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ABSTRACT: Herein, we report a synthetic method to access a
range of highly substituted indoles via the B(C6F5)3-catalyzed
transfer of 2° alkyl groups from amines. The transition-metal-free
catalytic approach has been demonstrated across a broad range of
indoles and amine 2° alkyl donors, including various substituents on
both reacting components, to access useful C(3)-alkylated indole
products. The alkyl transfer process can be performed using
Schlenk line techniques in combination with commercially available
B(C6F5)3·nH2O and solvents, which obviates the requirement for specialized equipment (e.g., glovebox).

I ndole-containing molecules have diverse applications,
spanning functional materials, pigments, and pharmaceut-

icals.1 As such, the development of methods to access indoles
with various substitution patterns has received considerable
attention from the synthetic community.2 Highly substituted
indole frameworks, for example those bearing substitution at
the 1-, 2-, and 3-positions, occur within biologically active
molecules such as beclabuvir (antiviral drug for the treatment
of hepatitis C virus (HCV) infection), deleobuvir (nonnucleo-
side inhibitor of HCV NS5B RNA polymerase), and
bazedoxifene (selective estrogen receptor modulator) (Scheme
1). Despite their importance, relatively few methods exist for
their synthesis, especially for those that contain 2° alkyl groups
at the C(3)-position, which are typically accessed via C(3)-
alkylation of 1,2-disubstituted indoles.3−7 Using 1,2-dimethy-
lindole as a representative example, existing synthetic

approaches include the Pt-catalyzed hydroarylation with
styrene, reported in 2006 by Widenhoefer and co-workers,3

which produced the corresponding C(3)-alkylated indole in
55% yield as a (1:1.1) mixture of linear and branched isomers
(Scheme 2A). In 2011, Tsuchimoto and co-workers disclosed
an In-catalyzed reductive alkylation protocol employing
phenylacetylene and Ph2MeSiH as the reductant, which
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Scheme 1. Biologically Active Molecules Containing Highly
Substituted Indoles

Scheme 2. Existing Synthetic Approaches
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produced the indole product in 98% yield (Scheme 2B).4 In
2016, the same group reported that the alkyne could be
replaced with acetophenone using similar reaction conditions
to give the C(3)-alkylated indole product.5 In 2020, Melen and
co-workers disclosed the B(C6F5)3-catalyzed C(3)-alkylation
of 1,2-dimethylindole with a donor−acceptor diazo compound
to give the indole product in 81% yield (Scheme 2C).6

Recently, the same group described the borane-catalyzed C(3)-
allylation of indoles (including 1,2-dimethylindole) with allyl
esters.7 Despite these advances, it remains necessary to develop
new synthetic approaches that avoid the use of catalysts based
on precious metals and diversify the range of accessible indole-
containing molecules. Building upon our ongoing interest in
the applications of boranes in catalysis,8,9 we recently
discovered that B(C6F5)3 could be employed as a catalyst for
the direct C(3)-alkylation of indoles and oxindoles using
amines as alkyl donors,10 whereby the mechanism of alkyl
transfer is initiated by B(C6F5)3-mediated α-N C(sp3)−H
hydride abstraction to form electrophilic iminium ions.11−13

However, the method was restricted to the transfer of 1° alkyl
groups, and almost exclusively to C(3)-methylation, in order to
mitigate against anticipated unproductive pathways resulting
from enamine formation when amine alkyl donors that contain
β-N C(sp3)−H bonds were employed. Despite the afore-
mentioned challenge, herein, we describe a significant advance
of this approach to include the B(C6F5)3-catalyzed transfer of
2° alkyl groups for the first time, enabling access to a more
diverse range of valuable highly substituted indoles (vide inf ra).

For reaction optimization, the C(3)-alkylation of 1,2-
dimethylindole 1 to form 2 was investigated using a selection
of mono- and diarylamines 3−7 as secondary alkyl group
transfer reagents (Table 1).14,15 Employing B(C6F5)3 (10 mol
%)16 as the catalyst with diarylamine 7 (1.2 equiv) in
dichloroethane (DCE) at 50 °C for 18 h under argon, 62%

conversion to 2 was observed (entry 1). Monoarylamines 3
and 4 were found to be unreactive under these reaction
conditions (entry 2), whereas less electron-rich diarylamines 5
and 6 gave 54% and 50% conversion to 2, respectively (entry
3). Increasing the concentration ([1] = 2 M) resulted in 84%
conversion to 2 (entry 4), which could be isolated in 58%
yield. The discrepancy in conversion vs isolated yield in this
case was attributed to the challenging separation of 2 from
residual 1 via silica gel chromatography. No product formation
was observed in the absence of B(C6F5)3 (entry 5), whereas
only 55% conversion to 2 occurred upon lowering the catalyst
loading to 5 mol % (entry 6). Various other modifications to
the reaction parameters, including switching solvent to
dichloromethane (DCM), cyclohexane, or toluene (entry 7),
reducing the reaction time to 6 h (entry 8), or lowering the
reaction temperature to 40 °C, all diminished the observed
conversion to 2. As such, the optimized reaction conditions,
which are mild, are those represented by Table 1, entry 4.

The commercially available borane catalyst, B(C6F5)3, which
readily forms the B(C6F5)3·nH2O (n = 0, 1) adduct when
exposed to moisture in air, is typically transferred to an argon
or nitrogen filled glovebox and purified via sublimation prior to
use. Alternatively, the active B(C6F5)3 can be generated from
the water adduct via treatment with Et3SiH in commercially
supplied solvents using Schlenk line techniques, which obviates
the requirement for specialized equipment and rigorously
anhydrous solvents. Using this alternative protocol, the C(3)-
alkylated indole 2 was formed in 75% yield on a 0.1 mmol
scale, and in 66% yield upon scale-up to 1 mmol of indole 1
(Scheme 3).

With the optimized reaction conditions in hand, the
substrate scope of the secondary alkyl transfer process was
investigated (Scheme 4). Initially, the impact of various
substitutions on the aromatic ring within the benzylamine
fragment upon conversion to products was studied. It was
found that electron-releasing substituents (e.g., methyl and
methoxy) were well tolerated at the 2-, 3-, and 4-positions on
the aromatic ring, giving products 8−12 in high yields.
Conversely, the strongly electron-withdrawing 4-CF3 group
resulted in no observed product 13 formation, with starting
materials recovered. Incorporation of an ethyl group at the
benzylic position within the amine (R4 = Et) gave 51%
conversion to product 14. However, no conversion to C(3)-
alkylated indole 15 was observed when a homobenzylic amine
was employed, which highlighted the necessity of the
benzylamine motif within the amine secondary alkyl group
transfer reagent. The dihydroindenyl and tetrahydronaphthyl
groups could be transferred to the C(3)-position of 1,2-
dimethylindole to access products 16 and 17, which were both

Table 1. Reaction Optimizationa

entry variation from “standard” conditions yieldb (%)

1 none 62
2 amine 3 or 4 <2
3 amine 5 or 6 54, 50
4 [1] = 2 M 84 (58)
5c no B(C6F5)3 <2
6c B(C6F5)3 (5 mol %) 55
7c DCM, cyclohexane, toluene 77, 80, 70
8c 6 h 74
9c 40 °C 66

aReactions performed with 0.1 mmol of 1. bAs determined by 1H
NMR analysis of the crude reaction mixture with 1,3,5-trimethylben-
zene as the internal standard. Isolated yield given in parentheses. c[1]
= 2 M. PMP = 4-OMeC6H4.

Scheme 3. Alternative Protocol and Reaction Scale-upa

aYields as determined by 1H NMR analysis of the crude reaction
mixture with 1,3,5-trimethylbenzene as the internal standard.
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formed in 59% and 61% yield, respectively. Within the indole
fragment, a selection of substituents could be incorporated at
the 5- and 6-positions to give products 18−22 in synthetically
useful yields, including halides that enable facile subsequent
product elaboration via established cross-coupling method-
ologies. Incorporation of a 5-NO2 group within the indole
resulted in no observable conversion to 23, which could be
attributed to the reduced nucleophilicity of the indole. Both 1-
methyl-2-phenylindole and 1-methylindole underwent efficient
C(3)-alkylation to afford products 24 and 25 in 75% and 66%
yields, respectively. Furthermore, it was found that 2-
methylindole is a competent nucleophile in the secondary
alkyl transfer process when used in combination with 2,2,6,6-
tetramethylpiperidine (10 mol %) as a Brønsted base, which
enabled good conversion to product 26. Finally, the protocol
was utilized to access an analogue of indomethacin, which is a
nonsteroidal anti-inflammatory drug. The attenuated nucleo-
philicity of the N-benzoylated indole resulted in 26%
conversion to indomethacin derivative 27. It was found that
1,2,5-trimethylpyrrole was unreactive under the optimized
reaction conditions.

To gain insight into the reaction mechanism, experiments
using deuterated substrates and reagents were performed
(Scheme 5). Initially, employing C(3)-deuterated 1,2-dime-
thylindole 28 with the previously optimized reaction

conditions (c.f., Table 1, entry 4), C(3)-alkylated indole 2
was formed in 61% yield without any deuterium incorporation
within the product (Scheme 5A). In contrast, the B(C6F5)3-
catalyzed C(3)-alkylation of 1,2-dimethylindole 1 with
deuterated amine 29 gave product 30 with >98% D
incorporation at the benzylic position (Scheme 5B). Based
upon these results, and related processes described in the
literature,11 a plausible reaction mechanism initiates with
B(C6F5)3-mediated α-N C(sp3)−H hydride abstraction within
the amine to give the corresponding iminium−borohydride ion
pair (Scheme 5C). The iminium ion, which will be in
equilibrium with the corresponding enamine (unproductive
pathway), is intercepted by the indole, with subsequent amine
elimination providing access to an α,β-unsaturated iminium
ion. Hydride transfer from [HB(C6F5)3]− to this iminium ion
forms the observed C(3)-alkylated product, with regeneration
of the borane catalyst.

In summary, we have developed a synthetic method to
access a range of highly substituted indoles via the B(C6F5)3-
catalyzed transfer of 2° alkyl groups from amine donors. Future
work will focus on exploring alternative synthetic applications
that are enabled by borane-mediated α-N C(sp3)−H hydride
abstraction within amines, which will be reported in due
course.

Scheme 4. Substrate Scopea

aReactions performed with 0.1 mmol of substrate. [Substrate] = 2 M.
Yields as determined by 1H NMR analysis of the crude reaction
mixture with 1,3,5-trimethylbenzene as the internal standard.
bTwenty-four h. cB(C6F5)3 (10 mol %) was prepared in situ from
B(C6F5)3·nH2O (10 mol %, n = 0, 1) and Et3SiH (20 mol %) under
N2.

d2,2,6,6-Tetramethylpiperidine (10 mol %) added.

Scheme 5. Reaction Mechanisma

aReactions performed with 0.1 mmol of substrate. [Substrate] = 2 M.
Yields as determined by 1H NMR analysis of the crude reaction
mixture with 1,3,5-trimethylbenzene as the internal standard.
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