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Bats play a pivotal role in pest control, pollination and seed
dispersal. Despite their ecological significance, locating bat
roosts remains a challenging task for ecologists. Traditional
field surveys are time-consuming, expensive and may disturb
sensitive bat populations. In this article, we combine data from
static audio detectors with a bat movement model to facilitate
the detection of bat roosts. Crucially, our technique not only
provides a point prediction for the most likely location of
a bat roost, but because of the algorithm’s speed, it can be
applied over an entire landscape, resulting in a likelihood
map, which provides optimal searching regions. To illustrate
the success of the algorithm and highlight limitations, we
apply our technique to greater horseshoe bat (Rhinolophus
ferrumequinum) acoustic data acquired from six surveys from
four different UK locations and over six different times in
the year. Furthermore, we investigate what happens to the
accuracy of our predictions in the case that the roost is not
contained within the area spanned by the detectors. This
innovative approach to searching rural environments holds
the potential to greatly reduce the labour required for roost
finding, and, hence, enhance the conservation efforts of bat
populations and their habitats.

1. Introduction
Bats are a diverse group of flying mammals, comprising over
1000 species worldwide [1]. They play crucial ecological roles
globally across terrestrial ecosystems as they contribute to
pest control, pollination and seed dispersal [2,3]. Despite their
ecological importance, locating their roosts is a challenge. Thus,
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the conservation and study of bats have been hampered by their elusive nature [4].
Bat roosts are essential to their survival and reproductive success, making them focal points for

ecological research and conservation [5]. The traditional methods for identifying bat roosts, such as
field surveys and visual inspections of potential roosting sites, are not only labour-intensive but also
often disturb the sensitive bat populations they intend to study [6]. Furthermore, the cryptic behaviour
and nocturnal habits of bats compound the difficulties associated with their roost detection.

Critically, bats are highly susceptible to anthropogenic disturbances due to their sensitivity to
changes in lighting, noise, land use and climate, among other factors. Furthermore, the effects of
habitat fragmentation resulting from urban development can significantly diminish foraging opportu-
nities, which poses a substantial risk to bat populations [7].

In the summer maternity season, female bats aggregate to give birth and rear their young. Conse-
quently, the identification and protection of maternity roosts are of paramount importance for bat
conservation efforts. Disturbance to bat roosts has been recognized as a key driver of population
declines in bat species across Europe over the past century [8,9]. As a response to these conservation
concerns, bats are protected by law in many countries [10–12].

In recent years, there has been growing interest in exploring non-invasive methods to identify and
monitor bat roosts that reduce ecological disturbance while increasing detection efficiency [13]. The
integration of mathematical techniques and advanced analytical tools has emerged as a promising
avenue for addressing these challenges.

An approach to locating birds’ nests from GPS tracking surveys that result in similar data to that of
radio-tracking surveys has been implemented in the R package NestR [14]. The package uses recursive
movement patterns (periodic returns to places of ecological significance) [15] to identify the locations of
ecologically relevant locations such as nests.

Alternatively, geographic profiling is a method commonly used in criminology to determine the
most probable area of an offender’s residence [16]. It is used in cases of serial-linked crimes and
assumes that crimes are most likely to occur close to the offender’s home. In the case of locating a
bat roost, a jeopardy surface (a surface representing the probability of a roost being located on each
grid square) is produced using the locations of known foraging sites and the distance to each grid
square. These techniques have been successfully used, along with radio-tracking studies, to narrow
down search areas for roosts of pipistrelle bats [17].

In this article, we build on previous work, which used radio-tracked bat trajectories to extract
movement features [18,19]. Using a model of diffusive agents, we can theoretically calculate how many
bat passes should occur at different points over a given terrain, which can be directly compared with
data taken from acoustic detectors spread around the environment, which detect the echolocation calls
of individual bats as they travel by.

Due to this process being parallelizable, we can rapidly evaluate the difference between theory and
data at all locations in the environment. The minimum difference indicates the most likely point that
the roost inhabits, but, as we will see, the entire error surface provides crucial information regarding
the accuracy of prediction.

This approach will be compared with an even simpler metric, which we will call the centre of calls
(CC). This roost prediction point is defined to be the weighted average of detector positions, where
the weights are the proportion of calls recorded at each detector. In the current work, we will see that
CC does a very good job of predicting the roost location. However, it is limited to cases where the
detectors surround the roost, thus, we extend our investigations to consider a case where the roost is
not contained in the extents of the detector locations.

We begin in §2, where we introduce and discuss the data we will be using throughout the article to
motivate and evaluate our roost searching algorithm. In §3, we develop our mathematical model and
searching algorithm, which is then applied to datasets in §4. Since all our datasets contain the roost’s
location within the extent of the detector placements, we take a brief diversion in §5 to consider the
possibility of datasets that do not surround a roost. Finally, in §6, we discuss many of the algorithm’s
limitations and underlying assumptions, resulting in a discussion on future developmental directions
that could potentially increase the accuracy of our searching algorithm.

2. Static detector surveys
Many bats use echolocation to navigate and catch prey [20]. As such, acoustic surveys using bat
detectors have proven to be a useful and cost-effective method to study populations [21,22].
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Passive acoustic bat detectors are recording devices calibrated to record the high-frequency sound
of bat calls and allow for long-term, autonomous surveys. The detection distance varies according
to species and habitat, but often ranges from 10 to 30 m, with greater horseshoe bats (Rhinolophus
ferrumequinum) being at the lower end of this range.

Surveys are conducted by placing detectors within a search area. The detectors then record the
calls of bats passing through their range. The coordinates of each detector are noted and a series of
recordings is produced, providing a spatio-temporal map of bat presence. Furthermore, the species
present in each recording can be identified (either manually or automatically) in most cases through
using features from the recordings, such as repetition rate, peak amplitude and shape of the waveform
of the call [23,24].

In this work, we will use call data from only the first 90 min after sunset, which corresponds to
the time of peak activity levels for greater horseshoe bats, and previous work has shown that the
movement during this time correlates to a diffusive spreading of the bats finding foraging grounds.
After this time, the bat population begins a slow return to the roost, and the movement can no longer
be considered diffusive [18,19]. While there is often a second peak in activity levels close to sunrise, this
is not always the case for all species; for example, two species of pipistrelle (the two most common bat
species in the UK), have been shown to have only a single peak in activity levels, just after sunset [25].
As a result, we do not consider the activity levels beyond the first 90 min after sunset, as this would
probably not be generalizable to other species.

In this article, we will be working with location data specified in terms of ‘eastings’ and ‘northings’.
Eastings and northings are a coordinate system used in the UK that is based on the Ordnance Survey
National Grid [26]. As is standard in mathematics, the coordinates are reported in the form (eastings,
northings), corresponding to the idea that eastings are coordinates along an x-axis and northings
are coordinates along a y-axis. If the grid coordinates are not given in parentheses, like Cartesian
coordinates, then it is assumed that they are reported as eastings first and northings second. Effectively,
eastings and northings are a metric Cartesian coordinate system measuring the distance in metres
relative to a point located off the southwestern coast of the UK, in the Atlantic Ocean, near the Isles
of Scilly. Specifically, the exact origin of the eastings and northings grid is given by the decimal
latitude and longitude coordinates (49.766809 and –7.5571598). Although the choice of this National
Grid Origin is arbitrary, the given point was selected to ensure that all coordinates in the UK would
have positive values and, as the name suggests, increases in an x or y coordinate corresponds to a
movement in an easterly or northern direction, respectively.

Having defined our coordinate system, we can specify the positions of the detectors and roosts.
Firstly, in the case of the six surveys, we are going to assume that there is one roost, the location of
which is known and defined to be zR. Furthermore, suppose there are N detectors, which are labelledi = 1, …,N. The position of each detector is Xi = (xi, yi) ∈ ℝ2. We can use our survey data to calculate the
average number of calls per day at each detector site i, denoted ci. In the current case, as shown in table
1, bat counts have been done at each of the roosts of interest. However, generally, we are unlikely to
know the exact number of bats in the colony. Thus, although it is possible to estimate the number of
bats in a colony using static audio detectors [27], we will demonstrate that our method does not require
this knowledge as we normalize the number of calls per day at each location to be a proportion of the
total

(2.1)Ci = ci
∑i = 1
N ci .

We will look at the results of six acoustic surveys of greater horseshoe bats conducted at four differ-
ent UK maternity roosts (used between May and September by females and their young) in Devon
throughout the summer of 2016 [28]. The surveys were conducted at Buckfastleigh (June, July and
August), Braunton (July), Gunnislake (August) and High Marks Barn (August). See table 1 for further
survey details. All surveys were originally conducted to study how bats use the landscape surrounding
the roost, and the impact of different terrain types on foraging behaviour [29,30].

Manual counts were taken at each roost throughout the summer of 2016, and the number of bats
found in each roost is shown in table 1. The counts were obtained in July, with multiple observers
being positioned by exits from the roosts and counting the bats as they emerged at dusk. All four of the
roosts specified in table 1 are large, used by hundreds of bats during the maternity season; however,
the Buckfastleigh roost is by far the largest and is thought to be one of the largest greater horseshoe
roosts in Europe, used by approximately 1800 bats during the maternity season of 2016.
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The roost sites were known beforehand, and detectors were placed as evenly as possible around
the roost location, given constraints caused by access issues, while trying to cover a variety of different
terrain types [28]. The detector locations, land use and relative proportion of calls are illustrated in
figure 1a.

The distribution of distances between each detector and the roost for each survey is shown in figure
1b. The minimum distance between detectors and the roost is seen in the first Buckfastleigh survey, at
a separation of 130 m, while detectors are placed significantly further away in the last Buckfastleigh
survey, with the closest placed 1.1 km away.

Since we require the activity of an average night we need to average the number of calls over the
total number of nights that each detector was active. Unfortunately, due to technical faults, not all
detectors ran for the entire duration of the survey. The number of nights over which detectors were
active for each of the six surveys is shown in figure 1c. All detectors were active for between 0 and 8
nights before either the survey ended or the detector malfunctioned. The mean number of active nights
for each survey ranges between 3 and 6.

In this section, we have introduced the data and defined our coordinate system. Next, we will use
diffusion as a model of bat motion to estimate the number of expected calls at each detector, given a
simulated roost location.

3. Adapting the diffusion model
As was shown in [18,19], greater horseshoe bat movement for the first 90 min after sunset can be
modelled as diffusive. We will use a deterministic partial differential equation (PDE) diffusion model
to estimate the expected number of calls at each detector using a predicted roost location, z, as a
parameter to be estimated.

In this case, a deterministic model is preferable to a stochastic model, as simulating stochastic
data is significantly more computationally expensive [31]. Critically, we will demonstrate how we can
approximate the analytical solution to the diffusion PDE, which will provide an algebraic formula for
the proportion of bat calls at each detector site. The simplicity of evaluating a formula, rather than
simulating stochastic diffusing agents provides huge time saving [32]. Such gains in efficiency are
important because the model has to be evaluated many thousands of times over an entire landscape.

Critically, we note that the deterministic equations provide excellent comparisons with the mean
average behaviour of the stochastic simulations when the number of agents being simulated is large
[33,34]. We will see a posteriori that the bat populations considered here which are of a few hundred to a
few thousand are sufficient to produce good roost position estimates.

We assume that bats leave the roost at sunset and fly away from the roost in search of food.
Foraging bats are modelled as diffusive particles on an infinite domain for the first 90 min after sunset
[18,19]. Let ϕ(x, y, zx, zy, t) be the probability density of a bat’s location, (x, y), at time t, given that the
bat roost is at (zx, zy) then ϕ is defined by the PDE

Table 1. Details of each of the six surveys at Buckfastleigh, Braunton, Gunnislake and High Marks Barn.

roost
manual bat
count

acoustic survey
start date

surveyed
area (km2 to
2 d.p.)

number of
detectors

length of
survey
(days)

total number
of detections

detections between
sunset and 90 min
after

Buckfastleigh 1798 26 Jun 2016 15.13 21 7 1458 567

Braunton 512 11 Jul 2016 15.56 19 7 793 357

Buckfastleigh 1798 25 Jul 2016 9.57 26 8 2728 698

Gunnislake 252 8 Aug 2016 12.24 21 7 270 112

High Marks
Barn 746 22 Aug 2016 16.60 31 7 725 272

Buckfastleigh 1798 5 Sep 2016 26.23 21 8 441 115
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(3.1)
∂ϕ(x, y, zx, zy, t)

∂t = D∇(x, y)
2 ϕ(x, y, zx, zy, t),

(3.2)ϕ(x, y, zx, zy, 0) = δ2(x − zx, y − zy) .

where ∇(x, y)
2  is the Laplacian, which is just the linear combination of second derivatives with respect

to the eastings and northings Cartesian coordinates, (x, y). The parameter D is called the diffusion
coefficient and it is a positive constant measuring the rate of spread of the bats.
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Figure 1. Details of each of the six surveys at Buckfastleigh (red), Braunton (green), Gunnislake (blue) and High Marks Barn (black).
(a) Absolute positions of the detectors (× marks) and roosts (∘ mark) at each surveyed location. The positions are in terms of eastings
and northings. The background image illustrates the Ordinance Survey map, which highlights environmental use in terms of urban,
suburban, road and river coverage. The black circle around each detector represents the relative proportion of calls. Specifically, the
radius of the circle around detector i is Ci km. (b, c) Violin plots illustrating various statistics regarding the data. The width of each
violin plot is scaled by the percentage of records at each value on the y-axis. (b) The distribution of distances from each detector to the
roost (as the crow flies). (c) Distributions of the number of nights that detectors were active.
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We use the data calculated in our previous paper [19] using the relationship between mean squared
distance travelled from the roost and time from sunset to provide a value of this parameter. Specifi-
cally, a typical value calculated from tracking surveys is D ≈ 80 m2s−1.

The initial condition δ2(x − zx, y − zy) = δ(x − zx)δ(y − zy) is the two-dimensional Dirac delta function
[35], which specifies that all bats start the night at a roost located at z = (zx, zy). The model assumes
infinite space, thus, we require that solutions satisfy the boundary conditions ϕ(x, y, zx, zy, t) → 0, as|u | , |v | → ∞.

System (3.1) and (3.2) can be solved explicitly,

(3.3)ϕ(x, y, zx, zy, t) = 1
4πDtexp −

(x − zx)2 + (y − zy)2

4Dt .

Although the movement of the diffusive agents is unbounded, equation (3.3) can be evaluated to show
that the probability of a bat travelling further than m is typically small. Specifically, at time T = 90 min,
with a diffusion coefficient of D = 80 m2s−1, the probability of a bat flying a distance beyond Rf the roost
is

(3.4)p x2 + y2 > Rf = 1 −
0

2π

0

3000ϕ(rcos(θ), rsin(θ), 0, 0, 90 × 60)r dr dθ < 0.01,

or less than 1%. It is important to ensure that the probability of a bat being beyond Rf at the end
time is small, as most detectors are placed within a radius of 3 km of a suspected roost (see figure
1). Moreover, this was identified as the approximate radius of the core sustenance zone (CSZ) of the
greater horseshoe bats. Namely, although the bats can fly further than the CSZ, they usually do not
[18,36].

Having generated a functional form of ϕ we can use equation (3.3) to estimate the proportion of
calls that should be detected at each detector. Specifically, we assume that each detector i that is placed
at a location Xi = (xi, yi) has an active domain, Ωi, in which it can detect a bat’s call. In our case, we
assume that all microphones used in the surveys will register a bat call anywhere within a circle of
radius 15 m about the detector’s location (see figure 2).

Integrating ϕ over a detector’s active region, Ωi, provides the probability of the detector i detecting a
bat within Ωi at time t, given the roost was thought to be at (zx, zy),

(3.5)Pi(zx, zy, t) =
Ωiϕ(x, y, zx, zy, t)dω .

Thus, the expected number of calls between 0 < t < T would be

(3.6)Ei(zx, zy) =
0

TPi(zx, zy, t)n dt,
where n is the number of bats leaving the roost. Finally, the proportion of calls registered at each
detector (assuming a roost at (zx, zy)) would be

(3.7)Fi(zx, zy) = Ei
∑j = 1
N Ej ,

thus, n cancels out and we do not need to know how many bats there are in the roost.
Suppose we now consider a bat population with roost centred at the origin (zx, zy) = (0, 0). Further,

suppose there are two detection regions, Ω1, centred at (20, 20) m and Ω2, centred at (60, 60) m,
illustrated in figure 2. Because Ω1 is nearer to the roost than Ω2, we observe that the range of ϕ in Ω1

varies more than the range of ϕ in Ω2; ϕ is practically constant over Ω2. Using this observation, we
can approximate the integral that needs to be evaluated to generate the proportion of bat calls at each
location and convert it into a simple algebraic formula. This observation is key to the simplification;
namely, the simplification does not work unless the density distribution rapidly decays away from
the source. Although this assumption holds in the current situation where we are modelling the bat
spread as an evolving Gaussian distribution, which has been seen to be appropriate, we should be
highly critical of this assumption if our model is to be applied to any other situation. In alternative
applications, where the density distribution is known but is not rapidly decaying, then we could
evaluate the integral, which is not difficult to simulate. However, the integral evaluations would
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cost more time than evaluating the algebraic approximation. Thus, this approximation optimizes the
efficiency of each evaluation, without loss of accuracy.

Explicitly,

(3.8)Pi(zx, zy, t) =
0

2π

0

r 1
4πDtexp −

(xi + r′cos(θ) − zx)2 + (yi + r′sin(θ) − zy)2

4Dt r′ dr′ dθ,

(3.9)≈ 1
4Dtexp −

(xi − zx)2 + (yi − zy)2

4Dt r2 = P~i(zx, zy, t) .

Following on from defining approximation 3.9, we can define the accompanying approximations E~i
and F~i which have the same definitions as Ei and Fi, respectively, but P~i is substituted for Pi. Note
that we still use Simpson’s rule for numerical integration [37,38] to calculate the approximate expected
number of calls, E~i, since there is no elementary indefinite integral for the function e1/t/t. However,
we have reduced the problem of calculating Fi from a three-dimensional integral to a one-dimensional
integral approximation, F~i, representing a time saving in the numerical evaluation.

The accuracy of our approximation is illustrated in figure 3, as we present the error betweenPi and P~i, and between Fi and F~i. In calculating Pi and P~i, we let the detector location (xi, yi)
range over all space, whereas in calculating Fi and F~i we choose specific detector locations,
namely, we space 30 detectors uniformly along the x-axis in the interval [0, 3000] m, explicitly,
(xi, yi) = (n3000/29, 0),n = 0, 1, …, 29.

Figure 3a demonstrates that the error in the probability approximation exponentially decreases
away from the roost over time, as expected. Consequently, the comparison between Fi and F~i is
excellent because the approximation is only poor for a small amount of time and over a small evolving
location. Thus, over the time interval of 90 min the small error in the approximation to P~i does not
compound, resulting in uniformly excellent comparison that becomes better for detectors further away
from the roost.

In this section, we have set up the basic mathematical framework which defines bat movement.
Critically, we have been able to derive a function, F~i, that, given a roost location, can be quickly
estimated at all detector sites and provide a measure which can be compared with the call data from
the surveys. In the next section, we will define a distance metric to compare the expected proportion of
observations at each detector with data recorded from surveys and use this to estimate roost locations
from survey data.
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Figure 2. Illustrating the range of detection. The image shows the positive quadrant of ϕ(x, y, 0, 0, 1). The two circles illustrate two
possible detection regions, Ω1 and Ω2, where a detector has been placed at (20, 20) (black circle) and the other has been placed at
(60, 60) (blue circle). Diffusion parameter is D = 80 m2 s−1.
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4. Estimating roost locations
To find potential roost locations, we define a distance metric, ρ, between the data and the expected
observations. Let F~(z) = F~1(z), …, F~N(z)  be the vector of the expected proportion of calls at each
detector (calculated from equation (3.7) assuming that the roost is at z and let C = C1, …,CN  be the
vector of the proportion of calls at each detector calculated from the data. We define

(4.1)ρ(C, F~(z)) =
∑i = 1
N (F~i(z) − Ci)2

maxz ∑i = 1
N (F~i(z) − Ci)2 .

Namely, ρ is the squared Euclidean distance between the expected proportion of observations at each
detector and the survey data. This metric is then normalized by the maximum of all locations tested.
Hence, ρ is bounded between 0 and 1, and low values of ρ should correlate with locations more likely
to be the roost. Note that the squared distance is chosen here as opposed to, for example, the absolute
difference, because the squared distance places more importance on the detectors which record high
number of passes [39]; detectors which record particularly high numbers of bat passes are likely to be
located close to the roost, while those which record fewer passes are likely to be located far from the
roost. Moreover, tests were done varying the exponent and the regions of minimal ρ were generally
not changed, although it was noted that an exponent of two minimized the average error over all
locations, compared with an exponent of one or three (data not shown, but code available on GitHub,
https://github.com/ThomasEWoolley/Bat_roost_detection).

In the following, we divide each location illustrated in figure 1a into a grid of 500 × 500 evenly
spaced squares. The extent of the maps are defined by the maximum and minimum of the detectors'
(x, y) coordinates.

The resulting ρ surfaces are illustrated in figure 4. In all cases, the circular white marker is the
known roost. The diamond marker is the minimum point of ρ, that is, the best point estimate our
prediction provides. The square marker defines the geometric mean of the detectors weighted by the
proportion of calls at each detector. We call this point the centre of calls, CC,

(4.2)CC = ∑i = 1

N CiXi .
Note, we do not have to divide CC by the sum of the weights, Ci, as they are proportions and, thus, by
definition, sum to 1. Finally, the colour bar is the same across all maps and goes from dark blue (ρ = 1)
to yellow (ρ = 0). Generally, the more yellow a region is the closer we should be to the roost. Table 2
provides distance values between the known roost, zR; the centre of calls, CC and best point prediction,zp, such that ρ(C, F~(zp)) = min(ρ). These statistics offer information on the accuracy of the application of
our roost-finding algorithm for each location in figure 4.
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Alongside the point estimates of CC and ρ we provide contour plots (white lines in figure 4) that
demonstrate how ρ varies across the space. Critically, although the accuracy of a single-point estimate
may be low, we can use the contour plots to provide optimal searchable regions, namely, we search the
regions in order of increasing values of ρ. We define ρc = ρ(C, F~(zR)), to be the value of ρ evaluated at
the known roost point, zR. Table 3 provides the area that would need to be searched (as a percentage
of the entire area mapped in figure 4) using the searching method of starting at the minimum of ρ and
increasing the search area until we find the roost at ρc.
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Figure 4. Plotting ρ using equation (4.1) over the survey site, which has been split into 500 × 500 equally spaced squares. The
coloured background ranges from yellow when ρ = 0 to blue when ρ = 1. The contours provide numerical values and aid visualization
of the surface. The detectors are black crosses, the roost location, zR is a white circle, the estimated location, zp is a white diamond
and the centre of calls is a white square. The black square in the Buckfastleigh 5 September subplot (bottom right) represents a more
recently found satellite roost used by the same colony.

Table 2. Tabulation of the distances between the roost location, zR and the point estimates of zp (the best point prediction at
min (ρ)) and the centre of calls, CC as calculated using equations (4.1) and (4.2), respectively. All data are rounded to two decimal
places.

date roost

straight line distance in km betweenzR and zp zR and CC zp and CC
26 Jun 2016 Buckfastleigh 0.16 0.38 0.28

11 Jul 2016 Braunton 0.79 0.20 0.63

25 Jul 2016 Buckfastleigh 1.01 0.37 0.79

08 Aug 2016 Gunnislake 0.63 0.34 0.97

22 Aug 2016 High Marks Barn 0.84 0.31 1.14

05 Sep 2016 Buckfastleigh 1.08 0.74 0.36
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As a general overview, if we combine the information from figure 4 and tables 2 and 3, we observe
that the predicted roosts’ locations appear to get worse over time. However, each survey time and
location has its own nuances that need to be highlighted, thus, we now discuss each survey in turn and
demonstrate how our data can be used to provide a picture regarding the success of the roost-finding
algorithm.

For 26 June 2016 Buckfastleigh, the initial survey was conducted on an approximately 15 km2 area
(see table 1). Table 2 informs us that the single-point prediction, zp, which predicts the location of the
roost at zR does particularly well, being within 160 m of the actual roost. This predicted location is even
better than the CC, which is 380 m away from the roost. Thus, if we were to start at the location of
min (ρ) and search areas of increasing ρ until we found the roost then we would have to search 0.28%
of the original survey area, or 0.04 km2. Thus, our roost-finding algorithm has saved over 99% of the
searching effort required to locate the roost, should we not have known its location in advance.

In the case of the 11 July 2016 Braunton survey, the colony using the roost is much smaller than
the Buckfastleigh roost (around one-third of the size) and, subsequently, the number of recorded calls
within 90 min of sunset is lower. Additionally, as shown in figure 1b, the closest detectors to the
roost are further than those for 26 June 2016 Buckfastleigh. However, even with all these weaknesses
compared with 26 June 2016 Buckfastleigh, our method is highly effective in locating the roost, with an
error of just 790 m, and once again reducing the search area by over 90%.

In contrast to the first Buckfastleigh survey, the second survey conducted at Buckfastleigh between
25 July and 3 August 2016, records more calls and has more detectors and a smaller initial search area.
However, the algorithm provides a less successful point prediction as zp is 1.01 km away from the
roost, whereas CC provides a more stable estimate as it is still less than half a kilometre away from
the roost, similar to the first survey in Buckfastleigh. The reason the prediction is pulled southwest
of the roost is because the biggest proportion of calls comes from a detector southwest of the roost
(see figure 1a). The reason for the high number of passes is not immediately obvious from the data;
however, when we look at the locations of hedgerows in the survey area (see figure 1a), we see that
the detector was placed along one of the main hedgerow paths leading away from the centre of the
survey area. As noted in §2, greater horseshoe bats are highly dependent on hedgerows for navigation
and foraging, and it is likely that this particular hedgerow is used as a corridor between important
parts of the landscape. In §6, we will suggest some possible adjustments to the model to account for the
heterogeneity of the landscape.

Positively, even though the point estimate is worse than the first survey in Buckfastleigh, the
amount of area that would need to be searched to find the roost is still very small. Although we
have to search a bigger percentage of the area according to table 3 (9.00% compared with 0.28%) we
are searching over a smaller area initially, and so, we would need to search 0.86 km2 in this second
Buckfastleigh survey, compared with the area of 0.04 km2 in the first survey.

The colony using the roost on 8 August 2016 Gunnislake is much smaller than those using the other
roosts, resulting in a much lower number of recordings. This means that stochastic effects will play
more of a significant role in the prediction of this roost location. Such problems would be minimized
by doing surveys over more days.

Table 3. Percentage of areas below various thresholds of ρ along with the value of ρ at the roost, ρc = ρ(C, F~(zR)). The
percentage is relative to the size of the original searched area (see figure 4). All data are rounded to two decimal places.

date roost ρc area covered byρ ≤ ρc (km2)

percentage of mapped area bounded byρ ≤ 0.1 ρ ≤ 0.2 ρ ≤ 0.3 ρ ≤ ρc
26 Jun 2016 Buckfastleigh 0.04 0.04 16.98 36.06 68.11 0.28

11 Jul 2016 Braunton 0.06 0.99 11.15 43.49 71.48 6.36

25 Jul 2016 Buckfastleigh 0.17 0.86 0.00 17.78 47.51 9.00

8 Aug 2016 Gunnislake 0.18 3.08 0.00 36.45 74.95 25.19

22 Aug 2016
High Marks

Barn 0.10 1.16 6.89 58.85 77.58 7.01

5 Sep 2016 Buckfastleigh 0.29 9.41 0.87 14.72 37.49 35.89
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A further problem in the 8 August 2016 Gunnislake case is the flatness of ρ, as we observe much
of the domain satisfies ρ < 0.2. The flatness of ρ means that many points are equally good and our
algorithm cannot be more precise without additional data in the flat-ρ region. This problem could be
solved by including more detectors in the ρ < 0.2 region. More positively, our algorithm still saves over
74% in searching effort, as we would only have to search 3.08 km2 of the original space before we
would be able to find the roost.

The ρ profile of 22 August 2016 High Marks Barn is similarly flat, because the area to the southeast
of the roost is private land, and it was not possible to obtain the landowner’s permission to place
detectors there. To compensate for the lack of homogeneity in the spatial distribution of the detectors,
more detectors were used (more than any other survey). Thus, even with the heterogeneous detection
space, we are able to save over 90% of the search effort.

The 5 September 2016 Buckfastleigh survey is the worst single-point prediction over all three
Buckfastleigh surveys. Moreover, it is the worst single-point roost prediction out of all six surveys.
Critically, although we would still save over 64% of our searching effort, the 5 September 2016
Buckfastleigh has the largest required search area, assuming that we start at the minimum of ρ and
search areas with increasing values of ρ. Compared with the other two Buckfastleigh surveys there
were hardly any detectors near to the roost with the average detector distance being approximately
2.5 km away from the roost (see figure 1b). The previous two Buckfastleigh surveys not only had
detector location distributions with a smaller mean (1.5 km or less), but nearly all detectors were closer
to the roost than 2.5 km. Moreover, the number of passes during this third Buckfastleigh survey was
approximately the same as Gunnislake even though Buckfastleigh has over seven times as many bats
recorded in its roost.

There are several possible reasons for the error in the estimate for the 5 September 2016 Buckfas-
tleigh survey. Firstly, in 2018, a second large roost was found in a cave system close to the Abbey Inn,
Buckfastleigh, around 1 km north of the main roost (shown as a black square in the 5 September 2016
Buckfastleigh of figure 4). In August 2018, counts were taken of greater horseshoe bats exiting this
roost, and on each occasion, more than 800 bats were seen emerging. Our roost estimate zp is actually
closer to this cave roost, being only 0.70 km away. Unfortunately, we cannot know if this roost was
used in 2016 (or indeed if there is another, unknown, roost in the area); however, it is certainly possible
that not all the bats recorded during this survey were from the main roost.

Critically, this second cave roost near Abbey Inn was first discovered in August, and may therefore
only be used later in the season. Notably, the last Buckfastleigh survey was conducted in September,
late in the season, and was the only survey at Buckfastleigh to be conducted after July. It is possible
that by September, bats had already moved from the summer roost to the cave roost, or to another
hibernation roost.

An alternative reason for the poor fitting of the September counts is that the maternity season
is over, making way for the mating season and causing the nightly dispersal patterns to be more
complicated. During the mating season, female bats go off in small groups to visit solitary males in
mating roosts and, thus, sometimes they do not return to the main maternity roost as they stay with
the males [40].

Finally, as a means of providing confidence in our point predictions, we note that as the distance
between the actual and predicted roost becomes worse, the distance between zp and CC also increases.
Figure 5 illustrates the correlation between the distance between the predicted location zp and CC, and
the distance between the predicted location zp and zR. Thus, using figure 5, if we were to apply our
algorithm to a new set of data where the roost was not known, then our confidence in the location of
min (ρ) being near the roost can be governed by how far min (ρ) is from CC. For example, as a rule
of thumb, if the locations of zp and CC are separated by a few hundred metres then we would expect
the roost to be within a few hundred metres of CC and zp, while if CC and zp are separated by a
kilometre, or more, then it is likely that the point prediction is performing more poorly although the
area searching algorithm should still lead to large savings in the effort.

5. Roosts outside the detector coverage
In the six cases we are considering here, the roost location was either known or suspected. Thus,
microphones could be spread in all directions around the suspected roost, meaning that the geometric
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mean of the detectors was likely to be a good estimate for the roost location regardless of any further
call data. This is why the roost in each of the cases of figure 4 is close to the centre of the image.
This raises some limitations of CC. Firstly, the ability of CC to provide a good estimation for the
roost location may depend on the prior knowledge of the ecological surveyor. Secondly, CC can only
estimate points within the spatial limits of the detectors. Thus, in the case that (i) we do not where a
roost is and (ii) the roost is outside of our detector placement area, CC cannot provide a good point
estimate for the roost location. The best CC could do is be close to one of the boundaries, indicating
that the roost is unlikely to have been contained within the initially surveyed area.

The construction of the ρ surface does not have any of these limitations. Thus, in this section, we
approach the question of how good our algorithm is at identifying a roost outside of the detector
locations in two ways.

Firstly, we use a stochastic agent-based model of bat movement and simulate the call distributions
of a roost outside of the 26 June 2016 Buckfastleigh detector distribution (refer to appendix A).
Secondly, because the 22 August 2016 High Marks Barn survey had the largest number of detectors,
we simply rerun our analysis on High Marks Barn, but without including data from all detectors to
the south of the roost. Another reason for using High Marks Barn is because of the restriction that the
area to the southwest was private and detectors could not be placed there. Thus, we seek to consider
a worst-case scenario that a roost is on private land and no detectors can be placed on one side of the
roost.

The reason we ran these two experiments is because the first approach could be criticized for being
too artificial. Namely, although our previous research [18,19] has shown that the movement features
of the greater horseshoe bat population can be characterized as diffusive (at least for the first 90 min
after sunset), we would be using a diffusion-based search model to find simulated diffusive agents that
would not be reading the domain as a real bat would. Thus, the first test provides a proof-of-concept
demonstration that our algorithm can find a roost outside the extent of a microphone placement, using
a realistic set of detector distributions.

The second experiment, although more realistic, is weakened because we are removing approxi-
mately half of the data from the space. Specifically, we will use 193 call recordings from the 18
detectors north of the roost (originally, we used 272 call recordings from 31 detectors; see table 1). Thus,
it should be kept in mind that this reduction in data will influence how well ρ can predict the roost
location.

The result of our first experiment in finding a roost outside of the detector placement is shown
in figure 6. Using the detector placements as defined in the 26 June 2016 Buckfastleigh survey, we
simulated 600 bats starting at a roost 1 km east of the furthest east detector. The agents move diffu-
sively, with a diffusion rate of D = 81.7 m2 s−1 [19]. The search space has been extended by 3 km to the
east from the original search space (refer to figure 1a), so the search space is now 25.98 km2, compared
with the original search space of 15.13 km2.
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Figure 6 illustrates the problem stated above; the CC point (white square) is bound to lie within the
extent of the detector placement. Thus, the distance error between the roost (white circle) zp and CC
can be made arbitrarily large. Moreover, the predicted location of min(ρ) (white diamond) is only 375 m
from the simulated roost and we would only have to search 0.3% of the domain (or 0.78 km2) to find the
roost. Thus, overall, we can see that our searching algorithm is successful in finding the roost outside of
the detector domain in the case of simulated bat movement data.

In the second experiment, illustrated in figure 7, both zp and CC are placed fairly central within
all the detectors and are approximately 700 m away from the roost. However, although both point
estimates are equally mistaken, the ρ is able to highlight the areas that are equally likely to hold the
roost. Clearly the majority of the low ρ region lies much further to the south of the detector region,
indicating that we are looking in the wrong region.

Of course, the prediction surface generated in figure 6 is based on a lot less information than we
would normally expect, thus, we should not be surprised that neither point prediction is good. In such
cases, we would recommend the survey be rerun with the detectors placed (if possible) further to the
southeast using the information that can be gleaned from figure 7. This should cause more detectors to
be placed closer to the original roost leading to a better resulting prediction.

6. Discussion
In this article, we have combined data from static audio detectors and mathematical modelling to
create an efficient algorithm for identifying possible bat roost locations, which is currently a highly
labour-intensive process. Critically, even if a single-point estimate is not accurate, our spatial metric
provides an optimized means of searching space that can reduce our searching effort by over 90%
at best and 50% at worst. Before we draw overall conclusions, we discuss some of the complicating
factors that would necessarily limit the accuracy of our current algorithm, and offer jumping-off points
for further refinements.

Table 2 demonstrates that the point estimate CC is consistently as good as, if not better than, our
diffusion-based movement algorithm at predicting a roost’s location. However, although CC is a useful
additional measure, it does have a number of drawbacks that would means its sole usage would be
problematic.

Firstly, CC is a single-point estimate, whereas ρ provides an entire likelihood surface. Thus, it is
harder to supply any confidence bounds on CC. In particular, it is harder to predict when CC will
provide a poor performance. In contrast, we saw that ρ was a fairly flat surface in the case of High
Marks Barn, and, thus, we would immediately be able to deduce that there would be many equally
good potential locations, meaning that zp was less likely to be accurate.

Secondly, CC cannot be generalized beyond being a single-point estimate to include potentially
multiple roost sources. Multiple sources can easily be included in the definition of ρ as we would
simply include more Gaussian distributions in the definition of equation (3.8). Of course, including
multiple sources would lead to a combinatorial slowing of the algorithm, as all combinations of points
would need to be evaluated, but it would be possible, to find the best two or three locations for
potential roosts.
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Figure 6. Predicting the location of a roost outside of a detector distribution using simulated data. The coloured background
represents ρ calculated using equation (4.1) and ranges from 0 (yellow) to 1 (blue). The contours provide numerical values and aid
visualization of the surface. The detector locations are the same as in the 26 June 2016 Buckfastleigh survey and are represented as
black crosses, the simulated roost location is a white circle, the estimated location is a white diamond and the centre of calls is a white
square. The bat flight trajectories were simulated using equation (A.1). The parameter value is D = 81.7 m2 s−1.
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Thirdly, as mentioned in §5, CC is bound to lie within the extent of the detector placement. Our
prediction method has no such restrictions. Combining these insights with the correlation between the
accuracy of our prediction and distance from CC we can begin to suggest whether we are looking in
the right place to begin with.

We now consider factors that would have influenced the accuracy of our prediction stemming from
the data. All six surveys were conducted at maternity roosts, during the summer months. Maternity
roosts are populated by females and their young, while mature males generally use separate roosting
sites and therefore do not disperse from the maternity roost [41]. However, it is not possible to
distinguish between the calls of males and females, and therefore calls from males are recorded in
the same way, adding noise to the number of passes at each detector. If some detectors are placed
particularly close to male roosting sites, this could skew the number of passes recorded and therefore
negatively affect the roost estimate.

Additionally, in each survey case, we have only been looking for one roost, but it is always possible
that there are multiple roosts in the area, as was discovered later in Buckfastleigh. Extending our
current method to include more sources is fairly trivial. However, in the present case, such complexi-
ties would add to the overall difficulty of pinpointing a single ‘best’ location.

Environmental conditions, although not considered here, could play a significant role. For
simplicity, we have assumed that each night bats disperse from the roost after sunset regardless
of the temperature and weather conditions that night. However, bats expend much of their energy
to maintain stable body temperatures and are sensitive to climatic conditions [42]. Thus, inclement
weather is likely to change foraging behaviour.

We should also note how bats use their roosts and how the landscape changes throughout the
year. During the summer, females use maternity roosts in which they give birth and raise their young.
Maternity colonies generally form in early summer, from May onwards. While greater horseshoes in
southwest England tend to give birth between late June and July [41], birth timing can vary wildly
depending on the temperatures throughout spring and early summer. Mothers care for their pups for
around eight weeks before they are weaned and ready to forage independently, probably leading to
changes in foraging behaviour.

As mating in greater horseshoes occurs from late August onwards, bats tend to travel further in search
of mates, potentially abandoning maternity roosts to move closer to mating sites [43]. Thus, the diffusion
model used at the start of the maternity season in May–June may not be generalizable to the end of the
maternity season in late August–September, or at least it may require a different diffusion rate.

Evidence for this can be seen in table 1, where the number of detections during the final Buck-
fastleigh survey (which occurs in September) is significantly lower than the previous Buckfastleigh
surveys, suggesting the possible abandonment of the maternity roost by some adult females in favour
of mating sites.

The error in the roost estimate for each survey is shown in tables 2 and 3. Notably, errors are higher
in surveys conducted towards the end of summer compared with those in June or July, although with
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only six surveys it is difficult to generalize these results. A second radio-tracking survey later in the
season would be extremely useful to verify if bats still move via diffusion, and if so, if the diffusion
coefficient varies throughout the summer. However, each radio-tracking survey requires hundreds of
person hours and is therefore beyond the scope of this article.

As noted in §2, these six surveys were conducted to study landscape use around the roost [28].
Detectors were deliberately placed to cover a variety of terrain types, some of which (e.g. hedgerows,
where insects are abundant and there is a cover from predators) are known to be favourable for bat
movement and some of which are detrimental to bat movement (e.g. busy roads, where there are
bright lights, loud noises and few insects to feed on). The terrain in the four locations is heterogeneous,
including a mixture of rural farmland and urban areas. It is almost certain therefore that the number
of passes recorded at each detector has been affected by the surrounding terrain [44]. Future work will
look to enhance our roost prediction accuracy by incorporating landscape data into the model.

Although extending equation (3.1) to include anisotropic diffusive movement is possible, as we
would just include a spatial component in D, we would not be able to provide a complete solution
in the form of equation (3.3), thus, we would need to rely more heavily on simulation, which would
greatly increase the complexity of the method. Further, being able to define an anisotropic diffusion
function based on landscape topography is not trivial: the data for different landscape features is
collected by different organizations (e.g. the locations of roads and buildings can be extracted from
Ordnance Survey maps, while data such as the location of streetlights is often only available on request
from Local Authorities). Moreover, the coverage of this data is not complete. Thus, having only partial
data coverage in some locations may end up biasing the results more than not have any additional data
anywhere. Finally, much of this data is only available through subscription services that an ecologist
searching for a roost may not necessarily have access to.

A straightforward way to reduce the effect of landscape effects would be to place all detectors in
favourable terrain, for example, only on hedgerows. This could have the added benefit of increasing
the expected number of recordings at each detector, thereby increasing the quantity of data recorded.
However, the number of passes recorded at each detector is affected not just by the surrounding
landscape, but also by the functional connectivity between the roost and the detector: bats are unlikely
to cross motorways each night to reach a hedgerow, regardless of how many insects are available in
the hedgerow. To further improve the validity of the diffusion model, we would need to consider the
complex effects of landscape connectivity on bat movement [45].

In addition to variations in bat behaviour, imperfections in data collection during surveys are also
probable. Detectors are typically placed outdoors, often in locations with public right of way or on
farmland, making them susceptible to theft, vandalism and damage caused by animals. Consequently,
some detectors may fail before the full 7 days survey concludes. Such imperfections can give us a
misleading view of the environment. Although we have averaged over the number of days to provide
a daily count, detectors with shorter operational durations due to malfunctions may introduce higher
errors in the calculation of ρ. Such errors may account for the low accuracy in the roost prediction for
High Marks Barn, as these detectors exhibited the lowest average survival time span (see figure 1c).

A further imperfection in the methods comes from the use of continuous and deterministic models
to describe inherently discrete and stochastic behaviour. At higher distances from the roost, stochasticity
in movement plays a larger part in the number of passes recorded. Additionally, we note that the
colony using the Buckfastleigh roost is significantly larger than an average colony, and the importance of
considering stochastic effects would increase with smaller numbers of bats [46,47].

This stochasticity could, in part, explain the poor roost prediction in the last Buckfastleigh survey.
Namely, all the detectors in this survey were placed, on average, further away from the roost than in
any other survey (see figure 1b). Adding detectors closer to the true roost could certainly improve the
estimate. However, in a roost-finding survey, the location of the true roost would not be known and we
therefore would not know how to place detectors near to it.

A more accurate method would account for landscape effects, time of year, solitary males,
weather conditions, stochasticity, roost size and survey design. However, incorporating each new
variable increases the model’s complexity. Without acquiring substantial quantities of new data, which
would be both time-consuming and costly, studying the interdependence of these variables becomes
challenging.

Speed of computation being less than a day is particularly important for our plans for future work.
Building on these results, we want to begin to investigate how detector arrays could be updated
(potentially daily) to optimally survey space and, thus, provide increased accuracy in locating bat
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roosts. Specifically, we aim to improve survey design by using an iterative Bayesian global optimiza-
tion approach to ensure that the data recorded is the most useful for estimating roost locations.

Overall, we state that the benefits of using our algorithm to find roosts far outweigh its limitations.
In all cases, we have been able to reduce the potential search space by at least 64%. Moreover, it should
be remembered that our diffusion algorithm was not parametrized on any of the data contained within
this article; rather, we used diffusion coefficients derived from radio-tracking surveys conducted at a
different time and location [18,19]. The fact that these parameters and motion characteristics yielded
the accuracy we achieved provides confidence in the generality of our approach (at least for greater
horseshoe bats).

We only used the first 90 minutes after sunset of microphone data, as previous work has shown that
a simple diffusive model can recreate the bat’s motion features. However, we have been able to model
not just the initial bat spread, but also the later ‘return to roost’ phase [18,19]. Using these models we
could increase our accuracy (at the expense of complexity and speed) by extending this work to use the
full nights' worth of call data.

Finally, even in the worst-case scenario of having to search 36% of the space, this is without
considering the expertise of the ecological researchers performing the survey. Ecologists have a
wealth of practical knowledge and experience regarding potential roosting locations. Thus, overlaying
potential location ρ maps onto terrain feature maps allows ecologists to prioritize search areas within
these suggested regions, optimizing our searching algorithm further by combining digital and practical
expertise.
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Appendix A. Simulated data
In §5, we simulate call data from a bat roost outside of the 26 June 2016 Buckfastleigh detector placement
region. To do this, we simulate 600 diffusive trajectories using a Wiener process [48–50] centred at the new
roost location (277 512, 65 944) m. The simulated roost location was chosen to be 1 km further east than the
most easterly detector and placed vertically at the mean y value position taken overall detector locations
(see figure 6). We simulate 600 agents as this is the approximate number of recordings taken during the 26
June 2016 Buckfastleigh survey.

The Wiener process simulates agents undergoing random walks that reproduces statistics that
matches the formal definition of Brownian motion, or diffusion. The location, (bx(t), by(t)), of an
individual agent at time t is defined by

(A.1)bx(t + Δt)by(t + Δt) = bx(t)by(t) + 2DΔt rxry
where D = 81.7 m2 s−1 is the diffusion rate of greater horseshoe bats, as found in Henley et al. [19], rx
and ry are two randomly generated numbers sampled from a normal distribution with mean 0 and
standard deviation 1, N(0, 1), and Δt = 1 s is the time step between observations. We use the roost
location as the initial condition for all bats.
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Using equation (A.1), we simulate 600 trajectories over a 90 min period. We then count how many
times a trajectory was within a circle of radius 15 m around each of the detector locations from the 26
June 2016 Buckfastleigh survey. This data is used to form the ρ surface shown in figure 6.
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