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Bats play a pivotal role in pest control, pollination, and seed dispersal. Despite their ecological
signiĄcance, locating bat roosts remains a challenging task for ecologists. Traditional Ąeld surveys
are time-consuming, expensive, and may disturb sensitive bat populations. In this paper, we combine
data from static audio detectors with a bat movement model to facilitate the detection of bat roosts.
Crucially, our technique not only provides a point prediction for the most likely location of a bat
roost, but, because of the algorithmŠs speed, it can be applied over an entire landscape, resulting
in a likelihood map, which provides optimal searching regions. To illustrate the success of the
algorithm and highlight limitations we apply our technique to greater horseshoe bat (Rhinolophus
ferrumequinum) acoustic data acquired from six surveys from four different UK locations and over six
different times in the year. Further, we investigate what happens to the accuracy of our predictions
in the case that the roost is not contained within the area spanned by the detectors. This innovative
approach to searching rural environments holds the potential to greatly reduce the labour required
for roost Ąnding and, hence, enhance the conservation efforts of bat populations and their habitats.

I. INTRODUCTION

Bats are a diverse group of flying mammals, comprising over 1,000 species worldwide [1]. They play crucial ecological
roles globally across terrestrial ecosystems as they contribute to pest control, pollination, and seed dispersal [2, 3].
Despite their ecological importance, locating their roosts is a challenge. Thus, the conservation and study of bats
have been hampered by their elusive nature [4].

Bat roosts are essential to their survival and reproductive success, making them focal points for ecological research
and conservation [5]. The traditional methods for identifying bat roosts, such as field surveys and visual inspections of
potential roosting sites, are not only labour-intensive but also often disturb the sensitive bat populations they intend
to study [6]. Furthermore, the cryptic behaviour and nocturnal habits of bats compound the difficulties associated
with their roost detection.

Critically, bats are highly susceptible to anthropogenic disturbances due to their sensitivity to changes in lighting,
noise, land use and climate, amongst other factors. Further, the effects of habitat fragmentation resulting from urban
development can significantly diminish foraging opportunities, which poses a substantial risk to bat populations [7].

In the summer maternity season, female bats aggregate to give birth and rear their young. Consequently, the
identification and protection of maternity roosts are of paramount importance for bat conservation efforts. Disturbance
to bat roosts has been recognized as a key driver of population declines in bat species across Europe over the past
century [8, 9]. As a response to these conservation concerns, bats are protected by law in many countries [10–12].

In recent years, there has been growing interest in exploring non-invasive methods to identify and monitor bat
roosts that reduce ecological disturbance while increasing detection efficiency [13]. The integration of mathematical
techniques and advanced analytical tools has emerged as a promising avenue for addressing these challenges.

An approach to locating birds’ nests from GPS tracking surveys that result in similar data to that of radio-tracking
surveys has been implemented in the R package NestR [14]. The package uses recursive movement patterns (periodic
returns to places of ecological significance) [15], to identify the locations of ecologically relevant locations such as
nests.

Alternatively, geographic profiling is a method commonly used in criminology to determine the most probable area
of an offender’s residence [16]. It is used in cases of serial linked crimes and assumes that crimes are most likely to
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occur close to the offender’s home. In the case of locating a bat roost, a jeopardy surface (a surface representing the
probability of a roost being located on each grid square) is produced using the locations of known foraging sites and
the distance to each grid square. These techniques have been successfully used, along with radio-tracking studies, to
narrow down search areas for roosts of pipistrelle bats [17].

In this paper we build on previous work, which used radio tracked bat trajectories to extract movement features
[18, 19]. Using a model, of diffusive agents we can theoretically calculate how many bat passes should occur at different
points over a given terrain, which can be directly compared to data taken from acoustic detectors spread around the
environment, which detect the echolocation calls of individual bats as they travel by.

Due to this process being parallelisable, we can rapidly evaluate the difference between theory and data at all
locations in the environment. The minimum difference indicates the most likely point that the roost inhabits, but, as
we will see, the entire error surface provides crucial information regarding the accuracy of prediction.

This approach will be compared with an even simpler metric, which we will call the Centre of Calls, or CC. This
roost prediction point is defined to be the weighted average of detector positions, where the weights are the proportion
of calls recorded at each detector. In the current work we will see that CC does a very good job of predicting the roost
location. However, it is limited to cases where the detectors surround the roost, thus, we extend our investigations to
consider a case where the roost is not contained in the extents of the detector locations.

We begin in Section II where we introduce and discuss the data we will be using throughout the paper to motivate
and evaluate our roost searching algorithm. In Section III we develop our mathematical model and searching algorithm,
which is then applied to data sets in Section IV. Since all our data sets contain the roost’s location within the
extents of the detector placements, we take a brief diversion in Section V to consider the possibility of data sets
that do not surround a roost. Finally, in Section VI, we discuss many of the algorithm’s limitations and underlying
assumptions, resulting in a discussion on future developmental directions that could potentially increase the accuracy
of our searching algorithm.

II. STATIC DETECTOR SURVEYS

Many bats use echolocation to navigate and catch prey [20]. As such acoustic surveys using bat detectors have
proven to be a useful and cost-effective method to study populations [21, 22].

Passive acoustic bat detectors are recording devices calibrated to record the high-frequency sound of bat calls and
allow for long-term, autonomous surveys. The detection distance varies according to species and habitat, but often
ranges from 10-30m, with greater horseshoe bats (Rhinolophus ferrumequinum) being at the lower end of this range.

Surveys are conducted by placing detectors within a search area. The detectors then record the calls of bats passing
through their range. The coordinates of each detector are noted and a series of recordings is produced, providing
a spatio-temporal map of bat presence. Furthermore, the species present in each recording can be identified (either
manually or automatically) in most cases through using features from the recordings, such as repetition rate, peak
amplitude and shape of the waveform of the call [23, 24].

In this work we will use call data from only the first 90 minutes after sunset, which corresponds to the time of peak
activity levels for greater horseshoe bats and previous work has shown that the movement during this time correlates
to a diffusive spreading of the bats finding foraging grounds. After this time the bat population begins a slow return
to the roost and the movement can no longer be considered diffusive [18, 19]. Whilst there is often a second peak in
activity levels close to sunrise, this is not always the case for all species - for example, two species of pipistrelle (the
two most common bat species in the UK), have been shown to have only a single peak in activity levels, just after
sunset [25]. As a result, we do not consider the activity levels beyond the first 90 minutes after sunset, as this would
likely not be generalisable to other species.

In this work we will be working with location data specified in terms of ‘eastings’ and ‘northings’. Eastings and
northings are a coordinate system used in the UK that is based on the Ordnance Survey National Grid [26]. As is
standard in mathematics the coordinates are reported in the form (eastings, northings), corresponding to the idea
that eastings are coordinates along an x-axis and northings are coordinates along a y-axis. If the grid coordinates are
not given in parentheses, like Cartesian coordinates, then it is assumed that they are reported as eastings first and
northings second. Effectively, eastings and northings are a metric Cartesian coordinate system measuring the distance
in metres relative to a point located off the southwestern coast of the UK, in the Atlantic Ocean, near the Isles of
Scilly. Specifically, the exact origin of the eastings and northings grid is given by the decimal latitude and longitude
coordinates (49.766809, -7.5571598). Although the choice of this National Grid Origin is arbitrary, the given point
was selected to ensure that all coordinates in the UK would have positive values and, as the name suggests, increases
in an x, or y, coordinate corresponds to a movement in an easterly, or northern, direction, respectively.

Having defined our coordinate system we can specify the positions of the detectors and roosts. Firstly, in the case
of the six surveys we are going to consider there is thought to be one roost, the location of which is known and defined
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to be zR. Further, suppose there are N detectors, which are labelled i = 1, . . . , N . The position of each detector is
Xi = (xi, yi) ∈ R

2. We can use our survey data to calculate the average number of calls per day at each detector site
i, denoted ci. In the current case, as shown in Table I bat counts have been done at each of the roosts of interest.
However, generally, we are unlikely to know the exact number of bats in the colony. Thus, although it is possible to
estimate the number of bats in a colony using static audio detectors [27] we will demonstrate that our method does
not require this knowledge as we normalise the number of calls per day at each location to be a proportion of the
total

Ci =
ci

∑N
i=1 ci

. (1)

We will look at the results of 6 acoustic surveys of greater horseshoe bats conducted at 4 different UK maternity
roosts (used between May-September by females and their young) in Devon throughout summer 2016 [28]. The
surveys were conducted at Buckfastleigh (June, July and August), Braunton (July), Gunnislake (August) and High
Marks Barn (August). See Table I for further survey details. All surveys were originally conducted to study how bats
use the landscape surrounding the roost, and the impact of different terrain types on foraging behaviour [29, 30].

Roost
Manual bat

count
Acoustic survey

start date
Surveyed area

(km2) to 2 d. p.
Number of
detectors

Length of
survey (days)

Total number
of detections

Detections between
sunset and 90 mins after

Buckfastleigh 1798 26/06/2016 15.13 21 7 1458 567
Braunton 512 11/07/2016 15.56 19 7 793 357
Buckfastleigh 1798 25/07/2016 9.57 26 8 2728 698
Gunnislake 252 08/08/2016 12.24 21 7 270 112
High Marks Barn 746 22/08/2016 16.60 31 7 725 272
Buckfastleigh 1798 05/09/2016 26.23 21 8 441 115

TABLE I. Details of each of the six surveys at Buckfastleigh, Braunton, Gunnislake and High Marks Barn.

Manual counts were taken at each roost throughout summer 2016, and the number of bats found in each roost is
shown in Table I. The counts were obtained in July, with multiple observers being positioned by exits from the roosts
and counting the bats as they emerged at dusk. All four of the roosts specified in Table I are large, used by hundreds
of bats during the maternity season, however the Buckfastleigh roost is by far the largest, and is thought to be one of
the largest greater horseshoe roosts in Europe, used by approximately 1800 bats during the maternity season in 2016.

The roost sites were known beforehand, and detectors were placed as evenly as possible around the roost location,
given constraints caused by access issues, whilst trying to cover a variety of different terrain types [28]. The detector
locations, land use and relative proportion of calls are illustrated in Figure 1(a).

The distribution of distances between each detector and the roost for each survey is shown in Figure 1(b). The
minimum distance between detectors and the roost is seen in the first Buckfastleigh survey, at a separation of 130m,
whilst detectors are placed significantly further away in the last Buckfastleigh survey, with the closest placed 1.1km
away.

Since we require the activity of an average night we need to average the number of calls over the total number
of nights that each detector was active. Unfortunately, due to technical faults, not all detectors ran for the entire
duration of the survey. The number of nights over which detectors were active for each of the six surveys is shown
in Figure 1(c). All detectors were active for between 0 and 8 nights before either the survey ended or the detector
malfunctioned. The mean number of active nights for each survey ranges between 3 and 6.

In this section we have introduced the data and defined our coordinate system. Next we will use diffusion as a
model of bat motion to estimate the number of expected calls at each detector, given a simulated roost location.

III. ADAPTING THE DIFFUSION MODEL

As was shown in [18, 19], greater horseshoe bat movement for the first 90 minutes after sunset can be modelled as
diffusive. We will use a deterministic PDE diffusion model to estimate the expected number of calls at each detector
using a predicted roost location, z, as a parameter to be estimated.

In this case, a deterministic model is preferable to a stochastic model as simulating stochastic data is significantly
more computationally expensive [31]. Critically, we will demonstrate how we can approximate the analytical solution
to the diffusion PDE, which will provide an algebraic formula for the proportion of bat calls at each detector site.
The simplicity of evaluating a formula, rather than simulating stochastic diffusing agents provides huge time saving
[32]. Such gains in efficiency are important because the model has to be evaluated many thousands of times over an
entire landscape.
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(a)

(b) (c)

FIG. 1. Details of each of the six surveys at Buckfastleigh (red), Braunton (green), Gunnislake (blue) and High Marks Barn
(black). (a) Absolute positions of the detectors (× marks) and roosts (◦ mark) at each surveyed location. The positions are in
terms of eastings and northings. The background image illustrates Ordinance Survey map, which highlights environment use in
terms of urban, suburban, road and river coverage. The black circle around each detector represents the relative proportion of
calls. SpeciĄcally, the radius of the circle around detector i is Cikm. (b-c) Violin plots illustrating various statistics regarding
the data. The width of each violin plot is scaled by the percentage of records at each value on the y-axis. (b) The distribution
of distances from each detector to the roost (as the crow Ćies). (c) Distributions of the number of nights that detectors were
active.
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Critically, we note that the deterministic equations provide excellent comparisons to the mean average behaviour
of the stochastic simulations when the number of agents being simulated is large [33, 34]. We will see a posteriori
that bat populations considered here of a few hundred to a few thousand are sufficient to produce good roost position
estimates.

We assume that bats leave the roost at sunset and fly away from the roost in search of food. Foraging bats are
modelled as diffusive particles on an infinite domain for the first 90 minutes after sunset [18, 19]. Let ϕ(x, y, zx, zy, t)
be the probability density of a bat’s location, (x, y), at time t, given that the bat roost is at (zx, zy) then ϕ is defined
by the PDE

∂ϕ(x, y, zx, zy, t)

∂t
= D∇2

(x,y)ϕ(x, y, zx, zy, t), (2)

ϕ(x, y, zx, zy, 0) = δ2(x − zx, y − zy). (3)

where ∇2
(x,y) is the Laplacian, which is just the linear combination of second derivatives with respect to the eastings

and northings Cartesian coordinates, (x, y). The parameter D is called the diffusion coefficient and it is a positive
constant measuring the rate of spread of the bats.

We use the data calculated in our previous paper [19] using the relationship between mean squared distance travelled
from the roost and time from sunset to provide a value of this parameter. Specifically, a typical value calculated from
tracking surveys is D ≈ 80m2s−1.

The initial condition, δ2(x − zx, y − zy) = δ(x − zx)δ(y − zy) is the two-dimensional Dirac delta function [35], which
specifies that all bats start the night at a roost located at z = (zx, zy). The model assumes infinite space, thus, we
require that solutions satisfy the boundary conditions ϕ(x, y, zx, zy, t) → 0, as ♣u♣, ♣v♣ → ∞.

System (2) and (3) can be solved explicitly,

ϕ(x, y, zx, zy, t) =
1

4πDt
exp



− (x − zx)2 + (y − zy)2

4Dt



. (4)

Although the movement of the diffusive agents is unbounded, equation (4) can be evaluated to show that the probability
of a bat travelling further than Rf = 3000m is typically small. Specifically, at time T = 90 minutes, with a diffusion
coefficient of D = 80m2s−1, the probability of a bat flying a distance beyond Rf from the roost is

p


√

x2 + y2 > Rf



= 1 −
∫ 2π

0

∫ 3000

0

ϕ(r cos(θ), r sin(θ), 0, 0, 90 × 60)r dr dθ < 0.01, (5)

or less than 1%. It is important to ensure that the probability of a bat being beyond Rf is small as most detectors are
placed within a radius of 3km of a suspected roost (see Figure 1). Moreover, this was identified as the approximate
radius of the Core Sustenance Zone, CSZ, of the greater horseshoe bats. Namely, although the bats can fly further
than the CSZ, they usually do not [18, 36].

Having generated a functional form of ϕ we can use equation (4) to estimate the proportion of calls that should be
detected at each detector. Specifically, we assume that each detector i that is placed at a location Xi = (xi, yi) has
an active domain, Ωi, in which it can detect a bat’s call. In our case, we assume that all microphones used in the
surveys will register a bat call anywhere within a circle of radius 15m about the detector’s location (see Figure 2).

Integrating ϕ over a detector’s active region, Ωi, provides the probability of detector i detecting a bat within Ωi at
time t, given the roost was thought to be at (zx, zy),

Pi(zx, zy, t) =

∫

Ωi

ϕ(x, y, zx, zy, t)dω. (6)

Thus, the expected number of calls between 0 < t < T would be

Ei(zx, zy) =

∫ T

0

Pi(zx, zy, t)n dt, (7)

where n is the number of bats leaving the roost. Finally, the proportion of calls registered at each detector (assuming
a roost at (zx, zy)) would be

Fi(zx, zy) =
Ei

∑N
j=1 Ej

, (8)
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FIG. 2. Illustrating the range of detection. The image shows the positive quadrant of ϕ(x, y, 0, 0, 1). The two circles illustrate
two possible detection regions, Ω1 and Ω2, where the detectors have been placed at (20,20) (black circle) and the other placed
at (60,60) (blue circle). Diffusion parameter is D = 80m2s−1.

thus, n cancels out and we do not need to know how many bats there are in the roost.
Suppose we now consider a bat population with roost centred at the origin, (zx, zy) = (0, 0). Further, suppose there

are two detection regions, Ω1, centred at (20,20)m and Ω2, centred at (60,60)m, illustrated in Figure 2. Because Ω1 is
nearer to the roost than Ω2, we observe that the range of ϕ in Ω1 varies more than the range of ϕ in Ω2; ϕ is practically
constant over Ω2. Using this observation we can approximate the integral that needs to be evaluated to generate the
proportion of bat calls at each location and convert it into a simple algebraic formula. This observation is key to the
simplification, namely, the simplification does not work unless the density distribution rapidly decays away from the
source. Although this assumption holds in the current situation where we are modelling the bat spread as an evolving
Gaussian distribution, which has been seen to be appropriate, we should be highly critical of this assumption if our
model is to be applied to any other situation. In alternative applications where the density distribution is known, but
is not rapidly decaying then we could evaluate the integral, which is not difficult to simulate. However, the integral
evaluations would cost more time than evaluating the algebraic approximation. Thus, this approximation optimises
the efficiency of each evaluation, without loss of accuracy.

Explicitly,

Pi(zx, zy, t) =

∫ 2π

0

∫ r

0

1

4πDt
exp



− (xi + r′ cos(θ) − zx)2 + (yi + r′ sin(θ) − zy)2

4Dt



r′ dr′ dθ (9)

≈ 1

4Dt
exp



− (xi − zx)2 + (yi − zy)2

4Dt



r2 = P̃i(zx, zy, t). (10)

Following on from defining the approximation (10) we can define the accompanying approximations Ẽi and F̃i which
have the same definitions as Ei and Fi, respectively, but Pi is substituted for P̃i. Note that we still use Simpson’s
rule for numerical integration [37, 38] to calculate the approximate expected number of calls, Ẽi, since there is no
elementary indefinite integral for the function e1/t/t. However, we have reduced the problem of calculating Fi from a
three-dimensional integral to a one-dimensional integral approximation, F̃i, representing a time saving in the numerical
evaluation.

The accuracy of our approximation is illustrated in Figure 3, as we present the error between Pi and P̃i and Fi

and F̃i. In calculating Pi and P̃i we let the detector location (xi, yi) range over all space, whereas in calculating Fi

and F̃i we choose specific detector locations, namely we space 30 detectors uniformly along the x-axis in the interval
[0, 3000]m, explicitly, (xi, yi) = (n3000/29, 0), n = 0, 1, . . . , 29.

Figure 3(a) demonstrates that the error in the probability approximation exponentially decreases away from the
roost over time, as expected. Consequently, the comparison between Fi and F̃i is excellent because the approximation
is only poor for a small amount of time and over a small evolving location. Thus, over the time interval of 90 minutes
the small error in the approximation to P̃i does not compound, resulting in uniformly excellent comparison that
becomes better for detectors further away from the roost.
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(a) (b)

FIG. 3. Illustrating the accuracy of integral approximation, equation (10). (a) Plot of log
(

♣Pi − P̃i♣
)

, i.e. the log absolute

error between the full probability calculation, equation (9), and the approximation, equation (10). (b) Comparison between
the expected proportion of calls and its approximation, Fi and F̃i, using 30 detectors uniformly spaced between the roost and
3km away from the roost. Parameters are D = 80m2s−1, (zx, zy) = (0, 0) and T = 90 minutes.

In this section we have set up the basic mathematical framework which defines bat movement. Critically, we have
been able to derive a function, F̃i, that, given a roost location, can be quickly estimated at all detector sites and
provide a measure which can be compared to the call data from the surveys. In the next section we will define a
distance metric to compare the expected proportion of observations at each detector to data recorded from surveys
and use this to estimate roost locations from survey data.

IV. ESTIMATING ROOST LOCATIONS

To find potential roost locations we define a distance metric, ρ, between the data and the expected observations. Let
F̃ (z) =

(

F̃1(z), . . . , F̃N (z)
)

be the vector of expected proportion of calls at each detector (calculated from equation
(8)) assuming that the roost is at z and let C = (C1, . . . , CN ) be the vector of the proportion of calls at each detector
calculated from the data. We define

ρ(C, F̃ (z)) =

∑N
i=1(F̃i(z) − Ci)

2

maxz



∑N
i=1(F̃i(z) − Ci)2

 . (11)

Namely, ρ is the squared Euclidean distance between the expected proportion of observations at each detector and
the survey data. This metric is then normalised by the maximum of all locations tested. Hence, ρ is bounded
between zero and one, and low values of ρ should correlate with locations more likely to be the roost. Note that
the squared distance is chosen here as opposed to, for example, the absolute difference, because the squared distance
places more importance on the detectors which record high number of passes [39]; detectors which record particularly
high numbers of bat passes are likely to be located close to the roost, whilst those which record fewer passes are
likely to be located far from the roost. Moreover, tests were done varying the exponent and the regions of minimal
ρ were generally not changed, although it was noted that an exponent of two minimised the average error over
all locations, compared to an exponent of one, or three (data not shown, but code available on GitHub, https:

//github.com/ThomasEWoolley/Bat_roost_detection).
In the following we divide each location illustrated in Figure 1(a) into a grid of 500 × 500 evenly spaced squares.

The extents of the maps are defined by the maximum and minimum of the detectors (x, y) coordinates.
The resulting ρ surfaces are illustrated in Figure 4. In all cases, the circular white marker is the known roost. The

diamond marker is the minimum point of ρ, i.e. the best point estimate our prediction provides. The square marker
defines the geometric mean of the detectors weighted by the proportion of calls at each detector. We call this points
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the Centre of Calls,

CC =

N
∑

i=1

CiXi. (12)

Note we do not have to divide CC by the sum of the weights, Ci, as they are proportions and, thus, by definition,
sum to one. Finally, the colour bar is the same across all maps and goes from dark blue (ρ = 1) to yellow (ρ = 0).
Generally, the more yellow a region is the closer we should be to the roost. Table II provides distance values between
the known roost, zR; the Centre of Calls, CC and best point prediction, zp, such that ρ(C, F̃ (zp)) = min(ρ). These
statistics offer information on the accuracy of the application of our roost finding algorithm for each location in Figure
4.

FIG. 4. Plotting ρ using equation (11) over the survey site, which has been split into 500 × 500 equally spaced squares.
The coloured background ranges from yellow when ρ = 0 to blue when ρ = 1. The contours provide numerical values and aid
visualisation of the surface. The detectors are black crosses, the roost location, zR is a white circle, the estimated location, zp

is a white diamond and Centre of Calls, CC is a white square. The black square in the Buckfastleigh 5th September subplot
(bottom right) represents a more recently found satellite roost used by the same colony.

Alongside the point estimates of CC and ρ we provide contour plots (white lines in Figure 4) that demonstrate
how ρ varies across the space. Critically, although the accuracy of a single point estimate may be low, we can use the
contour plots to provide optimal searchable regions, namely we search the regions in order of increasing values of ρ.
We define ρc = ρ(C, F̃ (zR)), to be the value of ρ evaluated at the known roost point, zR. Table III provides the area
that would need to be searched (as a percentage of the entire area mapped in Figure 4) using the searching method
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Date Roost
Straight line distance in km between
zR and zp zR and CC zp and CC

26/06/16 Buckfastleigh 0.16 0.38 0.28
11/07/16 Braunton 0.79 0.20 0.63
25/07/16 Buckfastleigh 1.01 0.37 0.79
08/08/16 Gunnislake 0.63 0.34 0.97
22/08/16 High Marks Barn 0.84 0.31 1.14
05/09/16 Buckfastleigh 1.08 0.74 0.36

TABLE II. Tabulation of the distances between the the roost location, zR and the point estimates of zp, (the best point
prediction at min(ρ)) and the Centre of Calls, CC as calculated using equations (11) and (12), respectively. All data is
rounded to 2 decimal places.

Date Roost ρc
Area covered by

ρ ≤ ρc (km2)
Percentage of mapped area bounded by
ρ ≤ 0.1 ρ ≤ 0.2 ρ ≤ 0.3 ρ ≤ ρc

26/06/16 Buckfastleigh 0.04 0.04 16.98 36.06 68.11 0.28
11/07/16 Braunton 0.06 0.99 11.15 43.49 71.48 6.36
25/07/16 Buckfastleigh 0.17 0.86 0.00 17.78 47.51 9.00
08/08/16 Gunnislake 0.18 3.08 0.00 36.45 74.95 25.19
22/08/16 High Marks Barn 0.10 1.16 6.89 58.85 77.58 7.01
05/09/16 Buckfastleigh 0.29 9.41 0.87 14.72 37.49 35.89

TABLE III. Percentage of areas below various thresholds of ρ along with the value of ρ at the roost, ρc = ρ(C, F̃ (zR)). The
percentage is relative to the size of the original searched area, see Figure 4. All data is rounded to 2 decimal places.

of starting at the minimum of ρ and increasing the search area until we find the roost at ρc.
As a general overview, if we combine the information from Figure 4 and tables II and III then we observe that the

predicted roosts’ locations appear to get worse over time. However, each survey time and location and has its own
nuances that need to be highlighted, thus, we now discuss each survey in turn and demonstrate how our data can be
used to provide a picture regarding the success of the roost finding algorithm.

For the 26/06/16 Buckfastleigh the initial survey was conducted on an approximately 15km2 area (see Table I).
Table II informs us that the single point prediction, zp, which predicts the location of the roost at zR does particularly
well, being within 160m of the actual roost. This predicted location is even better than the Centre of Calls, CC,
which is 380m away from the roost. Thus, if we were to start at the location of min(ρ) and search areas of increasing
ρ until we found the roost then we would have to search 0.28% of the original survey area, or 0.04km2. Thus, our
roost finding algorithm has saved over 99% of the searching effort required to locate the roost, should we not have
known its location in advance.

In the case of the 11/07/2016 Braunton survey the colony using the roost is much smaller than the Buckfastleigh
roost (around 1/3 of the size) and subsequently, the number of recorded calls within 90 minutes of sunset is lower.
Additionally, as shown in Figure 1(b), the closest detectors to the roost are further than those for 26/06/16 Buck-
fastleigh. However, even with all these weaknesses compared to 26/06/16 Buckfastleigh, our method is highly effective
in at locating the roost, with an error of just 790m, and once again reducing the search area by over 90%.

In contrast to the first Buckfastleigh survey, the second survey conducted at Buckfastleigh between 25/07/2016 and
03/08/2016, records more calls, has more detectors and a smaller initial search area. However, the algorithm provides
a less successful point prediction as zp is 1.01km away from the roost, whereas the Centre of Calls provides a more
stable estimate as it is still less than half a kilometre away from the roost, similar to the first survey in Buckfastleigh.
The reason the prediction is pulled southwest of the roost is because the biggest proportion of calls comes from a
detector southwest of the roost (see Figure 1(a)). The reason for the high number of passes is not immediately obvious
from the data, however when we look at the locations of hedgerows in the survey area (see Figure 1(a)), we see that
the detector was placed along one of the main hedgerow paths leading away from the centre of the survey area. As
noted in Section II, greater horseshoe bats are highly dependent on hedgerows for navigation and foraging, and it is
likely that this particular hedgerow is used as a corridor between important parts of the landscape. In Section VI we
will suggest some possible adjustments to the model to account for the heterogeneity of the landscape.

Positively, even though the point estimate is worse than the first survey in Buckfastleigh the amount of area that
would need to be searched to find the roost is still very small. Although we have to search a bigger percentage of
the area according to Table III (9.00% compared to 0.28%) we are searching over a smaller area initially, and, so,
we would need to search 0.86km2 in this second Buckfastleigh survey, compared to the area of 0.04km2 in the first
survey.
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The colony using the roost at 08/08/16 Gunnislake is much smaller than those using the other roosts resulting
in a much lower number of recordings. This means that stochastic effects will play more of a significant role in the
prediction of this roost location. Such problems would be minimised by doing surveys over more days.

A further problem in the 08/08/16 Gunnislake case is the flatness of ρ, as we observe much of the domain satisfies
ρ < 0.2. The flatness of ρ means that many points are equally good and our algorithm cannot be more precise without
additional data in the flat-ρ region. Thus, this problem could be solved by including more detectors in the ρ < 0.2
region. More positively, our algorithm still saves over 74% in searching effort, as we would only have to search 3.08km2

of the original space before we would be able to find the roost.
The ρ profile of 22/08/16 High Marks Barn is similarly flat because the area to the southeast of the roost is private

land and it was not possible to obtain landowner permission to place detectors here. To compensate for the lack
homogeneity in the spatial distribution of the detectors more detectors were used (more than any other survey).
Thus, even with the heterogeneous detection space, we are able to save over 90% of the search effort.

The 05/09/16 Buckfastleigh survey is the worst single point prediction over all three Buckfastleigh surveys. More-
over, it is the worst single point roost prediction out of all six surveys. Critically, although we would still save over
64% of our searching effort, the 05/09/16 Buckfastleigh has the largest required search area, assuming that we start at
the minimum of ρ and search areas with increasing values of ρ. Compared to the other two Buckfastleigh surveys there
were hardly any detectors near to the roost with the average detector distance being approximately 2.5km away from
the roost (see Figure 1(b)). The previous two Buckfastleigh surveys not only had detector location distributions with
a smaller mean (1.5km or less), but nearly all detectors where closer to the roost than 2.5km. Moreover, the number
of passes during this third Buckfastleigh survey was approximately the same as Gunnislake even though Buckfastleigh
has over seven times as many bats recorded in its roost.

There are several possible reasons for the error in estimate for the 05/09/16 Buckfastleigh survey. Firstly, in 2018,
a second large roost was found in a cave system close to the Abbey Inn, Buckfastleigh, around 1km north of the main
roost (shown as a black square in the 05/09/16 Buckfastleigh of Figure 4). In August 2018, counts were taken of
greater horseshoe bats exiting this roost, and on each occasion more than 800 bats were seen emerging. Our roost
estimate zp is actually closer to this cave roost, being only 0.70km away. Unfortunately, we cannot know if this roost
was used in 2016 (or indeed if there is another, unknown, roost in the area), however it is certainly a possibility that
not all the bats recorded during this survey were from the main roost.

Critically, this second cave roost near Abbey Inn was first discovered in August, and may therefore only be used
later in the season. Notably, the last Buckfastleigh survey was conducted in September, late in the season, and was
the only survey at Buckfastleigh to be conducted after July. It is possible that by September, bats had already moved
from the summer roost to the cave roost, or to another hibernation roost.

An alternative reason for the poor fitting of the September counts is that the maternity season is over, making
way for the mating season, causing the nightly dispersal patterns to be more complicated. During the mating season
female bats go off in small groups to visit solitary males in mating roosts and, thus, sometimes they do not return to
the main maternity roost as they stay with the males [40].

Finally, as a means of providing confidence in our point predictions we note that as the distance between the
actual and predicted roost becomes worse, the distance between zp and CC also increases. Figure 5 illustrates the
correlation between the distance between the predicted location, zp, and CC and the distance between the predicted
location, zp, and zR. Thus, using Figure 5, if we were to apply our algorithm to a new set of data where the roost was
not known then our confidence in the location of min(ρ) being near the roost can be governed by how far min(ρ) is
from CC. For example as a rule of thumb if the locations of zp and CC are separated by a few hundred metres then
we would expect the roost to be within a few hundred metres of CC and zp, whilst if CC and zp are a separated by
a kilometre, or more, then it is likely that the point prediction is performing more poorly although the area searching
algorithm should still lead to large savings in effort.

V. ROOSTS OUTSIDE THE DETECTOR COVERAGE

In the six cases we are considering here, the roost location was either known or suspected. Thus, microphones could
be spread in all directions around the suspected roost, meaning that the geometric mean of the detectors was likely to
be a good estimate for the roost location regardless of any further call data. This is why the roost in each of Figure 4
is close to the centre of the image. This raises some limitations of CC. Firstly, the ability of CC to provide a good
estimation for the roost location may depend on the prior knowledge of the ecological surveyor. Secondly, CC can
only estimate points within the spatial limits of the detectors. Thus, in the case that a) we do not where a roost is
and b) the roost is outside of our detector placement area CC cannot provide a good point estimate for the roost
location. The best CC could do is be close to one of the boundaries, indicating that the roost is unlikely to have
been contained within the initially surveyed area.
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FIG. 5. Correlating the error in the predicted distance, ♣zR − zp♣, with the distance between the two point estimates of
predicted roost and Centre of Calls, ♣CC − zp♣.

The construction of the ρ surface does not have any of these limitations. Thus, in this section, we approach the
question of how good our algorithm is at identifying a roost outside of the detector locations in two ways.

Firstly, we use a stochastic agent-based model of bat movement and simulate the call distributions of a roost outside
of the 26/06/16 Buckfastleigh detector distribution, see Appendix A. Secondly, because the 22/08/16 High Marks
Barn survey had the largest number of detectors, we simply rerun our analysis on High Marks Barn, but without
including data from all detectors to the south of the roost. Another reason for using High Marks Barn is because
of the restriction that area to the southwest was private and detectors could not be placed there. Thus, we seek to
consider a worst-case scenario that a roost is on private land and no detectors can be placed to one side of the roost.

The reason we run these two experiments is because the first approach could be criticised for being too artificial.
Namely, although our previous research [18, 19] has shown that the movement features of the greater horseshoe bat
population can be characterised as diffusive (at least for the first 90 minutes after sunset), we would be using a
diffusion-based search model to find simulated diffusive agents that would not be reading the domain as a real bat
would. Thus, the first test provides a proof-of-concept demonstration that our algorithm can find a roost outside the
extents of a microphone placement, using a realistic set of detector distributions.

The second experiment although more realistic is weakened because we are removing approximately half of the data
from the space. Specifically, we will use 193 call recordings from the 18 detectors north of the roost (originally, we
used 272 call recordings from 31 detectors, see Table I). Thus, it should be kept in mind that this reduction in data
will influence how well ρ can predict the roost location.

The result of our first experiment in finding a roost outside of the detector placement is shown in Figure 6. Using
the detector placements as defined in the 26/06/16 Buckfastleigh survey, we simulated 600 bats starting at a roost
1km east of the furthest east detector. The agents move diffusively, with a diffusion rate of D = 81.7m2/s [19]. The
search space has been extended by 3km to the east from the original search space (see Figure 1(a)), so the search
space is now 25.98km2, compared to the original search space of 15.13km2.

Figure 6 illustrates the problem stated above; the CC point (white square) is bound to lie within the extents of the
detector placement. Thus, the distance error between the roost (white circle) and CC can be made arbitrarily large.
Moreover, the predicted location of min(ρ) (white diamond) is only 375m from the simulated roost and we would
only have to search 0.3% of the domain (or 0.78km2) to find the roost. Thus, overall, we can see that our searching
algorithm is successful in finding the roost outside of the detector domain in the case of simulated bat movement data.

In the second experiment, illustrated in Figure 7, both zp and CC are placed fairly central within all the detectors
and are approximately 700m away from the roost. However, although both point estimates are equally mistaken the
ρ is able to highlight the areas that are equally likely to hold the roost. Clearly the majority of the low ρ region lies
much further to the south of the detector region, indicating that we are looking in the wrong region.

Of course, the prediction surface generated in Figure 6 is based on a lot less information than we would normally
expect, thus, we should not be surprised that neither point prediction is good. In such cases we would recommend
the survey be rerun with the detectors placed (if possible) further to the southeast using the information that can be
gleaned from Figure 7. This should cause more detectors to be placed closer to the original roost leading to a better
resulting prediction.
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FIG. 6. Predicting the location of a roost outside of a detector distribution using simulated data. The coloured background
represents ρ calculated using equation (11) and ranges from 0 (yellow) to 1 (blue). The contours provide numerical values
and aid visualisation of the surface. The detector locations are the same as in the 26/06/16 Buckfastleigh survey and are
represented as black crosses, the simulated roost location is a white circle, the estimated location is a white diamond and the
Centre of Calls is a white square. The bat Ćight trajectories where simulated using equation (A1). The parameter value is
D = 81.7m2/.

FIG. 7. Predicting the location of a roost outside of a detector distribution using only data to the North of the detector from
the 22/08/2026 High Marks Barn survey. The coloured background represents ρ and ranges from 0 to 1. The contours provide
numerical values and aid visualisation of the surface. The detector locations represented as black crosses, the roost location is
a white circle, the estimated location is a white diamond and the Centre of Calls is a white square.

VI. DISCUSSION

In this paper we have combined data from static audio detectors and mathematical modelling to create an efficient
algorithm for identifying possible bat roost locations, which is currently a highly labour-intensive process. Critically,
even if a single point estimate is not accurate, our spatial metric provides an optimised means of searching space that
can reduce our searching effort by over 90% at best, and 50% at worst. Before we draw overall conclusions, we discuss
some of the complicating factors that would necessarily limit the accuracy of our current algorithm, and offer jumping
off points for further refinements.

Table II demonstrates that the point estimate CC is consistently as good as, if not better, at predicting a roost’s
location than our diffusion-based movement algorithm. However, although CC is a useful additional measure, it does
have a number of drawbacks that would means its sole usage would be problematic.
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Firstly, CC is a single point estimate, whereas ρ provides an entire likelihood surface. Thus, it is harder to supply
any confidence bounds on CC. In particular, it is harder to predict when CC will provide a poor performance. In
contrast, we saw that ρ was a fairly flat surface in the case of High Marks Barn and, thus, we would immediately
be able to deduce that there would be many equally good potential locations, meaning that zp was less likely to be
accurate.

Secondly, CC cannot be generalised beyond being a single point estimate to include potentially multiple roost
sources. Multiple sources can easily be included in the definition of ρ as we would simply include more Gaussian
distributions in the definition of equation (9). Of course, including multiple sources would lead to a combinatorial
slowing of the algorithm as all combinations of points would need to be evaluated, but it would be possible, to find
the best two, or three, locations for potential roosts.

Thirdly, as mentioned in Section V, CC is bound to lie within the extents of the detector placement. Our prediction
method has no such restrictions. Combining these insights with the correlation between accuracy of our prediction
and distance from CC we can begin to suggest whether we are looking in the right place to begin with.

We now consider factors that would have influenced the accuracy of our prediction stemming from the data. All 6
surveys were conducted at maternity roosts, during the summer months. Maternity roosts are populated by females
and their young, whilst mature males generally use separate roosting sites and therefore do not disperse from the
maternity roost [41]. However, it is not possible to distinguish between the calls of males and females, and therefore
calls from males are recorded in the same way, adding noise to the number of passes at each detector. If some
detectors are placed particularly close to male roosting sites, this could skew the number of passes recorded and
therefore negatively affect the roost estimate.

Additionally, in each survey case we have only been looking for one roost, but it is always possible that there are
multiple roosts in the area, as was discovered later in Buckfastleigh. Extending our current method to include more
sources is fairly trivial. However, in the present case such complexities would add to the overall difficult of pinpointing
a single ‘best’ location.

Environmental conditions, although not considered here, could play a significant role. For simplicity, we have
assumed that each night bats disperse from the roost after sunset regardless of the temperature and weather conditions
that night. However, bats expend much of their energy to maintain stable body temperatures and are sensitive to
climatic conditions [42]. Thus, inclement weather is likely change foraging behaviour.

We should also note how bats use their roosts and the landscape changes throughout the year. During the summer,
females use maternity roosts in which they give birth and raise their young. Maternity colonies generally form in early
summer, from May onwards. While greater horseshoes in Southwest England tend to give birth between late June
and July [41], birth timing can vary wildly depending on the temperatures throughout Spring and early Summer.
Mothers care for their pups for around 8 weeks before they are weaned and ready to forage independently, likely
leading to changes in foraging behaviour.

As mating in greater horseshoes occurs from late August onwards, bats tend to travel further in search of mates,
potentially abandoning maternity roosts to move closer to mating sites [43]. Thus, the diffusion model used at
the start of the maternity season in May-June may not be generalisable to the end of the maternity season in late
August-September, or at least it may require a different diffusion rate.

Evidence for this can be seen in Table I, where the number of detections during the final Buckfastleigh survey
(which occurs in September) is significantly lower than the previous Buckfastleigh surveys, suggesting the possible
abandonment of the maternity roost by some adult females in favour of mating sites.

The error in roost estimate for each survey is shown in tables II and Table III. Notably, errors are higher in surveys
conducted towards the end of summer compared to those in June or July, although with only 6 surveys it is difficult
to generalise these results. A second radio tracking survey later in the season would be extremely useful to verify if
bats still move via diffusion, and if so, if the diffusion coefficient varies throughout the summer. However, each radio
tracking survey requires hundreds of person hours and is therefore beyond the scope of this paper.

As noted in Section II, these 6 surveys were conducted to study landscape use around the roost [28]. Detectors
were deliberately placed to cover a variety of terrain types, some of which (for example, hedgerows, where insects are
abundant and there is cover from predators) are known to be favourable for bat movement and some of which are
detrimental to bat movement (for example, busy roads, where there are bright lights, loud noises and few insects to
feed on). The terrain in the four locations is heterogeneous, including a mixture of rural farmland and urban areas. It
is almost certain therefore that the number of passes recorded at each detector has been affected by the surrounding
terrain [44]. Future work will look to enhance our roost prediction accuracy by incorporating landscape data into the
model.

Although extending equation (2) to include anisotropic diffusive movement is possible, as we would just include a
spatial component in D, we would not be able to provide a complete solution in the form of equation equation (4),
thus, we would need to rely more heavily on simulation, which would greatly increase the complexity of the method.
Moreover, being able to define an anisotropic diffusion function based on landscape topography is not trivial: the
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data for different landscape features is collected by different organisations (for example, the locations of roads and
buildings can be extracted from Ordnance Survey maps, whilst data such as the location of streetlights is often only
available on request from Local Authorities). Moreover, the coverage of this data is not complete. Thus, having
only partial data coverage in some locations may end up biasing the results more than not have any additional data
anywhere. Further, much of this data is only available through subscription services that an ecologist searching for a
roost may not necessarily have access to.

A straightforward way to reduce the effect of landscape effects would be to place all detectors in favourable terrain,
for example only on hedgerows. This could have the added benefit of increasing the expected number of recordings
at each detector, thereby increasing the quantity of data recorded. However, the number of passes recorded at each
detector is affected not just by the surrounding landscape, but also by the functional connectivity between the roost
and the detector: bats are unlikely to cross motorways each night to reach a hedgerow, regardless of how many insects
are available in the hedgerow. To further improve the validity of the diffusion model, we would need to consider the
complex effects of landscape connectivity on bat movement [45].

In addition to variations in bat behaviour, imperfections in data collection during surveys are also probable. Detec-
tors are typically placed outdoors, often in locations with public right of way or on farmland, making them susceptible
to theft, vandalism and damage caused by animals. Consequently, some detectors may fail before the full 7 days survey
concludes. Such imperfections can give us a misleading view of the environment. Although we have averaged over
the number of days to provide a daily count, detectors with shorter operational durations due to malfunctions may
introduce higher errors in the calculation of ρ. Such errors may account for the low accuracy in the roost prediction
for High Marks Barn, as these detectors exhibited the lowest average survival time span (see Figure 1(c)).

A further imperfection in the methods comes from the use of continuous and deterministic models to describe
inherently discrete and stochastic behaviour. At higher distances from the roost, stochasticity in movement plays a
larger part in the number of passes recorded. Additionally, we note that the colony using the Buckfastleigh roost is
significantly larger than an average colony, and the importance of considering stochastic effects would increase with
smaller numbers of bats [46, 47].

This stochasticity could, in part, explain the poor roost prediction in the last Buckfastleigh survey. Namely, all the
detectors in this survey where placed, on average, further away from the roost than in any other survey (see Figure
1(b)). Adding detectors closer to the true roost could certainly improve the estimate. However, in a roost-finding
survey, the location of the true roost would not be known and we therefore would not know how to place detectors
near to it.

A more accurate method would account for: landscape effects, time of year, solitary males, weather conditions,
stochasticity, roost size and survey design. However, incorporating each new variable increases the model’s complexity.
Without substantial quantities of data, acquiring which would be both time-consuming and costly, studying the
interdependence of these variables becomes challenging.

Speed of computation being less than a day is particularly important for our plans of future work. Building on
these results, we want to begin to investigate how detector arrays could be updated (potentially daily) to optimally
survey space and, thus, provide increased accuracy in locating bat roosts. Specifically, we aim to improve survey
design by using an iterative Bayesian Global Optimisation approach to ensure that the data recorded is the most
useful for estimating roost locations.

Overall, we state that the benefits of using our algorithm to find roosts far outweigh its limitations. In all cases
we have been able to reduce the potential search space by at least 64%. Moreover, it should be remembered that our
diffusion algorithm was not parameterised on any of the data contained within this paper, rather we used diffusion
coefficients derived from radio tracking surveys conducted at a different time and location [18, 19]. The fact that
these parameters and motion characteristics yielded the accuracy we achieved provides confidence in the generality
of our approach (at least for greater horseshoe bats).

We only used the first 90 minutes as previous work has shown that a simple diffusive model and recreate the bat’s
motion features. However, we have been able to model not just the initial bat spread, but also the later ‘return to
roost’ phase [18, 19]. Using these models we could increase our accuaracy (at the expense of complexity and speed)
by extending this work to use the full nights worth of call data.

Finally, even in the worst-case scenario of having to search 36% of the space, this is without considering the expertise
of the ecological researchers performing the survey. Ecologists have a wealth of practical knowledge and experience
regarding potential roosting locations. Thus, overlaying potential location ρ maps onto terrain feature maps allows
ecologists to prioritise search areas within these suggested regions, optimising our searching algorithm further by
combining digital and practical expertise.
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VII. DATA AVAILABILITY

All code is freely available at https://github.com/ThomasEWoolley/Bat_roost_detection
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Appendix A: Simulated data

In Section V we simulate call data from a bat roost outside of the 26/06/16 Buckfastleigh detector placement region.
To do this we simulate 600 diffusive trajectories using a Wiener process [48–50] centred at the new roost location,
(277512,65944)m. The simulated roost location was chosen to be 1km further east than the most easterly detector
and placed vertically at the mean y value position taken over all detector locations (see Figure 6). We simulate 600
agents as this is the approximate number of recordings taken during the 26/06/16 Buckfastleigh survey.

The Wiener process simulates agents undergoing random walks that reproduces statistics that matches the formal
definition of Brownian motion, or diffusion. The location, (bx(t), by(t)), of an individual agent at time t is defined by
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√
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(A1)

where D =81.7m2/s is the diffusion rate of greater horseshoe bats, as found in [19], rx and ry are two randomly
generated numbers sampled from a Normal distribution with mean zero and standard deviation one, N (0, 1), and
∆t = 1s is the time step between observations. We use the roost location as the initial condition for all bats.

Using equation (A1) we simulate 600 trajectories over a 90-minute period. We then count how many times a
trajectory was within a circle of radius 15m around each of the detector locations from the 26/06/16 Buckfastleigh
survey. This data is used to form the ρ surface shown in Figure 6.
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