phase of

the signal and makes its dynamical evolution more complex as we described

in Section 2.5.1. These effects are significantly simplified with the use of

the appropriate frame. The co-precessing frame that we described in Sec-

tion 2.5.2, tracks the precession of the orbital plane and thereby the precess-

ing waveform in this frame approximately resembles a non-precessing wave-

form [42, 49, 68, 77, 64, 84].

The Phenom and SEOBNR models employ this simplification of the signal

in the co-precessing frame to model the precessing waveforms. Instead of

directly modelling the more complex precessing signal, both models com-

pute an approximate precession waveform by transforming the non-precessing

model to the inertial frame assuming that the non-precessing waveform is a

precessing waveform in a co-precessing frame. This rotation to the inertial

frame is performed using an independent model for the precession dynam-

ics [64, 68, 92, 74, 77, 76, 93].

In the first Phenom models the six spin components of the two black holes

of the system are captured by two parameters, the effective aligned-spin pa-

rameter, χeff and the effective precession spin parameter, χp [49]. The χeff

was introduced in PhenomB [94] to capture the effects of the two spin compo-
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nents that are parallel to the orbital angular momentum of the system and is

denoted from the following relation

χeff =
1

M
(m1χ1 +m2χ2) (2.49)

where χi are dimensionless spins, mi the individual masses of the black holes

andM the total mass [95]. The χp parameter is later introduced in PhenomPv2

to substitute the four in-plain spin components of the system and its value is

assigned to the larger black hole of the system. The last captures the dynamics

of precession and is denoted from

χp =
Sp

m2
2

= max(A1S1⊥, A2S2⊥), (2.50)

where A1 = 2+ 3m2

2m1
and A2 = 2+ 3m1

2m2
for (m2 > m1) and S⊥ the perpendicular

to L̄ spin components, respectively, [49, 96]. The χeff and χp parameters

continue to be part of the data analysis process as their calculation allows us

to gain an insight into the system’s spin dynamics and indicates the presence

of precession.

The IMRphenomXPHM model is the most recent Phenom model that was used

during the O3 observing run for the analysis of the detected signals. It is a

frequency-domain model that was built as an extension of IMRphenomXHM. In

IMRphenomXPHM higher multipoles up to ℓ ≤ 4 have been included and tuned

to NR data. Furthermore, precession effects have been modelled, but have not

been tuned to NR simulations.

In the latest frequency-domain Phenom model, IMRphenomPNR, that is built

upon the aligned-spin model, PhenomD, the precession effects at merger and

ringdown have been modelled against NR simulations. As we will discuss in

the next chapter, up until recently, none of the Phenom waveforms modelled the

asymmetry between the multipoles, discussed in Section 2.5.3. In Chapter 4,

we will introduce a model of the multipole asymmetry that has been added to

IMRphenomPNR and is the first phenomenological multipole asymmetry model.

2.6.1 Surrogate models

The development of the surrogate waveform models relies mainly on the NR

waveforms. NR waveforms that accurately capture the evolution of the binary

black hole systems, are employed to train these models minimising the intro-
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duction of any additional assumptions that are present in the other families of

waveform models [83, 84, 85, 1, 86]. Therefore, compared to other waveform

models, surrogate models are significantly more accurate within the parame-

ter space of the NR waveforms they were trained against. The state-of-the-art

surrogate is the NRSur7dq4 waveform model introduced in Ref. [1].

As we explained at the start of this section, for the modelling of precess-

ing waveforms, the use of a co-precessing frame, a non-inertial frame that

tracks the precession of the orbital plane, simplifies a precessing waveform

that becomes similar to that of a non-precessing binary. Similarly to the other

waveform models, the surrogate employs a similar approach and models the

precessing waveforms in a co-orbital frame [1]. A waveform in the co-precessing

frame hcoprlm (t) can be transformed to the co-orbital frame by applying a rotation

around the z-axis of the co-precessing frame,

hcoorblm (t) = hcoprlm (t)eimϕ(t) (2.51)

where the ϕ(t) is the orbital phase given by

ϕ(t) =
arg

[
hcopr2−2 (t)

]
− arg [hcopr22 (t)]

4
. (2.52)

In the co-orbital frame, the black holes of the binary remain on the x-axis

with the larger black hole always placed in the positive x-axis. In this frame,

the presence of oscillations introduced by precession are further minimised

simplifying even more the modelling of the waveforms. In the surrogate, the

co-orbital waveforms are further split into the plus h+lm and minus h−lm contri-

butions that correspond to the symmetric and anti-symmetric contributions,

h±lm =
hcoorblm ± hcoorb∗l−m

2
(2.53)

for m > 0. For even ℓ the symmetric contribution is h+ℓm and the anti-

symmetric contribution is h−ℓm, and for odd ℓ it is the reverse. Each of these

components is modelled independently and from their combination the co-

orbital frame surrogate is obtained [84, 1].

Although, within its validity range, the accuracy of the surrogate is com-

parable to that of the NR simulations, in other parts of the parameter space

its accuracy declines [1]. The surrogate has been trained against 1528 NR

waveforms with mass ratios q ≤ 4, spin magnitudes χ1, χ2 ≤ 0.8 and includes
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all ℓ ≤ 4 spin weighted spherical harmonic multipoles. Additionally, the surro-

gate models are produced from NR waveforms that exhibit a limited number

of orbits prior to the merger of the system. For the modelling of the non-

precessing systems, the surrogate models employ hybridised NR waveforms

that are constructed by stitching PN/EOB waveforms with NR results [86].

This method is considered as a possible approach in the efforts to increase the

length of precessing surrogate waveforms. Furthermore, assuming a waveform

with a starting frequency of 20 Hz, the precessing surrogate NRSur7dq4 stops

being valid at lower total mass M ≲ 66M⊙.

The use of the surrogate for the measurement of the source parameters

is limited only within its validity range and the analysis of signals outside

this range can only be done with the Phenom and SEOBNR models, which are

in principle usable at all masses, and for a wide range of mass ratios. In

Chapter 3, we will discuss further the implications of these limitations and the

construction of the surrogate.

2.6.2 Systematic errors

The IMR models are employed by the matched filtering techniques that are

used in the search of signals emitted from binary black hole systems. These

techniques are sensitive enough to identify the signals that are generated during

the coalescence of the system and separate them from the noise in the data

[97], [98]. Then the source parameters of the detected systems are recovered

by matching the models to the signals.

The waveform models are approximate models that have a number of sim-

plifications. These simplifications are introduced in some cases due to the high

computational cost of the NR simulations or in order to simplify the modelling

process by introducing approximations and not including physical effects that

are not expected to affect the analysis of the detected signals. However, as

the sensitivities of the detectors are improved, the inclusion of some of the

missing physics is required to ensure the accuracy of the models in the future

detections. Otherwise, these simplifications could be the source of systematic

errors in the measurement of the source parameters [96].

This type of errors differ from the statistical errors that depend on the

width of the posterior distribution around the mean value of the measured pa-

rameter and are the result of introduced detector noise or low signal-to-noise

ratio (SNR). In contrast, in the presence of the systematic errors, we observe
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an overall shift of the recovered values from their true values. Therefore, the

use of certain approximations could introduce significant biases in the measure-

ments of the source parameters resulting in misleading conclusions regarding

the detected systems. In the case of the Phenom and SEOBNR waveform models,

one of these simplifications is the absence of the multipole asymmetry from

the available models.

In the forthcoming chapters, we employ the NRSur7dq4 to investigate the

importance of including the multipole asymmetry in the waveform models and

we present the first Phenom model of the multipole asymmetry. NRSur7dq4

is the first waveform model that modelled the anti-symmetric contribution

of the waveform. The clear separation of the symmetric and anti-symmetric

waveform contributions in this model enables a simple removal of the anti-

symmetric contribution, thereby allowing us to utilize this model effectively

to study the effects that the absence of the multipole asymmetry has on the

data analysis. Furthermore, due to the high accuracy of the surrogate within

a specified area of the parameter space, the selection of appropriate binary

configurations within this area allows us to treat NRSur7dq4 as our “true”

model and the starting point for systematic studies.

2.7 Parameter estimation

The measurement of the source parameters from the detected gravitational

wave signals offers a unique opportunity to study their population, understand

their formation mechanisms and test the theory of general relativity as well as

other theories of gravity. To obtain the astrophysical parameters of the sources,

we utilise statistical inference techniques on the signals’ data d(t) that are the

sum of the signal s(t) and the combination of all the noise sources n(t),

d(t) = s(t) + n(t). (2.54)

The weak nature of the detected signals results in large uncertainties in the

parameters we wish to measure and prior assumptions regarding the ampli-

tude and phase evolution of the signals influence greatly the reconstructed

waveforms. To address these factors, the inference of the system’s physical

parameters is carried out within the framework of Bayesian parameter estima-

tion [35].
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Given a waveform model hM and θ the model parameters that we wish to

measure, by employing the Bayes’ theorem [99] that is defined as

p(θ|d, hM) =
p(d|θ, hM)p(θ|hM)

p(d|hM)
, (2.55)

we can calculate the posterior probability p(θ|d, hM) that is proportional to

the prior probability distribution p(θ|hM) and the likelihood p(d|θ, hM). The

latter is the probability the data d to be observed given we use a model hM

with parameters θ. Following the assumption that the noise can be treated as

stationary, Gaussian and independent between each of the detectors, we can

define a Gaussian likelihood [35] for each detector,

L ∝ exp

[
−1

2
⟨d(t)− hM(θ)|d(t)− hM(θ)⟩

]
, (2.56)

where hM(θ) is the waveform model evaluated at θ and the operation ⟨·|·⟩ is
the noise weighted inner product. The inner product of two waveforms h1(f)

and h2(f) is given by

⟨h1|h2⟩ = 4Re

∫ ∞

0

h1(f)h
∗
2(f)

Sn(f)
df, (2.57)

where Sn(f) is the power spectral density of a detector [100, 101, 102]. The

likelihood function given by Eq. 2.56 holds substantial significance in Bayesian

inference. Together with the selection of appropriate priors [103], it facilitates

the computation of the model evidence

p(d|hM) =

∫
dθp(θ|hM)p(d|θ, hM) (2.58)

that provides the odds of a signal being present [104, 105]. These calculations

allow the evaluation of the posterior distributions for the model parameters θ.

The waveform model parameters θ define a N-dimensional vector θ =

{θ1, θ2, ...θN}. To find the posterior of one parameter, we first substitute θ

in equation 2.55 and we obtain the joint posterior probability which contains

all the information about these parameters [98]. Then, by marginalising over

the other parameters θi, we obtain the wanted probability, for example for the
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parameter θ1 we have

p(θ1|d, hM) =

∫
dθ2...dθNp(θ|d, hM). (2.59)

From the last relation we can see the dependence of the recovered parameters

on the information about the system before and after the observations [98].

The mean of a parameter θi is given from

⟨θi⟩ =
∫
θip(θi|d, hM)dθi. (2.60)

An in-depth description of the data analysis techniques that are used in

the detection of the gravitational wave signals and the inference of the source

properties is given in Ref. [35]. In this thesis, we perform parameter estimation

using the LALInference software library, a software package that is presented

in Ref. [98] and has all the needed algorithms and infrastructure. Another

parameter estimation pipeline that has been widely by the LVK collaboration is

BILBY [106]. For an introduction to these two parameter estimation pipelines,

we refer the reader to [98] and [106].

LALInference provides support for two stochastic sampling techniques, the

Markov-chain Monte Carlo (MCMC) sampler [107] that will be used in the

following chapter and the nested sampling techniques [104]. The MCMC algo-

rithms estimate the posterior distribution by iteratively sampling the param-

eter space and exploring the regions of high probability. MCMC algorithms

are designed to stochastically wander through the parameter space, generating

samples that are distributed proportionally to the density of the target poste-

rior distribution. In MCMC each sample is dependent on the previous sample.

These methods use a proposal distribution to generate a new sample based

on the current sample, and then decides whether to accept or reject the new

sample based on a certain criterion. This allows the chain to move gradually

towards the regions of higher probability in the parameter space. The MCMC

implementation in LALInference employs the Metropolis–Hastings algorithm

described in Refs. [108, 109].

The nested sampling technique employs a Monte Carlo approach. In this

sampling technique, starting from a set of initial points sampled from the

prior distribution, the lowest likelihood points are replaced by higher likelihood

samples while concurrently estimating the evidence integral. This iterative

process continues until a stopping criterion is met, resulting in the estimation
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of the evidence and a representative sample from the posterior distribution. A

summary of these two sampling techniques can be found in Ref. [98].

2.8 Numerical relativity waveforms

The Einstein equations govern the dynamical behaviour of a physical system

and provide a framework for studying gravitational phenomena. They con-

sist of ten differential equations that describe the fundamental interactions of

gravity and spacetime geometry as discussed in Section 2.1. However, their

analytical solution is not feasible for complex spacetimes and sophisticated

numerical techniques are employed to solve the Einstein equations numeri-

cally [110].

To solve these equations numerically, the 4-dimensional spacetime manifold

is appropriately sliced using the 3+1 decomposition. The 3+1 decomposition

is a technique to split the 4-dimensional spacetime into 3-dimensional space-

like hypersurfaces that correspond to specific moments in time. This method

is particularly important for the generation of NR simulations, as it allows the

spacetime to be treated as a sequence of spatial slices evolving over time. A

detailed description of the 3 + 1 decomposition of Einstein’s equations can be

found in Ref. [110].

2.8.1 BAM Code

In the last decade, a number of different methods has been developed and

adopted to create numerical codes that solve Einstein’s equations. The most

notable codes are the BAM code [111, 40, 112] that follows the “moving punc-

ture” approach [90, 91] and the Spectral Einstein Code (SpEC) that uses

pseudo-spectral methods [113]. In this thesis, we will discuss briefly the BAM

code that has been used to generate the NR waveforms that consist the BAM

catalogue and have been used for the modelling of the multipole asymmetry

in Chapter 4.

The BAM code employs the moving puncture approach to evolve the black

hole spacetime, where the wormhole topology is used to simulate the black

holes of the binary [114]. In this topology, instead of reaching the singularities

of the black holes we adopt a transformation from Schwarzschild coordinates

to isotropic and transfer to a asymptotically flat end connected to the initial

flat region by a wormhole [115]. The asymptotically flat ends are compactified
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in a way that its spatial infinity is mapped to a single point referred to as

a “puncture”. This construction avoids all of the black hole singularities,

eliminating the need to remove any region during numerical simulations using

these data.

To initiate the simulations, we employ black hole binary puncture initial

data [116, 117] which were generated using a pseudo-spectral elliptic solver [118].

Subsequently, the evolution of the initial data was carried out using the χ-

variant of the moving-puncture [90, 91] method of the BSSN [119, 120]

formulation of the 3+1 Einstein’s equations. The code employs spatial finite-

difference derivatives that exhibit sixth-order accuracy within the bulk [112].

For the time evolution, a fourth-order Runge-Kutta algorithm is utilized [40].

The Berger-Oliger adaptive mesh refinement [121] is used.

In the simulation, the grid is structured using a hierarchical arrangement

of nested Cartesian grids. At the lower levels of the hierarchy, there are two

distinct grids centred on individual punctures. At the higher levels, as the

two grids approach the point of overlapping, they are replaced by a unified

grid centred on the center of motion that contains the two punctures. In this

grid arrangement, the smaller grids in the lower levels track the punctures’

positions using a shift vector while the larger grids remain stationary [40].

The levels have different resolutions that are higher at the levels where the

wave extraction takes place. The information of the binary is extracted from

the simulation using the Newman-Penrose formalism [122], where the outgoing

transverse gravitational radiation is given by the Weyl scalar ψ4 [40]. The Weyl

scalar is computed at the selected extraction radii from Eq. 2.34.

The eccentricity of a binary black hole system reduces, while the system

emits gravitational waves and is led to merger. During the quasi-circular orbits

of the inspiral, the eccentricity needs to remain close to zero and the low

eccentricity evolution of the initial data is required. The eccentricity can be

estimated from the following relation

eD (t) =
D (t)−Dc (t)

Dc (t)
, (2.61)

where D (t) is the coordinate separation and Dc (t) the coordinate separation

that corresponds to a zero-eccentricity quasicircular inspiral [123].
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2.8.2 BAM catalogue

The accurate modelling of the binary black hole late inspiral and merger re-

quires the use of NR simulations that cover well the parameter space. The

BAM catalogue presented in Ref. [5] consists of 80 NR simulations that were

generated using the BAM code. The catalogue comprises single spin precessing

configurations where the larger black hole of the binary is spinning.

Each of these 80 configurations is characterised by the individual masses of

the two black holes m1 and m2, the mass ratio q = m1/m2 > 1, the magnitude

of the larger black hole spin χ and the angle θLS between the spin and the

orbital angular momentum of the binary. The catalogue covers a large area of

the parameter space that extends to higher mass ratio with q ∈ [1, 2, 4, 8], χ

∈ [0.2, 0.4, 0.6, 0.8] and θLS ∈ [30o, 60o, 90o, 120o, 150o].

The waveforms of this catalogue have been used for the tuning of the

PhenomPNR model presented in Ref. [4] and the development of the first phe-

nomenological multipole asymmetry model. We should note that [124] was

used for many of the processes and calculations that were required for the use

of the BAM catalogue. In Chapter 4, we describe in detail the construction

of the asymmetry model. However, before we delve into the modelling of the

asymmetry, let us first understand the motivation behind this endeavour in

the next chapter.



Chapter 3

Multipole asymmetries and

parameter biases

The accurate extraction of properties from binary black hole detections relies

heavily on waveform models. However, approximations used in these models

may introduce systematic errors in parameter estimation results. One such

approximation is the assumption that the gravitational energy is emitted sym-

metrically above and bellow the orbital plane even in systems where this sym-

metry is broken by precession. Neglecting this asymmetry could result in bi-

ases in parameter measurements. In this chapter, we investigate the presence

of this potential bias in LIGO-Virgo parameter estimation results. Using the

surrogate model, NRSur7dq4, where the effects of multipole asymmetry have

been incorporated, we search for systematic biases by injecting the surrogate

and recovering with both the original model and a symmetric version of the

NRSur7dq4 model. We also extend this study to include the GW200129 065458

signal, which we refer to as GW200129. This is the first LVK event where a

clear measurement of in-plane spins was possible. We recover the GW200129

data with the two versions of the NRSur7dq4 model. Our results indicate that,

for precessing systems, the absence of multipole asymmetry is a significant

source of systematic biases in the measurement of the black hole spins. These

findings highlight the importance of accurately modelling multipole asymmetry

in future waveform models.



Chapter 3. Multipole asymmetries and parameter biases 35

3.1 Introduction

Gravitational wave detections provide us with a unique opportunity to observe

and study some of the most extreme events that take place in our universe.

Since the first gravitational wave detection of a binary black hole merger in

2015, several other detections have been made including primarily black hole

mergers and more recently neutron star mergers as well as neutron star and

black hole mergers [10, 11, 12, 13, 9, 125]. These detections opened up avenues

for measuring the parameters of these binaries and exploring their formation

mechanisms. However, the accuracy of the gravitational wave measurements

depends on theoretical waveform models and any systematic biases in the

models can lead to incorrect inferences about the source properties.

For binary black hole binaries, waveform models describe the three stages

of the dynamical evolution of a binary black hole system, the inspiral, the

merger and the ringdown. As explained in Chapter 2, there are currently three

types of theoretical waveform models that are commonly used in binary black

hole detections characterised by different modelling approaches. The Phenom

and SEOBNR models are based partly on PN and EOB results and partly on

tuning to NR simulations [4] [93]. The surrogate models rely on accurate NR

waveforms and are extremely accurate models within the parameter space of

their training NR simulations [1]. Full details about the surrogate are given in

Section 2.6.1.

Several approximations are used in waveform modelling to simplify the

process of constructing the models, or to reduce the number and accuracy of

the NR waveforms that must be used. However, these approximations can

introduce systematic errors in the measurement of the source parameters. The

multipole asymmetry, an asymmetry between the positive and the negative m

spherical harmonic multipoles, is one of the features of precessing binary black

hole systems that is not present in the current Phenom [64, 65, 66, 67, 68, 69,

70, 71, 72, 73, 74, 75, 4] or SEOBNR [76, 77, 78, 79, 80, 81, 82] models.

In the special case where we have a non-precessing system in a frame where

the orbital angular momentum L̄ remains parallel to the z-axis at all times,

there is a symmetry between the positive and the negative multipoles of the

gravitational wave of the form,

hlm(t) = (−1)lh∗l−m(t). (3.1)
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In binaries where one or both black holes have spins that are not parallel to

the orbital angular momentum of the system, the spins and the orbital angular

momentum precess around the total angular momentum of the binary. As a

result, the orbital plane wobbles introducing modulations to the amplitude

and the phase of the gravitational wave signal. In these cases, the precession

breaks the multipole symmetry and Eq. 3.1 is no longer valid as described in

Section 2.5.3.

The strength of the multipole asymmetry depends on the in-plane spin

magnitude and the mass ratio of the binary system. In the presence of this

asymmetry, the energy is emitted in a preferred direction that results in the loss

of linear momentum. This loss is maximised close to the merger and imparts

a recoil velocity due to the linear momentum conservation. At this point, the

black hole that is formed receives a kick that depends on the mass ratio and

spins of the initial black holes and can be up to thousands of km/s [54, 55,

56, 57]. The subject of modelling the asymmetry will be revisited in the next

chapter.

Previous studies have shown that the absence of the multipole asymmetry

effects from the waveform models could introduce biases in the measurement of

the binary black hole parameters at SNR between 15 and 80 and in particular

at SNR where we expect to measure precession [126, 127]. The recent detection

of the highly precessing GW200129 signal that was found to have a large recoil

velocity [2, 3] indicates that the detection of a number of precessing signals can

be expected in the near future. Furthermore, the large recoil of GW200129 is

a sign that the effects of the asymmetry are measurable. This implies that the

multipole asymmetry has already become important in observations.

These possible biases are particularly important for future detections as the

sensitivity of the detectors is improved and signals will be recovered at higher

SNR. Biases in the measurement of the source parameters could have a sig-

nificant impact on population studies and the efforts to better understand the

formation of the observed black holes that rely on the accurate measurement

of the binary black hole parameters. Although the asymmetry is modelled in

NRSur7dq4, this model has a limited range of validity as we will explain in the

next section. As a result, it is essential to study the effects that the absence

of the multipole asymmetry has on our measurements and include it in the

Phenom and SEOBNR waveform models if this is required.

In this chapter, we will explore the systematic biases that can arise in the
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waveform models when the multipole asymmetry is neglected and their impact

on the gravitational wave measurements. Our analysis will provide important

insights into the reliability of future gravitational wave measurements and

inform the development of more accurate waveform models in the future.

In Section 3.2, we discuss the selection of appropriate waveform models

that allow us to isolate the effects of the multipole asymmetry. In Section 3.3,

we discuss how the parameter estimation runs were set up and the selection of

the appropriate configurations for this study. The final results are presented

in Section 3.4 and the conclusions of this study are discussed in Section 3.5.

3.2 Waveform model

As has been discussed in the previous section the phenomenological models use

a number of simplifications including the non-inclusion of the multipole asym-

metry. The search of systematic errors introduced by the multipole asymmetry

requires the isolation of this effect. Consequently this study cannot be per-

formed with the current phenomenological models.

These limitations do not apply to the surrogate waveform model NRSur7dq4

where the inclusion of multipole asymmetry allows the search of biases in

the parameter estimation results. The NRSur7dq4 model has been built from

numerical relativity simulations with mass ratios q ≤ 4, generic spin directions

and spin magnitudes up to 0.8 and includes all ℓ ≤ 4 spin weighted spherical

harmonic modes. In addition, these NR simulations start at ∼ 20 orbits or

∼ 4300M prior to merger. Therefore, the surrogate models are restricted to

waveforms of this length and are inadequate whenever longer waveforms are

required. Assuming for example a waveform with a starting frequency of 20

Hz, the surrogate will only be valid for binaries with total masses M ≳ 66M⊙

depending on the mass ratio of the system [1]. However, within its range of

validity NRSur7dq4 is currently the most accurate waveform model.

To perform a systematics study we isolated the effect of the multipole

asymmetry on the parameter estimation results by using two versions of the

NRSur7dq4 surrogate model, the “full” NRSur7dq4 and the “symmetric” NRSur7dq4.

The full NRSur7dq4 is the original NRSur7dq4 waveform model without any

alterations. The symmetric NRSur7dq4 is a simplified, altered version of this

model. In the symmetric version of the model in LALSuite software library [128],

the multipole asymmetry has been removed and only the symmetric waveform
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remains present, thus Eq. 3.1 applies. As discussed in Section 2.6.1, in the

surrogate, the co-orbital waveforms are split into the plus h+lm and minus h−lm
contributions given by Eq. 2.53. Each of these components is modelled in-

dependently and from their combination the co-orbital frame surrogate is ob-

tained [84, 1]. Therefore, by also taking into account Eqs. 2.43 - 2.46, to remove

the multipole asymmetry, for even ℓ we have set to zero the h−lm expression in

the co-orbital frame while the h+lm expression of the symmetric contribution

takes the following form,

h+lm =
hcoorblm + hcoorb∗l−m

2
, (3.2)

and the reversed have been done for odd ℓ. Then to isolate the effect that the

absence of the multipole asymmetry has on the measured source parameters,

we look at measuring the properties of a full signal using both the full and

symmetric NRSur7dq4 models. We refer to the symmetric NRSur7dq4 model as

NRSur7dq4 sym to simplify notation. As we will see in the next session, setting

up two identical parameter estimation runs that only differ by the presence or

the absence of the multipole asymmetry permits a direct systematics study of

its effects.

3.3 Parameter estimation analysis

The aim of this study is to understand the effects of the absence of the multi-

pole asymmetry from the waveform models in the measurement of the source

parameters. To better understand these effects and the conditions that affect

them we consider a number of different binary configurations and we per-

formed a series of injections with the NRSur7dq4 surrogate. Additionally, to

explore the impact that neglecting multipole asymmetry has on current and

near-future observations, we also consider the public detector data of the pre-

cessing signal GW200129 that have undergone glitch removal. Following the

subtraction of the glitches, we refer to these as “de-glitched” data [9, 3].

The analysis is performed using the MCMC stochastic sampling technique

from the LALInference software library presented in Ref. [98] that was used for

the first observing runs, O1−O2 [10, 11, 12, 13, 9]. LALInference is widely used
for Bayesian inference data analysis and it contains all the required algorithms

and infrastructure. For our analysis, we use all three detectors and public
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available power spectral densities that were taken during the O3b observing

run and used in LVK GWTC-3 analyses [9]. It is important to note that these

are the same power spectral densities that were used in the analysis of the

GW200129 signal in Refs. [9, 3]. The corresponding sensitivity curves of the

LIGO Hanford, LIGO Livingston and Virgo detectors are shown in Fig. 3.1.
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Figure 3.1: Amplitude spectral density of the three interferometers’ strain
sensitivity: LIGO Livingston, LIGO Hanford, Virgo. The sensitivity curves
were computed in O3b and used in LVK GWTC-3 analyses [9] and the analysis
of GW200129 in Ref. [3]. The square of the amplitude spectral density gives
the power spectral density of the detectors.

In our parameter estimation analysis, we have chosen to use a flat prior

over spin magnitude, the cosine of the tilt angle and the component masses.

The parameter estimation results can be significantly affected by the selected

priors of the spin magnitudes and the tilt angles. Since there is no evident

justification for employing a prior from the observed population or one moti-

vated by other astrophysical factors, we have selected these particular priors

that do not introduce strong assumptions about the underlying astrophysical

population. These are the default priors that were also used in Refs. [9, 3].

Furthermore, the prior parameter space has been adjusted to not exceed sig-

nificantly the validity range of the surrogate model, setting the total mass to
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be M ≥ 68M⊙, the chirp mass to be within 14.5M⊙ and 49M⊙ and the mass

ratio to be less than 1 : 4 or 1 : 6 depending on the configuration. We chose

the minimum frequency where the analysis starts to be 20Hz. The NRSur7dq4

waveforms were generated with starting time that corresponds to 11Hz for the

(ℓ = 2, |m| = 2) multipole, to ensure that the highest-frequency multipoles,

(ℓ = 3, |m| = 3), also start below 20Hz.

In the case of the NRSur7dq4 injections, the data were all injected with an

SNR of 100 and start at 20 Hz using the same basic setup as the O3b catalog [9].

For their sky location, the declination is δ = 1.4323 rads and right ascension

α = 0.2896 rads, while the polarisation is set to ψ = 1.4 rads. Each production

run produced approximately ∼ 105 samples. Considering that for standard

applications of the LALInference sampler 104 is a typical amount of samples,

we are confident that 105 samples is a sufficient number. However, to further

ensure the convergence of each run we took into account the behaviour of the

autocorrelation function and the value of the Gelman-Rubin diagnostic [129].

The NRSur7dq4 data are injected in zero-noise meaning that the detector

noise is set to zero while the power spectral densities of the detectors (see

Fig. 3.1) are used to compute the likelihood. In the zero-noise injection, the

noise is removed, but the parameter estimation analysis is performed with the

relative frequency-dependent sensitivity (noise curve) that corresponds to each

detector and for sky location, orientation and polarisation values appropriately

also adjusted to the detectors allowing the computation of an SNR. We can

interpret the results obtained from this type of injection as an average over

many Gaussian noise realisations.

In Section 2.7, we explained that the Gaussian likelihood [101] is given by

the noise-weighted inner product [100]

logL ∝ −1

2
⟨d(t)− hM(θ)|d(t)− hM(θ)⟩, (3.3)

where hM(θ) is the waveform model evaluated at θ and d(t) is the data given as

the sum of the signal s(t) and n(t) the noise. For a zero-noise injection, since

n(t) = 0, the data becomes d(t) = s(t) and logL ∝ −1
2
⟨s(t) − hM(θ)|s(t) −

hM(θ)⟩. From the definition of the inner product between two waveforms h1

and h2 that is also given in Section 2.7

⟨h1|h2⟩ = 4Re

∫ ∞

0

h1(f)h
∗
2(f)

Sn(f)
df, (3.4)



Chapter 3. Multipole asymmetries and parameter biases 41

where Sn(f) is the power spectral density, it becomes clear that in the case of

the zero-noise injections, the frequency-dependent sensitivity of the detectors

is used in the calculation of the likelihood. From the definition of the log

likelihood, we note that if the model produces a waveform hM(θ) that matches

well the signal s(t), the log likelihood | logL| has a lower value.

In the case of the GW200129 de-glitched data, the parameter estima-

tion analysis is performed using the same settings as those employed in LVK

GWTC-3 analysis [9], while also applying the additional settings described in

Ref. [3] such as reducing the prior parameter space to fit within the valid-

ity range of the NRSur7dq4. For our analysis the waveform is generated at

20Hz and we have included all the l ≤ 3 spin-weighted spherical-harmonic

multipoles.

3.3.1 NRSur7dq4 theoretical waveforms

In the first part of this work, we use the NRSur7dq4 waveform model to inves-

tigate how the absence of the multipole asymmetry from the model affects the

measured parameters for a number of theoretical signals of strongly precessing

binaries with high SNR. Furthermore, we consider specific configurations that

allow us to explore how the introduced biases depend on the recoil velocity

of the final black hole, the inclination of the system, the magnitude of the

primary black hole’s spin and the mass ratio of the binary. In each of these

cases the signal is generated from the full NRSur7dq4 waveform model, and

the parameter recovery uses the NRSur7dq4 and NRSur7dq4 sym models. We

also note that our study is limited to single-spin systems; the phenomenology

is likely to be more complex in two-spin configurations.

The dependency on the recoil velocity and the inclination is tested by

injecting a series of waveforms to study how two extreme recoil values and

different inclinations affect the parameter estimation results. To achieve this,

we employed the full NRSur7dq4 waveform model to generate two theoretical

signals with different in-plane spin orientations that correspond to a maximum

and a minimum recoil velocity while also varying the inclination of the system

from face-on to edge-on. These two NRSur7dq4 waveforms differ only by the

orientation of their spins.

To ensure the highest accuracy with the NRSur7dq4model, we have selected

the binaries’ parameters to be within the validity range of the model. The

analysis is done with two theoretical signals that have the same mass ratio,
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q = 2, and a large primary spin of magnitude a1/m1 = 0.7 that lies in the

plane creating a strongly precessing system. The asymmetric masses of the

binaries ensure the better measurement of the spins and the inclination of the

systems. In cases where the masses are not equal, the precession effects on the

waveforms are more pronounced and the contributions from higher multiples

are heightened.

We selected a total mass of M = 100M⊙ for both binaries, which falls

within the range of total masses that have been observed. To achieve a stronger

signal at merger and increase the impact of the multipole asymmetry, we opted

for a large total mass that still falls within the validity range of the NRSur7dq4

model. To ensure the observation of the biases that arise when the asymmetry

is neglected, we utilized previous findings from Refs. [126, 127] and chose a high

SNR of 100. Although this SNR value exceeds the SNR of the signals we expect

to detect in the near future, these strong signals enable the measurement of

the spin magnitude and tilt angle, and the clear observation of the biases they

exhibit.

For the study of the recoil dependency, to clearly demonstrate the impact

that the recoil velocity may have on the measurement of the binaries’ pa-

rameters, we chose the lowest and the highest possible recoil velocity for a

configuration with the above characteristics. Since the recoil velocity of the

remnant black hole depends on the direction of the in-plane spin, we found

the appropriate in-plane spin directions that correspond to a maximum and a

minimum recoil velocity.

This was achieved by computing the recoil velocities for NRSur7dq4 the-

oretical waveforms with varying in-plane spin directions of the binaries be-

tween 0◦ and 180◦. The in-plane spin direction is denoted by the the mis-

alignment angle ϕSn between the black holes’ separation vector, n̂, and the

projection of the spin vector Ŝ on the orbital plane, at the starting frequency.

The waveforms were generated in the inertial L0-frame where L̂ = ẑ at a

reference time, satisfying LAL conventions using the LALSimulation function

SimInspiralChooseTDModes [128, 130]. The recoil velocity was computed

from the waveform multipoles [131] in the final J-frame where the z-axis is

parallel to the total angular momentum, J, of the remnant black hole. Fig. 3.2

shows the measured recoil velocities for different ϕSn angles. As we expected

for a misaligned-spin system the value of the minimum recoil velocity is not

zero due to the presence of in-plane recoil. This has also been observed for
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aligned-spin binaries, but the minimum recoil velocity will have a lower value

in those systems [62]. Based on these results, the lowest recoil velocity is

vfmin
= 236 km/s and the highest is vfmax = 1461 km/s. For these two cases

the initial in-plane-spin directions ϕSn are, respectively, 67◦ and 138◦.
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Figure 3.2: The minimum (blue) and maximum (red) recoil velocity values
and the corresponding in-plane spin direction angles that were selected for
this study.

Furthermore, to increase the effects of the asymmetry, we have ensured that

the asymmetry is beamed along the z-axis when it peaks during merger. To

achieve this we first rotate the waveforms from the L0-frame to the J-frame

and finally to the quadrupole-aligned frame that tracks the direction of the

maximum radiation emission [42]. Then by adding in quadrature the ℓ = 2

multipoles of the waveform’s strain in the co-precessing frame, we compute the

time that maximises the sum to define a notion of merger time, tm. We then

computed at this peak time the Euler angles, α(tm), β(tm), γ(tm), that would

allow the rotation from the L0-frame to the co-precessing frame. These set

of angles allowed us to rotate the minimum and maximum recoil waveforms

from the L0-frame to a frame where the maximum emission is along the z-axis

at this approximate merger time, tm. This ensured that the anti-symmetric

contribution to the signal is beamed along the z-axis when it peaks at the
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merger.

In general the binary inclination, ι, is defined as the direction of the observer

relative to the orbital angular momentum, L0, at the frequency when the

signal enters the detector’s sensitivity band. Since L precesses during inspiral,

this definition describes the orientation of the orbital plane to the observer at

only one moment. In the case of precessing systems the effects of precession

generally become stronger with inclinations ι ∼ 90◦. Due to the use of the

previously described frame in the case of the minimum and maximum recoil

NRSur7dq4 waveforms, we define the binary inclination relevant to the direction

of maximum power in the antisymmetric contribution to the signal at merger.

As a result, ι = 0o corresponds to an inclination where the maximum emission

direction is along the z-axis at merger and the other inclinations are relative

to that. To ensure this, we prevented LAL from performing a frame rotation by

artificially setting L̂ to be along the z-axis in the waveform metadata. The two

NRSur7dq4 waveforms were injected with different inclinations, varying from

0◦ to 90◦. This allowed us to investigate how the inclination of the detected

system affects the biases that the asymmetry’s absence may introduce in the

parameter estimation results. However, the fact that ι varies throughout the

inspiral can create a more complicated picture in our measurements.

In addition, to test how the NRSur7dq4 sym model behaves for different

mass ratios and spin magnitudes, we performed two additional injections. The

selected configurations for that purpose are a binary black hole configuration

with mass ratio q = 2 and a smaller in-plane spin of magnitude a1/m1 = 0.4,

and a binary with a higher mass ratio q = 4 and slightly higher in-plane spin

of magnitude a1/m1 = 0.8. In these last two cases, the in-plane spin direction

is ϕSn = 0◦ and the total mass of these binary is M = 100M⊙. The selected

inclination is ι = 60◦ and they are both injected at SNR 100. For these

additional injections we use the standard LAL definition of inclination.

3.3.2 GW200129 gravitational wave signal

In the second part of this work, we consider the GW200129 gravitational wave

signal that was first reported in Ref. [132]. Ref. [3] presented strong evidence

that GW200129 was the first GW observation of a precessing binary, with

masses m1 = 39M⊙ and m2 = 22M⊙, and the primary black hole rapidly

spinning with a1/m1 = 0.9, and the spin lying almost entirely in the orbital

plane. The measured parameters of the signal calculated with the NRSur7dq4
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are displayed in Table 1 of Ref. [3]. The total total network SNR of GW200129

is 26.5 and the SNR in each detector were measured to be 14.6 in Hanford, 21.2

in Livingston and 6.3 in Virgo. Ref. [2] also showed that the GW200129 has a

large recoil velocity of vf = 1542km/s, which suggests that the anti-symmetric

contribution to the signal was measurable and could significantly influence the

parameter estimates.

The measurement of precession is expected to be more frequent in the next

observing runs when the detection of signals with higher SNR will be possible.

However, these measurements are extremely rare with the current sensitivity of

the detectors. We know that the multipole asymmetry effects will be more sig-

nificant for strongly precessing systems. Therefore, this system is considered to

be of great interest for this study as it is a strongly precessing system indicating

the presence of strong multipole asymmetry effects. Obtaining the recovered

parameters with the two versions of the surrogate gives us the opportunity to

understand how a model that contains only the symmetric counterpart will

perform at the detection of a precessing signal. As noted in Sec. 3.3, besides

the change in the model used in the analysis, all other settings are the same

as in the analysis reported in Ref. [3].

3.4 Results

We have investigated the effects of the multipole asymmetry absence from

the waveform models by injecting full surrogate waveforms and recovering

their source parameters with the two versions of the model, the full and the

symmetric NRSur7dq4. We have considered a number of injected waveforms

with different inclinations ι ∈ [0o, 30o, 60o, 90o], mass ratios q ∈ [2, 4], spins

a1/m1 ∈ [0.4, 0.7, 0.8] and two different spin orientations that correspond to

the maximum and minimum recoil velocities. These are all strongly precessing

systems that we injected at SNR 100 to maximise the effects of the asymmetry.

We present the parameter estimation results of some of these cases and we

show the impact that the absence of the multipole asymmetry has on the

parameter estimation results for each of these systems. We have also tested the

effects of the multipole asymmetry absence in the case of the highly precessing

GW200129 signal.
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3.4.1 The impact of the anti-symmetric contribution

One case that demonstrates well the results of this study is the single-spin

precessing system (q = 2, a1/m1 = 0.7, θLS = 90◦) described in Section 3.3.1.

This is a black hole system with total mass M = 100 and the ϕSn angle that

corresponds to the minimum recoil velocity. The inclination of this selected

system is ι = 30o and it is injected at SNR 100.

In Figs. 3.8a - 3.10a, we present the posterior distributions for the χeff , the

mass ratio q and the total mass M . The measured values are only slightly

affected by the symmetric approximation in NRSur7dq4 sym. Nonetheless, we

do see some bias; the true value of the mass and mass-ratio lies outside the

90% confidence interval. In several measurements shown here (and similarly

in the other configurations we studied) there is a less clear sign of bias.

Furthermore, due to the high SNR of this signal, it should also be possible

to measure the individual spins of the black holes. It is in these measurements

where we find a bias. We observe that the symmetric model fails to measure

accurately the dimensionless magnitudes and the tilt angles of the primary

and the secondary black hole spins. The tilt angles of the primary and the

secondary black hole spins, θLS1 and θLS2 , show the misalignment between the

corresponding spin vector and the direction of the orbital angular momentum.

A 0o angle means that there is no misalignment and the black hole spins in

the same direction as the binary black hole orbit while a 180o angle indicates

that the black hole spins in the opposite direction.

The two-dimensional posterior probabilities for the recovered spin magni-

tudes and tilt angles are presented in Fig. 3.3. In each disc plot, the spin

magnitude is between 0 and 1 while the tilt angle is given by the central an-

gle and ranges between 0o and 180o. The shading indicates the parameters’

measured values and the different colors correspond to the results from the

recovery with the two versions of the surrogate model.

In Fig. 3.3a, the recovered spin magnitude and the tilt angle of the pri-

mary black hole with the symmetric surrogate have a higher value indicating

that the spin vector lies outside the plane of the binary. Furthermore, the

recovered spin magnitude reaches the Kerr limit, a1/m1 = 1. In contrast, the

measured parameters with the full surrogate agree well with the true values. A

similar behaviour can be observed for a2/m2. The true spin of the secondary

black hole is zero, as recovered well with the NRSur7dq4 model. However, the

NRSur7dq4 sym model measures a high spin value for the same black hole and
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a low tilt angle, i.e., the spin appears nearly aligned with the orbital angular

momentum.

Despite the significant biases in the spin measurements with the NRSur7dq4 sym

model, the combination χeff is measured correctly; the biases counteract so that

χeff has the correct value. We saw similar results in all of the consider configu-

rations: the NRSur7dq4 sym recovery for a1/m1 and a2/m2 varied in magnitude

and direction, but always such that χeff was roughly correct. This is not sur-

prising since we expect that the absence of the anti-symmetric contribution in

a model will lead to biases in the spin measurements, but are less likely to bias

parameters that are independent of the in-plane spin components, like the to-

tal mass, mass ratio, and aligned-spin combination χeff that affects the inspiral

rate [133, 134, 135], and therefore the overall binary phasing. Consequently,

χeff is likely to be measured well regardless of the multipole asymmetry, which

has minimal, if any, effect on the rate of inspiral.

We might expect, however, that in larger-mass-ratio binaries with suffi-

ciently high spin on the primary, that the spin measurements will rail against

the Kerr limit, and it will not be possible for the biases to fully counteract

each other to give a correct value of χeff . We will see examples of this in the

next section.

3.4.2 Dependence on inclination, recoil, spin magnitude

and mass ratio

To further investigate the effects that the absence of the multipole asymmetry

has on the parameter estimations results, we test how the symmetric surrogate

performs for different configurations.

As we explained previously, a system with strong asymmetry will have a

high maximum recoil velocity. To investigate if there is a correlation between

the recoil velocity and the biases that are introduced in the measurement

of the source parameters from a symmetric model, we compare the results

we obtained in the case we presented earlier to the results we obtain from

a system that has a different recoil velocity. These two systems are almost

identical and injected with the same inclination. They only differ by the in-

plane spin direction of the spins. The spin direction of each system has been

selected to maximise and to minimise the recoil velocity of the system.

Fig. 3.4 shows the measured spin magnitude and tilt angle of the binary



48 3.4. Results

that has the maximum recoil velocity. In this case, we notice that the primary

spin magnitude a1/m1 is now closer to the correct value, but the secondary

spin magnitude a2/m2 shows a stronger preference for extreme spins. However,

despite these small differences, qualitatively the results are similar. These

similarities with the minimum recoil signal can also be noticed in Fig. 3.8b

- 3.10b. Our results show that when investigating the dependency of the

biases on the recoil velocity of the final black hole, the recovery with the

symmetric model introduces similar biases in both cases. This behaviour was

observed across all the cases we tested where the configurations were injected

with different inclinations and the minimum and maximum possible recoil

velocity for a system of this mass ratio and spin magnitude.

Although our initial expectation was that the importance of the anti-

symmetric contribution’s absent in parameter measurements would be large

for cases with large recoil, and small for cases with small recoil, we see no clear

indication that in the case of the minimum recoil NRSur7dq4 sym performs

better. However, this can be explained if we consider that the signal’s SNR

depends on |h|2 as observed at the detector (i.e., from one direction), while

the recoil depends on |ḣ|2 integrated over the entire sphere. There is therefore

no reason to expect that a large recoil corresponds to a larger importance of

the anti-symmetric contribution on the parameter measurements.

Furthermore, we investigate what happens when the inclination of the sys-

tem is increased to 90o and the binary is edge-on. The injected waveform in

this case is identical to our main example case presented in Section 3.4.1 dif-

fering only by the inclination. From the results in Fig. 3.4, we see that the

symmetric model fails to measure accurately the spins of the black holes. In

the case of the primary black hole, the spin is recovered by the symmetric

surrogate at a higher magnitude and lower tilt angle. For the secondary black

hole where the spin magnitude is a2/m2 = 0, the symmetric surrogate recovers

a different spin magnitude and tilt angle. Figs. 3.8c - 3.10c shows q, M and

χeff for an inclination of ι = 90◦. In this case we do not see any clear sign

of bias (similarly, we see slightly larger biases in ι = 0 cases), which suggests

that we may have removed the impact of the asymmetric contribution on these

parameters.

This result differs from the obvious initial expectation that the asymme-

try contributions would cancel out for edge-on systems. However, it can be

understood if we consider that the power in the signal is dominated by the
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symmetric part of the (ℓ = 2, |m| = 2) multipole in all of the cases we con-

sider. Even when the signal is nominally edge-on, the majority of the signal

power is in the plus polarisation, where the total power in the (ℓ = 2, |m| = 2)

multipoles is comparable in face-on or face-off configurations. Since the overall

amplitude of the anti-symmetric (ℓ = 2, |m| = 2) contribution is a ratio of the

symmetric contribution that depends only on the intrinsic parameters of the

binary, the fraction of the total power in the anti-symmetric contribution will

be roughly the same regardless of the orientation. We therefore expect that

any biases due to neglecting the anti-symmetric contribution will be of similar

magnitude regardless of the binary’s orientation, for fixed total SNR.

To further investigate these biases in the absence of the multipole asym-

metry, we performed two additional NR injections that have different spin

magnitude and mass ratio compared to the configuration presented in the pre-

vious section. The independence of the introduced biases from the value of

the recoil velocity and the inclination of the binary allows us to compare these

next cases with the ones we discussed in this section.

To test the effects that the spin magnitude of the primary black hole has

on the introduced biases, we consider a lower-spin system, (q = 2, a1/m1 =

0.4, θLS = 90◦). The waveform was injected with inclination ι = 60o at SNR

100. In this case the multipole asymmetry is expected to be weaker compared

to the previous configuration where the primary black hole had a more signif-

icant spin magnitude since the magnitude of the anti-symmetric contribution

depends on the in-plane-spin magnitude. As a result, we expect the biases in

the measurement of the spin magnitude and tilt angle to be more subtle.

In this case the magnitude and the tilt angle of the primary black hole

are only slightly shifted away from the true value when recovered with the

symmetric surrogate as can be seen in Fig. 3.6a. A similar behaviour is visible

in Fig. 3.6b where the magnitude of the secondary black hole spin is shifted

towards higher values. The posteriors for M , q and χeff are wider in the

analysis with the NRSur7dq4 sym model, but we still do not see any significant

bias, except for a shoulder in the M posterior in one case. This is consistent

with our expectation that a lower spin magnitude will also lower the impact

of the multipole asymmetry.

Another case we consider is a system with larger mass ratio and larger

spin, (q = 4, a1/m1 = 0.8, θLS = 90◦) that is injected with inclination ι = 60o

at SNR 100. This case allows us to see how different mass ratios affect the
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parameter estimation results when the multipole asymmetry is absent from

the waveform models.

In this case the posteriors from the NRSur7dq4 sym recovery are much

broader that for the NRSur7dq4, especially for the total mass, where the width

of the 90% confidence region has almost doubled. We also see that there is

now a clear bias in χeff when recovering with the NRSur7dq4 sym model. Addi-

tionally, from Fig. 3.7, it now appears that the primary spin can be measured

accurately with both models, suggesting that the spin imprint on the symmet-

ric contribution to the signal is strong enough to constrain the value. This is

not the case for the secondary spin, and without the anti-symmetric contribu-

tion to the model the secondary spin is biased. The bias in this sector of the

model also appears to be so strong that it is no longer counteracted by the

inspiral phasing that plays the dominant role in determining χeff , and so this is

now also biassed. We expect that this is a general trend: at higher mass ratios

(q ≳ 4) the measurement of the primary spin is more reliable than quantities

that include both spins. Since there is a partial degeneracy between the mass

ratio and χeff [133, 134, 102], the bias in χeff also leads to a bias in the mass

ratio.

These results do also agree with the log likelihoods of the two models in

3.15e where the log likelihood of the NRSur7dq4 symmodel is significantly lower

compared to that of the NRSur7dq4. Comparing this plot with the other log

likelihood posteriors shown in Fig. 3.15, we can see that this difference between

the two posteriors is larger for the (q = 4, a1/m1 = 0.8, θLS = 90◦) configura-

tion as we would expect considering that in this case although the spins were

recovered more accurately, more parameters were affected introducing overall

additional biases. However, it is also important to keep in mind for this com-

parison that the measured log likelihoods of Figs. 3.15a - 3.15c correspond to

almost identical cases that differ either by spin orientation or inclination. On

the other hand, the separate injections of the (q = 2, a1/m1 = 0.4, θLS = 90◦)

and (q = 4, a1/m1 = 0.8, θLS = 90◦) waveforms employ a different definition

of inclination and the waveforms were not generated using the same process

described in Section 3.3.1.
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Figure 3.3: Magnitude and direction of each spin, a1/m1 and a2/m2, for min-
imum recoil (q = 2, a1/m1 = 0.7, θLS = 90◦) configuration at inclination
ι = 30◦ as they were measured by the NRSur7dq4 (blue) and NRSur7dq4 sym

(red) models. The results indicate that the absence of the multipole asym-
metry introduces biases in the measurement of the spins magnitudes and tilt
angles.
(a) The measured dimensionless magnitude, a1/m1, and tilt angle, θLS1 , of the
primary black hole. The true value is 0.7 for the magnitude and 90o for the
tilt angle. The two parameters are recovered well with NRSur7dq4. However,
the measurements with the symmetric surrogate fail to recover correctly the
same parameters. In this case, the results indicate that the primary black hole
has a higher spin magnitude and tilt angle.
(b) The measured dimensionless magnitude, a2/m2, and tilt angle, θLS2 , of
the secondary black hole. This is a single-spin system. The two parameters
are recovered well with the full surrogate. However, the measurements with
NRSur7dq4 sym fail to recover them correctly. In this case, the results indicate
that the secondary black hole is spinning.
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3.4.3 GW200129 signal

We now consider the gravitational-wave signal GW200129. The measured

parameters presented in Refs. [132, 3] indicate that this system is similar to

some of the injected NRSur7dq4 waveforms that were discussed in the previous

section. However, interestingly in this case the SNR is only 26.5 making this

signal significantly weaker compared to the theoretical signals of the previous

section that have a significantly higher SNR value. As a result, we expect the

effects of the absence of the asymmetry to be more subtle.

The results were recovered using the NRSur7dq4 and NRSur7dq4 sym mod-

els. As shown in Table 3.1, the total mass, M , is recovered well with the

two version of the NRSur7dq4. However, the measurements of the mass ra-

tio, q, and the individual masses, m1,2, differ between the two models. The

results presented in Fig. 3.16 show that the full model measures that this is

an unequal-mass system while the measurement of the mass ratio with the

symmetric model is not well constrained. Furthermore, the primary spin mea-

surements presented in Fig. 3.16 show that the recovery with both versions of

the surrogate led to similar results for the tilt angle. However, in the case of the

primary spin magnitude, this is poorly constrained with the NRSur7dq4 sym,

while it is clearly identified as a high spin by NRSur7dq4.

From these results it becomes evident that even at relatively low SNR, in-

cluding the asymmetry in the model was essential in identifying this system

as an unequal-mass binary with large in-plane spin. We note that in the LVK

analyses of this signal, which used the IMRPhenomXPHM and SEOBNRv4PHM mod-

els, the IMRPhenomXPHM results showed some support for unequal masses and

high spin. However, since this model does not include the multipole asym-

metry, it is possible that the apparent measurement of a high primary spin

was due to uncertainties in the waveform model (as suggested in Ref. [3]), and

its partial agreement with the results from the more accurate and complete

NRSur7dq4 model may have been coincidental. To fully clarify these questions

would require a more detailed study of the uncertainties of all three models in

this region of parameter space, but since the Phenom and SEOBNR models have

now both been superseded by upgraded versions [136, 137], these points may

be moot. The broader and more important conclusion that we can draw from

these results is that further improvement in symmetric models alone will not

be sufficient to accurately measure the parameters of precessing systems, even

at moderate SNRs; the inclusion of the multipole asymmetry is required in all
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waveform models.

Full Symmetric

Primary mass, m1(M⊙) 47.62+6.17
−8.88 42.48+11.0

−4.94

Secondary mass, m2(M⊙) 27.0+8.83
−4.96 32.54+4.64

−9.73

Mass ratio, q = m2/m1 0.57+0.36
−0.15 0.77+0.21

−0.34

Total mass, M = m1 +m2(M⊙) 74.83+3.06
−3.07 75.28+3.06

−3.27

Primary spin, a1/m1 0.88+0.11
−0.45 0.68+0.31

−0.58

Primary spin tilt angle, cosθLS1 0.16+0.42
−0.36 0.25+0.6

−0.72

χeff 0.06+0.12
−0.12 0.12+0.09

−0.14

χp 0.85+0.13
−0.37 0.66+0.31

−0.45

Table 3.1: The recovered parameters for the de-glitched GW200129 data with
their 90% credible intervals. The results were recovered using the NRSur7dq4

and NRSur7dq4 sym models.

3.5 Conclusion

We have presented the effects that neglecting the multipole asymmetry in the

waveform modelling has on the measurements of the source parameters. We

employed a series of theoretical waveforms and we tested the performamce

of a symmetric version of the NRSur7dq4 waveform model against the full

NRSur7dq4 model. Our results show that the absence of the multipole asym-

metry from the waveform models introduces systematic errors in the case of

strongly precessing systems with high SNR. We find strong evidence across

all the considered configurations that at high SNR the absence of the multi-

pole asymmetry from the waveform models introduces significant biases in the

measurements of the spins and tilt angles of precessing binary systems.

Furthermore, we investigate how the introduced biases depend on the in-

clination of the binary, the primary spin magnitude and the mass ratio of the

system. We also test their dependence on the recoil velocity of the final black

hole by injecting two NRSur7dq4 waveforms with two different in-plane spin

directions that correspond to the maximum and minimum recoil. Our results

show no evidence of dependence between the introduced biases and the recoil

velocity or the inclination of the system. We find that the considered incli-

nations of ι ∈ [0o, 30o, 60o, 90o], have no significant impact on the biases even

if the system is oriented from face-on to edge-on. Similarly, in the case of

the maximum and minimum recoil value, the introduced biases remain overall
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unaffected by these recoil extreme values.

In contrast, the biases introduced by the symmetric model are found to

depend on the primary spin and the mass ratio of the system. We investigate

these effects for configurations with two different primary spin values a1/m1 =

0.4, 0.7. Since the effects of the multipole asymmetry are weaker for lower spins,

the introduced biases are more subtle in the analysis of the waveform with

spin a1/m1 = 0.4. To test the dependency on the mass ratio, we considered

waveforms with mass ratios q = 2, 4. In this case, the multipole asymmetry is

stronger for the signal with the higher mass ratio q = 4. The introduced biases

indicate that the symmetric waveform model tries to search for parameters to

produce the waveform with the high mass ratio and fails to recover the true

values of some of the parameters measuring less accurately the mass ratio, the

χeff parameter and the magnitude and tilt angle of the secondary black hole.

In this study, we have also considered the GW200129 signal which is the

only detected precessing signal. This detection was particular interesting for

this study as it can illustrate how the symmetric models perceive precessing

systems. We find that the measurement of the source parameters is less ac-

curate and the use of the symmetric waveform results in the introduction of

biases.

These findings are significantly important for future detections of binary

black hole systems when detectors’ sensitivity will be further improved. In the

next observing runs, we expect to observe more signals similar to GW200129 at

higher SNR that could reach values greater than 50. In the case of precessing

systems, these strong signals will allow the measurement of precession and the

black holes’ spins. However, employing symmetric waveforms for the analysis

of these signals will lead to incorrect measurements. This could have a signif-

icant impact on population studies and the efforts to better understand the

formation of the observed black holes that rely on the accurate measurement

of the binary black hole parameters.

Although the asymmetry is currently modelled in NRSur7dq4, the accuracy

of the model degrades outside of its validity range. Furthermore, to ensure the

accuracy of the obtained parameter estimation results, the use of more than

one independent waveform models during this process is vital. Therefore, our

results show that it is essential to include the multipole asymmetry in the

Phenom and the SEOBNR waveform models.
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Figure 3.4: Magnitude and direction of each spin, a1/m1 and a2/m2, for max-
imum recoil (q = 2, a1/m1 = 0.7, θLS = 90◦) configuration at inclination
ι = 30◦ as they were measured by the NRSur7dq4 (blue) and NRSur7dq4 sym

(red) models. The results indicate that the absence of the multipole asym-
metry introduces biases in the measurement of the spins magnitudes and tilt
angles. Comparing these results to the ones presented in Fig. 3.3, we observe
that the introduced biases are not significantly affected by the in-plane spin
direction.
(a) The measured dimensionless magnitude, a1/m1, and tilt angle, θLS1 , of the
primary black hole. The true value is 0.7 for the magnitude and 90o for the tilt
angle. The two parameters are recovered well with the full surrogate. However,
the measurements with the symmetric surrogate fail to recover correctly the
same parameters. In this second case, the results indicate that the primary
black hole has a slightly higher spin magnitude and tilt angle.
(b) The measured dimensionless magnitude, a2/m2, and tilt angle, θLS2 , of
the secondary black hole. This is a single-spin system. The two parameters
are recovered well with the full surrogate. However, the measurements with
NRSur7dq4 sym fail to recover them correctly. In this second case, the results
indicate that the secondary black hole has a high spin magnitude.
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Figure 3.5: Magnitude and direction of each spin, a1/m1 and a2/m2, for max-
imum recoil (q = 2, a1/m1 = 0.7, θLS = 90◦) configuration at inclination
ι = 90◦ as they were measured by the NRSur7dq4 (blue) and NRSur7dq4 sym

(red) models. The results indicate that the absence of the multipole asym-
metry introduces biases in the measurement of the spins magnitudes and tilt
angles. Comparing these results to the ones presented in Fig. 3.3, we observe
no significant dependency between the introduced biases and the inclination
of the binary black hole system.
(a) The measured dimensionless magnitude, a1, and tilt angle, θ1, of the pri-
mary black hole. The true value is 0.7 for the magnitude and 90o for the tilt
angle. The two parameters are recovered well with NRSur7dq4. However, the
measurements with the symmetric surrogate fail to recover correctly the same
parameters. In this case, the results indicate that the primary black hole has
a higher spin magnitude.
(b) The measured dimensionless magnitude, a2, and tilt angle, θ2, of the
secondary black hole. This is a single-spin system. The two parameters
are recovered well with the full surrogate. However, the measurements with
NRSur7dq4 sym fail to recover them correctly. In this case, the results indicate
that the secondary black hole has a high spin magnitude and tilt angle.
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Figure 3.6: Magnitude and direction of each spin, a1/m1 and a2/m2, for max-
imum recoil (q = 2, a1/m1 = 0.4, θLS = 90◦) configuration at inclination
ι = 60◦ as they were measured by the NRSur7dq4 (blue) and NRSur7dq4 sym

(red) models. The results indicate that the absence of the multipole asymme-
try introduces some biases in the measurement of the spins magnitudes and
tilt angles.
(a) The measured dimensionless magnitude, a1, and tilt angle, θ1, of the pri-
mary black hole. The true value is 0.4 for the magnitude and 90o for the tilt
angle. The two parameters are recovered well with both models and the mea-
surements with the symmetric surrogate are only slightly shifted.
(b) The measured dimensionless magnitude, a2, and tilt angle, θ2, of the
secondary black hole. This is a single-spin system. The two parameters
are recovered well with the full surrogate. However, the measurements with
NRSur7dq4 sym fail to recover them correctly. In this case, the results indicate
that the secondary black hole is spinning.
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Figure 3.7: Magnitude and direction of each spin, a1/m1 and a2/m2, for max-
imum recoil (q = 4, a1/m1 = 0.8, θLS = 90◦) configuration at inclination
ι = 60◦ as they were measured by the NRSur7dq4 (blue) and NRSur7dq4 sym

(red) models. The results indicate that the absence of the multipole asymme-
try introduces some biases in the measurement of the spins magnitudes and
tilt angles.
(a) The measured dimensionless magnitude, a1, and tilt angle, θ1, of the pri-
mary black hole. The true value is 0.8 for the magnitude and 90o for the tilt
angle. The two parameters are recovered relatively well with both models and
the measurements with the symmetric surrogate are only slightly shifted.
(b) The measured dimensionless magnitude, a2, and tilt angle, θ2, of the sec-
ondary black hole. This is a single-spin system. The two parameters are recov-
ered well with NRSur7dq4. However, the measurements with NRSur7dq4 sym

fail to recover them correctly. In this case, the results indicate that the sec-
ondary black hole has a high spin that reaches the Kerr limit and a high tilt
angle.
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Figure 3.8: Comparison between the results from the full surrogate
model and those from the symmetric surrogate. One-dimensional pos-
terior distributions for the mass ratio of the binary black hole system.
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Figure 3.9: Comparison between the results from the full surrogate
model and those from the symmetric surrogate. One-dimensional pos-
terior distributions for the total mass of the binary black hole system.
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Figure 3.10: Comparison between the results from the full surrogate
model and those from the symmetric surrogate. One-dimensional pos-
terior distributions for the χeff of the binary black hole system.
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Figure 3.11: Comparison between the results from the full surrogate
model and those from the symmetric surrogate. One-dimensional pos-
terior distributions for the primary black hole’s dimensionless spin a1/m1.
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Figure 3.12: Comparison between the results from the full surrogate
model and those from the symmetric surrogate. One-dimensional pos-
terior distributions for the secondary black hole’s dimensionless spin a2/m2.
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Figure 3.13: Comparison between the results from the full surrogate
model and those from the symmetric surrogate. One-dimensional pos-
terior distributions for tilt angle of the primary black hole’s spin.
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Figure 3.14: Comparison between the results from the full surrogate
model and those from the symmetric surrogate. One-dimensional pos-
terior distributions for tilt angle of the secondary black hole’s spin.
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Figure 3.15: Comparison between the results from the full surrogate
model and those from the symmetric surrogate. One-dimensional pos-
terior distributions for the log likelihood.
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Figure 3.16: One-dimensional posterior distributions for the mass ratio,
χeff , primary spin magnitude and tilt angle, for the NRSur7dq4 (blue) and
NRSur7dq4 sym (red) recovery of GW200129.



Chapter 4

A phenomenological model of

the multipole asymmetry

4.1 Introduction

As shown in the previous chapter and discussed in Refs. [126, 127], neglecting

the multipole asymmetry effects in the waveform models could introduce biases

in the measurement of the binary black hole parameters at high SNR where we

expect to measure precession and even at moderate SNR, as with GW200129.

We found that the absence of the asymmetry introduces systematic errors in

the measurement of the individual spins of the black holes in the case of loud

precessing systems.

To date, the multipole asymmetry has only be modelled by the NRSur7dq4

model [1] and has yet to be incorporated into the Phenom and EOBNR models.

As we explain in the previous chapter the presence of the multipole asymmetry

in the NRSur7dq4 model is insufficient. This model has a narrow validity range

compared to the other two model families and it cannot be used to measure the

properties of signals with low total masses approximately below 66M⊙, or with

mass ratios higher than 4. Furthermore, it is important to have more than one

model that can verify the accuracy of the measured parameters. Therefore, we

have concluded that the inclusion of the multipole asymmetry in the Phenom

and EOBNR models is crucial.

In this chapter, we present the first phenomenological multipole asymmetry

model. We have created a simple and efficient waveform model that captures

accurately the behaviour of the anti-symmetric component. To model the

amplitude and the phase of the multipole asymmetry we explored the typical
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phenomenological approaches that have been widely employed in developing

phenomenological models. However, a further study of the Post Newtonian

expression of the anti-symmetric contribution led us to a simpler approach.

We have produced a multipole asymmetry model where the anti-symmetric

component of the waveform is estimated from the symmetric amplitude and

phase and can in principle be applied to any frequency-domain model.

In Section 4.2.1 we explain the motivation behind our modelling approach.

We explain the preparation of the NR data that we used to calibrate our

model in Section 4.2.2. In Section 4.2.3 we look into the PN symmetric and

antisymmetric contributions. We explain how we have utilised PN-NR hybrid

waveforms and the construction of our ratio model in Section 4.2.4. The final

amplitude model and the surface fit of its coefficient across the parameter space

are presented in Sections 4.3 and 4.4, respectively. Finally, in Section 4.5,

we present briefly the phase model of the anti-symmetric component and we

discuss the outcome of this project in 4.7.

4.2 Structure of the model

In this section, we give a detailed description of the phenomenology of the

anti-symmetric and symmetric contributions of the ℓ = |m| = 2 multipoles

and we discuss how the symmetric waveform can be used in the modelling of

the multipole asymmetry. We will find that there is a simple way to model the

multipole asymmetry using the symmetric contribution that is already present

in the Phenom models.

4.2.1 Motivation for the multipole asymmetry model

In non-precessing systems where the spins are aligned with the orbital angular

momentum, the symmetry between the waveform multipoles

hlm(t) = (−1)lh∗l−m(t) (4.1)

allows the computation of the m < 0 multipoles from the m > 0 multipoles

and simplifies the construction of the waveform models. However, in binaries

where the spins are randomly oriented Eq. 4.1 no longer applies. In the cur-

rent Phenom and EOBNR waveform models the precessing binary waveforms are

modelled by “twisting-up” an aligned-spin waveform model using a precession
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dynamics model that has been developed separately [64, 68, 92, 74, 77, 76, 93].

In this process, the aligned-spin waveform model is regarded to be approxi-

mately the same as a precessing waveform in the co-precessing frame and is

transformed to the inertial frame using the Euler angles obtained from the

precession dynamics model [42, 49]. This approximation is possible since

in the co-precessimg frame that tracks the precession, the precessing wave-

form exhibits a close resemblance to the corresponding non-precessing sig-

nal [42, 49, 68, 77, 64, 84]. However, in the co-precessing frame, the multipole

asymmetry continues to be present and Eq. 4.1 does not hold. Thus, the

”twisting-up” method that is employed to construct the Phenom and EOBNR

models, excludes the multipole asymmetry from these waveform models.

We consider the (ℓ = 2, |m| = 2) multipoles in the co-precessing frame, and

split them into their symmetric and anti-symmetric parts,

hCP
2,2 (f) = As(f)e

iϕs(f) + Aa(f)e
iϕa(f), (4.2)

hCP
2,−2(f) = As(f)e

−iϕs(f) − Aa(f)e
−iϕa(f). (4.3)

The symmetric (ℓ = 2, |m| = 2) amplitude and phase, As(f) and ϕs(f), are the

amplitude and phase of the standard model that does not include multipole

asymmetries. The symmetric and anti-symmetric contributions of the ℓ =

|m| = 2 multipoles in this frame are defined by

hCP,s
2,2 =

1

2
(hCP

2,2 + h∗CP
2,−2), (4.4)

hCP,a
2,2 =

1

2
(hCP

2,2 − h∗CP
2,−2). (4.5)

As is evident from the definition of the anti-symmetric component of the wave-

form, we are modelling a complex function. Therefore, we model separately

in the co-precessing frame the amplitude and the phase of the anti-symmetric

contribution. Similar to the other models of the Phenom family, we model the

multipole asymmetry in the frequency domain.

Furthermore, in the construction of the multipole asymmetry model we fo-

cus solely on the asymmetry in the dominant (ℓ = 2, |m| = 2) multipoles. The

(ℓ = 2, |m| = 2) multipole asymmetry is weaker compared to the corresponding

symmetric contribution indicating that the asymmetry in the higher order mul-

tipoles will be considerably less significant. This is illustrated in Fig. 4.1 where

the amplitudes of the (ℓ = 2, |m| = 2) and (ℓ = 3, |m| = 3) anti-symmetric
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contributions are plotted along with the amplitudes of the (ℓ = 2,m = 2) and

higher order multipoles for a binary with mass ratio q = 2, spin magnitude

χ = 0.8 and spin and orbital angular momentum misaligment θSL = 90o. From

Fig. 4.1, it becomes apparent that the amplitude of the (ℓ = 2, |m| = 2) anti-

symmetric component is comparable to the (ℓ = 3,m = 3) multipole, whereas

the (ℓ = 3, |m| = 3) multipole asymmetry is comparable to the (ℓ = 5,m = 5)

multipole. Since overall the power in the (ℓ = 3,m = 3) multipole is higher

than for the (ℓ = 2, |m| = 2) multipole asymmetry, it is evident that the

asymmetry is important if we also take into account that the (ℓ = 4,m = 4)

multipole is included in the waveform models. Furthermore, considering that

the Phenom models include higher order multipoles up to ℓ ≤ 4, we have not

modelled the asymmetry in the higher multipoles [138, 92, 139].
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Figure 4.1: The (ℓ = 2, |m| = 2) and (ℓ = 3, |m| = 3) multipole asym-
metry amplitudes in the frequency domain co-precessing frame against the
(ℓ = 2,m = 2) and higher multipoles for the (q = 2, χ = 0.8, θSL = 90o). The
amplitude of the (ℓ = 2, |m| = 2) anti-symmetric component, h̃22a , is compara-
ble to the amplitude of the (ℓ = 3,m = 3) multipole, h̃33. However, since the
(ℓ = 3,m = 3) multipole extends to higher frequencies, overall the power in
the (ℓ = 3,m = 3) multipole is higher than for the (ℓ = 2, |m| = 2) multipole
asymmetry. The (ℓ = 3, |m| = 3) anti-symmetric component, h̃33a , is weaker
and comparable to the (ℓ = 5,m = 5) multipole, h̃55.
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To understand better the phenomenology of the amplitude and phase of

the multipole asymmetry and to explore potential new avenues for modelling

it efficiently, we compute the leading-order symmetric and anti-symmetric con-

tributions in PN theory. We consider a single-spin binary black hole system

with masses m1 > m2. The dimensionless spin of the primary black hole lies

in the orbital plane and is defined as χ = S1/m
2
1 where S1 is the magnitude of

the primary black hole’s angular momentum.

The PN expressions for this system are computed from the expressions

given in Ref. [37]. From the definitions of the symmetric and anti-symmetric

spin quantities, χs and χa, in Ref. [37], we find that for a single-spin system

χs = χa = χ/2. In the source frame, the total angular momentum Ĵ is along

the z-axis and the instantaneous direction of the orbital angular momentum

L̂ is given by the inclination angle of the orbital angular momentum relative

to the total angular momentum, ι(t), and the α(t) is the angle between x-axis

and the projection of the orbital angular momentum onto the x-y plane. The

angle α(t) is the azimuthal precession angle of the orbital angular momentum

L̂ around the total angular momentum Ĵ as well as the azimuthal angle of

the total in-plane spin χ. Then, by aligning the instantaneous orbital plane

to coincide with the x-y plane, we can write the total in-plane spin as χ =

χ(cos(α), sin(α), 0).

To compute the symmetric and anti-symmetric contributions, we first ob-

tain the h22 and h2−2 multipoles from Ref. [37]. The hPN
22 multipole is given

in Eq. B1 of Ref. [37] and the hPN
2−2 multipole is computed from ĥPN

22 , the

normalized hPN
22 multipole by its leading order term, using the relations

ĥPN
lm = − hPN

lm

(2Mνv2)
DL

√
16π
5
e−im(Ψ+α)

, (4.6)

ĥPN
l−m(Ψ) = (−1)lĥ∗PN

lm (Ψ + π) (4.7)

from [37] where ν = m1m2/M
2 is the symmetric mass ratio, δ = (m1 −

m2)/M > 0 is a fractional mass difference and DL is the luminosity dis-

tance to the source. The relative velocity v is related to the frequency, f ,

by v = (πfM)1/3. In Ref. [37], Ψ is the orbital phase in the instantaneous

orbital plane given as the phase, Φ, shifted in the presence of an arbitrary

reference frequency ω0 ̸= ωorb. Here we consider ω0 ≡ ωorb and consequently

Ψ = Φ. Subsequently, we enter a co-precessing frame by setting the inclina-
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tion ι = 0 and the azimuthal angle α = 0. We then substitute the single-spin

approximation χax = χsx = χ cos(α)/2 and χay = χsy = χ sin(α)/2, which

re-introduces α. In this co-precessing frame, the symmetric and the anti-

symmetric waveform contributions are computed from their definitions given

in Eqs. 4.4 and 4.5, respectively, and by keeping terms up to O (v4) order we

obtain the relations

hCP,s
2,2 = A(2 + v2(55ν − 107))e−2iΦ, (4.8)

hCP,a
2,2 = Av2(1 + δ)χe−i(Φ+a), (4.9)

where the amplitude A =
√
π/5(3Mνv2/2DL) and Φ is the total orbital phase.

From Eqs. 4.8 and 4.9, we can obtain some valuable insights. We notice

that at this order the spin, χ, appears only in the amplitude of the anti-

symmetric contribution. The anti-symmetric contribution enters at the order

O (v4) while the symmetric contribution enters earlier at the order O (v2). The

azimuthal angle α that determines the direction of the in-plane spin, is absent

from the amplitude of the asymmetry but appears to modify the phase of the

anti-symmetric part. As a result, we find that the phase of the asymmetry

depends on the direction of the in-plane spin relative to the separation vector

of the two black holes. Thus, the anti-symmetric phase exhibits variations that

stem not only from the orbital phase, Φ, but also from the slower precession

rotation of the spin, given by the azimuthal angle, α. This observation aligns

with other observations from studies on out-of-plane recoil velocity that have

provided evidence for a sinusoidal dependency between the amplitude of the

recoil and the initial direction of the in-plane spin [63].

It is evident from Eq. 4.9 that adding a correction α0 to the initial direc-

tion of the in-plane spin will result in a phase shift in the (ℓ = 2,m = 2)

anti-symmetric waveform contribution. This is an important insight that sub-

stantially facilitated the construction of our multipole asymmetry model. It

implies that by utilizing a set of single-spin NR waveforms that cover the

parameter space of mass ratio, dimensionless spin magnitude and spin mis-

alignment, it is possible to calibrate the multipole asymmetry model without

extending the parameter space to include several initial in-plane spin direc-

tions. Due to this factor, we are able to use our BAM catalogue for the

modelling. This catalogue contains 80 single-spin NR waveforms that were

generated using the BAM code with mass ratios q ∈ [1, 2, 4, 8], spin mag-
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nitudes χ ∈ [0.2, 0.4, 0.6, 0.8] and spin angles θLS ∈ [30o, 60o, 90o, 120o, 150o].

More information about the construction of the BAM catalogue can be found

in Section 2.8.2 and Ref. [5]. This catalogue has been previously used to con-

struct PhenomPNR the first IMR model that calibrated precession effects to NR

simulations [4].

An example of the amplitude and phase derivative of the anti-symmetric

and symmetric components of a NR waveform in the frequency domain are

presented in Fig. 4.2a and 4.2b. This single-spin NR waveform is from a binary

with mass ratio q = 1, spin amplitude χ = 0.4 and spin and orbital angular

momentum misalignemnt θLS = 60o; full details are given in Ref. [5]. Following

the procedure developed when producing the IMRPhenomDmodel [140, 141], and

continued in subsequent models in the Phenom family [142, 143, 4], we consider

the phase derivative, ∂ϕ/∂f ≡ ϕ′(f). Differentiating the phase removes an

overall phase constant and enables a more precise examination of its features.

As we can see from Fig. 4.2a, both the symmetric and anti-symmetric am-

plitudes peak at the merger and then decrease with the same decay rate at

the ringdown. In Fig. 4.2b, the anti-symmetric and symmetric phase deriva-

tives exhibit a similar behaviour as they decrease sharply and perfectly match

each other closer to the merger where they exhibit a “dip” at the ring-down

frequency.

In the next sections, we show that a model of the ratio of the anti-symmetric

amplitude over the symmetric amplitude can be used to scale the symmetric

amplitude of any current frequency domain waveform or model. Similarly, we

find that the multipole asymmetry phase can be computed using the symmetric

contribution of the same waveform or model.

4.2.2 NR data conditioning for modelling

The model is tuned to 80 single-spin NR waveforms that were generated using

the BAM code. In order to use the NR simulations to calibrate the asymmetry

model in the frequency domain co-precessing frame, the NR waveforms need

to be transformed from the BAM frame where they have been generated to

the co-precessing frame. However, the NR data need to be first prepared by

applying a smooth window function and zero padding. A Hann window is

used to remove the inspiral “junk” radiation and numerical noise in the post-

ringdown waveform that exists outside of the function’s interval. Furthermore,

to ensure that the frequency domain step size is sufficiently small, the time-
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(a) The amplitude of the (ℓ = 2,m = 2) symmetric and anti-symmetric waveform
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waveform components.

Figure 4.2: The two panels show the amplitude and the phase derivative of the
(ℓ = 2,m = 2) symmetric and anti-symmetric waveform components in the
frequency-domain QA frame. The symmetric and anti-symmetric waveforms
are computed for the (q = 1, χ = 0.4, θLS = 60o) NR simulation.
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domain data are padded with zeros to the right. These processes ensure that

the power of the signal is not exaggerated by noise and that the signal’s features

will be adequately resolved in the frequency-domain.

Then, to ensure that our NR data will pass smoothly to the chosen co-

precessing frame, we follow the process presented in [4] and we first transform

them to the Ĵ(t)-frame. This is required because the total angular momentum

of the NR waveforms does not remain fixed over time, but is shifted by a

few degrees. The Ĵ(t)-frame is a non-inertial frame where the total angular

momentum of the binary, Ĵ(t), is fixed along the z-axis at all times.

To transform a waveform to the Ĵ(t)-frame we first compute the total angu-

lar momentum, J(t), from the expressions of the angular momentum emission

rate given in [58]. This is achieved by integrating numerically these equations

and setting the integration constant J(0) = JADM to agree with the total

angular momentum of the system at the start of the simulation. We have

chosen to not include a model for the variations in Ĵ(t) for consistency with

the construction of the PhenomPNR model, which, as a first attempt to model

precession through merger and ringdown, did not model the variations in the

direction of J(t). Knowing the total angular momentum, J(t), we compute

the Euler angles, (α, β, γ) that perform a time-dependent rotation to the Ĵ(t)-

frame. The first two Euler angles are spherical angles and due to the minimum

rotation condition [144], γ is given by

γ̇ = −α̇ cos β. (4.10)

The waveform is then transformed to the chosen co-precessing frame, the

quadrupole-aligned (QA) frame that tracks the direction of the maximum ra-

diation emission. This is achieved by computing another set of Euler angles,

(α, β, γ) that rotate the coordinate system form the Ĵ(t)-frame to the co-

precessing frame. In this frame, the multipoles are significantly simplified,

with the (l = 2, |m| = 2) multipoles having the strongest amplitude, and the

presence of precession-induced modulations in the waveform is minimised.

Furthermore, the NR waveforms are transformed from the time-domain

to the frequency-domain where the features of the signal can be more easily

identified and we model the multipole asymmetry. To achieve this, we utilise

the fast Fourier transform as defined in Eq. 4.11. Similarly, the data can be

transformed back to the time-domain using the inverse fast Fourier transform.

The transformation of the strain from the time-domain, h(t), to the frequency-
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domain, h̃(f), and its inverse are given by

h̃(f) = FFT (h(t)) =

∫
h(t)e−2πift dt, (4.11)

h(t) = IFFT
(
h̃(f)

)
=

∫
h̃(f)e2πift df. (4.12)

In addition, to compute the strain, h, from ψ4 in the frequency-domain we can

use the following expression

h̃(f) = − ψ̃4(f)

ω2
. (4.13)

where ω = 2πf . Eq. 4.13 can be derived in the frequency domain from the

following expression

ψ̃4(f) = FFT (ψ4(t)) = FFT
(
ḧ(t)

)
= −ω2h̃(f). (4.14)

The anti-symmetric and symmetric components of the waveform in the QA

frame are computed from 4.5 and 4.4, respectively. The computed symmetric

and anti-symmetric strains, hNR
s and hNR

a , are complex quantities that can be

written as

hNR
s (f) = ANR

s (f)eiϕ
NR
s (f), (4.15)

hNR
a (f) = ANR

a (f)eiϕ
NR
a (f) (4.16)

and we can easily calculate their amplitude, ANR, and phase, ϕNR, as their

absolute value and argument, respectively.

4.2.3 Symmetric and anti-symmetric contributions in

PN theory

To create an efficient and accurate amplitude model, we have capitalized on the

similar features of the symmetric and the anti-symmetric amplitude that are

illustrated in Fig. 4.2a. Through our search for an efficient modelling approach,

we have discovered that a simple and elegant solution is to scale the symmetric

contribution of the waveform to match the anti-symmetric amplitude. This

can be accomplished by multiplying the symmetric amplitude with a ratio

of the anti-symmetric amplitude over the symmetric amplitude. As a result,
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rather than directly modelling the multipole asymmetry amplitude shown in

Fig. 4.2a, we have developed a model for this ratio that can subsequently be

used to precisely scale the symmetric waveform.

From the NR data, we have identified the prospect of creating a ratio model.

However, generating a complete IMR model requires obtaining accurately the

ratio of these amplitudes over the appropriate frequency range. While we can

rely on the NR data to accurately compute the ratio at higher frequencies, for

the early inspiral we would need to utilize the PN theory to obtain the ratio.

Thus we could attempt to produce a model that incorporates both the PN

ratio and an NR-tuned correction at higher frequencies.

However, we need first to verify the accuracy of the PN ratio in frequencies

bellow the start of the NR waveforms. This will ensure that the length of our

waveforms is sufficient for the development of an accurate IMR modelling. To

accomplish this, we will calculate, from PN theory, an approximate ratio of the

anti-symmetric amplitude over the symmetric amplitude and construct hybrid

PN-NR waveforms to study the behaviour of the PN ratio across a wide range

of frequencies.

The first step in constructing the ratio model is to compute the ratio in

the framework of PN theory as a PN expansion in terms of v/c where v is

the relative velocity of the two black holes and c is the speed of light, and we

choose geometric units where c = 1. We consider a single-spin binary black

hole system where the dominant precession effects are present. The total mass

of the systemM = m1+m2, where m1 and m2 are the masses of the two black

holes, can be removed as an overall scale factor, and for simplicity we choose

M = 1. The dimensionless spin on the larger black hole is χ = S1/m
2
1 where

S1 is the angular momentum magnitude of the larger black hole.

To compute the PN ratio, we obtain from Ref. [37] the complex PN ex-

pression of the time-domain ℓ = m = 2 multipole, hPN
22 , for spinning, precess-

ing binaries with generic inclination angle ι moving on nearly circular orbits

through 1.5PN given in Eq. B1 of Ref. [37]. The (ℓ = 2,m = −2) multipole,

hPN
2−2, is computed from the hPN

22 multipole using Eqs. 4.7 and 4.6. The strains

of the ℓ = |m| = 2 multipoles can then be transformed to a co-precessing

frame that follows the instantaneous orbital plane. To achieve this, we set

to zero the inclination angle of the orbital angular momentum relative to the

total angular momentum, ι = 0, and we use an approximate reduction to a
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single-spin system [4] by setting

χs/a,x = −χ sin(θLS − ι) cos(α)/2 (4.17)

χs/a,y = −χ sin(θLS − ι) sin(α)/2 (4.18)

χs/a,z = χ cos(θLS − ι)/2 (4.19)

where χs = (χ1+χ2)/2, χa = (χ1−χ2)/2 are the symmetric and anti-symmetric

spins defined in Ref. [37] and θLS is the inclination of the spin from the orbital

angular momentum vector.

In this co-precessing frame, we substitute the simplified PN ℓ = |m| = 2

multipoles in Eqs. 4.4 and 4.5 to obtain the complex PN expressions of the

symmetric and the anti-symmetric components of the waveform that can be

written in the following form

hPN
s (f) = APN

s (f)eiϕ
PN
s (f), (4.20)

hPN
a (f) = APN

a (f)eiϕ
PN
a (f) (4.21)

where APN and ϕPN the amplitude and the phase of the two components.

Since the computed PN symmetric and anti-symmetric components are com-

plex quantities, the desired amplitudes are their absolute values, APN
s and

APN
a . Setting the luminosity distance to be DL = 1 and considering α,Ψ ∈ R,

the PN symmetric and anti-symmetric amplitudes of the ℓ = |m| = 2 multi-

poles are given by

APN
s (f) = − 4

21

√
π

5
v2ν

(
42 + 84πv3 + v2(−107 + 55ν)

−28v3(1 + δ − ν)χ cos θLS
)
, (4.22)

APN
a (f) = −2

√
π

5
v4(1 + δ)νχ sin θLS. (4.23)

The PN ratio of the two amplitudes is then given by the following expression

κPN(f) =
21v2(1 + δ)χ sin θLS

2(42 + 84πv3 + v2(−107 + 55ν)− 28v3(1 + δ − ν)χ cos θLS)
.

(4.24)

where ν = m1m2/M
2 is the symmetric mass ratio, δ = (m1 −m2)/M > 0 is

a fractional mass difference, χ is the dimensionless spin magnitude and θLS is

the angle between the orbital momentum and spin vector. The expression of
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the PN ratio of the anti-symmetric amplitude over the symmetric amplitude

depends on the symmetric mass ratio, ν, the spin magnitude, χ, and the angle

θLS of the system. Consequently, Eq. 4.24 can be used to compute the PN

ratio of any configuration as a function of frequency since v = (πfM)1/3.

Having derived an expression for the ratio of the two amplitudes, we need to

check its accuracy. To accomplish this we construct a hybrid PN-NR waveform

that is longer than the NR waveforms and extends down to lower frequencies.

In the next section, we study the behaviour of the PN ratio at low frequencies

where the BAM simulations are less accurate.

4.2.4 Hybrids and amplitude ratio

As we explained in 4.2.3, the NR simulations describe well the last orbits,

merger and ringdown of the binary black hole coalescence, but they are not

accurate at the early inspiral phase. In contrast, at these lower frequencies,

the PN approximation is accurate and could be used to study the behaviour

of the anti-symmetric and symmetric amplitude ratio at this frequency range.

Therefore, to test the accuracy of the PN ratio given by Eq. 4.24 and create a

precise IMR model, we need to construct long waveforms that remain accurate

across the whole frequency range of the IMR. This can be achieved by stitching

together the PN and NR waveforms to construct hybridised PN-NR waveforms.

Through this process we create longer waveforms that allow us to understand

the phenomenology of the amplitudes during the three stages of the binary

black hole coalescence.

Hybrid waveforms are frequently employed in waveform modelling as they

are longer, more accurate waveforms throughout the IMR. They were first

used in Ref. [145] in the development of Phenom models and since then they

became a vital component in the development of many models of the Phenom

family [145, 146, 140, 141, 142]. However, the utility of the hybrid waveforms

extends beyond their application in waveform modelling. Refs. [147, 148, 149]

have demonstrated the usefulness of PN-NR hybrid waveforms in studying the

accuracy of the PN approximation for GW observations. They have also been

used as approximate signals to test the efficiency of data-analysis pipelines

before the first gravitational wave detection in Refs. [150, 151].

We build hybrid waveforms for the symmetric and anti-symmetric contri-

butions of the dominant ℓ = 2 and |m| = 2 multipoles for a selected single-spin

system. This is a binary black hole system with mass ratio q = m1/m2 = 2,
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primary black hole spin magnitude χ = 0.7 and spin misalignement with the

orbital angular momentum by θLS = 90o. The NR waveform for this config-

uration was generated with the BAM code for a previous study described in

Ref. [126]. The NR data are transformed to the QA-frame and we compute

the symmetric and anti-symmetric contributions of the ℓ = |m| = 2 multipoles

from their definitions given by Eqs. 4.4 and 4.5. The NR waveform starts

at a frequency of MΩ = 0.025 and it is sufficiently long to be used for the

construction of full IMR hybrids, as indicated from Refs. [147, 148].

Since the PN-NR hybridised waveform is constructed to facilitate check-

ing the accuracy of the PN ratio, we want to generate PN inspiral waveforms

that illustrate accurately the phenomenology of this ratio at lower frequencies.

As a result, in this case, we make no use of the approximations used for the

construction of the PN ratio that we describe in Section 4.2.3. The construc-

tion of the PN waveform is done by solving the full PN equations of motion.

For the evolution of the equations of motion, we follow the work presented in

Refs. [123, 152, 153, 42] and we adopt the Taylor-expanded form of the Hamil-

tonian equations of motion. We utilise the non-spinning 3PN Hamiltonian

presented in Refs. [154, 155, 156, 157, 158, 159] and the radiation flux that

is given up to 3.5PN order [160, 161, 162]. We also include the leading-order

[44, 163, 164, 165, 166, 167] and next-to-leading order [168, 169, 170] spin-orbit

and spin-spin coupling terms of the Hamiltonian, as well as the spin-induced

radiation flux terms outlined in Refs. [171, 44, 167]. Furthermore, we add the

flux contribution resulting from the energy flowing into the black holes, which

manifests at the relative 2.5PN order [172].

To obtain the multipoles of the precessing PN waveform, we use the expres-

sions for the hPN
l,m multipoles given in Appendix B of Ref. [37] for generic inclina-

tion angle ι and compute the hPN
l,−m multipoles from Eqs. 4.6 and 4.7. We obtain

the full PN waveform and we transform it to the chosen co-precessing frame,

the QA-frame that tracks the direction of dominant emission. To achieve this,

we compute the ψ4 in the time-domain using the relation ψ4 = ḧ and we

compute the QA Euler angles (α, β, γ). In the QA-frame, we compute the

symmetric and anti-symmetric contributions of the ℓ = |m| = 2 multipoles

from Eqs. 4.5 and 4.4.

The hybrid waveforms are constructed by first aligning the PN and NR

waveforms and then joining them together. This process is repeated for the

symmetric and the anti-symmetric waveforms. We start by finding the times at
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which the PN and NR waveforms reach a selected common frequency ω0, ω0 =

ωPN(tPN) = ωNR(tNR) and we align them with a time and phase shift. We

blend together the amplitude and the phase of the PN and NR anti-symmetric

and symmetric contributions using the following piecewise expressions for the

amplitude and the phase, respectively,

ψhyb
4 =


ψPN
4 (t+ tPN) t ≤ t1

ψPN
4 (t+ tPN)× trm(t) + ψNR

4 (t+ tNR)× trp(t) t1 ≤ t ≤ t2

ψNR
4 (t+ tNR) t > t2

(4.25)

ϕhyb =


ϕPN(t+ tPN)− ϕPN(tPN) t ≤ t1

ϕ̄PN(t)× trm(t) + ϕ̄NR(t)× trp(t) t1 ≤ t ≤ t2

ϕNR(t+ tNR)− ϕNR(tNR) t > t2

(4.26)

where

ϕ̄PN(t) = ϕPN(t+ tPN)− ϕPN(tPN) (4.27)

ϕ̄NR(t) = ϕNR(t+ tNR)− ϕNR(tNR) (4.28)

and trm and trp are the following transition functions

trm(t) =
t2 − t

t2 − t1
, (4.29)

trp(t) =
t− t1
t2 − t1

, (4.30)

that are applied to a time window with a width of t2− t1 = 500M for the sym-

metric and the anti-symmetric waveforms. From Eqs. 4.25 - 4.30, we separately

obtain the PN-NR hybrid waveforms of the symmetric and anti-symmetric con-

tributions in the time-domain.

To obtain from Eq. 4.25 the anti-symmetric and symmetric strain of the

hybrid waveform in the frequency-domain where we want to model the asym-

metry, the hybrid Ψhyb
4 is transformed from the time-domain to the frequency-

domain, Ψ̃hyb
4 , using the fast Fourier transform given by Eq. 4.11 and we employ

Eq. 4.14 to compute the anti-symmetric and symmetric strain, h̃hyba and h̃hybs ,
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in the frequency-domain. The two strains can be written in the following form

h̃hybs (f) = Ahyb
s (f)eiϕ

hyb
s (f), (4.31)

h̃hyba (f) = Ahyb
a (f)eiϕ

hyb
a (f) (4.32)

where Ahyb and ϕhyb the amplitude and phase of the symmetric and anti-

symmetric components, respectively. The amplitude and the phase derivative

of the anti-symmetric component of the hybrid waveform are presented along

with the corresponding NR data that we used to construct them in Fig. 4.10.
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Figure 4.3: The anti-symmetric contribution of the hybrid waveform (orange)
plotted against the anti-symmetric contribution of the NR waveform of the
(q = 2, χ = 0.7, θLS = 90o) configuration in the time-domain. The waveforms
have been aligned at the merger and at early times the asymmetry of the
hybrid is oscillating.

The hybrid waveforms can be a valuable tool for comprehending the phe-

nomenology of the ratio of the anti-symmetric to symmetric amplitude in the

frequency-domain defined as

κhyb(f) =
Ahyb

a (f)

Ahyb
s (f)

. (4.33)

The hybrid ratio, κhyb, allows us to test the accuracy of the PN ratio, κPN ,

given by Eq. 4.24. As we have discussed at the start of this section, at lower
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Figure 4.4: The two panels show the amplitude and the phase derivative of the
(ℓ = 2,m = 2) multipole asymmetry in the frequency-domain QA frame. The
PN-NR hybridised waveform of the (q = 2, χ = 0.7, θLS = 90o) configuration
is compare against the corresponding NR simulation.
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frequencies we expect the PN-NR hybrid ratio to agree with the PN ratio that

is also calculated from PN theory using some additional approximations. Due

to these introduced approximations, it is also important to test the accuracy

of the PN ratio in the NR regime.

The PN ratio, κPN , is compared against the hybrid and NR ratio, κhyb and

κNR, respectively, of the same single-spin binary black hole system (q = 2,

χ = 0.7, θLS = 90o) in Fig. 4.5. We observe a region at the inspiral where all

three ratios briefly agree indicating that the PN ratio is sufficiently accurate

at those frequencies. At higher frequencies, the hybrid and NR ratios increase

while the PN ratio reaches a plateau.

Due to the presence of the PN waveforms, the PN-NR hybrid ratio is longer

and more accurate at the early inspiral compared to the NR ratio. In contrast

to the PN ratio, in the early inspiral of the hybrid ratio, we notice the presence

of large oscillations. These oscillations are absent from the PN ratio due to

the fact that the ℓ = |m| = 2 PN multipoles are transformed to a co-precessing

frame by employing the approximation ι = 0. On the other hand, in the case

of the hybrid waveforms, the PN multipoles are transformed to a different co-

precessing frame, the QA frame, using the QA angles (α, β, γ) [42, 4]. These

observed oscillations will not be incorporated into the ratio model. Further-

more, as we can see from Fig. 4.5, the PN ratio goes through these modulations

in the lower frequencies and captures accurately the behaviour of the hybrid

ratio at the early inspiral.

These results suggest that our PN ratio is a good starting point for the

construction of the amplitude model. Furthermore, since the PN ratio appears

to be accurate up to the point where the PN waveforms begin, the use of the

NR data is sufficient for the modelling and there is no need to construct hybrids

for all the simulations. The PN ratio is accurate at the early inspiral, but needs

to be improved to capture accurately the behaviour of the NR ratio at higher

frequencies. To accomplish this and model accurately the NR ratio, we can

add the appropriate higher order terms to Eq. 4.24 and the latter takes the

form

κ(f) = κ(f)PN(1 + bvn), (4.34)

where bvn is the added higher order term. This will act as a correction to the

lower order terms of the PN ratio, increasing its accuracy.

In our search for the appropriate correction we considered numerous com-

binations of higher order terms. To ensure that we will produce an efficient
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Figure 4.5: The ratios of the (ℓ = 2,m = 2) anti-symmetric over the sym-
metric amplitude of the (q = 2, χ = 0.7, θLS = 90o) signal. The PN ratio,
κPN(f), calculated in a co-precessing frame is compared against the hybrid
ratio, κhyb(f), and NR ratio, κNR(f), computed in the frequency-domain QA
frame.

model, we tried to choose the optimal candidate with the least number of free

parameters. In Fig. 4.6, we present some of the higher order terms that we

tested in order to find the most sufficient correction. From this investigation,

we found that n = 5 was the optimal choice and that the addition of just one

free parameter, b, captures well the behaviour of the NR ratio at the higher

frequencies. Applying the selected correction to Eq. 4.34, the corrected PN

ratio, κ(f), can be written as

κ(f) = κ(f)PN(1 + bv5) (4.35)

where bv5 is the added NR calibrated correction. From Eq. 4.35, the ansatz of

the ratio model takes the following form

κ(f) =
21(v2 + bv7)(1 + δ)χsinθ

2(42 + 84πv3 + v2(−107 + 55ν)− 28v3(1 + δ − ν)χcosθ)
. (4.36)
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Similar to the PN ratio, κPN , the ratio model, κ, depends on the symmetric

mass ratio, ν, the spin magnitude, χ, and the angle θLS of the system. As a

result, given these three parameters of any configuration, from Eq. 4.35, we can

compute the anti-symmetric to symmetric amplitude ratio, κ, as a function of

frequency.
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Figure 4.6: The NR ratio, κNR(f), of the (ℓ = 2,m = 2) anti-symmetric over
the symmetric amplitude of the (q = 1, χ = 0.4, θLS = 60o) NR waveform
against the PN ratio, κPN(f), and some of the tested ratio models. The con-
sidered ansatzes of the ratio model are computed by applying a correction to
the PN ratio, κPN(f), to increase its accuracy at higher frequencies. The ratio
model, κ(f), performs better compared to the other considered corrections.

To choose the appropriate frequency range for the modelling of the ratio, we

considered numerous possible choices. Due to the inaccuracy of the NR data

at the early inspiral and the presence of noise at the post-ringdown frequencies,

we want to choose a frequency range where we can accurately model the NR

ratio. Based on the NR data, we came to the conclusion that employing a fixed

frequency range for all 80 NR simulations is not a viable option. To solve this,

we have chosen a modelling frequency range that depends on the ringdown

frequency, fRD of the simulation. We considered different combinations and
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we found that the frequency range [fmin = (fRD − 0.01) /5, fmax = fRD−0.002]

ensures the highest level of accuracy of the modelling data.

In Fig. 4.7a, we show the results of the ratio model given by Eq. 4.36

along with the NR and PN ratio, κNR and κPN , for the selected configuration

(q = 1, χ = 0.4, θLS = 60o). The ratio model agrees well with the NR data up

to the ringdown frequency fRD. In the post-ringdown regime, the ratio model

continues to increase while the NR ratio reaches a plateau.

However, from the perturbation theory, we expect the symmetric and anti-

symmetric waveform amplitudes to have the same decay rate during the ring-

down. In Ref. [173], it is explicated that the decay rate of the (ℓ = 2,m = 2)

and (ℓ = 2,m = −2) multipoles is the same during the ringdown and is de-

termined by the imaginary part of the complex ringdown frequency. As a

result, the ratio of the anti-symmetric to symmetric amplitude should reach a

plateau at frequencies f ≳ fRD. Therefore, a final adjustment is made in order

to set the ratio of the anti-symmetric and symmetric amplitudes, κ(f), to the

fixed value κ(f ≥ fRD) = κ(fRD) that it reaches at the ringdown frequency.

Furthermore, in order to avoid a sharp transition, we use a moving average

algorithm such that

κn(f) =
1

(2k + 1)

n+k+1∑
i=n−k+1

κ(fi), n ∈ [k,N − k]. (4.37)

We use a symmetric window of an equal number of points (k = 40) on either

side of the frequency f to calculate the moving average. Here N is the length

of the frequency series and the algorithm updates κ(f) for 40 ≤ n ≤ N − 40.

In Fig. 4.7a, we show the final ratio model, as given by Eq. 4.36, after

implementing these corrections for the selected configuration (q = 1, χ = 0.4,

θLS = 60o). The final ratio model agrees well with the NR ratio during the

entire IMR of the binary coalescence. Furthermore, during the ringdown, the

ratio model reaches a plateau, as anticipated.

4.3 Amplitude model

The anti-symmetric amplitude, Aa(f), can be constructed by rescaling the

symmetric amplitude with the ratio κ(f). The final amplitude model for the
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anti-symmetric component can be written as

Aa(f) = κ(f)As(f) (4.38)

where κ(f) is the ratio model following as given by Eq. 4.36 decay rate correc-

tion and As(f) is the amplitude of the symmetric component. The amplitude

model estimates the anti-symmetric amplitude from the symmetric amplitude

and it can in principle be used in any currently available frequency-domain

waveform or model. As a result, we have created an efficient model that lever-

ages the already available symmetric amplitude models.

The model is tuned to the 80 single-spin NR waveforms that consist the

BAM catalogue. In Figs. 4.7a - 4.16, we present three different cases that show

the performance of the amplitude model. In these examples, the symmetric

amplitude that is rescaled as shown in Eq. 4.38, is computed from the NR

data using Eqs. 4.4 and 4.15. The model exhibits a good agreement with the

majority of the NR waveforms as it is shown in Figs. 4.7a and 4.13 where the

ratio and the amplitude model of one of these cases are compared to the NR

simulations.

However, for less than half of these simulations, the model is unable to fully

reproduce all the features of the NR waveforms. In some cases, we noticed the

presence of large oscillations in the IMR of the anti-symmetric amplitude of

the NR waveforms that could not be captured by the model as is shown in

Figs. 4.8a and 4.14. In these cases, the amplitude fit primarily goes through

these oscillations.

In some other cases, the NR ratio of the amplitudes increases after the

merger showing that the decay rate of the two amplitudes in the ringdown is

not the same. An example is given in Figs. 4.10a - 4.16. However, due to the

correction that was described in the previous section, the ratio model exhibits

the expected behaviour. Therefore, the modelled anti-symmetric amplitude

has the same decay rate as the symmetric amplitude as shown in Fig. 4.16.
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(a) The ratio model before (green) and following (orange) the decay rate correction
against the NR ratio, κNR(f), and the PN ratio, κPN (f).
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(b) The amplitude model before (green) and following (orange) the decay rate cor-
rection against the NR symmetric and anti-symmetric components of the waveform.

Figure 4.7: The two panels show the ratio and the multipole asymmetry ampli-
tude model in the frequency-domain QA frame for the (q = 1, χ = 0.4, θLS =
60o) waveform. The initial fit performs well in this case up to the ringdown
frequency fRD. A correction has been applied to the final model (orange) to
ensure its accuracy at frequencies f ≥ fRD.
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(a) The ratio model before (green) and following (orange) the decay rate correction
against the NR ratio, κNR(f), and the PN ratio, κPN (f).
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(b) The amplitude model before (green) and following (orange) the decay rate cor-
rection against the NR symmetric and anti-symmetric components of the waveform.

Figure 4.8: The two panels show the performance of the ratio and the multipole
asymmetry amplitude model in the presence of large oscillations in the anti-
symmetric amplitude for the (q = 1, χ = 0.8, θLS = 30o) waveform. The ratio
and the amplitude model go through these oscillations. The ratio of the NR
data is increasing at frequencies f ≥ fRD instead of reaching a plateau. This
is corrected in the final ratio model (orange) to ensure the model’s accuracy.
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(a) The ratio model before (green) and following (orange) the decay rate correction
against the NR ratio, κNR(f), and the PN ratio, κPN (f).
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(b) The amplitude model before (green) and following (orange) the decay rate cor-
rection against the NR symmetric and anti-symmetric components of the waveform.

Figure 4.9: The two panels show the performance of the ratio and the multipole
asymmetry amplitude model in the presence of small oscillations in the anti-
symmetric amplitude for the (q = 2, χ = 0.8, θLS = 60o) waveform. The ratio
and the amplitude model go through these oscillations. The ratio of the NR
data is increasing at frequencies f ≥ fRD rather than reaching a plateau. This
is corrected in the final ratio model (orange) to ensure the model’s accuracy.
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(a) The ratio model before (green) and following (orange) the decay rate correction
against the NR ratio, κNR(f), and the PN ratio, κPN (f).
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(b) The amplitude model before (green) and following (orange) the decay rate cor-
rection against the NR symmetric and anti-symmetric components of the waveform.

Figure 4.10: The two panels show the performance of the ratio and the multi-
pole asymmetry amplitude model in a case where the amplitudes of the anti-
symmetric and the symmetric NR (q = 2, χ = 0.4, θLS = 90o) waveform have
different decay rates. In this case, the amplitude’s ratio is increasing at frequen-
cies f ≥ fRD. This feature appears in some of the NR data and is corrected
by applying a correction to the final model (orange).
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4.4 Surface fit

As we have seen in the previous sections, the ratio model as given by Eq. 4.36,

captures accurately the behaviour of the NR ratio at higher frequencies with

only one free parameter, b. In Fig. 4.11, we show the values of the model’s

coefficient, b, as a function of the symmetric mass ratio, ν, for all the 80 NR

simulations. From Fig. 4.11, the model’s coefficient, b, is found to be indepen-

dent of the spin, χ. Overall, there is no clear trend in the values of b with

respect to spin, and we observe the present of some noise in the coefficients.

Therefore, we can assume that the coefficient b remains independent of the

spin χ and can be fitted across the two-dimensional ν, θLS parameter space by

a surface of the form

b(ν, θ) = b0 + b1ν + b2θLS + b3νθLS (4.39)

where b0 = 18.0387, b1 = 15.4509, b2 = 55.1140 and b3 = −203.6290. From

Eq. 4.39, we notice that b does not go to zero when θLS is 00 or 180o. However,

the presence of the sin θLS term at the numerator of the ansatz of the ratio

model in Eq. 4.36 ensures that the multipole asymmetry goes to zero for θLS =

0o and θLS = 180o.

Figure 4.11: The b coefficient as a function of the symmetric mass ratio, ν, for a
selected angle θLS = 90o and all the available spin values, χ = [0.2, 0.4, 0.6, 0.8].
The grey line shows the surface fit, b(ν, 90◦) from Eq. (4.39).



Chapter 4. A phenomenological model of the multipole asymmetry 95

ν

0.10
0.13

0.16
0.19

0.22
0.25

θ

0.5

1.3

2.1

2.9

b

20
40
60
80
100

120

140

160

Figure 4.12: Surface b(ν, θLS) = b0 + b1ν + b2θLS + b3νθLS fit of the model’s
coefficient, b, to the two-dimensional parameter space ν, θLS. The red points
denote the 80 computed b coefficients of the multipole asymmetry amplitude
model.

The surface given by Eq. 4.39 fits sufficiently the coefficient’s values that

we have obtained from the modelling of the 80 NR configurations as it is shown

in Fig. 4.12. Therefore, we can employ Eq. 4.39 to compute the values of the

b coefficient and obtain the multipole asymmetry amplitude from Eq. 4.36. In

Figs. 4.13 - 4.16, we show the anti-symmetric amplitude that we obtain using

Eq. 4.39. For all the presented cases, the amplitude model that we compute

using the surface fit performs well and the outcomes are in excellent agreement

with the previous amplitude model results.
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Figure 4.13: The anti-symmetric amplitude model computed from the surface
fit given by Eq. 4.39 (purple) against the NR anti-symmetric amplitude (blue)
and the amplitude model Eq. 4.38 before (green) and following (orange) the
decay rate correction for the (q = 1, χ = 0.4, θLS = 60o) waveform. The
amplitude model computed from the surface fit is in excellent agreement with
the NR amplitude and the amplitude model following the decay rate correction.
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Figure 4.14: The performance of the final amplitude model in the presence
of large oscillations for the (q = 1, χ = 0.8, θLS = 30o) waveform. A detailed
description of the presented quantities is given in Fig. 4.13.
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Figure 4.15: The performance of the final amplitude model in the presence of
small oscillations for the (q = 2, χ = 0.8, θLS = 60o) waveform. A detailed
description of the presented quantities is given in Fig. 4.13.
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Figure 4.16: The performance of the final amplitude model for the (q = 2, χ =
0.4, θLS = 90o) waveform where the symmetric and anti-symmetric decay rates
differ. A detailed description of the presented quantities is given in Fig. 4.13.
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4.5 Phase model

For completion in this section we will give a brief overview of the phase model

that was result of collaborative work (see Collaborative work at the start of the

thesis). The anti-symmetric phase is equivalent to the orbital phase plus the

precession angle during the inispiral, ϕs(f)/2 + α(f), and in the ringdown it

is equal to the symmetric phase. As we explained in Section 4.2.1, the model

explicitly deals with the phase derivatives, and the phase derivative is defined

by the piecewise function,

ϕ′
a(f) =

1
2
ϕ′
s(f) + α′(f) + A0, f ≤ fT

ϕ′
s(f), fT ≤ f < 0.15.

(4.40)

The phase derivative ansatz was calibrated to NR simulations by treating fT as

a free parameter. A choice of fT = 85%fRD was found to be appropriate across

the parameter space. Applying a shift to the phase derivative is equivalent to

an overall time shift of the waveform. We exploit this freedom by fixing the

symmetric phase derivative minima to be 0 at fRD. This imposes,

A0 =
1

2
ϕ′
s(fT )− α′(fT ). (4.41)

The phase of the anti-symmetric waveform is obtained by integrating the two

pieces,

ϕa(f) =

1
2
ϕs(f) + α(f) + A0 ∗ f + ϕA0, f ≤ fT

ϕs(f) + ϕB0, fT ≤ f < 0.15,
(4.42)

where the integration constant ϕB0 is determined by continuity at fT

ϕB0 = α(fT )−
ϕs(fT )

2
+ A0 ∗ fT + ϕA0. (4.43)

The initial phase of the asymmetry is determined by the in-plane spin orienta-

tion, which also determines α. Therefore, the initial phase is set equal to the

value of α at the reference frequency, ϕA0 = α(fref).
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4.6 Model accuracy

A standard measure of waveform accuracy used extensively in the literature is

the match of the waveform model with NR waveforms, defined as,

M(hNR, hM) = 4Re

∞∫
0

hNR(f)h
∗
M(f)

Sn(f)
df, (4.44)

where h(f) = h+(f) − ih×(f) is a complex frequency sequence constructed

from the two polarizations of the waveform. As such, calculating matches of

just the anti-symmetric waveform is not physically meaningful. Furthermore, a

true measure of performance of precessing waveforms in data analysis can only

be obtained by calculating matches of the full waveform in the inertial frame,

making considerations for precession as well as extrinsic parameters. There-

fore, matches of just the anti-symmetric waveform in the co-precessing frame

provide some indication of the accuracy of one ingredient in the full wave-

form, but do not indicate the overall accuracy of the corresponding precessing

waveform.

However, an inner product like that in Eq. 4.44 is a useful measure of agree-

ment between two complex frequency series. Since a match-like calculation for

the anti-symmetric contribution in the co-precessing frame cannot be inter-

preted in terms of either signal detection efficiency or parameter measurement

accuracy, there is no reason to include the detector sensitivity, and so we will

use a simpler inner product of the form,

⟨hNR|hM⟩ = Re

f2∫
f1

hNR(f)h
∗
M(f)df, (4.45)

where f1 is the starting frequency of the NR waveform in geometric units,

Mf1 = 0.02, and Mf2 = 0.15, after which point the amplitude of the NR

waveform is below the noise floor of the data. We consider normalised wave-

forms, ĥ = h/
√
⟨h|h⟩, so that the maximum value of the inner product is one.

We used the standard implementation of this inner product in pycbc [174], a

python software package for GW data analysis, for our match computations.

We then consider the “mismatch” between the two waveforms,

M = 1− ⟨hNR|hM⟩√
⟨hNR|hNR⟩⟨hM |hM⟩

. (4.46)
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Figure 4.17: Mismatches of the anti-symmetric waveform model in the co-
precessing frame with NR data. The black triangles show the mismatches for
the combined amplitude and phase model while the magenta squares (cyan
circles) show the mismatches for just the amplitude (phase) model with the
phase (amplitude) constructed from NR data. The dashed magenta and cyan
lines show the average mismatch for the amplitude and phase model, respec-
tively; on average they are of comparable accuracy. The black solid line shows
the average mismatch for the overall model. The x-axis denotes the case index
of the NR simulation as usual i.e., five different θLS for each spin magnitude
shown in figure, for q = 1,2,4 and 8.

In Fig. 4.17 we show the mismatches of the anti-symmetric waveform con-

structed from our model with the 80 NR waveforms that were used to calibrate

the model. To determine the accuracy of the individual components, we also

computed matches of the amplitude (phase) model complemented by phase

(amplitude) constructed from NR data, with the full anti-symmetric wave-

form constructed from NR data. The overall accuracy of both the models are

comparable. We note that although the model was verified using the same

waveforms as used for modelling, since the NR tuning was relatively simple —

i.e., a single co-efficient in Eq. 4.35 fit to the four-parameter ansatz Eq. 4.39

across a two-dimensional parameter space — using a much smaller subset of

waveforms would have produced a model of similar accuracy, and the simplic-

ity of this model and the single-spin parameter space obviates any concerns

about over-fitting or unexplored corners of parameter space.

To investigate the quality of the surface fit in Eq. 4.39, we also computed
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mismatches for the amplitude model using fit coefficients b of Eq. 4.35. As is

evident from Fig. 4.18, for most cases the performance is unchanged and for

the handful of cases where the mismatch changes, the difference is not very sig-

nificant. This further illustrates that capturing the non-linear dependence on

spin magnitude is unlikely to make significant improvement to the amplitude

model.
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Figure 4.18: Mismatches (same as Fig. 4.17) showing comparison of the am-
plitude model constructed using the spin magnitude-independent surface fit of
Eq. 4.35 (blue squares) with the amplitude model constructed from the true
fit coefficients (green circles).

Note that the anti-symmetric waveform model is downstream from the

symmetric waveform model as well as the precession angle models. Therefore,

enhancement in performance of the overall model due to the addition of an

asymmetry model must always be discussed in the context of the underlying

symmetric, precessing waveform model. This is beyond the scope of present

work and will be discussed in the context of the current generation frequency-

domain precessing-binary PhenomXPNR model [137].

4.7 Conclusion

We have presented the first Phenom model for the (ℓ = 2,m = ±2) multi-

poles asymmetry. We have developed a new efficient approach to model the
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amplitude and phase of the multipole asymmetry employing any of the cur-

rently available symmetric models or waveform as the primary ingredient. We

modelled the amplitude and the phase of the asymmetry separately in the fre-

quency domain QA frame and we calibrated our mode using 80 NR single-spin

simulations.

The amplitude is modelled by rescaling the symmetric contribution of the

waveform using a ratio model. Rather than modelling directly the amplitude

of the multipole asymmetry, we have developed a model of the ratio of the

anti-synmetric over the symmetric amplitude that we then utilise to scale the

symmetric waveform. To construct this model, we have calculated the PN

expression of this ratio that is accurate at the early inspiral. Our ratio model

is then created by adding a single higher order term as a correction to this

expression creating a ratio model that is accurate throughout the IMR of the

binary. This ratio model can be used to rescale any of the presently available

symmetric models.

The development of the phase model was motivated by the behaviour of

the asymmetry in the PN waveforms. The phase is constructing by combining

the symmetric phase and the procession angle α. The phase is modelled during

the inspiral by the sum of the symmetric phase and the precession angle α and

is computed by the symmetric phase closer to the merger. Therefore, it can

be modelled using only the symmetric phase and the procession angle α that

are already modelled by the presently available waveform models.

The multipole asymmetry model has been implemented as part of higher-

multipole extension to PhenomPNR, which is built on top of the PhenomX frame-

work [4, 139, 142, 72]. This new Phenom waveform model that contains the

multipole asymmetry is proposed for use in O4. It will be along with the

NRSurogate the only models that contain the multipole asymmetry making

possible the cross checking of the obtained results. Furthermore, we expect

our model to produce robust results and measure the parameters of binaries

that are outside the validity range of the surrogate.

Previous studies have shown the importance of including the multipole

asymmetry in the waveform models to obtain accurate source measurements

in the future observing runs. The modelling of the multipole asymmetry is

particularly important for the future observing runs because the improved

sensitivity of the detector will allow the detection of precessing systems. The

presence of the multipole asymmetry will permit the accurate measurement of
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the precession and the binaries spins.

This is a first model of the multipole asymmetry that can be further im-

proved in the future to include two-spin effects, in-plane spin direction and

higher modes. Furthermore, the current phase model is a first, effective ap-

proach that can be further improved in the future. Finally, it would be par-

ticularly interesting to perform a systematics study to quantify the model’s

accuracy across the parameter space.



Chapter 5

Conclusions and Future

Directions

The rapidly increasing sensitivity of gravitational wave detectors expands our

understanding of the universe and requires a parallel improvement of the wave-

form models. Accurate waveform models are essential for the measurement of

the properties of the detected binaries. However, in some cases, the use of

several approximations by these models can introduce systematic errors in the

parameter estimation results.

In Chapter 3, our search of systematic errors introduced solely by the ab-

sence of multipole asymmetry in the waveform models demonstrated that its

absence leads to significant biases in the estimation of the spins and tilt angles

of precessing binary black hole systems with high SNR. In the same study, we

also consider the highly precessing GW200129 signal [2, 3]. Our results showed

that even at relatively low SNR, including the asymmetry in the model is es-

sential in identifying this system as an unequal-mass binary with large in-plane

spin. The presence of the multipole asymmetry in the waveform models is par-

ticularly important for the future detections as the sensitivity of the detectors

is improved and signals will be recovered at higher SNR. Its absence could

have a significant impact on population studies and the efforts to better un-

derstand the formation of the observed black holes that rely on the accurate

measurement of the binary black hole parameters.

Based on these results, it becomes evident that the further improvement

of the symmetric Phenom [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 4] and

EOBNR [76, 77, 78, 79, 80, 81, 82] models will not be sufficient in order to ac-

curately measure the parameters of the precessing detected systems without
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including the multipole asymmetry in these models. Therefore, in Chapter 4,

we proceed to model the asymmetry and present the first multipole asymmetry

Phenom model where the amplitude and the phase of the asymmetry are mod-

elled in the frequency-domain co-precessing frame. Our model is implemented

into PhenomPNR [4] and it will become available during the O4 observing run.

Following the development of the asymmetry model and its implementation

in PhenomPNR, the next step is to study the impact that our new model has

on the accuracy of the parameter estimation results and test its performance

with a series of parameter estimation runs. Furthermore, although our model

should be increasing the accuracy of the Phenom models, it is a first approach

in the modelling of the asymmetry and it can be further improved to ensure

the accuracy of the models in the future runs.

A first step towards this direction is to include the sub-dominant modes

of the asymmetry. As we have shown in Fig 4.1, the asymmetry of the sub-

dominant modes is weak, however, in the future the modelling of the (ℓ =

3, |m| = 3) anti-symmetric component that is comparable to the (ℓ = 5,m = 5)

multipole could increase the accuracy of the model. Furthermore, we are also

producing a new series of simulations of two-spin systems that will be used to

extend and improve the two-spin treatment of the Phenom models. Including

the two-spin effects in our asymmetry model could also further improve its

accuracy.

However, an important factor that we need to take into account in our

efforts to further improve the asymmetry model is the way that the model is

constructed. The model relies on the symmetric model used to compute the

anti-symmetric amplitude and phase. As a result, we should also consider the

accuracy and the limitations of the symmetric Phenom and EOBNR models.

Finally, we should also note that since the Phenom and EOBNR models are

approximate models, as the detection of strongly precessing signals with even

higher SNR will become possible, some of the used approximations might not

hold. Therefore, it is also important to ensure the accuracy of the surrogate

models in a wider area of the parameter space [83, 84, 85, 1, 86]. There are

some promising approaches that could achieve this. Increasing the amount of

the training data is computationally expensive, however, if this is possible, NR

simulations developed in the areas of the parameter space where the accuracy

of the models decreases could be used to build more accurate surrogate mod-

els. Another interesting approach to make the surrogate accurate for all the



106

possible binary masses is the hybridisation of the input waveforms with PN

or EOB waveforms for the inspiral [1]. In addition, machine learning tech-

niques such as deep neural networks have been used to create accurate and

computationally fast surrogate models [175].
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and Sascha Husa. Supermassive Recoil Velocities for Binary Black-Hole

Mergers with Antialigned Spins. Physical Review Letters, 98(23):231101,

June 2007.



Bibliography 113

[63] Bernd Bruegmann, Jose A. Gonzalez, Mark Hannam, Sascha Husa,

and Ulrich Sperhake. Exploring black hole superkicks. Phys. Rev. D,

77:124047, 2008.

[64] Mark Hannam, et al. Simple Model of Complete Precessing

Black-Hole-Binary Gravitational Waveforms. Physical Review Letters,

113(15):151101, October 2014.

[65] Sascha Husa, et al. Frequency-domain gravitational waves from non-

precessing black-hole binaries. I. New numerical waveforms and anatomy

of the signal. Physical Review D, 93(4):044006, February 2016.

[66] Sebastian Khan, et al. Frequency-domain gravitational waves from non-

precessing black-hole binaries. II. A phenomenological model for the ad-

vanced detector era. Physical Review D, 93(4):044007, February 2016.

[67] Lionel London, et al. First Higher-Multipole Model of Gravitational

Waves from Spinning and Coalescing Black-Hole Binaries. Physical Re-

view Letters, 120(16):161102, April 2018.

[68] Sebastian Khan, Katerina Chatziioannou, Mark Hannam, and Frank

Ohme. Phenomenological model for the gravitational-wave signal from

precessing binary black holes with two-spin effects. Physical Review D,

100(2):024059, July 2019.

[69] Jonathan E. Thompson, et al. Modeling the gravitational wave sig-

nature of neutron star black hole coalescences. Physical Review D,

101(12):124059, June 2020.
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[143] Cecilio Garćıa-Quirós, et al. Multimode frequency-domain model for the

gravitational wave signal from nonprecessing black-hole binaries. Phys.

Rev. D, 102(6):064002, 2020.

[144] Michael Boyle, Robert Owen, and Harald P. Pfeiffer. Geometric approach

to the precession of compact binaries. Physical Review D, 84(12):124011,

December 2011.

[145] P. Ajith et al. A Template bank for gravitational waveforms from coalesc-

ing binary black holes. I. Non-spinning binaries. Phys. Rev. D, 77:104017,

2008. [Erratum: Phys.Rev.D 79, 129901 (2009)].

[146] L. Santamaria et al. Matching post-Newtonian and numerical relativity

waveforms: systematic errors and a new phenomenological model for

non-precessing black hole binaries. Phys. Rev. D, 82:064016, 2010.

[147] Mark Hannam, Sascha Husa, Frank Ohme, and P. Ajith. Length re-

quirements for numerical-relativity waveforms. Phys. Rev. D, 82:124052,

2010.

[148] Frank Ohme, Mark Hannam, and Sascha Husa. Reliability of complete

gravitational waveform models for compact binary coalescences. Phys.

Rev. D, 84:064029, 2011.

[149] Ilana MacDonald, Samaya Nissanke, and Harald P. Pfeiffer. Suitability of

post-Newtonian/numerical-relativity hybrid waveforms for gravitational

wave detectors. Classical and Quantum Gravity, 28(13):134002, July

2011.

[150] P. Ajith et al. The NINJA-2 catalog of hybrid post-

Newtonian/numerical-relativity waveforms for non-precessing black-

hole binaries. Class. Quant. Grav., 29:124001, 2012. [Erratum:

Class.Quant.Grav. 30, 199401 (2013)].

[151] J. Aasi et al. The NINJA-2 project: Detecting and characterizing grav-

itational waveforms modelled using numerical binary black hole simula-

tions. Class. Quant. Grav., 31:115004, 2014.

[152] Mark Hannam, Sascha Husa, Frank Ohme, Doreen Müller, and Bernd
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higher order ADM Hamilton dynamics for two-body point-mass systems

[Phys. Rev. D 57, 7274 (1998)]. Physical Review D, 63(2):029902, De-

cember 2000.

[155] T. Damour, P. Jaranowski, and G. Schafer. Dimensional regularization

of the gravitational interaction of point masses. Physics Letters B, 513(1-

2):147–155, July 2001.

[156] Thibault Damour, Piotr Jaranowski, and Gerhard Schafer. Poincare

invariance in the ADM Hamiltonian approach to the general relativistic

two-body problem. Physical Review D, 62(2):021501, July 2000.

[157] Luc Blanchet and Guillaume Faye. General relativistic dynamics of com-

pact binaries at the third post-Newtonian order. Physical Review D,

63(6):062005, March 2001.

[158] Vanessa C. de Andrade, Luc Blanchet, and Guillaume Faye. Third

post-Newtonian dynamics of compact binaries: Noetherian conserved

quantities and equivalence between the harmonic-coordinate and ADM-

Hamiltonian formalisms. Classical and Quantum Gravity, 18(5):753–778,

March 2001.

[159] Luc Blanchet and Bala R. Iyer. Third post-Newtonian dynamics of com-

pact binaries: equations of motion in the centre-of-mass frame. Classical

and Quantum Gravity, 20(4):755–776, February 2003.

[160] Luc Blanchet. Gravitational-wave tails of tails. Classical and Quantum

Gravity, 15(1):113–141, January 1998.

[161] Luc Blanchet, Bala R. Iyer, and Benoit Joguet. Gravitational waves

from inspiraling compact binaries: Energy flux to third post-Newtonian

order. Physical Review D, 65(6):064005, March 2002.



Bibliography 123

[162] Luc Blanchet, Thibault Damour, Gilles Esposito-Farèse, and Bala R.
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